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1 Information on the course

1.1 About the instructor

My name is H. J. Sussmann. My office is Hill 538.
My Rutgers phone extension is 5-5407.
My e-mail address is sussmann@math.rutgers.edu.

1.2 Web page

I have set up a Web page for our Math 300 section:

http://www.math.rutgers.edu/̃ sussmann/math300page-Fall08.html

All the instructor’s notes will be available there.

1.3 Office hours

My office is Hill 538. My office hours will be:

• Wednesday, 2.00pm to 5:00pm, in my office,
• any other time (possibly including weekends), by appointment, in my

office.

1.4 Your final grade

• Homework (and a few quizzes) will count for about 30% of your grade.

• The two midterms will count—together—for about 35%.

• The final exam will count for the remaining 35%.
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1.5 Textbook and notes

We will be using:

• the book A Transition to Advanced Mathematics (sixth edition), by
Douglas Smith, Maurice Eggen, and Richard St. Andre;

• the notes written by the instructor.

The material of the instructor’s notes is
an integral part of the course, as much
as that of the book. Furthermore, the notes
contain all kinds of important information.
For example, in this set of notes there are lots
of things you need to know in order to do your
homework.

1.6 Always bring the book to class!

In the lectures, we are going to spend a lot of time looking at the book and
analyzing definitions, arguments and proofs given there. So

Please always bring the book to
class! You are going to need it.

1.7 Readings for the first 3 weeks (September 2, 4, 9,
11, 16 and 18)

• the book’s “Preface to the student,”

• the book’s Chapter 1 (all of it!),

• the book’s Chapter 2, sections 2.1 and 2.2,

• the instructor’s notes dated September 4, Pages 1 to 28.
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1.8 Homework assignment no. 1, due on Thursday
September 11

Before you start writing your homework, read carefully the rest of
this handout, in particular §1.9 on “some remarks about mathe-
matical writing.”

1. Book, Exercises 1.2 (pages 17-18-19-20): Problems 5 (non-starred
items), 8 (non-starred items), and 13 (non-starred items),

2. (i) Prove or disprove: there exist integers x, y such that x2 − y2 = 28 ,
(ii) Prove or disprove: there exist integers x, y such that x2− y2 = 29 ,
(iii) Prove or disprove: there exist integers x, y such that x2−y2 = 30 .

NOTE: to prove that an object x such that a statement S(x) involving x
exists, you can exhibit one. (This is called Rule ∃prove, for reasons that will
be made clear below.) For example: to prove that there exists an integer x
such that x2 + 1 = 10, you can just say:

Let x = 3. [Asssumption]
Then x is an integer. [Well-known fact1]
And x2 + 1 = 10. [Elementary algebra]

So there exists an integer x such that x2 + 1 = 10. [Rule ∃prove]
END OF PROOF

To prove that an object x such that a statement S(x) involving x does not
exist, you can do it by contradiction. For example, to prove that there does
not exist an integer x such that x2 + 1 = 9, you can just say:

Assume there exists an integer x such that x2 + 1 = 9. [Assumption]

Then that integer x must satisfy x2 = 8. [Elementary algebra]
So x = 2

√
2 or x = −2

√
2. [Elementary algebra]

So 2
√

2 is an integer. [Because x is an integer and
2
√

2 = x or 2
√

2 = −x]
But 2

√
2 is not an integer. [Well known fact]

Therefore there does not exist an integer x such that x2 + 1 = 9.
[Proof by contradiction rule]

END OF PROOF
1If this justification bothers you, we will see later how this fact follows from the axioms
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3. Consider the statement

(S) If x ∈ IR then if |x2 − 11| < 5 and x > 0 then x < 4 and x > 2.

(a) Translate (S) into symbolic language (using the connectives ∼, ∧,
∨, ⇒, ⇔).

(b) Prove (S).

4. Consider the statement

(S) x ∈ IR⇒ (|x− 6| > 4⇒ (x > 10 ∨ x < 4))

(a) Translate (S) into non-symbolic language (using the words ‘if’,
‘then’, ‘and’, ‘or”, etc.).

(b) Prove (S).

1.9 Some remarks about mathematical writing

1.9.1 Write clearly in complete sentences

You should write so that you can be easily understood by a properly trained
English-speaking individual. In particular, this means that you must

• Use complete English sentences, that make clearly identifiable state-
ments with a clear meaning that can can be understood by anyone
reading what you wrote. For example:

– If you tell me that “she is very smart,” but you haven’t told me
who “she” is, then I don’t know who you are talking about, so
you haven’t made a statement with a clear meaning.

– If you write “x > 0,” but you haven’t told me who “x” is, then
I don’t know what you are talking about, so you haven’t made a
statement.

– If I ask you to state Pythagoras’ theorem and your answer only
says “a2 + b2 = c2,” then nobody will know what you are talking
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about2, because you have not said what “a,” “b,” and “c” are
supposed to be.3

• Avoid exaggerated or incorrect use of cryptic mathematical notation.

• Explain what you are doing.

• Make sure that letter “variables” are used correctly, that is that either:
(i) it has been said before what these letters stand for, or (ii) they are
“closed variables” (or “dummy variables,” or “bound variables”) in the
sense that will be discussed in detail in class, and will also be explained
later in these notes.

• Provide proper connectives between equations as well as between ideas.

• Make sure that all the rules of English grammar (including those of
spelling and punctuation) are strictly obeyed. (Here are two very enter-
taining books about punctuation that I recommend to you: (1) Eats,
Shoots and Leaves; the Zero Tolerance Approach to Punctuation, by
Lynne Truss, (2) Eats, Shoots and Leaves; why Commas Really Do
Make a Difference!, by Lynne Truss and Bonnie Timmons.)

• Try to say things correctly, following all the rules, but in your own
words. Please no rote learning. If you have to memorize a definition or
a statement, then that is not a good sign, because it indicates lack of
understanding.

• Please proofread carefully what you hand in. Ideally, you should read
and reread and revise almost any formal communication. Neatness
and clarity count, as you well know if you’ve tried to read any com-
plicated document.

2Of course, your teacher will know what you are trying to say, and anybody who already
knows the statement of Pythagoras’ theorem will know. But when you are asked to state
a theorem or a definition you should write it as if you were talking to somebody
who does not know yet what the theorem or the definition say.

3Here is a correct statement of Pyhtagoras’ theorem: Let c be the lenght of the hy-
pothenuse of a right triangle, and let a, b be the lengths of the other two sides. Then
a2 + b2 = c2.
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• Do not assume that the people reading your paper
can read your mind. Do assume that they are in-
telligent, but also assume that they are busy, and
cannot and will not spend an excessive amount of
time puzzling out your meaning. Communication
is difficult, and written technical communication
is close to an art.

Effective written exposition will be
worth at least 50% of your grade. Con-
versely, bad or unclear exposition may
be penalized as much as 50% of the grade
or even more.

• The best reference known to me on effective writing is The Elements
of Style by Strunk and White, a very thin paperback published by
Macmillan. It isn’t expensive, and it is easy to read. I recommend it.

1.9.2 Your written work

You should pay attention to presentation, especially for
the homework:

• A nicely typed homework (e.g., using a word processor) is preferable
to handwritten work. Handwritten work is acceptable too, but in that
case:

– If you have to cross out lots of words, then you should rewrite the
whole thing anew, cleanly and neatly. If you are not willing to
spend some of your time doing this; if what you hand in shows
that you were in a hurry and that you did not make the effort to
write things neatly and properly, then there is no reason for the
instructor or the grader to spend any of our time reading what
you wrote, and we will not do it.

– Use a pen. Never use a pencil.

– Use any color other than red (for example, black, blue, or green),
but DO NOT USE RED. (Reason: The use of red is reserved for
the instructor’s and grader’s comments.)
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– If you tear off the sheets from a spiral notebook, please make
sure before you hand them in that there are none of those ugly
hanging shreds of paper at the margins. Use scissors, or a cutter,
if necessary.

• Make sure that your name appears in every sheet of paper you
hand in, and that if you are handing in more than one sheet then the
sheets are stapled and numbered.

If you hand in a homework assignment that has
one of the following flaws:

• it is written carelessly or in a hurry,

• it has lots of words crossed out,

• it has unreadable handwriting,

• it has unstapled sheets,

• it has unnumbered sheets,

• it has sheets that fail to show your name,

• it has shreds of paper at the margins,

• it is written using pencil rather than a pen,

• it is written in red,

then you will lose points. If it has two or
more of those flaws, then the assignment will
be marked “unacceptable” and returned
unread and, from Assignment No. 3 on, you
will not get a chance to redo it and hand it in
again.
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2 Some logical rules

• Rule ∧use says:

From P ∧Q
you can go to P ,

and

From P ∧Q
you can go to Q .

• Rule ∧prove says:

From P
and Q
you can go to P ∧Q .

• Rule ∨use (proof by cases) says:

From P ∨Q
and P ⇒ R
and Q⇒ R
you can go to R .

• Rule ∨prove says:

From P
you can go to P ∨Q ,

and

From Q
you can go to P ∨Q .

• Rule ⇒use (Modus Ponens) says:

From P ⇒ Q
and P
you can go to Q .
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• Rule ⇒prove (also known as the deduction rule) says: If you start a
subproof with ‘Assume P ’ and prove Q, then in the main proof you
can go to P ⇒ Q.

• The proof by contradiction rule says:

a. If you start a subproof with ‘Assume P ’ and prove Q, and also
∼ Q, then yo can go to ∼ P .

b. If you start a subproof with ‘Assume ∼ P ’ and prove Q, and also
Q, then yo can go to P .

3 An example of a proof

Theorem. If x ∈ IR then if |x− 5| < 1 then 4 < x.

This theorem says that x ∈ IR⇒ (|x− 5| < 1⇒ 4 < x) .

Proof.
Assume x ∈ IR. [Assumption]

Assume |x− 5| < 1. [Assumption]
Then −1 < x− 5 < 1. [because if |u| < v then −v < u < v]
So 4 < x < 6. [adding 5 to each of the terms in the

previous inequality]
Therefore 4 < x ∧ x < 6. [because ‘a < b < c’ means ‘a < b ∧ b < c’]
Hence 4 < x. [Rule ∧use]

So |x− 5| < 1⇒ 4 < x. [Rule ⇒prove]

Hence x ∈ IR⇒ (|x− 5| < 1⇒ 4 < x) . [Rule ⇒prove]

END OF PROOF.
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4 The precise definition of the notion

of “propositional form”

Suppose we are given an alphabet A, that is, a set of letters or letter-like
symbols that will be called “propositional variables.” For example, A could
be {A,B,C} (that is, the set consisting of the three letters A,B,C). Or A
could be {A,B,C,D,E, F}. Or A could be {P,Q,R, S, T, U, V,W}. Or A
could be an infinite set, say, the set consisting of the symbols P1, P2, P3, and
so on, so that Pn is a member of A for every natural number IN.

Using the alphabet A, we define “propositional strings” as follows: a
propositional string with variables in A is a string S of symbols such that
each symbol in S is either (a) a member of A, or (b) one of the propositional
connectives ∼, ∧, ∨, ⇒, ⇔, or (c) a left parenthesis or a right parenthesis.
For example, if A = {A,B,C}, then the following are propositional strings:

A
A ∧B
AB∧
(A ∧B ∧ C) ∨D
((A ∧B) ∧ C) ∨D
∧∨ ∼ (BA⇒

BAB)))((A∧ ⇒
∼ A
∼ A ∧B
∼ (A ∧B)
(∼ A) ∧B
(∼ A)(∧B .

We now want to specify exactly how to distinguish those propositional strings
that are “well-formed” (that is, are acceptable representations of sentences)
from those that are not well-formed. (For example, the strings

A
A ∧B
(A ∧B ∧ C) ∨D
((A ∧B) ∧ C) ∨D
∼ A
∼ (A ∧B)
(∼ A) ∧B

are well-formed, but the strings

AB∧
∧∨ ∼ (BA⇒
BAB)))((A∧ ⇒
∼ A ∧B
(∼ A)(∧B
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are not.)
In order to do this, we have to deal with a difficulty. When, for example,

we combine the strings A and B ∧C by means of the connective ∨, we write
A ∨ (B ∧ C). But when we combine A ⇒ B and B ∧ C by means of ∨,
we write (A ⇒ B) ∨ (B ∧ C). In other words, when a string S is combined
with other strings, then S remains unchanged if it is just a letter, but it is
surrounded by parentheses if it is a string such as A⇒ B, consisting of more
than just one letter.

To make this precise, we introduce the following notation: if S is a propo-
sitional string consisting of a single symbol in A, then S∗ will stand for S.
And if S is any other propositional string, then S∗ will stand for (S). For
example, if S is A then S∗ is A, but if S is A ∧B then S∗ is (A ∧B).

Now, here are the rules defining “well-formed formula” (wff):

WFF1. If S consists of a single letter in A, then S is a wff.

WFF2. If S is a wff then ∼ S∗ is a wff.

WFF3. If S and T are wff’s then S∗ ⇒ T ∗ and S∗ ⇔ T ∗ are wff’s.

WFF4. If n is a natural number, n > 1, and S1, S2, · · · , Sn are wff’s, then
S∗1 ∧ S∗2 ∧ · · · ∧ S∗n and S∗1 ∨ S∗2 ∨ · · · ∨ S∗n are wff’s.

WFF5. Only those strings that are obtainable by repeated applications of
WFF1, WFF2, WFF3 and WFF4 are wff’s.

Example 1. Let S be the string ∼ (P ∧Q). Let us prove that S is well-formed.

1. By Rule WFF1, the one-letter strings P , Q, are well-formed. (At this point,
we know that P and Q are well-formed.)

2. By Rule WFF4 (with n = 2), the string P ∧ Q is well-formed, because P
and Q are well-formed. (At this point, we know that P , Q, and P ∧ Q are
well-formed.)

3. By Rule WFF2 the string ∼ (P ∧Q) is well-formed, because P ∧Q is well-
formed. (At this point, we have found out that S is well-formed, so our proof
is complete.)

Example 2. Let S be the string

((P ⇒ Q) ∧ (P ⇒ R) ∧ (Q⇒ (∼ R)))⇒ (∼ (P ∨Q)) .

Let us prove that S is well-formed.
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1. By Rule WFF1, the one-letter strings P , Q, R are well-formed. (At this
point, we know that P , Q, R are well-formed.)

2. By Rule WFF3 the strings P ⇒ Q and P ⇒ R are well-formed, because P ,
Q and R are well-formed. (At this point, we know that P , Q, R, P ⇒ Q,
and P ⇒ R are well-formed.)

3. By Rule WFF4 (with n = 2), the string P ∧Q is well-formed, because P and
Q are well-formed. (At this point, we know that P , Q, R, P ⇒ Q, P ⇒ R,
and P ∧Q are well-formed.)

4. By Rule WFF2, the string ∼ R and the string ∼ (P ∧ Q) are well-formed,
because R and P ∧ Q are well-formed. (At this point, we know that P , Q,
R, P ⇒ Q, P ⇒ R, P ∧Q, ∼ R, and ∼ (P ∧Q) are well-formed.)

5. By Rule WFF3, the string Q ⇒ (∼ R) is well-formed, because Q and ∼ R
are well-formed. (At this point, we know that P , Q, R, P ⇒ Q, P ⇒ R,
P ∧Q, ∼ R, ∼ (P ∧Q), and Q⇒ (∼ R) are well-formed.)

6. By Rule WFF4, with n = 3, the string

(P ⇒ Q) ∧ (P ⇒ R) ∧ (Q⇒ (∼ R))

is well-formed, because P ⇒ Q, P ⇒ R, and Q ⇒ (∼ R) are well-formed.
(At this point, we know that P , Q, R, P ⇒ Q, P ⇒ R, P ∧ Q, ∼ R,
∼ (P ∧ Q), Q ⇒ (∼ R), and (P ⇒ Q) ∧ (P ⇒ R) ∧ (Q ⇒ (∼ R)) are
well-formed.)

7. By Rule WFF3, the string

((P ⇒ Q) ∧ (P ⇒ R) ∧ (Q⇒ (∼ R)))⇒ (∼ (P ∨Q))

is well-formed, because (P ⇒ Q) ∧ (P ⇒ R) ∧ (Q⇒ (∼ R)) and ∼ (P ∨Q)
are well-formed. (At this point, we have finally shown that S is well-formed,
so our proof is finished)

Question for you to think about. Let S be the string

((P ⇒ Q) ∧ (P ⇒ R) ∧ (Q⇒ (∼ R))⇒ (∼ (P ∨Q)) .

How would you prove that S is not well-formed? (This is not easy. You need a
clever idea. Think of how the number of left parentheses in a wff compares with
the number of right parentheses.)
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5 More logical rules

• Rule ⇔use says:

From P ⇔ Q
you can go to P ⇒ Q ,

and

From P ⇔ Q
you can go to Q⇒ P ,

• Rule ⇔prove says:

From P ⇒ Q
and Q⇒ P
you can go to P ⇔ Q .

• Rule ∀use (also known as the specialization rule) says:

(1) If a is any constant term, then

From (∀x)P (x)
you can go to P (a) .

(2) If a is any constant term, then

From (∀x ∈ U)P (x)
and a ∈ U
you can go to P (a) .

Example. If you have

(∀x ∈ IR)(x > 0⇒ x+
1

x
≥ 2) ,

and you take a = 0.8, then you can go to

0.8 > 0⇒ 0.8 +
1

0.8
≥ 2
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by the specialization rule. Since, in addition, it is true that 0.8 > 0, we
can use Modus Ponens and conclude that

0.8 +
1

0.8
≥ 2 .

(Incidentally, you can verify directly that 0.8+ 1
0.8
≥ 2. Indeed, 0.8 = 8

10

and 1
0.8

= 10
8

, so 0.8 + 1
0.8

= 8
10

+ 10
8

= 64+100
80

164
80
> 160

80
= 2.)

• Rule ∃use says:

(1) If you have (∃x)P (x) then you can pick an x such that P (x) and
give it a name. (For example, you could say “Pick an x such that
P (x) and call it c, so P (c) is true,” or even “Pick an x such that
P (x) and call it x, so P (x) is true.”)

(2) If you have (∃x ∈ U)P (x) then you can pick an x ∈ U such that
P (x) and give it a name. (For example, you could say “Pick an
x ∈ U such that P (x) and call it c, so c ∈ U and P (c) are true,”
or even “Pick an x ∈ U such that P (x) and call it x, so x ∈ U
and P (x) are true.”)

In both cases, the name you choose for the x you pick cannot be
something already in use. For example, if you know that a is even
and b is even, this means that (∃x ∈ Z)a = 2x and (∃x ∈ Z)b = 2x, so
you can say “pick an x such that 2x = a and call it x” but then you
cannot say “pick an x such that 2x = b and call it x,” because ‘x’ is
already in use as the ‘x’ you have picked for a.

Example. Let me show you what horrible mistakes one can mak e if
one does not respect the above restriction. Let us “prove” that “if a
is even and b is even then a + b is divisible by 4.” “Proof.” Since a
is even, (∃x ∈ Z)a = 2x, so we may pick x such that a = 2x. Since
b is even, (∃x ∈ Z)b = 2x, so we may pick x such that b = 2x. Then
a+ b = 2x+ 2x = 4x, so a+ b is divisible by 4. So we have “proved”
something false!!! (Of couse, the statement “if a is even and b is
even then a+ b is divisible by 4” is false! If this is not clear to you, just
try a = 4 and b = 2 and see what happens.) What is wrong? What is
wrong is that we picked an x twice and both times we called
it x. If you do things correctly, you would have to write
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Since a is even, (∃x ∈ Z)a = 2x, so we may pick x
such that a = 2x. Since b is even, (∃x ∈ Z)b = 2x, so
we may pick x such that b = 2x and call it y. Then
a+ b = 2x+ 2y.

and now you cannot conclude that a+ b is divisible by 4.

My own recommendation. When you pick an x such that P (x), do
not call it x 4. Call it k, or j, or any letter or symbol you want which is
not in use. And then, if you have to pick another x, use a new letter.
For example, when you pick x such that a = 2x, call it k, or call it xa
(“the x corresponding to a”) and then when you pick your second x
(i.e., an x such that b = 2x), call it j, or xb.

• Rule ∃prove (also known as the witness rule) says:

(1) If you have produced an object a such that P (a), then you can go
to (∃x)P (x).

(2) If you have produced an object a such that a ∈ U and P (a), then
you can go to (∃x ∈ U)P (x).

Example. Let us prove that (∃x ∈ Z)x2 = 4. Proof. Let a = 2. Then
a2 = 22 = 4. So (∃x ∈ Z)x2 = 4 by the witness rule.

• The tautology proof rule says that you can bring in an instance of
a tautology any time you want.

Example. Let us show that if A, B are sentences, and you have A∨B,
A⇒ C, and B ⇒ C, then you can go to C. (This is the proof by cases
rule, so what I am saying here is that you do not need the proof by cases
rule, because you can achieve the same thing using just the tautology
rule and Modus Ponens.)

Here is how you do it:

4If you call it x, it would be like picking a cow—knowing that there are cows—and
calling her “cow”. You are free to do it, but it’s not a good idea. Especially, because if
you then go and pick a second cow, you cannot also call it “cow”. since then you would
have two different things with the same name, which in mathematics is forbidden. A cow
should called Daisy, or Suzy, or Clarabella, but not “cow.”
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(1) A ∨B
(2) A⇒ C
(3) B ⇒ C
(4) (A ∨B)⇒)(((A⇒ C) ∧ (B ⇒ C))⇒ C) [instance of

tautology]
(5) ((A⇒ C) ∧ (B ⇒ C))⇒ C [Modus Ponens, from (1) and (4)]
(6) (A⇒ C) ∧ (B ⇒ C) [Rule ∧prove, from (2) and (3)]
(7) C [Modus Ponens, from (5) and (6)]

6 More examples of proofs

In the next two examples, I am showing you some proofs with lots of details
and justifications. You are not expected to write your proofs like
this, with so much detail. But I still want your proofs to have the kind of
structure you see in these examples. In particular, your proofs should have
clearly identifialble steps, and it should be possible to justify each step,
even if you do not write down the justification. (My advice: write as many
justifications as you can.) In particular, it should be clear where you are
using your hypothesis to justify a step or steps. (For example, in the first
proof below, pay attention to where we used the hypothesis that x > 0.)

Theorem. For any positive real number x, the inequality x + 1
x
≥ 2 holds.

(Symbolically: (∀x ∈ IR)(x > 0⇒ x+ 1
x
≥ 2).) Proof.

Let x ∈ IR be arbitrary. [Assumption]
Assume x > 0. [Assumption]

Assume ∼ x+ 1
x
≥ 2. [Assumption]

Then x+ 1
x
< 2. [Because if ∼ a ≥ b then a < b]

Then (x+ 1
x
)2 < 4. [Because x > 0, so x+ 1

x
> 0]

So x2 + 1
x2 + 2 < 4. [Because (x+ 1

x
)2 = x2 + 1

x2 + 2]
Therefore x2 + 1

x2 − 2 < 0. [Subtracting 4 from both sides]
Hence (x− 1

x
)2 < 0. [Because (x− 1

x
)2 = x2 + 1

x2 − 2]
So ∼ (x− 1

x
)2 ≥ 0. [Because if a < 0 then ∼ a ≥ 0]

But (x− 1
x
)2 ≥ 0. [Because if a ∈ IR then a2 ≥ 0]

So x+ 1
x
≥ 2. [Proof by contradiction rule]

Hence x > 0⇒ x+ 1
x
≥ 2. [Deduction rule]

Therefore (∀x ∈ IR)(x > 0⇒ x+ 1
x
≥ 2) . [Generalization rule]

END OF PROOF
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Theorem. There is a real number with the property that for any two larger
numbers there is another real number that is larger than the sum of the two
numbers and less than their product. (Symbolically:
(∃x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)((y > x ∧ z > x)⇒ (∃w ∈ IR)(w > y + z ∧ w < yz)).)

Proof.

Let x = 2 [Assumption]
Let y ∈ IR [Assumption]

Let z ∈ IR [Assumption]
Assume y > x∧z > x [Assumption]
Then y > 2∧z > 2 [Because x = 2]
Also, y ≥ z ∨ z ≥ y [Because if a, b ∈ IR then a ≥ b∨ b ≥ a]

Assume y ≥ z [Assumption]
Then y + z ≤ 2y < yz [Because 2 < z]
So y + z < yz [Consequence of previous step]

Hence y ≥ z ⇒ y + z < yz [Deduction rule]
Assume z ≥ y [Assumption]
Then y + z ≤ 2z < yz [Because 2 < y]
So y + z < yz [Consequence of previous step]

Hence z ≥ y ⇒ y + z < yz [Deduction rule]
So y + z < yz [Proof by cases rule]

Let w = y+z+yz
2

[Assumption]
Then w > y+z+y+z

2
= y + z [Because yz > y + z]

And w < yz+yz
2

= yz [Because y + z < yz]
So w > y+z∧w < yz [Rule ∧prove]

So (∃w ∈ IR)(w > y + z ∧ w < yz) [Rule ∃prove]
Therefore (y > x ∧ z > x)⇒ (∃w ∈ IR)(w > y + z ∧ w < yz)

[Deduction rule]
So (∀z ∈ IR)((y > x ∧ z > x)⇒ (∃w ∈ IR)(w > y + z ∧ w < yz))

[Rule ∀prove]
So (∀y ∈ IR)(∀z ∈ IR)((y > x∧ z > x)⇒ (∃w ∈ IR)(w > y+ z∧w < yz))

[Rule ∀prove]
Hence
(∃x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)((y > x ∧ z > x)⇒ (∃w ∈ IR)(w > y + z ∧ w < yz))

[Rule ∃prove]
END OF PROOF
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7 Homework assignments no. 2, due on Thurs-

day September 18, and no. 3, due on Thurs-

day September 25.

Homework No. 2:

1. Book, Exercises 1.4 (pages 37, 38, 39). Problem 2, Problem 5(b),(c),
Problem 6(a),(d),(e), Problem 8, Problem 11(b).

2. Book, Exercises 1.5 (pages 44, 45, 46). Problem 6(a), Problem 11.

3. Book, Exercises 1.6 (pages 53, 54, 55, 56). Problem 1(e),(h), Problem
2(a), Problem 5(a),(d),(g), Problem 7(b),(i),(j), Problem 8(e),(f),)h).

Homework No. 3:

1. Book, Exercises 2.1 (pages 76, 77, 78). Problem 1(b),(e),(f)’ Problem
3(b),(d),(f),(h),(j), Problem 4(b),(d),(f),(h),(j),(l), Problem 6(b),(d),(e),
Problem 7(b),(d),(e),(f), Problem 19(a),(b),(d),(h),(f),(g).

2. Book, Exercises 2.2 (pages 83, 84, 85, 86). Problem 10(b),(f),(g), Prob-
lem 13(b),(c), . Problem 14(d),(f), Problem 15(a),(b),(c),(d), Problem
17(b),(c),(f),(h).
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8 The first midterm exam

The first midterm exam will be on Tuesday, October 14.

9 Homework assignment no. 4, due on Thurs-

day October 2

1. Book, Exercises 2.5 (pages 116, 117, 118). Problem 8. (Do not use the
division theorem proved in class, but give a proof similar to the one we
gave in class.)

In the following problems, we use “a|b” to indicate that a divides b. (The
definition of “divides” is in the book, page xii.) A rational number is a
real number x such that x = m

n
for some integers m,n such that n 6= 0. We

write Q to denote the set of all rational numbers, and IR to denote the set of
all real numbers. Then

(∀x ∈ IR)
(
x ∈ Q⇔ (∃m ∈ Z)(∃n ∈ Z)(n 6= 0 ∧ x =

m

n
)
)
.

A rational number can be expressed in many ways as a quotient of integers.
For example, 3.6 is equal to 36

10
, and also to 72

20
, to −36

−10
, and to 18

5
. A coprime

fractional expression of a rational number x is an expression of x as m
n

,
where m,n are integers, n 6= 0, and in addition m and n have no common
factors greater than 1 (that is ∼ (∃k ∈ IN)(k > 1∧k|m∧k|n)). For example,
if we write 3.6 = 36

10
, then this is not a coprime fractional expression of 3.6,

because 36 and 10 are both divisible by 2, but 3.6 = 18
5

is a coprime fractional
expression of 3.6, because 18 and 5 have no common factors.

2. Prove that every rational number has a coprime fractional expression.
(Hint: consider all possible ways of writing x = m

n
with m ∈ Z, n ∈ IN,

and then use the WOP to pick one with the smallest possible value of
n.)

3. Prove that if x, y are integers such that 3|x and 5|y then 15|xy.

4. Prove that if x is an integer such that 3|x and 5|x then 15|x. Do not
use the theorem that says that every integer is a product of primes in
a unique way. (Hint: write 1 = 10− 9 and multiply both sides by x.)
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10 Homework assignment no. 5, due on Thurs-

day October 9

In this assignment, the rules of the game are slightly changed. If you are
asked to prove something, the answer could be “It cannot be proved because
it isn’t true,” followed by a proof that the statement isn’t true. For example,
if you are asked to prove that the equation x2 + 1 = 0 has a real solution
(i.e., that (∃x ∈ IR)x2 + 1 = 0), the answer should be “I cannot prove this
because it isn’t true. Here is a proof that the statement isn’t true, i.e., that
the equation x2 + 1 = 0 does not have a real solution: suppose there exists an
x ∈ IR such that x2 + 1 = 0; pick one such x and fix it from now on; then
x2 ≥ 0, because the square of any real number is ≥ 0; so x2 + 1 > 0, because
1 > 0, so x2 + 1 > x2 ≥ 0; but x2 + 1 = 0, so 0 > 0; on the other hand,
∼ 0 > 0; so we got a contradiction. Hence ∼ (∃x ∈ IR)x2 + 1 = 0.”

Recall that
Q = {x ∈ IR : x is rational} ,

that is
Q =

{
x ∈ IR : (∃m ∈ Z)(∃n ∈ Z)(n 6= 0 ∧ x =

m

n
)
}
.

1. Prove each of the following statements:

1. i. If x, y are rational numbers then x+ y is rational.

1. ii. If x, y are rational numbers then x · y is rational.

1. iii. If x, y are rational numbers then x− y is rational.

1. iv. If x, y are rational numbers and y 6= 0 then x
y

is rational.

1. v. If x is a rational number and y is irrational then x+y is irrational.

1. vi. If x is a rational number and y is irrational then x · y is irrational.

1. vii. If x, y are irrational numbers then x+ y is irrational.

1.viii. If x, y are irrational numbers then x · y is irrational.

2. Prove that
√

5 /∈ Q. You are allowed to use the result of Homework
No. 4, Problem 2, and the FTA (Fundamental Theorem of Arithmetic),
stated below. You may also use, instead of the FTA, the following: if
a, b, p are integers, p is prime, and p divides ab, then p divides a or p
divides b.
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3. Prove that
√

3 +
√

5 /∈ Q.

4. Prove that
√

2 +
√

3 +
√

5 /∈ Q.

5. Book, page 65, problem 8. (In addition to Parts (a), (b) and (c), add
Part (d): a = 112, b = 53.)

6. Book, page 65, problem 10.

7. Book, page 117, Problem 11. (Naturally, in order to do this problem
you have to read Problem 14 on Page 109, but you do not have to do
that problem.)

STATEMENT OF THE FUNDAMENTAL THEOREM OF ARITH-
METIC. Let n ∈ IN be such that n > 1. Then there exist m ∈ IN and
prime numbers p1, p2, . . . , pm such that

a. p1 ≤ p2 ≤ · · · ≤ pm,

b. n = p1p2 · · · pm,

c. if m̃ ∈ IN and p̃1, p̃2, . . . , p̃m̃ are prime numbers such that

p̃1 ≤ p̃2 ≤ · · · ≤ p̃m̃ and n = p̃1p̃2 · · · p̃m̃ .

then m̃ = m and in addition p̃1 = p1, p̃2 = p2, . . ., p̃m = pm.

11 Homework assignment no. 6, due on Thurs-

day October 16

This assignment is very short, because you have the first midterm test on
Tuesday, October 14.

Recall that
Q = {x ∈ IR : x is rational} ,

that is
Q =

{
x ∈ IR : (∃m ∈ Z)(∃n ∈ Z)(n 6= 0 ∧ x =

m

n
)
}
.



22 Sussmann – Math 300 – Fall 2008

1. Prove that 111/2 + 111/3 /∈ Q. You are allowed to use the result of
Homework No. 4, Problem 2, and the FTA (Fundamental Theorem of
Arithmetic). (You may also use, instead of the FTA, the following: if
a, b, p are integers, p is prime, and p divides ab, then p divides a or p
divides b.) You are also allowed to use any of the results of Problem 1
of Homework assignment No. 5, as long as they are true. (Recall that
Homework assignment No. 5 some of the statements could be false.)

2. Prove that if a ∈ Z, b ∈ Z, and ∼ (a = 0 ∧ b = 0), then there exist
integers α, β such that αa + βb > 0.

12 Homework assignment no. 7, due on Thurs-

day October 23

1. Book, Exercises 2.2 (pages 83, 84, 85, 86). Problem 16.

2. Book, Exercises 1.7 (pages 64 to 67). Problem 1(a),(b),(c).

3. Prove that

i. If S is a subset of IR such that there exists a smallest member of
S—that is, (∃s)(s ∈ S ∧ (∀t)(t ∈ S =⇒ s ≤ t))—then there exists
a unique smallest member of S; that is

(∃!s)(s ∈ S ∧ (∀t)(t ∈ S =⇒ s ≤ t)) .

ii. If S is a subset of IR such that there exists a largest member of
S—that is, (∃s)(s ∈ S∧(∀t)(t ∈ S =⇒ s ≥ t))— then there exists
a unique largest member of S; that is

(∃!s)(s ∈ S ∧ (∀t)(t ∈ S =⇒ s ≥ t)) .

iii. The set Z does not have a smallest member and does not have a
largest member.

iv. The set IN has a smallest member but does not have a largest
member.

v. Let S = {x ∈ IR : x > 0}. Then S does not have a smallest
member.
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4. Prove that if S is a nonempty set of integers which is bounded below
then S has a smallest member. (A set S of integers is bounded below
if there exists an integer n such that n ≤ s for every s ∈ S.) Hint for
the proof: Pick an integer n̄ such that n̄ ≤ s for every s ∈ S, and
consider the set T of all the numbers s + 1 − n̄, for s ∈ S. (That is,
T = {t ∈ Z : (∃s ∈ S)t = s+1− n̄}.) Apply the WOP to get a smallest
member t̄ of T . (To be able to do this, you need to show that T ⊆ IN
and T 6= ∅.) Then let s̄ = t + n̄ − 1, and show that s̄ is a smallest
member of S.

5. Prove that if S is a nonempty set of integers which is bounded above
then S has a largest member. (A set S of integers is bounded above
if there exists an integer n such that n ≥ s for every s ∈ S.) Hint
for the proof: Pick an integer n̄ such that n̄ ≥ s for every s ∈ S, and
consider the set T of all the numbers n̄ + 1 − s, for s ∈ S. (That is,
T = {t ∈ Z : (∃s ∈ S)t = n̄ + 1 − s}.) Apply the WOP to get a
smallest member t̄ of T . (To be able to do this, you need to show that
T ⊆ IN and T 6= ∅.) Then let s̄ = n̄+ 1− t̄, and show that s̄ is a largest
member of S.

6. Prove or disprove each of the following:

i. (∃!x ∈ IR)x3 = 2x,

ii. (∃!x ∈ Z)x3 = 2x.

13 Homework assignment no. 8, due on Thurs-

day October 30

1. Let S be the statement “If a is an arbitrary integer, then there exists
an integer k such that a = 4k or a = 4k+1 or a = 4k+2 or a = 4k+3.”

1.i. Rewrite S in formal language.

1.ii. Prove S.

2. Prove that if n is an odd integer then there exists an integer k such
that n2 = 4k + 1.
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3. Prove that if m, n are integers such that m2 + n2 is odd then there
exists an integer k such that m2 + n2 = 4k + 1.

4. Prove that the number 2, 370, 863 cannot be the sum of two squares of
integers. (That is, prove that

∼ (∃m ∈ Z)(∃n ∈ Z)m2 + n2 = 2, 370, 863 . )

5. Two integers p, q are coprime if ∼ (∃k ∈ Z)(k > 1∧k|p∧k|q). Prove:
if p, q are integers such that p 6= 0 or q 6= 0, then p and q are coprime if
and only if 1 is an integer linear combination of p and q. (Recall that
an integer linear combination of p and q is an integer c such that
(∃α ∈ Z)(∃β ∈ Z)c = αp + βq. )

6. Prove: If two integers p, q are prime, then p and q are coprime if and
only if p 6= q.

7. Prove: If two integers p, q are such that p is prime and p does not
divide q, then p and q are coprime.

8. Prove: If two integers p, q are coprime then, whenever a is an integer
such that p|a and q|a, it follows that pq|a. (Hint: express 1 as an
integer linear combination of p and q and multiply both sides by a.)

9. Prove that the result of Problem 8 can fail to be true if p and q are not
required to be coprime.
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14 Homework assignment no. 9, due on Thurs-

day November 6

This assignment consists of a single, long problem. Try to do as many parts as
you can, but do not worry if you do not do everything.

Try to structure your proofs as in the model solutions. given below. Make sure
that in the problems involving sums and products of finite families of numbers,
you use the inductive definitions given below.

The problem is Problem 8, on Pages 106-107 of the book, all nonstarred
part except Part (e).

Examples of inductive definitions.

Example 1. Inductive definition of the sum of a finite family of numbers.

1∑
k=1

ak = a1 ,

n+1∑
k=1

ak =
( n∑
k=1

ak

)
+ an+1 for all n ∈ IN .

Remark. One often writes

a1 + a2 + · · ·+ an

instead of
∑n

k=1 ak.

Example 2. Inductive definition of the product of a finite family of numbers.

1∏
k=1

ak = a1 ,

n+1∏
k=1

ak =
( n∏
k=1

ak

)
· an+1 for all n ∈ IN .

Example 3. Inductive definition of the factorial.

1! = 1 ,
(n+ 1)!k = n! · (n+ 1) for all n ∈ IN .
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Remarks.

1. The inductive definition of the factorial is usually extended by also defining
the factorial of zero. By definition,

0! = 1 .

2. Naturally, one could also define the factorial by the formula

n! =
n∏
k=1

k for all n ∈ IN .

Two model solutions

Example 1. Prove that 4n = 1 is divisible by 3 for every natural number 2 (i.e.,
that (∀n ∈ IN)3|4n − 1.

Answer. Let P (n) be the statement “ 3|4n − 1”.
We want to prove that (∀n ∈ IN)P (n). We do it by induction.
In the basis step, we have to prove P (1). Now, the statement P (1) says that 3
divides 4− 1, which is true, since 4− 1 = 3.
In the inductive step, we have to prove that (∀n ∈ IN)(P (n)⇒ P (n+ 1)) .
Here is the proof:

Let n ∈ IN be arbitrary.
Assume P (n).
Then 3|4n − 1.
Pick an integer k such that 4n − 1 = 3k.
Then 4n+1−1=4n+1−4n+4n−1=4n(4−1)+3k=4n · 3+3k = 3(4n+k).
So 4n+1 − 1 = 3(4n + k).
Therefore 3 divides 4n+1 − 1.
So P (n+ 1) holds.

Hence P (n)⇒ P (n+ 1).
So (∀n ∈ IN)(P (n)⇒ P (n+ 1)), completing the inductive step.

Therefore the PMI implies that (∀n ∈ IN)P (n), i.e. that (∀n ∈ IN)3|4n − 1 .

Example 2. Prove that

n∑
k=1

k3 =
(n(n+ 1)

2

)2
for all n ∈ IN .

Answer. Let P (n) be the statement “
∑n

k=1 k
3 =

(
n(n+1)

2

)2
”.
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We want to prove that (∀n ∈ IN)P (n). We do it by induction.
In the basis step, we have to prove P (1). Now, the statement P (1) says that∑1

k=1 k
3 =

(
1(1+1)

2

)2
, that is, that 1 = 1, which is true.

In the inductive step, we have to prove that

(∀n ∈ IN)(P (n)⇒ P (n+ 1)) .

Here is the proof:
Let n ∈ IN be arbitrary.

Assume P (n).

Then
∑n

k=1 k
3 =

(
n(n+1)

2

)2
.

Using the inductive definition of the summation, we have∑n+1
k=1 k

3 =
(∑n

k=1 k
3
)

+ (n+ 1)3 .

Since
∑n

k=1 k
3 =

(
n(n+1)

2

)2
, we have∑n+1

k=1 k
3 =

(
n(n+1)

2

)2
+ (n+ 1)3 .

Also
(n(n+ 1)

2

)2
+ (n+ 1)3 =

n2(n+ 1)2

4
+ (n+ 1)3

=
n2(n+ 1)2 + 4(n+ 1)3

4

=
(n2 + 4(n+ 1))(n+ 1)2

4

=
n2 + 4n+ 4)(n+ 1)2

4

=
(n+ 2)2(n+ 1)2

4

=
((n+ 1)(n+ 2)

2

)2
.

Therefore
n+1∑
k=1

k3 =
((n+ 1)(n+ 2)

2

)2
.

So P (n+ 1) holds.
Hence P (n)⇒ P (n+ 1).

So (∀n ∈ IN)(P (n)⇒ P (n+ 1)), completing the inductive step.

Therefore the PMI implies that (∀n ∈ IN)P (n), i.e. that (∀n ∈ IN)
∑n

k=1 k
3 =

(
n(n+1)

2

)2

.



28 Sussmann – Math 300 – Fall 2008

15 Homework assignment no. 10, due on

Thursday November 13

• Book, Page 116, Problem 6(a)(b)(c).

• Book, Pages 127-8-9, Problems 3, 10, 11(c)(d), 15, 18(c).




