
THE HOMOLOGY VERSION OF
THE CAUCHY INTEGRAL THEOREM

Mathematics 503 classroom notes—Fall 2005

H. J. Sussmann

November 15, 2005

GRIDS. A grid is a finite set G of lines in the plane such that (i) every line
L ∈ G is either horizontal or vertical, (ii) G contains at least two vertical lines
and two horizontal lines.

A grid is specified by giving an ordered pair (a,b) of finite sequences a =
(a0, . . . , aN ), b = (b0, . . . , bM ), of real numbers, such that N,M are positive
integers, a0 < a1 < . . . < aN−1 < aN , and b0 < b1 < . . . < bM−1 < bM . Given
such a pair (a,b), the grid G(a,b) (or G(a0, . . . , aN ; b0, . . . , bM )) consists of
the vertical lines {(x, y) : x = aj}, for j = 0, . . . , N , and the horizontal lines
{(x, y) : y = bk}, for k = 0, . . . ,M . Hence the grid G(a0, . . . , aN ; b0, . . . , bM )
has N +M + 2 lines.

From now on we assume, until further notice, that a grid

G = G(a,b) = G(a0, . . . , aN ; b0, . . . , bM) .

has been specified.

A point of G is a point of the form (aj , bk), for j = 0, . . . , N , k = 0, . . . ,M .
We write Point(G) to denote the set of points of G. Hence the set Point(G)
has (N + 1)(M + 1) (i.e., NM +N +M + 1) members.

A segment of G is a straight-line segment from a point (aj , bk) of the grid to
a point (aj+1, bk) or (aj , bk+1). (That is, a segment goes horizontally from left
to right or vertically up.) We write Segm(G) to denote the set of all segments
of the grid G. Clearly, the set Segm(G) has N(M + 1) + M(N + 1) (i.e.,

2NM +N +M) members (because there are N(M + 1) horizontal segments
and M(N + 1) vertical ones).

A rectangle ofG is a set of the form [aj−1, aj ]×[bk−1, bk], for j ∈ {1, . . . , N},
k ∈ {1, . . . ,M}. We write Rect(G) to denote the set of all rectangles of G.
Clearly, the set Rect(G) has NM members.

We now define the chains associated to the grid G. There will be −1-

chains, 0-chains, 1-chains, and 2-chains.
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Remark. In general, one wants to consider chains with coefficients in some
ring R such as R or Z. For us, the only important ring of coefficients is R, so
we will only consider chains with coefficients in R. ♦

• A (−1)-chain of G is a member of R.

• A 0-chain of G is a formal linear combination

C =
L∑
`=1

c`P` ,

where the coefficients c` belong to R and the P` are points of G.

• A 1-chain of G is a formal linear combination

C =
L∑
`=1

c`S` ,

where the coefficients c` belong to R and the S` are segments of G.

• A 2-chain of G is a formal linear combination

C =
L∑
`=1

c`R` ,

where the coefficients c` belong to R and the R` are rectangles of G.

For m = −1, 0, 1, 2, we use Cm(G,R) to denote the space of all m-chains of G.
Then

C−1(G,R)
C0(G,R)
C1(G,R)
C2(G,R)

are linear
spaces
over R of
dimension

1
NM +N +M + 1
2NM +N +M
NM

respectively.

The boundary operator:

• If C ∈ C−1(G,R), the boundary of C is zero. (You can think of 0 as a
“−2-chain,” if you wish.

• If C =
∑L
`=1 c`P` ∈ C0(G,R), the boundary of C is the −1-chain ∂C

given by

∂C =
L∑
`=1

c` .

• If S is a segment of G, going from A to B, the boundary of S is the
0-chain ∂S given by ∂S = B −A.
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• If C =
∑L
`=1 c`S` ∈ C1(G,R), the boundary of C is the 0-chain ∂C given

by

∂C =
L∑
`=1

c`∂S` .

• If R = [aj−1, aj ] × [bk−1, bk] is a rectangle of G, we use S1(R), S2(R),
S3(R), S4(R), to denote, respectively, (ii) the segment from (aj−1, bk−1)
to (aj , bk−1), (ii) the segment from (aj , bk−1) to (aj , bk), (iii) the seg-
ment from (aj−1, bk) to (aj , bk), and (iv) the segment from (aj−1, bk−1) to
(aj−1, bk). The boundary of R is the 1-chain ∂R given by

∂R = S1(R) + S2(R)− S3(R)− S4(R) .

• If C =
∑L
`=1 c`R` ∈ C2(G,R), the boundary of C is the 1-chain ∂C given

by

∂C =
L∑
`=1

c`∂R` .

Clearly, the four boundary maps defined above are linear, and we have the
following diagram of linear spaces and linear maps:

C2(G,R) ∂−→ C1(G,R) ∂−→ C0(G,R) ∂−→ C−1(G,R) ∂−→ {0} . (1)

The boundary of a boundary ia always zero:

THEOREM. Let C be an m-chain of G, where m = 0 or m = 1 or m = 2.
Then ∂∂C = 0.

Proof: If m = 0, the conclusion is trivial.

If m = 1, it suffices to prove that ∂∂S = 0 if S ∈ Segm(G). But, if S is the
segment from A to B, then ∂S = B−A = 1·B+(−1)·A, so ∂∂S = 1+(−1) = 0.

If m = 2, it suffices to prove that ∂∂R = 0 if R ∈ Rect(G). Let ∂S1(R) =
P2 − P1, ∂S2(R) = P4 − P3, ∂S3(R) = P6 − P5, ∂S4(R) = P8 − P7. Then
P3 = P2, P6 = P4, P5 = P8, and P1 = P7. So

∂R = ∂S1(R) + ∂S2(R)− ∂S3(R)− ∂S4(R)

= P2 − P1 + P4 − P3 − (P6 − P5)− (P8 − P7)

= P2 − P1 + P4 − P2 − (P4 − P8)− (P8 − P1)

= P2 − P1 + P4 − P2 − P4 + P8 − P8 + P1

= 0 .

This completes the proof of the theorem. ♦
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So the diagram of (1) has the additional property that

∂∂ = 0 .

A diagram with this property is called a chain com-
plex.

Cycles: If m = −1, 0, 1, 2, then an m-chain C is closed if ∂C = 0. A closed
m-chain is called an m-cycle. We use Zm(G,R) to denote the space of all
m-cycles of G.

Boundaries: If m = −1, 0, 1, an m-boundary is an m-chain which is the
boundary of some m + 1-chain. We use Bm(G,R) to denote the space of all
m-boundaries of G.

Boundaries are cycles:

TRIVIAL THEOREM. Every boundary is a cycle. That is,

Bm(G,R) ⊆ Zm(G,R) if m = −1, 0, 1.

Proof: If C is an m-boundary, then C = ∂D for some m + 1-chain D. Hence
∂C = ∂∂D = 0. So C is a cycle. ♦

Cycles are boundaries:

NONTRIVIAL THEOREM. Every cycle is a boundary. That is, (since we
already know that boundaries are cycles),

Bm(G,R) = Zm(G,R) if m = −1, 0, 1.

Proof: Let us first consider the (very easy) case when m = 0. (The case when
m = −1 is so trivial that I will not even bother to discuss it.) We know that
B0(G,R) ⊆ Z0(G,R), and we have to prove that Z0(G,R) ⊆ B0(G,R). Let C =∑L
`=1 c`P` be a 0-cycle. Pick any point Q ∈ Point(G). Then C =

∑L
`=1 c`(P`−

Q), because
∑L
`=1 c` = ∂C = 0, since C is closed. Therefore, to prove that C is

a boundary it suffices to show that each cycle P` − Q is a boundary. In other
words, it suffices to show that if P,Q ∈ Point(G) then Q−P is a boundary. So
let P,Q be points of G. Assume first that P and Q lie on the same horizonal
line, and Q is to the right of P . Then there are segments S1, S2, . . . , Sn of G and
points P1, P2, . . . , Pn, Q1, Q2, . . . , Qn, such that ∂Sj = Qj −Pj for j = 1, . . . , n,
Qj = Pj+1 for j = 1, . . . , n−1, P1 = P , andQn = Q. LetD = S1+S2+· · ·+, Sn.
Then ∂D = Q1 − P1 +Q2 − P2 +Q3 − P3 + · · ·+Qn − Pn = Q− P , so Q− P
is a boundary. If P and Q lie on the same horizonal line, and Q is to the left

4



of P , then P is to the right of Q, so P −Q is a boundary, and then Q− P is a
boundary as well. Hence we have shown that Q− P is a boundary whenever P
and Q lie on the same horizonal line. A similar argument shows that Q− P is
a boundary whenever P and Q lie on the same vertical line. Finally, if P,Q are
any two points of G, there is a point A of G that lies on the same horizontal
line as P and on the same vertical line as Q. Hence A− P is a boundary, and
Q−A is a boundary. Since Q− P = (Q−A) + (A− P ) Q−A is a boundary,
and we are done.

Now consider the case when m = 1. Let us compute some dimensions.
The linear space Z0(G,R) has dimension NM +N +M , because C0(G,R) has
dimension NM + N + M + 1 and Z0(G,R) is the kernel of a nontrivial linear
map ∂ : C0(G,R) 7→ R. (This linear map is nontrivial because we can pick any
point P of G and regard P as a 0-chain. Then ∂P = 1, so ∂ does not vanish
identically on C0(G,R).) We have already proved that B0(G,R) = Z0(G,R), so
B0(G,R) has dimension NM+N+M as well. Now, B0(G,R) is the image of the
space C1(G,R) under the linear map ∂ : C1(G,R) 7→ C0(G,R). And Z1(G,R) is
the kernel of this map. Therefore

dimZ1(G,R) = dim C1(G,R)− dimB0(G,R) ,

because, if V,W are finite-dimensional linear spaces, and µ : V 7→W is a linear
map, then dim kerµ+ dim imµ = dimV .

We showed a few pages ago that dim C1(G,R) = 2NM + N + M , and we
have just established that dimB0(G,R) = NM +N +M . Hence

dimZ1(G,R) = NM .

Since B1(G,R) ⊆ Z1(G,R), to prove that B1(G,R) = Z1(G,R) it suffices
to show that dimB1(G,R) = NM . We know that Rect(G) has exactly NM

members, and it is clear that B1(G,R) is the linear span of the boundaries ∂R of
these NM rectangles. So the conclusion that dimB1(G,R) = NM will follow
if we prove that the boundaries ∂R1, ∂R2, . . . , ∂RNM of the NM rectangles
R1, R2, . . . , RNM of G are linearly independent. Suppose that

NM∑
s=1

cs∂Rs = 0 .

We have to show that all the cs vanish. Pick any s∗ ∈ {1, . . . , NM}. Then pick
a point z∗ in the interior of Rs∗ . Let C =

∑NM
s=1 cs∂Rs = 0 . Then the integral∫

C

dz

z − z∗
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is equal to zero, because C = 0. On the other hand,∫
C

dz

z − z∗
=
NM∑
s=1

cs

∫
∂Rs

dz

z − z∗
= 2π i

NM∑
s=1

csW (∂Rs, z∗) = 2π i cs∗ .

So cs∗ = 0. Since s∗ is an arbitrary member of the index set {1, . . . , NM},
we have establised that all the cs vanish, so R1, R2, . . . , RNM of G are linearly
independent, as desired, and our proof is complete. ♦

REMARK. If you think that it is inelegant to bring in complex integrals and
winding numbers in the middle of what ought to be a purely combinatorial ar-
gument, then I fully agree with you. (Notice that Serge Lang also does it, and
in an even uglier way.) It is not too hard to give a purely combinatorial proof
that every 1-cycle is a boundary. Try to find one.

We now forget about the fixed grid G, and try to do some of the things that we
did for a grid in a grid-independent way, so that instead of “points of the grid”
we will deal with arbitrary points, and instead of “segments of the grid” we will
deal with arbitrary arcs.

SINGULAR CHAINS. Let Ω be open in C. An arc in Ω is a continuous
map γ : [a, b] 7→ Ω, defined on some compact interval [a, b]. The boundary of
an arc γ is the formal difference ∂γ = γ(b) − γ(a). (If this “formal difference”
makes you uncomfortable, try the following completely rigorous definition: a
0-chain in C is a function ϕ : C 7→ R such that ϕ(z) = 0 for all except a finite
set of values of z. Clearly, the 0-chains form a linear space over R. For any
z ∈ C, let αz : C 7→ R be given by αz(w) = 0 if w 6= z, αz(z) = 1. Then every
0-chain is a sum

∑L
`=1 c`αz` , where the c` are real numbers and the z` belong

to C. Now relabel αz as z, so our 0-chains are sums
∑L
`=1 c`z`. This is what

we mean by “formal linear combinations of points of C.” In particular, if z1, z2

are two points of C—which need not be different—then the “formal difference”
z2 − z1 is, really, the function αz2 − αz1 . Notice that in the special case when
z1 = z2 the “formal difference” z2−z1 is just the zero function, as it should be.)

An arc γ : [a, b] 7→ C is a segment if

γ(t) =
b− t
b− a

γ(a) +
t− a
b− a

γ(b) for a ≤ t ≤ b .

A segment γ : [a, b] 7→ C is horizontal if γ(a) and γ(b) have the same y-
coordinate. A segment γ : [a, b] 7→ C is vertical if γ(a) and γ(b) have the same
x-coordinate.

An HV arc is an arc γ : [a, b] 7→ C which is a finite concatenation of
horizontal and vertical segments. (That is, there exist t0, . . . , tn such that a =
t0 < t1 < · · · < tn = b having the property that for j = 1, . . . , n the arc γj :
[tj−1, tj ] 7→ C obtained by restricting γ to the interval [tj−1, tj ] is a horizontal
or a vertical segment.)
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THEOREM H. Every arc γ : [a, b] 7→ Ω is homotopic in Ω, with fixed end-
points, to an HV arc.

Proof. Pick δ ∈ R such that δ > 0 and z ∈ Ω whenever |z − γ(t)| ≤ δ for some
t ∈ [a, b]. (The existence of δ follows from the fact that the set {γ(t) : a ≤ t ≤ b}
is compact.) Using the fact that γ is uniformly continuous, pick a positive
number α such that |γ(t) − γ(s)| ≤ δ

6 whenever t, s ∈ [a, b] and |t − s| ≤ α.
Then pick a positive integer N such that b−a

N < α. Let τk = a + k
N (b − a)

for k = 0, 1, . . . , N . For k = 1, . . . , N , let σk be the midpoint of the interval
[τk−1, τk]. Let zk be the point of C that has the same y-coordinate as γ(τk−1)
and the same x-coordinate as γ(τk). Define a new path γ̃ : [a, b] 7→ C, by letting

γ̃(t) =


σk−t

σk−τk−1
γ(τk−1) + t−τk−1

σk−τk−1
zk for τk−1 ≤ t ≤ σk

τk−t
τk−σk zk + t−σk

τk−σk γ(τk) for σk ≤ t ≤ τk

for k = 1, . . . , n. Then γ̃ is an HV arc in C having the same endpoints as γ.

We now show that γ̃ and γ are homotopic in Ω with fixed endpoints. (This
implies, in particular, that γ̃ is in fact an arc in Ω.) For this purpose, we
construct a homotopy H : [a, b] × [0, 1] 7→ C between γ̃ and γ, and then show
that H actually takes values in Ω. We define

H(t, s) = sγ̃(t) + (1− s)γ(t) for a ≤ t ≤ b , 0 ≤ s ≤ 1 .

Then H(t, 0) = γ(t), H(t, 1) = γ̃(t), H(a, s) = γ(a), and H(b, s) = γ(b), so H
is a homotopy from γ to γ̃ with fixed endpoints.

To conclude our proof, we have to show thatH(t, s) ∈ Ω for all (t, s) ∈ [a, b]×
[0, 1]. Pick t, s. Pick k such that t ∈ [τk−1, τk]. Assume first that t ∈ [τk−1, σk].
Then |γ(τk) − γ(τk−1)| ≤ δ

6 , and this easily implies |zk − γ(τk−1)| ≤ δ
6 . Since

γ̃(t) is a convex combination of γ(τk−1) and zk, we have |γ̃(t) − γ(τk−1)| ≤ δ
6 .

On the other hand, |γ(t) − γ(τk−1)| ≤ δ
6 , because |t − τk−1)| ≤ α. Hence

|γ̃(t) − γ(t)| ≤ δ. Since H(t, s) is a convex combination of γ̃(t) and γ(t), we
have |H(t, s)− γ(t)| ≤ δ. Hence H(t, s) ∈ Ω, and our proof is complete. ♦

A singular 1-chain in Ω is a formal linear combination
∑L
`=1 c`γ` of arcs

in Ω. We already know what the “boundary” of an arc is. The boundary of a
singular 1-chain

∑L
`=1 c`γ` in Ω is the 0-chain

∑L
`=1 c`∂γ`. A singular 1-chain

is closed if its boundary vanishes. A closed singular 1-chain is a singular

1-cycle.

An important class of examples of 1-cycles is provided by the formal linear
combinations

∑L
`=1 c`Λ` of loops. Recall that a loop in Ω is an arc Λ : [a, b] 7→ Ω

such that Λ(b) = Λ(a). Hence if Λ is a loop in Ω then ∂Λ = 0. It follows that
every formal linear combination

∑L
`=1 c`Λ` of loops in Ω is a singular

1-cycle in Ω.
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A path in Ω is a finite sequence Γ = (γ1, . . . , γn) of arcs γj : [aj , bj ] 7→ Ω
such that γj(bj) = γj+1(aj+1) for j = 1, . . . , n − 1. To such a path we can
associate the singular 1-chain κΓ = γ1 + . . .+ γn. Then ∂κΓ = γn(bn)− γ1(a1).
Not surprisingly, we say that the path Γ is closed if γn(bn) = γ1(a1), i.e., if
∂κΓ = 0. In other words, a path Γ is closed if and only if its corresponding
singular 1-chain is closed.

If f ∈ Hol(Ω), and γ : [a, b] 7→ Ω is an arc in Ω, we define
∫
γ
f (also written

as
∫
γ
f(z) dz) in the usual way. (That is, we let h : [a, b] 7→ C be a primitive

of f along γ, and define
∫
γ
f = h(b) − h(a).) If C =

∑L
`=1 c`γ` is a singular

1-chain, we define ∫
γ

f
def=

L∑
`=1

c`

∫
γ`

f .

In particular, if Γ = (γ1, . . . , γn) is a path in Ω, then
∫

Γ
f is, by definition,

the sum
∫
γ1
f +

∫
γ2
f + · · ·+

∫
γn
f , which is exactly the integral

∫
κΓ
f of f along

the singular 1-chain κΓ.

HOMOLOGY. We now discuss the crucial question of these notes, namely,
to what extent two cycles Λ1, Λ2, in an open set Ω can be distinguished by
computing complex integrals in Ω.

Suppose that C, D are two singular 1-cycles in Ω (or, more generally, two
singular 1-chains in Ω). We say that C and D are strongly homologous in Ω
if
∫
C
g =

∫
D
g for every holomorphic function g on Ω. Then it is clear that C

and D are strongly homologous in Ω if and only if the singular 1-chain C −D
is homologous to zero (i.e. to the zero 1-chain) in Ω.

A useless observation that is nevertheless worth knowing: If a 1-chain
C in Ω is strongly homologous to zero in Ω, then C is closed.

Proof: Let C =
∑n
`=1 c`γ` be a singular 1-chain in Ω. Let g be a holomorphic

function on Ω. Then, for each `, if γ` : [a, b] 7→ Ω, and we let Q` = γ`(b`),
P` = γ`(a`), we have ∫

γ`

g′ = g(Q`)− g(P`) .

Hence

0 =
∫
C

g′ =
n∑
`=1

c`

(
g(Q`)− g(P`)

)
.

Let S be the set whose members are the Q` and the P`. (This set could have
fewer than 2n members, because a point A may be equal to Q` for more than
one ` or to P` for more than one `, and in addition some Q` may also be equal
to some P`′ .) Let A1, A2, . . . , Am be the distinct points of S. Then

∂C =
n∑
`=1

c`(Q` − P`)
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=
n∑
`=1

c`Q` −
n∑
`=1

c`P`

=
m∑
j=1

( ∑
1≤`≤n,Q`=Aj

c`Q` −
∑

1≤`≤n,P`=Aj

c`P`

)

=
m∑
j=1

djAj ,

where
dj =

∑
1≤`≤n,Q`=Aj

c` −
∑

1≤`≤n,P`=Aj

c` .

Suppose there exists a j such that dj 6= 0. Pick one and call it j∗. Let g be a
polynomial such that g(Aj∗) = 1 but g(Aj) = 0 for j 6= j∗. Then

0 =
n∑
`=1

c`

(
g(Q`)− g(P`)

)
=

( ∑
1≤`≤n,Q`=Aj∗

c` −
∑

1≤`≤n,P`=Aj∗

c`

)
g(Aj∗)

=
( ∑

1≤`≤n,Q`=Aj∗

c` −
∑

1≤`≤n,P`=Aj∗

c`

)
= dj∗ .

So dj∗ − 0, and we have reached a contradiction. Hence all the dj vanish, and
∂C = 0. ♦

THE HOMOLOGY VERSION OF THE CAUCHY INTEGRAL
THEOREM. We have called two singular 1-cycles C1, C2 in Ω “strongly ho-
mologous in Ω” if the integrals along them have the same value for every function
f ∈ Hol(Ω). The “homology version of the Cauchy integral theorem” tells us
that, for C1 and C2 to be strongly homologous in Ω it suffices to have the equal-
ity
∫
C1
f =

∫
C2
f for all f in a rather small subset WΩ of Hol(Ω). The set WΩ

is that of all the functions
Ω 3 z 7→ 1

z − z∗
,

for all complex numbers z∗ that are not in Ω. (For example: if Ω = C then WΩ

is empty, so any two singular 1-cycles in Ω are strongly homologous. If Ω is C
with the origin removed, then WΩ has just one member, namely, the function
z 7→ 1

z , so two singular 1-cycles in Ω are strongly homologous if and only if their
winding numbers about 0 are equal. More generally, if Ω = C−{z1, z2, . . . , zn},
where z1, z2, . . . , zn are distinct complex numbers, thenWΩ exactly n members,
namely, the functions z 7→ 1

z−zj , for j = 1, . . . , n, so two singular 1-cycles in Ω
are strongly homologous if and only if their winding numbers about each zj are
equal.)
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If C1, C2 are singular 1-chains in Ω, we call C1 and C2 are homologous in Ω
if ∫

C1

dz

z − z∗
=
∫
C2

dz

z − z∗
for every z∗ ∈ C− Ω . (2)

THE MAIN THEOREM. Let Ω be open in C. Let f : Ω 7→ C be holomorphic.
Let C1, C2, be singular 1-chains in Ω. Then the following two conditions are
equivalent:

(1) C1 and C2 are strongly homologous in Ω.

(2) ∂C1 = ∂C2 and C1 and C2 are homologous in Ω.

Proof. Suppose that C1 and C2 are strongly homologous in Ω. Then the chain
C1 − C2 is strongly homologous to zero in Ω, and we already know that if a
1-chain is strongly homologous to zero then it is closed. Hence

∂(C1 − C2) = 0 ,

so ∂C1 = ∂C2. Furthermore,
∫
C1
f =

∫
C2
f for all holomorphic f : Ω 7→ C, so

in particular (2) holds. Therefore C1 and C2 are homologous in Ω, and we have
proved the implication (1)⇒(2).

Let us prove that (2)⇒(1). Asume that (2) holds. let Λ = C1 − C2. We
want to prove that Λ is strongly homologous to zero in Ω. For this purpose, we
fix f ∈ Hol(Ω) and prove that

∫
Λ
f = 0.

Clearly, ∂Λ = 0, so Λ is a singular 1-cycle. Write

Λ =
L∑
`=1

c`γ` ,

where each γ` is an arc in Ω, so γ` is a continuous map from an interval [a`, b`]
to Ω. Then ∂γ` = γ`(b`)− γ`(a`). So

0 = ∂Λ =
L∑
`=1

c`

(
γ`(b`)− γ`(a`)

)
.

By Theorem H, each γ` is homotopic in Ω with fixed endpoints to an HV arc
γ̃` : [a`, b`] 7→ Ω. Let Λ̃ be the singular 1-chain

∑L
`=1 c`γ̃`. Then, for each `,

∂γ̃` = γ̃`(b`)− γ̃`(a`) = γ`(b`)−γ`(a`) = ∂γ`, because γ̃` has the same endpoints
as γ`. Therefore

∂Λ̃ =
L∑
`=1

c`∂γ̃` =
L∑
`=1

c`∂γ` = ∂Λ = 0 .

Then, if g is any holomorphic function on Ω, the integrals
∫
γ`
g and

∫
γ̃`
g are

equal, because γ` and γ̃` are homotopic in Ω with fixed endpoints. It follows that
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∫
Λ̃
g =

∫
Λ
g. Therefore Λ and Λ̃ are strongly homologous in Ω. In particular, Λ̃

is homologous to zero in Ω, since Λ is homologous to zero in Ω. Furthermore,∫
Λ
f =

∫
Λ̃
f , so it will suffice to prove that

∫
Λ̃
f = 0.

Let us use # to denote concatenation of arcs. Then each γ̃` is a concatena-
tion ξ1,`#ξ2,`# · · · ξν`,` of horizontal and vertical segments. Let

Λ̂ =
L∑
`=1

ν∑̀
j=1

c`ξj,` .

Then Λ̂ is clearly closed (because the identity

∂(ξ1,`#ξ2,`# · · · ξν`,`) = ∂ξ1,` + ∂ξ2,` + · · ·+ ∂ξν`,`

is trivially true) and strongly homologous to Λ̃, so Λ̂ is homologous to zero in
Ω, because Λ̃ is homologous to zero in Ω. Furthermore,

∫
Λ̂
f =

∫
Λ̃
f , so our

conclusion will follow if we prove that
∫

Λ̂
f = 0.

For each j, `, let ηj,` be ξj,` if ξj,` is either horizontal running from left
to right or vertical going up, and let ηj,` be ξj,` run in reverse if ξj,` is either
horizontal running from right to left or vertical going down. Also, let dj,` be
c` if ηj,` = ξj,`, and −c` otherwise. Then dj,`ηj,` is strongly homologous to
c`ξj,`, so the singular 1-chain Λ̌ =

∑L
`=1

∑ν`
j=1 dj,`ηj,` is strongly homologous

to Λ̂. Then Λ̌ is homologous to zero in Ω, because Λ̂ is homologous to zero
in Ω. Furthermore,

∫
Λ̌
f =

∫
Λ̂
f , so our conclusion will follow if we prove that∫

Λ̂
f = 0.

Now let G be the grid consisting of all the horizontal lines and all the
vertical lines that contain some endpoint of some segment ηj,`. Then every
horizontal segment ηj,` goes from a point of the grid to another point of the
grid further to the right, so after subdividing the horizontal ηj,`, if necessary,
we may assume that every horizontal segment ηj,` is a segment of the grid.
(It is clear that subdivding a segment σ produces a sum of segments which is
strongly homologous to σ.) Similarly, we may assume that every vertical ηj,` is
a segment of the grid. So Λ̌ is in fact a 1-cycle of the grid.

Using our general results about grids, we know that Λ̌ is the boundary of a
2-chain R =

∑n
s=1 µsRs, where the Rs are distinct rectangles of G, and the µs

are nonzero real numbers.

CLAIM: all the Rs are entirely contained in Ω.

Let prove this claim. Suppose the claim wasn’t true. Pick s∗ such that Rs∗ is
not entirely contained in Ω. Pick a point z∗ ∈ Rs∗ such that z∗ /∈ Ω. Suppose
first that z∗ is an interior point of Rs∗ . Then W (Λ̌, z∗) = 0, but on the other
hand W (∂Rs∗ , z∗) = 1 and W (∂Rs, z∗) = 0 whenever s 6= s∗, so

W (Λ̌, z∗) = W (∂R, z∗) =
n∑
s=1

µsW (∂Rs, z∗) = µs∗ 6= 0 ,
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and we have reached a contradiction.

Now let us consider the other possible case, when z∗ lies on the boundary of
Rs∗ . In that case, we can pick a positive radius δ such that no point of the open
disc {z : |z − z∗| < δ} lies in any of the segments ηj,`. In particular, we may
pick an interior point ẑ of Rs∗ such that |ẑ − z∗| < δ. Since the integer-valued
function z 7→ W (Λ̂, z) is continuous on the connected set {z : |z − z∗| < δ},
it must be constant. Hence W (Λ̌, ẑ) = W (Λ̌, z∗) = 0. As before, we have
W (∂Rs∗ , ẑ) = 1 and W (∂Rs, ẑ) = 0 whenever s 6= s∗, so

W (Λ̌, ẑ∗) = W (∂R, ẑ) =
n∑
s=1

µsW (∂Rs, ẑ) = µs∗ 6= 0 ,

and we have reached a contradiction in this case as well. (REMARK: the point
ẑ could be in Ω. For example, Ω could be the plane minus one point, and z∗
could be that point, so any other point would have to belong to Ω.)

We have therefore proved our claim. Now, for any s, since f is holomorphic
in Ω and Rs is contained in Ω, we have

∫
∂Rs

f = 0. So∫
Λ̌

f =
∫
∂R

f =
∫
∑n
s=1 µs∂Rs

f =
n∑
s=1

µs

∫
∂Rs

f = 0 ,

and our proof is complete. ♦
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