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Abstract: We present a version of the Pontryagin Maximum Principle for control
dynamics with a possibly non smooth, nonlipschitz and even discontinuous right-
hand side. The usual adjoint equation, where state derivatives occur, is replaced
by an integrated form, containing only differentials of the reference flow maps. The
resulting “integrated adjoint equation” leads to “adjoint vectors” that need not be
absolutely continuous, and could be discontinuous and unbounded. We illustrate
this with the “reflected brachistochrone problem,” for which the adjoint vectors
have a singularity at an interior point of the interval of definition of the reference
trajectory.
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1. INTRODUCTION

We consider autonomous Lagrangian optimization
problems in which it is desired to minimize an
integral J =

∫ τ+(ξ)

τ−(ξ)
f0(ξ(t), η(t)) dt, subject to

a dynamical constraint ξ̇(t) = f(ξ(t), η(t)) and
an endpoint condition ∂ξ ∈ S. Here the state
x takes values in an open subset Ω of Rn, the
control u has values in a set U , S (the “endpoint
constraint set”) is a given subset of Ω × Ω, (ξ, η)
is a trajectory-control pair, i.e., a pair consisting
of an open-loop control η and a corresponding
trajectory ξ, τ−(ξ), τ+(ξ) are the initial and
terminal times of the trajectory ξ, and we write
∂−ξ

def= ξ(τ−(ξ)) , ∂+ξ
def= ξ(τ+(ξ)) , ∂ξ

def=(∂−ξ, ∂+ξ) .
Under suitable smoothness conditions on the map
Ω×U 3 (x, u) 7→ F (x, u) ∈ Rn+1 ∼ R×Rn (where
F (x, u)def=(f0(x, u), f(x, u))) and the set S (for
example, if f0 and f are of class C1 with respect
to x for each u, some extra technical conditions
are satisfied for the dependence on u, and S is a
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smooth submanifold, or a closed convex set, or,
more generally, a set locally equivalent to a closed
convex set by means of a diffeomorphism of class
C1) one can write the “adjoint equation”

π̇ = −π · ∂f

∂x
+ π0

∂f0

∂x

(
= −∂H

∂x

)
(1)

for a row-vector-valued function t 7→ π(t) ∈ Rn

and a nonnegative real constant π0. If we let
MH(x, p0, p) = max{H(x, u, p0, p) : u ∈ U},
then the classical Pontryagin Maximum Principle
says that if (ξ, η) is optimal then there exists a
nontrivial solution (π0, π) of (1) for which the
“Hamiltonian maximization condition”

H(ξ(t), η(t), π0, π(t)) = MH(ξ(t), π0, π(t)) (2)

holds, as well as the”transversality condition”

(v, w) ∈ C =⇒ −〈∂−π, v〉+ 〈∂+π,w〉 ≥ 0 . (3)

Here H is the Hamiltonian, defined by

H(x, u, p0, p) = p · f(x, u)− p0f0(x, u) , (4)



and C is the Bouligand tangent cone to S at
∂ξ. (Recall that the Bouligand tangent cone to
a subset A of Rm at a point a ∈ A is the set of
all vectors v ∈ Rm such that v = limj→0

aj−a
hj

for
some sequence {aj} of points of A that converges
to a and some sequence {hj} of positive reals that
converges to 0.)

A similar necessary condition can be derived if f
and f0 are just Lipschitz with respect to x (with
appropriate conditions on the u-dependence).
All that is needed is to replace the adjoint
differential equation (1) by the adjoint differential
inclusion π̇(t) ∈ −∂xH(ξ(t), η(t), π0, π(t)) , where
we use ∂xH(ξ(t), η(t), π0, π(t)) to denote the
Clarke generalized gradient at the point ξ(t) of
the Lipschitz function x 7→ H(x, η(t), π0, π(t)). In
this “nonsmooth maximum principle” the adjoint
vector π is still absolutely continuous, as in the
classical case.

The purpose of this note is to present, and
illustrate with a very classical example, another
“nonsmooth” version of the Maximum Principle
in which f and f0 are allowed to be even
less smooth than Lipschitz (and could even be
discontinuous), and the adjoint vector can fail
to be absolutely continuous and can be
discontinuous and even unbounded, but is
a solution of a perfectly well defined “integrated”
version of the adjoint equation.

2. THE MAIN THEOREM

To state our generalization of the maximum
principle, we will need some definitions.

If E is a totally ordered set, with ordering �,
we use E�,2 to denote the set of all ordered
pairs (s, t) ∈ E × E such that s � t, and
write E�,3 to denote the set of all ordered triples
(r, s, t) ∈ E × E × E such that r � s � t.

If S is a set, then IS will denote the identity map of
S. If A, B are sets, then the notations f : A ↪→ B,
f : A 7→ B will indicate, respectively, that f is a
possibly partially defined (abbr. “ppd”) map from
A to B and that f is an everywhere defined map
from A to B.

Definition 2.1. Let E be a totally ordered set with
ordering �, and let Ω be a set. A flow on Ω with
time set E is a family Φ = {Φt,s}(s,t)∈E�,2 of ppd
maps from Ω to Ω such that

(F1) Φt,s ◦ Φs,r = Φt,r whenever (r, s, t) ∈ E�,3,
(F2) Φt,t = IΩ whenever t ∈ E.

If Φ is a flow on Ω with time set E, a real
augmentation of Φ is a family c = {ct,s}(s,t)∈E�,2

of ppd functions from Ω to R such that

(RA) ct,r(x) = cs,r(x) + ct,s(Φs,r(x)) whenever
x ∈ Ω and (r, s, t) ∈ E�,3.

A real-augmented flow on Ω with time set E is a
pair (Φ, c) such that Φ is a flow on Ω with time
set E and c is a real augmentation of Φ. ♦

To any real-augmented flow (Φ, c) on a set Ω with
time set E we can associate a family of mappings
Φc

t,s : Ωaug ↪→ Ωaug—where Ωaug = R× Ω—by
letting Φc

t,s(x0, x)=(x0 + ct,s(x),Φt,s(x)) for each
(s, t) ∈ E�,2. Then Φc = {Φc

t,s}(s,t)∈E�,2 is a flow
on Ωaug.

Definition 2.2. If U is a set, a U -control is a
mapping η : [a, b] 7→ U defined on some nonempty
compact subinterval [a, b]def=Dom(η) of R.

Suppose that η, η̃ are U -controls, Dom(η) = [a, b],
h ∈ R, and h ≥ 0. We say that η̃ is obtained
from η by an equal time constant control interval
replacement of length h if (a) Dom(η) = Dom(η̃),
and (b) there exist a subinterval J of [a, b] of
length h and a u ∈ U such that η̃(t) = η(t)
whenever t ∈ [a.b]\J and η̃(t) = u whenever
t ∈ J . We say that η̃ is obtained from η by an
interval deletion of length h if Dom(η̃) = [a, b− h]
and there exists α such that (a) a ≤ α ≤ b− h,
(b) η̃(t) = η(t) whenever a ≤ t < α, and
(c) η̃(t)=η(t+h) whenever α≤ t≤b−h. Finally,
we will say that η̃ is obtained from η by a
constant control interval insertion of length h if
Dom(η̃) = [a, b + h] and there exist α, u such that
a ≤ α ≤ b and u ∈ U , for which (a) η̃(t) = η(t)
whenever a ≤ t < α, (b) η̃(t) = η(t− h)
whenever α + h < t ≤ b + h, and (c) η̃(t) = u
whenever α ≤ t ≤ α + h. If m ∈ Z , h ∈ R ,
m ≥ 0 , and h ≥ 0, we say that η̃ is obtained
from η by m variable time constant control
interval operations of total length h if there exist
U -controls η̃0, . . . , η̃m and nonnegative numbers
h1, . . . , hm such that h = h1 + · · ·+ hm, η̃0 = η,
and η̃m = η̃, for which η̃j is obtained from η̃j−1,
for j = 1, . . . ,m, by either (a) an equal time
constant control interval replacement of length hj ,
or (b) an interval deletion of length hj , or (c) a
constant control interval insertion of length hj . If
in addition η̃ can be obtained in this way using
only the operation of Item (a), then we say that
η̃ is obtained from η by m equal time constant
control interval operations of total length h.

An equal time variational neighborhood of a
U -control η is a set U of U -controls having the
property that whenever m ∈ Z and m ≥ 0 there
exists a positive h̄(m) ∈ R such that, whenever a
U -control η̃ is obtained from η by m equal time
constant control interval replacements of total
length ≤ h̄(m) it follows that η̃ ∈ U . If, in
addition, h̄(m) can be chosen, for every m, so that



that η̃ ∈ U whenever η̃ is obtained from η by m
variable time constant control interval operations
of total length ≤ h̄(m), then we call U a variable
time variational neighborhood of η. ♦

We now consider the optimal control problem
described in the introduction, and assume:

(A1) n ∈ Z, n ≥ 0, Ω is open in Rn, U is a set,
a∗, b∗ ∈ R, and a∗ ≤ b∗,

(A2) η∗ (the “reference control”) is a U -control
with domain [a∗, b∗],

(A3) f , f0, F are maps on Ω × U with values
in Rn, R, Rn+1 respectively, such that
F (x, u) = (f0(x, u), f(x, u)) if x∈Ω, u∈U ,

(A4) ξ∗ : [a∗, b∗] 7→ Ω is a trajectory of the
system ẋ = f(x, u) corresponding to η∗ (i.e.,
ξ∗ is absolutely continuous and satisfies
ξ̇∗(t) = f(ξ∗(t), η∗(t)) for a.e. t ∈ [a∗, b∗]).

(A5) [a∗, b∗] 3 t 7→ f0(ξ∗(t), η∗(t)) ∈ R is a
Lebesgue integrable function.

(A6) The map t 7→ F (x, η∗(t)) is measurable for
each x.

(A7) E is a relatively open subset of [a∗, b∗] such
that a∗ ∈ E and b∗ ∈ E, and (Φ, c) is a
real-augmented flow on Ω with time set E,
for which

(A7.a) (Φ, c) is the restriction to E of the
augmented flow of the reference control
(that is, if x, x̃ ∈ Ω, y ∈ R, s, t
, inE, and s ≤ t, then
(x̃, y) = (Φt,s(x), ct,s(x)) iff there
exists an absolutely continuous
curve ξ : [s, t] 7→ Ω such that
ξ̇(r) = f(ξ(r), η∗(r)) for almost all
r ∈ [s, t], ξ(s) = x, ξ(t) = x̃, and
y =

∫ t

s
f0(ξ(r), η∗(r)) dr),

(A7.b) if s̄, t̄ ∈ E and s̄ ≤ t̄, then the maps
(s, t, x) ↪→ Φt,s(x) and (s, t, x) ↪→ ct,s(x)
are defined and continuous on a
neighborhood of (s̄, t̄, ξ∗(s̄)) and are
differentiable at (s̄, t̄, ξ∗(s̄)),

(A7.c) the map x 7→ F (x, u) is continuous near
ξ∗(t) whenever (u, t)∈U×E,

(A8) The set S ⊆ Ω × Ω coincides, near the
point q∗ = (ξ∗(a∗), ξ∗(b∗)), with the image of
a closed convex set by a diffeomorphism of
class C1, and C is the Bouligand tangent
cone to S at q∗.

(A9) The class U of admissible controls is an
equal time variational neighborhood of η∗.

Theorem 2.3. If (A1,. . .,9) hold, and (ξ∗, η∗) is
a solution of the optimal control problem, then
there exist a map E 3 t 7→π(t)∈Rn and a π0 ∈R
such that π0≥0 and

(C1) (π(t), π0) 6= (0, 0) for all t ∈ E,
(C2) π(s) = π(t)DΦt,s(ξ∗(s)) − π0∇ct,s(ξ∗(s))

whenever s, t ∈ E and s ≤ t,
(C3) H(ξ∗(t), η∗(t), π0, π(t))≥H(ξ∗(t),u, π0, π(t))

whenever t ∈ Ediff , u ∈ U , where H is
the Hamiltonian, defined by (4), and
Ediff is the set of those t ∈ E such that
ξ̇∗(t) = f(ξ∗(t), η∗(t)),

(C4) the transversality condition (3) holds.

If U is a variable time variational neighborhood of
η∗, then π and π0 can be chosen so that (C1,2,3,4)
hold and in addition
(C5) The equality H(ξ∗(t), η∗(t), π0, π(t)) = 0

holds for every t ∈ Ediff . ♦

Remark 2.4. The five conclusions (C1), (C2),
(C3), (C4), and (C5) are known, respectively,
as the nontriviality condition, the integrated
adjoint equation, the Hamiltonian maximization
condition, the transversality condition, and the
vanishing Hamiltonian condition, and will be
referred to by the corresponding acronyms “NTC,”
“IAE,” “HMC,” “TC” and “VHC.” ♦

Remark 2.5. Theorem 2.3 contains the classical
“smooth” maximum principle because, when f
and f0 are of class C1 with respect to x (and
satisfy some extra regularity conditions for the
dependence on u) then all our hypotheses hold,
and the resulting IAE reduces to the classical
adjoint equation by differentiating both sides with
respect to s. On the other hand, our result, as
stated, clearly does not contain the nonsmooth
maximum principle for Lipschitz righ-hand sides.
There is, however, a more general version, in
which suitable “generalized differentials” are used
instead of the ordinary differential. This theorem
does contain the non-smooth result, which turns
out to be a special case corresponding to the
choice of the ”Warga derivate containers” as the
concept of generalized differential. ♦

3. THE REFLECTED BRACHISTOCHRONE

As an example of a nontrivial application of
Theorem 2.3, we let P be the minimum time
problem for the dynamical law

ẋ = u
√
|y| , ẏ = v

√
|y| ,

with state (x, y) ∈ R2 and control (u, v) ∈ R2

subject to the control constraint u2 + v2 ≤ 1.
Given points A,B ∈ R2, we want to characterize
the minimum-time trajectory from A to B.

Remark 3.1. For minimum time problems such as
P, U is a variable time variational neighborhood
of η∗, and f0(x, u) ≡ 1. Then ct,s(x) = t−s, so ct,s

is independent of x, and then the IAE becomes the
simpler statement that π(s) = π(t)DΦt,s(ξ∗(s))
whenever s, t ∈ E and s ≤ t. Furthermore, if we
define h(x, u, p) = 〈p, f(x, u)〉, then the HMC just
says that h(ξ∗(t), η∗(t), π(t)) ≥ h(ξ∗(t), u, π(t))
whenever t ∈ E, u ∈ U . The last conclusion
of the theorem then says that the function
E 3 t 7→ h(ξ∗(t), η∗(t), π(t)) is constant and has a
nonnegative value. ♦



To solve P, we use Theorem 2.3 together with the
classical (1696-7) results about the solutions of the
brachistochrone problem (abbr. “BP”) of Johann
Bernouli. Define closed half-planes H+, H−, by
H+ = {(x, y) : y ≥ 0}, H− = {(x, y) : y ≤ 0}. Let
P+, resp. P−, be the minimum time problems for
curves entirely contained in H+ (resp. H−) with
endpoints in H+ (resp. H−). Define a “v-cycloid”
to be an arc which is entirely contained in H+

or H− and is either (a) a vertical line segment
or (b) a cycloid generated by a point P on a
circle Γ that is tangent to the x axis and rolls
without slipping. (In particular, if H = H+ or
H = H−, and ξ∗ : [0, T ] 7→ H is a v-cycloid, then
ξ∗(t) /∈ H+ ∩H− whenever 0 < t < T .) Then it is
well known that the solutions of P+ and P− are
v-cycloids.

We now solve P. Let ξ∗ : [0, T ] 7→ R2 be a solution
of P with endpoints A, B. If ξ∗ is entirely
contained in H+ or H−, then ξ∗ is a solution of
P+ or of P−, so ξ∗ is a v-cycloid. So all we need
is to determine the minimum-time trajectories ξ∗
that are not entirely contained in H+ or H−.
Fix one such ξ∗. Then there must exist a time
τ such that 0 ≤ τ ≤ T and ξ∗(τ) ∈ H+ ∩H−. It
is then easy to show that τ is unique. (If τ
was not unique, let τ1 be the smallest t such
that ξ∗(t) ∈ H+ ∩H−, and let τ2 be the largest.
Then 0 ≤ τ1 < τ2 ≤ T , ξ∗(τi) ∈ H+ ∩ H− for
i = 1, 2, and ξ∗(t) /∈ H+ ∩H− for 0 ≤ t < τ1

or τ2 < t ≤ T . Assume, without loss of generality,
that ξ∗(t) ∈ H+ for 0 ≤ t ≤ τ1. Then the set
S = {t ∈ [τ1, τ2] : ξ∗(t) /∈ H+ ∩ H−} is open,
so it is a union of a finite or countable set I of
pairwise disjoint open intervals, each one of which
is of the form ]α, β [, with τ1 ≤ α < β ≤ τ2,
ξ∗(α) ∈ H+ ∩H−, and ξ∗(β) ∈ H+ ∩H−. If I is
one of those intervals, then either ξ∗(t) ∈ H+\H−

for all t ∈ I or ξ∗(t) ∈ H−\H+ for all t ∈ I. In
the latter case, we may replace the restriction of
ξ∗ to I by its reflection with respect to the x axis
without changing the time. If we do this for all
I ∈ I, we obtain a new trajectory ξ̃∗ that goes
from A to B in the same time as ξ∗ and is such
that ξ̃∗(t) ∈ H+\H− for all t ∈ I for all I ∈ I.
Then the restriction ξ̂∗ of ξ̃∗ to the interval [0, τ2]
is a time-optimal trajectory that goes from A to
ξ∗(τ2) and is entirely contained in H+. Hence ξ̂∗
is a v-cycloid, and ξ̂∗(t) can only belong to the x
axis when t is one of the endpoints of [0, τ2]. Since
ξ̂∗(τ1) ∈ H+ ∩ H−, and τ1 < τ2, it follows that
τ1 = 0. A similar argument shows that τ2 = T .
Hence both A and B belong to H+ ∩H−. It then
follows that ξ̃ is a solution of P+ with endpoints
A, B. So ξ̃(t) /∈ H+∩H− whenever 0 < t < T , and
this implies, given our construction of ξ̃ from ξ by
reflections, that ξ̃ is either ξ itself or its reflection
with respect to the x axis. In either case, ξ is

entirely contained in one of the half-planes H+,
H−, which is a contradiction.)

Let τ̄ be the unique τ such that 0 ≤ τ ≤ T
and ξ∗(τ) ∈ H+ ∩H−. Then 0 < τ̄ < T , and
the points A and B belong to different sides of
the x axis. (Indeed, if τ̄ = 0 then ξ∗(t) would
belong to one of H+, H− whenever 0 < t ≤ T ,
so ξ∗ would be entirely contained in H+ or H−.
A similar contradiction would arise if τ̄ = T . So
0 < τ̄ < T . If A and B were both in H+, then
ξ∗(t) ∈ H+ for 0 ≤ t < τ̄ and also for τ̄ < t ≤ T ,
so once again ξ∗ would be entirely contained in
H+. A similar contradiction arises if A ∈ H−

and B ∈ H−.) So without loss of generality we
may assume that A ∈ H+\H− and B ∈ H−\H+.
Then ξ∗(t) ∈ H+\H− whenever 0 ≤ t < τ̄ and
ξ∗(t) ∈ H−\H+ whenever τ̄ < t ≤ T . So ξ∗ is
the concatenation of two time-optimal curves
ξ+
∗ : [0, τ̄ ] 7→ H+, ξ−∗ : [τ̄ , T ] 7→ H−. Then ξ+

∗ and
ξ−∗ are v-cycloids contained in H+ and H−.

Let us assume that ξ+
∗ and ξ−∗ , are both arcs of

cycloids. Let C∗ be the point where ξ∗ crosses
the x axis, so C∗ = ξ∗(τ̄). Then the necessary
conditions of the classical maximum principle do
not determine C∗, because they only apply on the
intervals {t : 0 ≤ t < τ̄}, {t : τ̄ < t ≤ T}, and say
nothing about what happens at time τ̄ , where
our controlled dynamics is not of class C1. We
will now show how Theorem 2.3 yields an extra
condition that determines C∗.

Our first step is to embed ξ∗ in a flow arising from
a feedback control law. The arcs ξ+

∗ , ξ−∗ , are parts
of full cycloid arcs Ξ+

∗ , Ξ−∗ , such that Ξ+
∗ goes

from a point Q+ on the x axis to the point C∗
and has the property that all the other points of
Ξ+
∗ belong to H+\H−, while Ξ−∗ goes from C∗

to a point Q− on the x axis and is such that all
the other points of Ξ−∗ belong to H−\H+. Write
Q+ = (α+, 0) , Q− = (α−, 0) , C∗ = (α0, 0) .

The arcs Ξ+
∗ , Ξ−∗ , are the loci of points P+, P−,

attached to rolling circles Γ+, Γ−, of radii R+, R−,
and then |α0−α+|=2πR+ and |α0−α−|=2πR−.
Parametric equations for Ξ+

∗ can be written
using as parameter the abscissa α of the point
where the rolling circle Γ+ intersects the x
axis H+ ∩ H−. Then α takes values in the
interval I+ = [min(α0, α+),max(α0, α+)], which
has length 2πR+. If we let θ

def= (R+)−1(α − α+),
then the position of P+ for a given value of
α is Ξ+

∗ (α) = (α−R+ sin θ , R+(1− cos θ)). (The
circle Γ+ rolls from left to right if α+ < α0, and
from right to left if α0 < α+.)

The midpoint µ+ of the interval I+ is given
by µ+ = 1

2 (α+ + α0). We let Q̂+ be the point
where Γ+ intersects the x axis when α = µ+,
so that Q̂+ = (µ+, 0). We define parametrized
trajectories Ξ+,σ

∗ , for each σ in a neighborhood



N+ = [1− ε+
1 , 1 + ε+

2 ] of 1 (where ε+
1 , ε+

2 are
chosen so that 0 < ε+

1 < 1 and 0 < ε+
2 ), by letting

Ξ+,σ
∗ (α) = Q̂++σ(Ξ+

∗ (α)−Q̂+) whenever α∈I+.
Then each Ξ+,σ

∗ is an arc of cycloid, generated
exactly like Ξ+

∗ , with R+ replaced by σR+, and
having contact points Q+,σ, C+,σ with the x
axis, where Q+,σ = Q̂+ + σ(Ξ+

∗ (α+)− Q̂+) and
C+,σ = Q̂+ + σ(Ξ+

∗ (α0)− Q̂+), so that Q+,σ and
C+,σ are given by Q+,σ =

(
(1− σ)µ+ + σα+, 0

)
,

C+,σ =
(
(1− σ)µ+ + σα0, 0

)
. (5)

Then, if we let S+ = {Ξ+,σ
∗ (α) : σ ∈ N+ , α ∈ I+},

the set S+ is clearly the homeomorphic image
of the rectangle R+def=N+ × I+ under the map
Ψ+ : R+ 7→ H+ given by Ψ+(σ, α) def= Ξ+,σ

∗ (α) .
Furthermore, the two images Ψ+(N+ × {α+}),
Ψ+(N+ × {α0}), are subintervals of the x axis,
while the images of all the points of R+ that do
not belong to N+ × {α+, α0} lie in the open half-
plane H+\H−. The map Ψ+ is real analytic, and
the partial derivatives ∂Ψ+

∂α , ∂Ψ+

∂σ , are given by the
formulas ∂Ψ+

∂α = σΞ+′

∗ (α) , ∂Ψ+

∂σ = Ξ+
∗ (α) − Q̂+ ,

where Ξ+′

∗ (α) = (1− cos θ, sin θ) .

If J+ is the Jacobian determinant of Ψ+ with
respect to σ and α then a simple calculation
shows that J+ = 0 iff α = α+ or α = α0. So

(∗) Ψ+ is a real analytic diffeomorphism on the
set N+ × Interior(I+).

We now analyze the time parameter along the
curves Ξ+,σ

∗ . Let δ+ = +1 if α+ < α0 (i.e., if
Γ+ rolls from left to right, so time increases as
α increases, i.e., dt/dα > 0), and δ+ = −1 if
α+ > α0 (i.e., if Γ+ rolls from right to left, in
which case dt/dα < 0). If Ξ+,σ

∗ (α) = (x(α), y(α)),
then it is easy to see that dt = 2σ(R+)−

1
2 δ+ dα.

It follows that

(#) the time along the curve Ξ+,σ
∗ from Ξ+,σ

∗ (α1)
to Ξ+,σ

∗ (α2) is 2σδ+(R+)−
1
2 (α2 − α1).

A similar construction works for Ξ−∗ . In this
case, the parametric equations turn out to be
Ξ−∗ (α)=(α−R− sin θ ,−R−(1−cos θ)), where the
variable α now takes values in the interval
I− = [min(α0, α−),max(α0, α−)] (which has
length 2πR−), and θ = α−α−

R− .

The circle Γ− rolls from left to right if α0 < α−,
and from right to left if α− < α0. (Notice
that Γ− rolls from left to right iff it rotates
counterclockwise, whereas Γ+ rolls from left to
right iff it rotates clockwise.)

The midpoint of I− is µ− = 1
2 (α− + α0). We let

Q̂− = (µ−, 0). We then define parametrized arcs
Ξ−,σ
∗ , for σ in a neighborhood N−=[1−ε−1 , 1+ε−2 ]

of 1 (where 0 < ε−1 < 1 and 0 < ε−2 ),

by letting Ξ−,σ
∗ (α) = Q̂− + σ(Ξ−∗ (α)− Q̂−) for

α∈I−. Then each Ξ−,σ
∗ is an arc of cycloid,

having contact points Q−,σ, C−,σ with the x
axis, where Q−,σ = Q̂− + σ(Ξ−∗ (α−)− Q̂−) and
C−,σ = Q̂− + σ(Ξ−∗ (α0)− Q̂−), so that Q−,σ and
C−,σ are given by Q−,σ =

(
(1− σ)µ− + σα−, 0

)
,

C−,σ =
(
(1− σ)µ− + σα0, 0

)
. (6)

Then, if we let S− = {Ξ−,σ
∗ (α) : σ ∈ N− , α ∈ I−},

it is clear that the set S− is the homeomorphic
image of R−def=N− × I− under the smooth map
Ψ− : R− 7→ H− given by Ψ−(σ, α) def= Ξ−,σ

∗ (α).
The Jacobian determinant of Ψ− vanishes iff
α = α− or α = α0. Hence

(∗∗) Ψ− is a diffeomorphism on N−×Interior(I−).

If we let δ− = +1 if α0 < α− (i.e., if Γ− rolls
from left to right, in which case dt/dα > 0),
and δ− = −1 if α− < α0 (i.e., if Γ− rolls from
right to left, in which case dt/dα < 0), then
dt = 2σδ−(R−)−

1
2 dα, from which it follows that

(##) the time along Ξ−,σ
∗ from Ξ−,σ

∗ (α1) to
Ξ−,σ
∗ (α2) is equal to 2σδ−(R−)−

1
2 (α2−α1).

We now combine the two constructions by letting
Ξσ
∗ be, for each σ ∈ I+, the concatenation of Ξ+,σ

∗
and Ξ−,σ̂

∗ where σ̂ is chosen so that C−,σ̂ = C+,σ.
In view of (5) and (6), it follows that σ̂ is given in
terms of σ by σ̂ = ζ(σ), where

ζ(σ) def= (α0−µ−)−1(µ+−µ−+σ(α0−µ+)) . (7)

(We guarantee that the map I+3σ 7→ σ̂∈I− is
bijective by choosing the ε±j so that ζ(I+) = I−.)

We now study the flow maps Φt,s associated to
this family of trajectories. Let S = S+∪S−. Given
any point q ∈ S, q belongs to the curve Ξσ

∗ for
a unique σ ∈ I+. If s, t ∈ R, and t ≥ s, then
we can follow Ξσ

∗ in the direction of increasing
time, starting at q at time s, until we exit S. If
t does not exceed the exiting time from S, then
Φt,s(q) is defined, and equal to the point of Ξσ

∗
attained in this way at time t. We also define the
augmentations ct,s by letting ct,s(q) = t− s.

In order to apply Theorem 2.3, we take E to
be the set [0, T ]\{τ̄}. In addition, it will also be
convenient to embed our reference trajectory ξ∗
in the “extended reference trajectory” Ξ∗ = Ξ1

∗,
that we parametrize by time in such a way that
Ξ∗(τ̄) = C∗, so that Ξ∗(t) = ξ∗(t) for t ∈ [0, T ],
and Ξ∗ is defined on the interval [τ1, τ2], where
τ1 = τ̄ − 4π

√
R+ and τ2 = τ̄ + 4π

√
R−. Then

(&) If τ1 < s ≤ t < τ2, and s 6= τ̄ 6= t, then Φt,s

is a real analytic diffeomorphism near Ξ∗(s).



To prove (&), we consider separately three cases,
namely, (i) t < τ̄ , (ii) s > τ̄ , and (iii) s < τ̄ < t.
In Case (i), Ξ∗(s) clearly belongs to the set
Ψ+(N+ × Interior(I+)), so for q near Ξ∗(s) we
can find Φt,s(q) by inverting the diffeomorphism
Ψ+, letting (σ, α) = (Ψ+)−1(q), defining α̃
by α̃ = α + 1

2δ+
√

R+(t− s), and, finally, writing
Φt,s(q) = Ψ+(σ, α̃). The conclusion then follows
because the map (σ, α) 7→ (σ, α + δ+

2σ

√
R+(t− s))

is a diffeomorphism. The proof for Case (ii) is
similar. Finally, in Case (iii) we can find Φs,t(q)
by first inverting Ψ+ near q to find (σ, α), as in
Case (i), and then going from time s to time t by
letting ν+ = δ+

√
R+, ν− = δ−

√
R−, writing

σ̃=ζ(σ) , α̃=α0+
ν−

2σ̃
(t−s)− σν−

σ̃ν+
(α0−α) , (8)

and then defining Φt,s(q) = Ψ−(σ̃, α̃). The map
(σ, α) 7→ (σ̃, α̃) defined by (8) is a diffeomorphism,
since ∂σ̃

∂σ = dζ
dσ 6= 0 (in view of (7)), ∂σ̃

∂α = 0, and
∂α̃
∂α = σν−

σ̃ν+ 6= 0 (because of (8)). So the conclusion
follows in Case (iii) as well, and (&) is proved.

For τ1 < s ≤ t < τ2, s 6= τ̄ 6= t, let Dt,s

be the Jacobian matrix of Φt,s at Ξ∗(s). Then
we can apply Theorem 2.3 to each of the three
curves Ξ∗,i : J i 7→ R2, i = 1, 2, 3, where Ξ∗,1
and Ξ∗,2 are the restrictions of Ξ∗ to intervals J1,
J2 of the form [τ1 + δ, τ̄ − δ] and [τ̄ + δ, τ2 − δ],
for some small δ, and Ξ∗,3 = ξ∗, so J3 = [0, T ].
(We are assuming that Ξ∗,3 is time-optimal, and
the curves Ξ∗,1 and Ξ∗,2 are also optimal because
they are solutions of the classical BP.) If we
let Ĵ1 = J1, Ĵ2 = J2, Ĵ3 = E, then our theorem
implies that there exists nontrivial solutions
Ĵi 3 t 7→ π̃i(t) ∈ R2, of the IAE π(s) = π(t).Dt,s

such that the HMC holds for every t ∈ Ĵ i and
the values of the maximized Hamiltonian are
nonnegative constants π̃0,i. The HMC at Ξ∗,i(t)
says that (a) the control η∗(t)=(u∗(t), v∗(t)) must
maximize the product π̃i(t) · (u, v)† (where “†”
denotes transpose) for (u, v) in the unit disc of R2,
from which it follows that ‖π̃i(t)‖η∗(t) = π̃i(t),
and in addition (b) the maximum value π̃0,i of
the Hamiltonian is

√
|y∗(t)| ‖π̃i(t)‖, if we write

Ξ∗,i(t) = (x∗(t), y∗(t)). This implies, in particular,
that π̃0,i > 0, because if π̃0,i =0 then ‖π̃i(t)‖= 0
(since Ξ∗,i(t) /∈ H+ ∩ H− whenever t ∈ Ĵi),
and then π̃i(t) = 0, contradicting the NTC.
It then follows that Ξ̇∗,i(t)† =

√
|y∗(t)| π̃i(t)

‖π̃i(t)‖ for

t ∈ Ĵi, so 〈π̃(t) · w〉 = 0 whenever w ∈ R2

is orthogonal to Ξ̇∗,i(t). Now, if t, s ∈ Ĵi,
s ≤ t, w ∈ R2, and ŵ = Dt,sw, then
π̃i(t)·ŵ = π̃i(t)·Dt,s(w) = (π̃i(t) ◦Dt,s)(w) , so
π̃i(t)·ŵ= π̃i(s)·w. Therefore 〈Ξ̇∗,i(t), Dt,sw〉 = 0
iff 〈Ξ̇∗,i(s), w〉 = 0, and we have obtained the
geometric condition

(G1) If i ∈ {1, 2, 3}, s, t ∈ Ĵi, and s ≤ t,
the linear map Dt,s is such that a vector
w ∈ R2 is orthogonal to Ξ̇∗,i(s) iff Dt,sw

is orthogonal to Ξ̇∗,i(t).

Now, for i = 1, we can let s1 be the time
corresponding to the midpoint of the α-interval
I+, so s1 = τ̄ − δ+

√
R+ (α0 − α+). Then we can

choose t1 to be any point in Ĵ1∩ Ĵ3, i.e., in J1∩E.
Similarly, we can choose t2 = τ̄ + δ−√

R− (α− − α0),
i.e. the time corresponding to the midpoint of
the α-interval I−. Then we can choose s2 to be
any point in Ĵ2 ∩ Ĵ3, i.e., in J2 ∩ E. If we then
apply (G1) successively with s = s1 and t = t1,
with s = t1 and t = s2, and with s = s2 and
t = t2, and observe that the vectors orthogonal to
Ξ̇∗,1(s1) and those orthogonal to Ξ̇∗,3(t2) are just
the vertical vectors, we find

(G2) The linear map Dt2,s1 sends vertical vectors
to vertical vectors.

The segments σ 7→ Ξ+,σ
∗ (µ+), σ 7→ Ξ−,ζ(σ)

∗ (µ−)
are vertical and go through Ξ+

∗ (µ+) and Ξ−∗ (µ−),
respectively, when σ = 1. Since it is clear
that Φt2,s1(Ξ

+
∗ (µ+)) = Ξ−∗ (µ−), (G2) holds iff

ρ(σ) = t2 − s1 + o(|σ − 1|) as σ → 1, where ρ(σ)
is the time to go from Ξ+,σ

∗ (µ+) to Ξ−,ζ(σ)
∗ (µ−)

along the curve Ξσ
∗ . On the other hand, (#)

and (##) easily imply that ρ(σ) is equal to
2σδ+(R+)

1
2 (α0 − µ+) + 2ζ(σ)δ−(R−)

1
2 (µ− − α0) .

Then (G2) holds iff ρ′(1) = 0. But ρ′(1) equals
2δ+(R+)

1
2 (α0 − µ+) + 2ζ ′(1)δ−(R−)

1
2 (µ− − α0) ,

and (7) implies ζ ′(σ) = α0−µ+

α0−µ− . So ρ′(1) equals

2δ+(R+)
1
2 (α0 − µ+)− 2δ−(R−)

1
2 (α0 − µ+), and

then (G2) holds iff δ+(R+)
1
2 = δ−(R−)

1
2 , i.e., iff

(G3) δ+ = δ− and R+ = R−.

In other words, the additional necessary
condition for optimality is that the rolling
circles that generate the upper and lower
parts of ξ∗ should roll in the same direction
(i.e., both from left to right or both from
right to left) and have equal radii.

Remark 3.2. The above result has been proved,
of course, under the assumption that both ξ+

∗ and
ξ−∗ are cycloid arcs. There remain to consider the
degenerate cases when one or both are vertical
segments. If both are vertical segments, then it is
easy to see that ξ∗ is optimal. Finally, if one of ξ+

∗ ,
ξ−∗ is a cycloid arc, and the other one is a vertical
segment, then an argument similar to the one we
used for the case of two cycloid arcs (but much
simpler) shows that ξ∗ is not optimal, concluding
the analysis of all possible cases. ♦


