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1 Introduction

The purpose of this note is to announce two new theories of generalized
differentials—the “generalized differential quotients,” abbr. GDQs, and the
“path-integral generalized differentials”, abbr. PIGDs—which have good
open mapping properties and lead to general versions of the maximum prin-
ciple. In particular, we use GDQ theory to state—in Theorem 5— a version
of the maximum principle for hybrid optimal control problems under weak
regularity conditions. For single-valued maps, our GDQ theory essentially co-
incides with the one proposed by H. Halkin in [4], but GDQ theory applies as
well to multivalued maps, thus making it possible to deal with non-Lipschitz
vector fields, whose flow maps are in general set-valued.

The results presented here are much weaker than what can actually be proved
by our methods. More general versions, involving systems of differential in-
clusions, are discussed in other detailed papers currently in preparation.

The GDQ concept contains several other notions of generalized differen-
tial, but does not include some important theories such as J. Warga’s
“derivate containers” (cf. [9]) and the “semidifferentials” and “multidiffer-
entials” proposed by us in previous work (cf. [7]).

For this reason, we conclude the paper by giving, in §11, a brief sketch of the
definition of our second theory—the PIGDs—that contains that of GDQs as
well as the other theories mentioned above.

* Research supported in part by NSF Grant DMS98-03411-00798 and AFOSR
Grant 0923.
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2 Notational preliminaries

A set-valued map is a triple F' = (A, B, G) such that A and B are sets and
G is a subset of A x B. If FF = (A, B,G) is a set-valued map, we say that
F is a set-valued map from A to B. In that case, we refer to the sets A, B,
G as the source, target, and graph of F, respectively, and write A = So(F),
B =Ta(F), G =Gr(F). If x € So(F), we write F(z) = {y : (z,y) € Gr(F)}.
The set Do(F) = {z € So(F) : F(z) # 0} is the domain of F. If A, B are
sets, we use SV M (A, B) to denote the set of all set-valued maps from A to
B, and write F' : A——B to indicate that F' € SVM (A, B).

If F7 and F> are set-valued maps, then the composite Fs o Fy is defined iff
Ta(F}) = So(F3) and in that case:

So(Fy 0 Fy) % So(Fy)

Ta(Fs 0 Fy) & Ta(F)

Gr(Foo F) S {(w,2): () ((@,9) € Gr(F1), (3, 2) € Gr(Fo))}.

If A is a set, then T4 denotes the identity map of A, that is, the triple
(A, A, Ay), where Ay = {(z,2): xz € A}.

Throughout this paper, the word “map” always stands for “set-valued map.”
The expression “ppd map” stands for “possibly partially defined (that is, not
necessarily everywhere defined) ordinary (that is, single-valued) map,” and
we write f: A---> B to indicate that f is a ppd map from a set A to

a set B. A time-varying ppd map from a set A to a set B is a ppd map from
A X R to B.

A cone in a real linear space X is a nonempty subset C' of X such that
r-c € C' whenever c € C,r € R and r > 0.

We use N to denote the set of strictly positive integers, and write ZféfNU{O}.
If n€Zy,r €R, and r > 0, we use B"(r), B"(r) to denote, respectively, the
closed and open balls in R™ with radius r. We write B™, B™ for B"(1), B"(1).

If k € N and M is a manifold of class C*, then TM and T*M denote the
tangent and cotangent bundles of M, so T'M and T* M are manifolds of class
CF-1. If x € M, then T, M and T;M denote the tangent and cotangent
spaces of M at x.

3 Regular maps

If X, Y are metric spaces, then SV M;omp(X,Y') will denote the subset of
SVM(X,Y) whose members are the set-valued maps from X to Y that
have a compact graph. We say that a sequence {F;}jen of members of
SV Meomp(X,Y) inward graph-converges to an F' € SV Meomp(X,Y)—and

write Fj —2» F—if for every open subset 2 of X x Y such that Gr(F) C 2
there exists a jo € N such that Gr(F;) C {2 whenever j > jg.
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Definition 1. Assume that X, Y are metric spaces. A regular set-valued
map from X to Y is a set-valued map F' € SV M(X,Y) such that

e for every compact subset K of X, the restriction F' [ K of F to K be-
longs to SV Meomp(K,Y) and is a limit—in the sense of inward graph-

convergence—of a sequence of continuous single-valued maps from K to
Y.

We use REG(X;Y) to denote the set of all regular set-valued maps from X
to Y. ¢

It is easy to see that if F': X — Y is an ordinary (that is, single-valued and
everywhere defined) map, then F' belongs to REG(X;Y) if and only if F' is
continuous.

It is not hard to prove the following

Theorem 1. Let X, Y, Z be metric spaces, and suppose that F' belongs to
REG(X;Y) and G belongs to REG(Y; Z). Then the composite map G o F
belongs to REG(X; Z). &

4 Generalized differential quotients (GDQs)

Definition 2. Let m,n be nonnegative integers, let F' : R ——R" be a set-
valued map, and let A be a nonempty compact subset of R"*™. Let S be a
subset of R™. We say that A is a generalized differential quotient (abbreviated
“GDQ”) of F at (0,0) in the direction of S, and write A € GDQ(F};0,0;5),
if for every positive real number ¢ there exist U, G such that

1. U is a compact neighborhood of 0 in R™ and U N S is compact;
2. G is a regular set-valued map from U NS to the d-neighborhood A° of A
in R®>m,

3. G(z) -x C F(x) forevery z € UNS. &

If M, N are C' manifolds, z€ M, € N, SCM, and F : M—— N, then we
can define a set GDQ(F'; &, y; S) of compact nonempty subsets of the space
Lin(T3 M, Ty N) of linear maps from T3 M to Ty N by picking coordinate charts
M>z—¢(x) e R, N>y —n(y) € R*—where m =dim M, n=dim N—
defined near z, § and such that (x) = 0, n(y) = 0, and declaring a subset
A of Lin(Tz M, TyN) to belong to GDQ(F;z,y; S) if Dn(y) o Ao DE(z)~?
is in GDQ(n o F o £710,0;£(5)). It turns out that, with this definition,
the set GDQ(F';,7; S) does not depend on the choice of the charts &, . In
other words, the notion of a GDQ is invariant under C' diffeomorphisms
and makes sense intrinsically on C* manifolds.

The following facts about GDQs can be verified.
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1. If M, N are C' manifolds, z € M, U is a neighborhood of Z in M,
F :U — N is a continuous map, F' is differentiable at z, § = F(Z), and
L = DF (), then {L} € GDQ(F;z,7; M).

2. If M, N are C' manifolds, Z € M, U is a neighborhood of Z in M,
F :U — N is a Lipschitz continuous map, § = F(Z), and A is the Clarke
generalized Jacobian of F at Z, then A € GDQ(F;z,y; M).

3. (The chain rule.) If M; is a C!' manifold and z;€ M; for i = 1,2,3,
S; C Mi, F; - Mi*—>—>Mi+1, and A; € GDQ(Fl,f“thl, Sl) for ¢ = 1,2,
and either S; N U is a retract of U for some compact neighborhood U of
To in My or F is single—valued, then AsoA; € GDQ(FQ o Fy;%, X33 Sl)

4. (The product rule.) If My, My, Ny, Na, are C' manifolds, and, for
i =1,2, %, € M;, 5, € N;, S; C M;, F; : M;——N;, and A; belongs to
GDQ(F“ fi, 371, Sl), then

Al X A2 S GDQ(Fl X FQ; (fl,fQ), (51,52); Sl X SQ)

5. (Locality.) If M, N, are C! manifolds, Z € M, § € N, and, for i = 1,2,
S; C M, F;, : M——N, and there exist neighborhoods U, V of z, g, in
M, N, respectively, such that (U x V)N Gr(Fy) = (U x V)N Gr(F3) and
Un Sl =UnN SQ, then GDQ(Fl, z, g, Sl) = GDQ(FQ, z, g, 52)

It is easy to exhibit maps that have GDQs at a point £ but are not classi-
cally differentiable at  and do not have differentials at Z in the sense of other
theories such as Clarke’s generalized Jacobians, Warga’s derivate containers,
or our “semidifferentials” and “multidifferentials”. (A simple example is pro-
vided by the function f : R — R given by f(z) = zsinl/z if x # 0, and
f(0) = 0. The set [—1, 1] belongs to GDQ(f;0,0;R), but is not a differential
of f at 0 in the sense of any of the other theories.)

In addition, GDQs have the following directional open mapping property.

Theorem 2. Let m,n be nonnegative integers, and let C' be a convex cone in
R™. Let F : R™——R" be a set-valued map, and let A € GDQ(F;0,0;C).
Let D be a closed convex cone in R™ such that D C Int(LC) U {0} for every
L € A. Then there exist a convex cone A in R™ such that D C Int(A) U {0},
and positive constants &, Kk, having the property that

(1) ify € A and ||y|| < &, then there exists an x € C such that ||z|| < &|yl|
and y € F(x).

Moreover, the cone A and the constants €, k can be chosen so that the fol-
lowing stronger conclusion holds:

(I) if y € A and ||y|| = € < & then there exists a compact connected subset
Zy of (C NB"(ke)) x [0,1] such that (0,0) € Z,, (x,1) € Z, for some

x belonging to C NB"(ke), and ry € F(x) whenever 0<r <1 and (z,r)
belongs to Z,. &

Associated to the concept of a GDQ there is a notion of “GDQ approximating
multicone to a set at a point”:



Set-valued Differentials and the Maximum Principle of Optimal Control 491

Definition 3. If X is a finite-dimensional real linear space, a convexr multi-
cone in X is a nonempty set of convex cones in X.

If M is a manifold of class C', S C M and = € S, a GDQ approzimating
multicone to S at x is a convex multicone C in T, M such that there exist
anm € Zy, amap F : R"——M, a closed convex cone D in R™, and a
A€ GDQ(F;0,x; D), such that F(D) C S and C={LD: L € A}. O

If X is a finite-dimensional real linear space, then X1 denotes the dual of X.
If S is a subset of X, the polar of S in X is the set
S)L( :{yGXJf :y(z) <1whenever z € S}.
If C is a cone in X, then C’)L( is a closed convex cone in XT, and
Cx={ye X" :y(x) <0 whenever z€C} .

When it is clear from the context what the space X is, we will write C'*
rather than C’)l(. We remark, however, that if C' is a cone in a linear subspace
Y of a linear space X, then C}% and C)l( are different objects, and this dis-
tinction will be crucial in the statement of our main result (cf. the definition
of “multiplier,” Def. 10).

If C is a convex multicone in X, the polar of C is the set
ot = (Jlos(U{cL .Ce C}),

so C* is a (not necessarily convex) closed cone in XT.

5 Discontinuous vector fields and their flows

If n € N, we use B(R"), BL(R™ R), to denote, respectively, the o-algebra
of Borel subsets of R and the product o-algebra B(R™) ® Lebesgue(R). We
let N(R"™,R) denote the set of all subsets S of R™ x R such that I7,,(S) is
a Lebesgue-null subset of the real line, where II,, is the canonical projection
R™ xR 3 (z,t) — t € R. Finally, we use BL.(R",R) to denote the o-algebra
of subsets of R™ x R generated by BL(R"™, R)UN (R™, R). It is then clear that
B(R" x R) € BL(R™,R) C BL.(R™,R), and both inclusions are strict.

Definition 4. Let n,m € Z,, and let f be a ppd map from R” x R to R™.

1. We say that f is locally essentially Borelx Lebesgue measurable, or locally
BL.(R™,R)-measurable, if f~1(U)N K € BL(R™, R) for all open subsets
U of R™ and all compact subsets K of Do(f).

2. We use M%’?C(R" x R; R™) to denote the set of all locally BL.(R™, R)-
measurable ppd maps from R™ x R to R™.

3. We call f locally integrably bounded (LIB) if for every compact subset K
of Do(f) there exists an integrable funtion R 3 ¢ — ¢(t) € [0, +00] such
that || f(x,t)|| < ¢(¢) for all (z,t) € K.
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IfnmeZy, f:R*" xR---> R™, [ is a compact interval, and S C Do(f),
we write Zg(f,I) to denote the set of all curves £ € C°(I; R™) such that
(&(t),t)e S for all t € I. We write S(f,I) for Epecs)(f, 1),

If ¢ : R — R4 U {400} is a function, we use Eg’(f, I) to denote the set of
all curves £ € Eg(f, I) such that

(1)

lim sup
t1E

le®) = €@l _
t—1t ()

for almost every t € I.

Fact 1 IfnmeZ,, f € MBB’ZZC(R" x R;R™), I is a compact interval, and
&€ Z(f,I), then the function I >t — f(&(t),t) € R™ is measurable. &

Ifn,meZs, f€ M%lﬁoc (R™ xR; R™), I is a compact interval, and f is locally
integrably bounded, then we can define a map 757 : I x I x Z(f,I) - R™
by letting

%mw@:/fwﬂﬁw (2)

ifael, tel e Z(f,1).

Definition 5. If n,m € Z, and f : R® x R----> R™, we call f locally
integrally continuous if

1. f € MG (R" x R;R™),

2. for every compact subset K of Do(f) and every compact interval I there
exists an integrable funtion R 3 ¢ — (t) € [0, +o0] with the property
that || f(z,t)|| < (t) for all (z,t) € K and the restriction to S5 (f, I) of
the map 7Ty 5 is continuous. &

By taking coordinate charts, it is easy to see that the concept of a “locally
integrally continuous time-varying ppd section f: M xR---> E 7 is well de-
fined if M is a manifold and F is a vector bundle over M.

Definition 6. Let M be a manifold of class C'!.

1. A time-varying vector field (abbreviated “TVVEF”) on M is a ppd map
f:M xR---> TM such that f(x,t) € T, M whenever (z,t) € Do(f).

2. We use TVVF (M) to denote the set of all TVVFs on M.

3. If feTVVF(M), a trajectory (or integral curve) of f is a locally abso-
lutely continuous map £ : I — M, defined on a nonempty subinterval
of R, such that the conditions (£(t),t) € Do(f) and £(t) = f(£(t),t) are
satisfied for a.e. t € I.
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4. We use Traj (f) to denote the set of all trajectories of f, and Traj .(f) to
denote the set of all £ € Traj (f) whose domain is a compact interval.
5. For (x,b,a) € M x R x R, we define

& (2,b,a) = {£(b) : € € Traj (f) : &(a) =z} (3)
The map & : M x R x R——M is the flow of f.
6. For each (b,a) € R x R, we define a map &, : M——M by letting

@g)a(:c) = &f(x,b,a) for x € M. The maps le{,a : M——M are the flow
maps of f. %

Fact 2 Let M be a manifold of class Ct, and assume f € TVVF(M). Then
the flow maps @l{)a satisfy the identities qﬁ{)a =Ty and @f)b o @l{)azééa, if

a,b,ceR and a < b < c. &

6 Approximate limits

Ifn,meZ,, fisappd map from R” x R to R™, >0,z € R”, and vis a
nonempty subset of R™, we define

ofzv.a(t) = sup{dist(f(z,1),v) : 2 € R", [lz —z|| < B},

S0 0f.zv,3 is a function on R with values in [0, co]. (We take the value of the
right-hand side to be zero if the set of those z € R™ such that ||z — Z|| <
and f(z,t) is defined is empty.)

If I is a subinterval of R, z € R™, and § > 0, we define

Sj7[7[3:{($,t)ZIGRH,HI*EHSﬂ’tGI}. (4)

Fact 3 Assume that n,m € Z, f belongs to MBB’?C(R" x R;R™), z € R™,
vCR™ and v # (. Let I be a nonempty subinterval of R, and assume
that 8 > 0 and S, ; 3 € Do(f). Then 0z p is measurable on I whenever

0<B<p. &

We let C(1) be the set of all cones in R. Then C(1) has exactly four members,
and “C € C(1)” is an alternative way of saying that C' is one of the four sets
{0}, [0,400], | —0,0], R. If C € C(1), t € R, and h > 0, we use t + C(h),
t+ C, to denote the sets {t+r:7r € C,|r| <h}, {t+7r:r € C}, respectively.

Definition 7. Assume that n,m € Z,, f belongs to MBB’Z’C(R" x R;R™),
vCR™ v#0, (z,t) e R" xR. Let C € C(1).

1. We say that v is an approzimate limit set of f at (Z,t) along C, and write

v E App*hmxﬁf s t%f,tffecf(‘rv t) )
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if (,7) € Intgn x (71.c)(Do(f)) and

1
lim — / O’f)f7v”3(t) dt=0.
(h.8)—(0,0), k>0, =0 N t+C(h)

2. We say that a vector v is an approzimate limit value of f at (Z,t) along
C, and write

U= a’ppihmxﬁf s t%f,tffecf(‘rv t) )

if {v} € App-lim, .z , 7, secf(m,1). &

We say that (Z,1) is a point of approzimate continuity along C if
f(z, f) = appfhmxﬁa’c,tﬂﬂtffeCf(‘rv t).

We use the expressions “approximate right limit,” “approximate left limit,”
“approximate limit,” “point of approximate right continuity,” “point of ap-
proximate left continuity,” “point of approximate continuity,” respectively, as
alternative names of “approximate limit along [0, +o0 [,” “approximate limit
along | — 00, 0],” “approximate limit along R,” “point of approximate conti-
nuity along [0, +o00 [,” “point of approximate continuity along | — oo, 0],” and
“point of approximate continuity along R.” By taking coordinate charts, it is
easy to see that all these concepts are well defined if M is a manifold, E is a
vector bundle over M, and f is a time-varying ppd section f: M xR---> E.

The following lemma gives a useful sufficient condition for a point (z,t) to
be a point of approximate continuity of a time-varying vector field. To state
the lemma, we first introduce the obvious one-sided analogues of the usual
notions of a Lebesgue point and a point density.

e if ] C R is an interval, and C' € C(1), then a C-Lebesgue point of a
locally integrable function ¢ : I — R U {+o0} is a point t € I such that
lp(t)] < oo, t+ C(h) C I for some positive number h, and

1
lim —/ ‘(pt—@t‘dt:().
Jim o [ Jew e

e If £ C R is a measurable set, a point of C-density of E is a point t € E
such that
lim h~"meas (I + C(R)\E) = 0.
,m ™ meas (t+ C(Rh)\ 0
Lemma 1. Assume that n,m € Zy, C € C(1), C # {0}, (z,t) € R™ x R,
and f € MBB’?C(R" x R;R™). Assume, moreover, that (Z,t) belongs to
Intgn (74c)(Do(f)), and there exist positive numbers h, (3, an integrable func-

tion ¢ : t+ C(h) — RU{+oc}, and a measurable subset E of t + C(h), such
that

(a) the set S =S, i (), is contained in Do(f),
(0) [lf (@, | < ¢(t) for all (z,t) €5,
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(c) t is a C-Lebesgue point of o,
(d) t is a point of C-density of E,
(6) 11mx~>2,t~>f,t€Eﬁ(f+C) f(CC, t) = f(J_J, E)

Then (Z,1) is a point of approximate continuity of f. &

7 Variational generators

If £ : [a,b] — R™ is a continuous curve, and a > 0, we use 7"(&, ) to denote
the “a-tube about € in R™,” that is, the set

T"(60)  {(a,t) ;7 € R™ a <t < b, o — E@)] < o}
Definition 8. Let n,m € Z,, and let f be a ppd map from R" x R to R™.
Let a, b, £ be such that a,b € R, a <b, and £ € C°([a,b]; R™). A variational
generator for f about £ is a measurable set-valued map A : [a, b ——R™*"
with compact convex nonempty values such that there exist k4, &, k having
the following three properties:

1. ka:[a,b] = [0, +00] is integrable and such that
sup {HLH Le A(t)} < kat)
for all ¢ € [a, b];

2. a>0and 7"(&, @) C Do(f);
3. k = {k“}o<a<a is a family of Lebesgue-integrable functions

k% : [a,b] — [0, +00], for O<a<a,
such that limgo [ k*(t)dt=0 and

sup{mm{mg(x, t,L)|:Le A(t)}: lz—£@t)| ga}g ak®(t)

for all ¢ € [a, b] and all o €]0, @], where
def

Al(w,t,L) = f(,t) = FE(1). 1) = L+ (z — &(1)
We use VG(f, ) to denote the set of all variational generators of f about
the curve &. &

Ifn, m, f, a, b, &, A are as in Definition 8, we use I'(A) to denote the set of
all measurable single-valued selections of A. Then I'(A) is a nonempty convex
weakly compact subset of L!([a, b]; R™*™).

We now specialize to the case when m = n. If L belongs to L' ([a, b]; R™*"),
we let My be the fundamental matrix solution of the linear time-varying
equation M = L(t) - M. That is, M, is a continuous map from [a, b] x [a, b]
to R™*™ that satisfies

ML(t,S)—IRn+/tL(T)'ML(T,S)dT. (5)
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Fact 4 If B C L'([a,b],R"*") and B is bounded, then the map
Bueak > L— M1 € C°([a, b] x[a, b] ; R™*™)

18 continuous. o
Ifn, m, f, a, b, &, A are as in Definition 8, and m = n, we define
M(A)déf{ML L e F(A)} g CO([a’b] X [a’b}7Rn><n)

Fact 5 M(A) is nonempty and compact. In particular, if t,s € [a,b] then
the set
def

My s(A) = {Mp(t,s): LeI'(A)} (6)

is a nonempty compact subset of R™*™, &

8 Differentiation of flows

We let C(2) be the set of all cones in R? that are products C x C_, where
C4 €C(1) and C_ € C(1). Then C(2) has exactly sixteen members.

If X_, X, are finite-dimensional real linear spaces, M is a set of linear maps
from X_ to X, and v, v_, are nonempty subsets of X_, X, we define a
set [M;vy,v_] of linear maps from X_ x R? to X, by letting [M;v,,v_]
be the set of all maps [M;v4,v_], for all M € M, vy € vy, v_ € v_, where
[M;v,,v_] is the linear map from X_ x R? to X, given by

[Mve,v_)(y, B,0) E My + vy —a-M-v_.

It is then clear that if M, v, v_ are compact, then [M; v, v_] is compact.

The following result is the general theorem on GDQ differentiation with
respect to the state and the endpoints, along a trajectory £ € Traj .(f), of
the flow &/ generated by a time-varying vector field f. The basic requirements
are local integral continuity, the existence of a variational generator, and the
existence of approximate limits of f at the endpoints of &.

Theorem 3. Assume that Q is a manifold of class Ct, f is a time-varying

ppd vector field on Q, a,be R, a <b, Cy,C_ € C(1), C=C1 x C_ €(C(2),

and C*? = (b,a) + C = (b+ C1) x (a+ C_). Assume, in addition, that

1. f is locally integrally continuous,

2. A is a variational generator for f along &,

3. vy, v_ are nonempty compact convex subsets of Te)Q, Tea)@, such
that

vy € App*hmxﬁf(b) s t%b,tbeCJFf(‘r? t) s
v_ € Appfhmxﬁf(a) s tﬁa,tfaeC,f('ra t) .

Then the set [Mp o(A); vy, v_] belongs to
GDQ(@!3(€(a), b,a),£(0); QX C). o
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Theorem 3, combined with the chain rule, yields a result for products of
flows. To state this result, we first define, if M, ... , M™ C R"*" and

viovr w0 v T C R, aset
1 m, 1 m 0 m—1
MY, M v, v Ve v
of linear maps from R™ x R™*! to R™. Precisely, this set consists of all
the maps [M?',..., M™ oL, ... om0 o0 0™, for all MY e M.,
MmeM™ vt evi o omev ol evl . 0" ev™! given by
1 m, .1 m .0 m—1 m 0
(M~ o, M™ v, ool o T (g, ™ L ad)
-1
def
= pmo0 Yy +a™ul —aOpm0y0 4 akPm’k~(va fvli)
k=1
where

POF = Mt M MR i R leN 1<kE<t<m.
Also, if £ = (f!,..., f™) is an m-tuple of time-varying vector fields on R",
we define the product flow map

&f : R" x R ——R™

by letting
def m m—1 1
@f(:c, a™, ... a, aO) = (@gm’am,l o @gm,l)am,z o0...0 @il)ag) (x)
for (z,a™,...,a',a’) € R® x Rm*1,

Remark 1. The concept of a variational generator also makes intrinsic sense
on manifolds. The important new point is that now A has to be taken to be
a section along ¢ of an appropriate bundle. We make this precise in the only
case that will be used here, namely, when f is an “augmented ppd vector
field” on a manifold M, that is, a time-varying ppd section of the bundle
TM x R. In that case, we let Ep; be the vector bundle over M whose fiber
Ep(z) at each € M is the product J(VF(M)) x T M, where JX(VF(M))
is the space of 1-jets at = of smooth vector fields on M. Then, if a, b, are
such that a,b € R, a < b, and £ € C°([a,b]; M), a variational generator for
f about £ is a measurable set-valued map A : [a, b]——Fjs such that

o A(t) is, for a.e. t, a compact convex nonempty subset of Ep(£(t)) such
that m1 o(v) = f1(&(t),t) for every v € A(t), where 7 ¢ is the canonical
projection from JY(VF(M)) to JO(VF(M)) and f; is the T M component
of f;

e locally, relatively to suitable coordinate charts, there exist k 4, @, k having
the three properties of Definition 8.

With this definition of variational generator Theorem 3 remains true on man-
ifolds.

A more detailed discussion of the invariant definition of variational genera-
tors is given in Sussmann [6]. O
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Theorem 4. Let n, m, a,., a2,...,a™, f',...,f™, £, 20,..., 27,
... &M C,C,00%...,C™, be such thatn € Z, m € N,
a*:(aT,,,,,ag)ERm+l, CLSSCL1§~~~SCLT,

CO%...,CmeC(),C=Cm"xCm™1x...xCx(C"
C=0C*=a,+C=(a"+0C™)x...x (a} +C"),
and £ = (fY,..., f™ € (TVVF(]R"))m. Assume that, fori=1,...,m,

1. f% is locally integrally continuous;

2. & € C%[ai7 Y al] s R™ ) N Traj (f7),

3 €fai) =1, and €l(a) = a7

4. A% is a variational generator for f* along &¢,
5 i—1

. Vi, v " are nonempty compact convex subsets of R™ such that

Vi € Appfhmxﬁm}‘ ,t—al,t—aleC? .fl (CC, t) )

1—1 : 7
v_ € Apthmei’l ,tﬁaiil,tfaiileciflf (z,1).

Let M = Mai)ai—l(/li), fori=1,... ,m. Then the set
M, ... ,Mm;vi,... ,VT,VQ,... v
belongs to GDQ(QSf; (2%,a™, ..., a2), 2™ R x C). &

9 A GDQ maximum principle

Theorem 3, together with the directional open mapping theorem 2, imply a
version of the maximum principle that contains and improves upon several
previous smooth and nonsmooth versions, for vector field systems as well as
for differential inclusions and systems of differential inclusions. Moreover, one
can also allow “jump maps,” and obtain a “hybrid” version. We state this
more general version directly but, for simplicity, we only discuss the vector
field case.

For our restricted purposes, let us define a hybrid optimal control prob-

lem to consist of the specification of a finite sequence (X%, ..., %X*) of
“ordinary control systems,” together with “Lagrangians” LY, ... L* for
Xt ..., X" “switching constraints” S!,...,S*, “switching cost functions”

o' .. ot and “time sets” T, Ty, T2, T2, ..., T" T},

Precisely, each X* is a triple X* = (Q%,U?, F'*) consisting of a state space Q, a
controller space U*, and a controlled dynamics, that is, a parametrized family
F' = {F}},cy: such that, for each n € U’, F} is a ppd time-varying vector
field on Q*. Each L' is a family {L; }, < of ppd functions L;, : Q" xR---> R.
Foreachi € {1,...,u}, the switching constraint S* is a subset of the product
Q' x R x Q! x R, where “i-+1” means “i + 17 if i < p, and “17 if i = p.
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The switching cost functions are functions ¢ : Q% x R x Q™ x R — R. The
time sets Ti,TfL are subsets of R. A controller is a py-tuple
=" ...n") el x - xU"

A trajectory for a controller n = (nt,... n*) is a p-tuple € = (&1,...,&H)
with the property that, for each i, §1  is an absolutely continuous curve in
@, defined on a compact interval 1(£*) = [a—(£"), a4+ (£")], that satisfies the
conditions £'(t) € Do(F};) and &£'(t) = F}:(£'(t)) for ae. t € I(¢'), and is
such that _ _

o'(§) €S,
where

def

EME(E(),1) and o' (&)= (€(as(€))), EF (a (EF1)).

A trajectory-control pair (abbr. TCP) is a pair (€, ) such that 1 is a controller
and £ is a trajectory for . A TCP (&,7m) is admissible if, for each index 1,
a—(§') € T¢, a4 (¢') € T4, and the functions I(¢') > ¢ — L}, (Ei(t) e R
are a.e. defined—that is, £i(t) € Do(L;;) for a.e. t € I(§')—and Lebesgue
integrable. The cost of an admissible TCP (&€, 7) is the number

J(E,n)@é/:

An optimal TCPis an admissible TCP (£, n) such that J(&,n) < J(&',7') for
every admissible TCP (¢',7').

For each i, we define the L-augmented dynamics to be the family
Fi = {Fé}nelx{i
of ppd maps from Q? x R to TQ" x R given by

Fé(q,t) = [11?{78: 2] for (¢q,t) € Q' xR.

(N koo,
o, €O e (@),

Now assume that

H1. (¢,7) = ((¢,...,€%),(n%, ... ,n")) is an admissible TCP, and
a’ =a_(£'),al, =a4(£'), 2l =¢"(al), =% =£(d})),
fori=1,...,p. R R
H2. A',..., A" are variational generators for Fﬁl, ..., Fl along &', ... &
H3. C% are, fori=1,...,u, o € {+,—}, cones in R such that
af, € IntangC;Té

and 5% (zi  al) is a point of approximate continuity of F:) along C?.

(o] o
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H5.

H6.

H7.

H8.
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Héctor J. Sussmann

For each i € {1,...,u}, C*is a convex multicone in T=: Q' x T, it Qi+t
where, for o € {+, -},
o (0G0,
© = R if L # {0},
Q, Q' x (a, + R}).
C' is a GDQ approximating multicone for the restricted switching set

i def o i it
Srest = S N (Q+ X Q:Ll) .
at the switching point P = ¢*(§) = (=%, ).
For each i € {1,...,u}, 2% is a subset of the dual space
i i+l f
(TxiQ xR x T,.5,QF x R)
. - T
(that is, of (Tgi (QF x R) x T_i: (Q1 x R)) , or, equivalently, of
. - E .
(T(m. :i;l)(Ql x R x QL x ]R)) ), and 2° belongs to the generalized
zi,5" )
differential quotient GDQ(¢'; P, o' (P?); Qi x Q").
For each i € {1,...,u} and each n € U’ the time-varying map Ff, is
locally integrally continuous.
Each control system X! is invariant under time-interval substitutions.
(That is, if n,¢ € U*, £ € C%([a,b]; Q°) NTraj (F}), and J is a compact
subinterval of [a,b] such that (£(t),t) € Do(F}) for t € J, then there

exists a controller § € U* such that Fj(q,t) = F}(q,t) whenever ¢ € Q",
t€la,bl,t ¢ J, and Fj(q,t) = F(q,t) whenever ¢ € Q*, t € J.)

now define the notion of a “multiplier” along (§,7n), and what it means

for a multiplier to be “Hamiltonian-maximizing.”

Fori=1,...,u, and ( € U*, we define the Hamiltonian

H{:T*Q' xR xR---> R

by letting

Definition 9. If H1-H8 hold, then a multiplier along (§,7n) is a triple
(v, vo, k) with the property that:

P is a p-tuple (1, ... 1*) such that each ¢ is a field of covectors along
&' (that is, 1" is a map from the interval [a’ , a’, | to T*Q", such that 1" (¢)
belongs to T, Q" for every t € [a’, al]);

kisa2p-tuple (k1, k1, ... k", k") such that k!, € R whenever i belongs

to {1,...,u} and o € {+,—};
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e cach 9" is absolutely continuous and satisfies the adjoint differential in-
clusion

g€ [0, —wo] A1) forae. telat,all:
e Yy € R and ¢y > 0;
o for each ie{l,...,u}, c€{+, —}, the switching conditions

Lﬁi S 1/)0.91 + (Cl)él, Hg € (Cg)ﬁg

hold, where

U = (—' (al), =y +hi, (), —nL — ),
L—1_. ijl)(Qi x R x QiF? % R),

i (8i,E

1«

[1

and _ o .
hi, = His(ah, 4 (ah), al, o) -

Remark 2. The switching conditions take a more familiar form in the case of
“fixed switching times” (that is, when the sets T} consist of the single points
al) or of “totally free switching times,” that is, when the T are equal to the
whole real line R or, more generally, are neighborhoods of the a’. Indeed, in
both cases we can take C? = R!  and then (C’g)ﬁd = {0}. It follows that the

k% vanish, and the switching condition becomes
(=47 (al ), 9 (@), =R € o2+ (C1),
Suppose, in addition, that either

L. we are in the fixed switching times case and the switching conditions are
“(ai,2"1) € 8.7 where each S is a subset of Q7 x Q'

or

II. we are in the free switching times case, the switching conditions are of
the form (2% ,z"!) € S, where each S is a subset of Q" x Q*'!, the
switching cost functions ¢; do not depend on the times, and the times

it1

al are required to satisfy a’, = a
Then, in case I, each C; will be a multicone in the product
T, Q' x {0} x T, Q™ x {0},

so the switching condition will not impose any restriction on the h?. On the
other hand, in Case II each C; will be a multicone in the set

{(v,7,w,s) € TxiQi x R x Tmi;lQi;L1 xR:r=s).
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Hence all the members (9, 7,0, 8) of C;+ will satisfy # + § = 0. Moreover, the

fact that the ; do not depend on the times implies that we can choose the

{2; to have vanishing time components. It then follows that the time-part of
the switching condition becomes the familiar requirement that

i 7 —

h+ - hijrl )

that is, the condition that the Hamiltonian should not jump at the switchings.

Definition 10. If H1-HS8 hold, and (%, ¥, k) is a multiplier along (£, 7), we
say that (1, ¥o, K) is Hamiltonian-mazimizing if, for every i € {1,..., u}, the
inequality

holds whenever ¢ € U*, ¢ €]a’,a’,[, and (£'(¢),t) is a point of approximate

continuity of Ff] and F é &
Definition 11. If (1, 9, K) is a multiplier along (£, 1), we say that (¥, v, K)
is nontrivial if it is not true that 1o = k! =k} = ... = k" = k! =0 and
all the functions ¢* are identically zero. O

Theorem 5. If H1-H8 hold, and the pair (€,m) is optimal, then there exists
a nontrivial Hamiltonian-mazimizing multiplier along (€,7). &

By taking 4 = 1, Theorem 5 can be shown to include the classical “non-
hybrid” smooth and nonmsooth versions of the maximum principle given,
for example, in Pontryagin et al. [5], Berkovitz [1], Clarke [3,2]. In that case,
the switching condition of Definition 9 becomes the transversality condition.
When the augmented vector fields F:) are of class C'!, one can take

_ OFt,
A'(t) = {87”(8@), t)} : (7)

and the adjoint differential inclusion becomes the classical adjoint equation.
On the other hand, if the function = — F;(z,t) is differentiable at £'(t)

for almost all ¢, then one can still take A’ to be given by (7), and A’ is
a variational generator, provided that the differentiability of =z — Ff) (z,t)
at £(t) has an obvious integral uniformity property with respect to t. So
Theorem 5 is in fact stronger than the classical versions, even in the setting
of single-valued differentials.

In addition, when the Ff) are Lipschitz continuous on some tube about the
reference trajectory, with an integrable Lipschitz constant, then one can take
Ai(t) to be aﬁét@l (t)), where Ff]t is the map  — F:} (x,t), and “0” stands
for “Clarke generalized Jacobian.” Moreover, in the Lipschitz case one can
often take the A’ to be smaller than the Clarke generalized Jacobian (for
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example, equal to the classical differential, when it exists), so even in the
Lipschitz case Theorem 5 often yields a stronger conclusion than the usual
nonsmooth results.

Theorem 5 also applies to problems where the vector fields are only contin-
uous with respect to the state (in which case the flow maps are set-valued)
and to problems with discontinuous vector fields. An important class of such
problems arises from differential inclusion systems. As long as the inclusions
under consideration are almost lower semicontinuous, then there exist suffi-
ciently many integrally continuous selections to make our theorem applicable.
All these applications will be discussed in a subsequent paper.

10 Proof of Theorem 5

It is clear that we can assume, without loss of generality, that
<pi(xi,ai,x§1,ai}1):0 for i=1,...,4u. (8)

We make this assumption throughout our proof.

For each i € {1,...,u}, we let X% denote the space of all continuous fields
of covectors along &%, so the members of X'* are the maps

0l al] 31— 0(1) € T @

such that ¢ is continuous as a map from [a’,a’,] to T*Q". Then X’ is a
Banach space.

If i € {1,...,u}, we use V¢ to denote the set of all pairs ((,t) such that
a'. <t <a’, €U and (£{(t),t) is a point of approximate continuity of
F and F¢. We then write V to denote the set of all triples (i,¢,t) such that
1€{l,...,m}and ((,t) € V"

If W is a subset of V), define ¥y, to be the set of all multipliers

(¢a¢0aK‘) = (wla s 7¢#a1/)05 K/lfa K’}H s aK’li’ Hi)
along (£€,n) such that

o
Yo+ D (" (@) + |sL] + |si]) = 1 9)
i=1
and
(&) the inequality
holds whenever (i,(,t) € W.
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Then ¥y is a compact subset of the product space

def

X E X XXX x XH xR

Our goal is to prove that ¥y, # . It is clear that, if Wy, ..., W are subsets
of V, then

Yy u.owy, = P, N Wy,

Therefore, if we prove that
(*) Yy # O whenever W is finite,
then we will have shown that

{LpVV}VVQV7 W finite

is a family of nonempty compact subsets of X that has the finite intersection
property. Since

o, :ﬂ{@w WV, W ﬁnite}

it will follow that ¥y, # ), proving our conclusion.

So it suffices to prove (*). For this purpose, we fix a finite subset W of V,
and write W = UL_ W', where W' C {i} x V'. Write W' = {i} x W', so
Wi C Vi

We introduce the cost-augmented state spaces

i def

Q. = Q' xR,
together with the cost-augmented time-varying vector fields
F! . e TVVF(QL),
defined by

DO(FE,C) ={(g;m1t) EQE; (q,t) EDO(FE)QDO(LE) 1

=[] i it epotes

(Here we are using the canonical identification of T(, ) (Q" xR) with T,Q" xR
and writing the members of T;Q" x R as column pairs. The above for-
mula defines F¢ (g,7,t) as a member of T,Q" x R, so F{ (q,7,t) belongs
t0 T(q.r) (Q" X R). Therefore F}  is indeed a time-varying vector field on Q.)

Then an integral curve of F, é)c is a locally absolutely continuous curve

et —&(t) = (E1), M) € Qe

defined on an interval I, such that
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(a) & is an integral curve of F,
(b) the function I € t — Lé (&(t),t) is a.e. defined and locally integrable,

and
(c) A(t) = A(s) + [I LE(E(u), u) du for all s,¢ € 1.

In other WOI‘dS7 c consists of an integral curve of Fl together with a
“running cost” function A along g)

We also introduce the cost-augmented variational generators A, defined by
Al(t) = A¥(t) x {0}.
Precisely:

o If Q" is R™ or an open subset of R", so that Q% is an open subset of
R™ x R = R+ then A¥(t) is a subset of R("**1D*" whose members are
(n+ 1) x n block matrices

L= [ﬂ , LeR™" ¢ecRX",

so the adjoint differential inclusion is equivalent to the assertion that
; Lt
b0 = ol [ 518
for some measurable selection

L) = [L(t)]

of A%, In that case, the set A%(t) is a subset of R(*TDX(+1) "whose mem-
bers are the square (n + 1) x (n + 1) block matrices

Lo
re=[13]

L € /il(t) The adjoint differential inclusion, together

k
with the statement that vy is constant, is equivalent to the assertion that

*1/'% (t) = wc (t) - Lec (t)

for some measurable selection

t— Lo(t) = [L(t)o].

such that L. =

of A?, where
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e If Q' is a manifold, then the above description of the nature of A* and A?
and their relation to the adjoint equation remains true locally, in coordi-
nates, and can be made valid globally, in an intrinsic way, as explained
in Remark 1.

We now let £ be the cost-augmented version of &, obtained by initializing
the running cost to the value 0 at time a’ . That is, & : [a”,a’,] — Q! is the

curve given by |
0-=50]-

N(t) = /1 L;i (€'(s), 8) ds.

where

If v € N, we use Ry , to denote the nonnegative orthant of R,, that is, the
set of all row vectors € = (e1,...,6,) € R, such thate; >0forj=1,...,v.
For e = (e1,...,&,) € R, we write
def
lel = lea] +- -+ el
In particular, if e € Ry ., then |g| =1 + -+ - +¢&,.
If r > 0, we use P, (r) to denote the v-dimensional simplex

P,r) & {eecR, e|<r}.

For each 7, we let v' be the cardinality of W¢. We choose once and for all an
ordered v*-tuple

W= ((G1,11), (Gty), oy (Gastyi)) (10)
such that the times t} satisfy
th<th<... <t

and W' is the set { (¢],#%), (¢4, t4), ..., (¢%i,t",) }. (The ordered v'-tuple

W' is of course uniquely determined by the set W? in the special case when
W has no “repeated times”—i.e., if (¢,t) € W, ((',t) € W implies ¢ = ('.)
Also, we write th = a’ , tl, , = a’,.

We let 7 be the minimum of all the nonzero members of the set
{t;H—t; =0, =1, ,ﬂ}.
We then define, for each ¢, affine functions
R,:(?) > &' — T;(Ei) cR
inductively for j = 1,...,v% + 1, and prove inductively that the inequality

t<TiEe) <thdei+...+ei if & =(cf,... ,eL:) €Pu(F) (11)
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holds if j € {1,...,v'}.

The construction is as follows. First, we define 7{(*) = ti, so (11) is trivially
true when j = 1. Next, assume that 7}(e’) has been defined for some j € N
such that 1 < j < v*, and (11) holds. If %, is equal to t%, then we let
T (e') = Ti(e") + &b If t;H > _t;’ then we define i1 (eY) =t5 . Tt is then
clear that, in both cases, " — 7; (') is an affine function, and (11) holds if
j is replaced by j + 1. We complete the definition by letting 7., (€') = a’..
It is clear that 77(0) =t} for all 4, j.

It follows from the construction that the inequalities
T;(Ei) +e; < T;+1(€i) (12)
hold for j = 1,...,v% and € € P,:(#). Indeed, (12) follows clearly from the
definition of 77, (") if ), = 5. If £}, > ¢, then (12) follows because (11)
implies that
TNt <th+el+.. e+
<t + €]
St P <t =T
The inequality (12) implies that, if we write
igqiy def i q i i
Ij(e ) = [Tj(e ) Tj(E ) +E; [,
then for each i, {I; (€i)}je{1,... i} 18 a familiy of pairwise disjoint subintervals
of [a’,a], such that I}(e') has length €, and I}(e') C [t} t5 + 7] for
j=1,...,v" Welet i
i iy def i
') < | J LY,
o ) Jj=1
so I'(e') has measure |e’|. Write _ _
Q,=Q" xR, xR xR,:.
Fix 4, and define set-valued maps _
0, Q——0Q

inductively, for j = 1,...,v°+ 1, as follows. First of all, we let
. F,
@;(za QG E) = Qst;,a)iJra, (Za O) .

We then define

. i
s Fc;i,c

@;'+1(Z’ oy, a,g) = <¢T}TIJ:)1C(€)7T}(€)+5]‘ © Qs'r} (&) +e;,7} (s)) (@; (z, 04, 0, 5))

forj=1,...,v°—1, and
O, 1 (z,ap,a_¢) =

i Fi
F*. ¢le .
ﬁ TIT’,C gz‘) vt ‘91 .
< ai+a+,7’ii (e)+e,: °© Tii (e)+e,: ’T,ii (s)> ( vt (25 Qt, e, E)) '



508 Héctor J. Sussmann

We let
; def

O =06, L1

(In other words: we make a “packet of needle variations of 7 ¢ by substltutlng
the controller ¢} for n* on the interval [7/(e), 7}(e) + ¢;] for j = 1,...,v%
then, using the new control—which depends on r—: as a parameter—we move
in the cost-augmented state space Q% by initializing the state component at
z and the running cost component at 0 at time a® + «_, and then following
integral curves of the new dynamics up to time a. + oy, thus obtaining, for
each value of z, ay, a_ and €, a not necessarily unique point in Q%; then
(9;;7£ (2, 4, a—, €) is the set of all points that can be obtained in this way. The
fact that the endtimes are a’, + o and a’ + a_ rather than a, a’ means
that we are also making “variations of the endtimes;” the fact that the initial
condition is z rather than #° means that we are making “variations of the
initial state” as well.)

Write
Xt = gé(ai) = (Il,,()),
X = (X1 al),
Vi = F (XM,
Xi = &(al) = (€'(ay), X (a}))

7,1 1‘ i
Xj _(X t')_a

- ?;_i,xxgp,

= é},c(Xj) )
Zg = Yf Yl

Xy (Xﬁ’thl,tﬁ)

,3
Xl = (X5, th,t0,t%,,).

It is then clgar that @;&( ,0,0,0) = {X } and @1( ,0,0,0) = {X;} for
7=1,...,v" We now let

=Q' x C% x C. x Pyi(7), (13)
and compute GDQs
Di € GDQ(O%; (x,0,0,0), Xi; K) (14)

inductively, by applying Theorem 3 and the chain rule.



Set-valued Differentials and the Maximum Principle of Optimal Control 509

For j = 1,...,v", we let D} be the set of all linear maps A% , for all
measurable selections L, of A%, where

c?

def

j—1
Al (vay,a,e) i (v - a,Yi) +3 el My ZE+ (riey) — £)Y7
k=1

M; o My, (t5,a" ),
My (), and

5 def [V
= 1ol

and prove by induction on j that (14) holds for every j € {1,...,v}.
First of all, let A% : Q" x R xR x R,: — Q% x R x R be the map

(Za ay,x_, E) - ((Za O)a tla ai— + O‘*)'
Then @i = @szi,c o Ali .
The map A? is of class C1. Therefore, if B} is the linear map

B :T, Q" xRxRxR,: »Tx: Qi xRxR

given by _
Bi(v,ay,a_, &) = (0,0,a_),
{Bi} € GDQ(A}; (22,0,0,0), (X2, #,a ); K).
Let

Ki=Q"x (i +C") x(a"+C_).

Theorem 3 tells us that a member A} of GDQ(@Fnii)c; (Xt ab), Xi; KY)
is given by

A = [Myi gt (A0); {Fs (X7} A{F D o(XED]
Clearly, A K C K%, so the chain rule applies, and we can conclude that

Di = Al o Bl € GDQ(6}; (2",0,0,0), X}; K1)
Now assume that j € {2,...,v"}, and we have shown that D’ _; belongs to
GDQ(O’_; (2%,0,0,0), X} ;; K*). Let

A Q' xRXRXR,——Qi xRxR xR

be the set-valued map that sends (z, a4, a—, €) to the set

0] (2 ap, ) x {74 (e)+ej1} x {7j4(e)} x{7j(e)}-
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Let fl; 1QL xR xR x R——Q% x R x R be the set-valued map that sends
the point (Z,r1,r2,73) to the set

BT (Z,r1,m0) x {r3} x {r1}.
Then _ . B _
O; =& ncoAjoAl.

It follows from the inductive hypothesis that, if B;'- is the set of all linear
maps _ . |
L. :TxiQ’LXRXRXRyiHTX;ilQéXRXRXR,

for all measurable selections L. of A%, where

then
Bj € GDQ(Aj, (2,0,0,0), X7 ; KY).

Jj=b

Theorem 3 implies that, if E; is the linear map
B :Txi QuxRXxRxR—Tx: QIxRxR
given by B N
Bi(V, p1, p2,p3) = (V + (p1 — p2)Yj_1, p3,p1) ,
then . o _ _
{Bi} € GDQ(A}; X1° | X172, QL x R?).

Finally, Theorem 3 also implies that, if B; 1. 18 the linear map

By T, Qe X B X R = Ty Qe

given by B _ | |
B;',LC(‘/a 01,02) = crleJ + M;',jq (V= 0_21/]_171) ,
and ]:)'; is the set of all Bj 1 for all measurable selections L of A%, then
B Fiy o iy i i
Bj EGDQ(@ n )L’Xjfl’XjanX]RQ)-

Then the chain rule implies that

Si o Bi i il 0,3, i
B’ o Bj o B} € GDQ(0}; (2,0,0,0), X" K").
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Clearly, B; o B} o Bj is the set of all maps _B;',Lc o Bjo B, , for all
L. € I'(A}). Given a point (v, a4, a_,e) € Tx: Qi x R x R x R,:, we have

B;',Lc (v, aq,a_,e) = (V, p1, p2, p3) ,

and oy Ny
Bi(V,p1,p2.p3) = (V + (p1 — p2)Y]_1, p3. 1) ,

where
V=A"  (vor,a_e), p1=DBjye), p2=DBj3(€)), ps=DB;,(e).
It follows that
(B oBjoB) )(v,ay,a ,e) =B, (Bj-(V, p1, P2, ps))
=Bj ((V + (o1 — p2)Y} 1. s, pl))
=psV]+ M W,

where
W=V+(p—p2)Y; 1 —p1Y} ;.
Since p1 — p2 = ;-1 and py =7}_,(e) —t}_; +¢;_1, we find

W=V+e Y] —pY,
=Aj (v oq, 0 6)+e, Y — Y],
Jj—2
=M_,_- ({; — a,Yi) + ZEkM;q,k -7,
k=1
+(r]1(8) = )Yy ey Y oy = Y
Jj—2
=M_,_- ({; — a,Yi) + ZEkM;q,k -7,
k=1
(7 a(e) =t g +e-)Y) oy + e (Y =Y ) — ;Y
j—2
=M_,_- ({; — a,Yi) + ZEkM;;Lk - Zy,
k=1
H(ri_y(e) = ti g Fejm1 = p)Yiyi + g1 2

j—1
=M, _- ({, — a?Yj) + ZEkM;—l,k A
k=1

Therefore
j—1
Ml W =M (—a Vi) + Y ey 2
k=1
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Then

(B ..o E; oB! Vv, o, a &) =psY] + M, |- W

j—1
=M _- (v - a,Yj) + My - Zi + (t)(e) — t5)Y]
k=1
= A;,LC (’U, Ay, E) .
It follows that
B;’,Lc OB;— oB;LC = D;- ,

o (14) holds.
Now that we have proved that (14) holds for all indices j € {1,...,v'}, we
know in particular that

Di. € GDQ(O!:;(2",0,0,0), X s K'). (15)

vio v

We let DY, be the set of all linear maps A ; , for all measurable selections
L. of A%, where

c?

i

Al g (g am,e)a Y4 M- (v - a,yj) + enMt, - Zk, (16)
k=1

and we let

défMLc(afF,ai) and Mi)kdéfMLc(ai,t};).

M _
We will prove that
% € GDQ(O; (z',0,0,0), X'; K'). (17)

Let A% : Q' xR xR x R,i ——Q¢ x R x R x R be the set-valued map that
sends (z, ay, a—_, €) to the set

OLi(z,aq,a_,€) x {1hi(e) + e, } x {1hi(e)} x {a'y + at}.

Let A% : QL x R x R x R——Ql x R x R be the set-valued map that sends
(Z,r1,72,73) to the set @ng,c(Z, r1,7m2) X {rs} x {r1}. Then

i Floo o i i
#:QS n,coA#OA#.
It follows from (15) that, if B;& is the set of all linear maps

Byr. T Q xRxRXR, = Txi Qe xRxRxR,
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for all measurable selections L. of A%, where

B;&,LC (’U, Ay, —, E) = (Af/i,LC (’U, oy, x—, E) ) B;&Q(E) ’ B;&,i}(e) ’ Oé+) )
B;E)Q(e) = Tf, (e)+e,i — tf, ,
By 5(€) = 7,:(e) —ti:,
then _ _ _ _ _
Y € GDQ(AY; (¢1,0,0,0), X7 K') .
Theorem 3 then implies that, if B;& is the linear map
B, i Txi Qe X RXR xR — Txi QL xR xR
given by B N
By (V. p1,p2.p3) = (V + (p1 — p2)Y i, p3, p1)
then - B _ _ _
{B;lé&} € GDQ( ;&;X:,’ig)X:,)?; Qe X Rs) :

Finally, Theorem 3 also implies that, if E;& 1. is the linear map
By, Txi Qe x Rx R — T Qo

given by

B V., 70 = VL MV = V),

)UI

and ]:)';7£ is the set of all B#, 1. for all measurable selections L. of A%, then

B, € GDQ(@" < X[%, X1; QL x (a, + CL) X R).

It is easy to verify that
(Al o AL)(K7) C QF x (al, +C) x R).
Therefore the chain rule implies that
B, o B), 0o By, € GDQ(O; (" ,0,0,0), X35 K*).
Clearly, ]3;7£ o B;& o B, is the set of all maps
B;&)LC o B;E o B;&,LC ,

for all L. € I'(A%).
Given a point (v, ay, a_, €) belonging to the product Tx: QL x R x R xR,
we have B

B;&,LC (v, a4, a,€) = (V, p1, p2, p3) ,
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and
By (V. p1,p2.p3) = (V + (p1 — p2)Y,i, p3, p1)

where
V= Afﬂ',Lc (’U, Qyp, X, 5) )y P1 = B;&Q(e) y P2 = B;&,B(E)) y P3 = 0y

It follows that

(Bl oByoBi  )(v,ar,a &) =Bl (B# (V,p1, p2, p3 )

=B .((VJr (p1 — p2)Y;. ups,m))
= psY? JrMiw W,
where - i
W=V+ (pl - p2)Yl,i — plYl,i .

Since p; — p2 =€, and p1 = 7' (g) —t'; +€,:, we find

W=V +€Uif/lji — plylji
= Afﬂ',Lc(’Ua Ay, 0, 5) + €inl,ii — plylfi
vi—-1

=M (00 V)43 eaMy Zi—pi Vs
k=1
HTi(e) = th) Vi + €Y

vi—1

= Mfﬂi . (f)—a,Yi)Jr Z Ek‘Mzi)k . Z,i—plYlfi

JF(T;A(E) - t;.el + Ej)Y 1t Epi (Yl Y,

vi—1
=M (b Y+ 3 My 7
k=1

+(Tii(€) — ti i tEyi — )Yl + El,iZ]i,

=M. (v-a Y1)+Zek - 2
Therefore
ML W= ML (ML (5—a V! +Zek e Zh)

i

=M, _(0—aY')+> eMl, - Zi.
k=1
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Then

(E;&l/c o B;& © B;&,LC)(’Ua ay,x_, 6) - P?,Yi + Mi)yi - W

vt

=aiY] + Mi)7 (0 —a Y') + ZEkMi,k -7
k=1

= A;&,LC (’U, Ay, —, 6) .
It follows that o ~. i i
By . oByoBy =Dy,
so (17) holds.
We have thus shown that for each i € {1,...,u}, the set D;& of all linear
maps A:#,LC defined by (16), for all measurable selections L. of A, is a GDQ
of (9;;7£ at ((z,0,0,0),2%) along the set K* defined by (153).

We now combine all the @;& into a single “grand map”

6:9,——Qu xR,

where

Q, =09l x...xQ", and Q#:Q;&x...xQ;&.
Roughly speaking, if p € Q., then p = (p!,...,p"), where

pi:(zi,ai,ai,ei) for i=1...,pu. (18)

Then each p* gives rise to one or several points ©%(p'). So to each p* there

correspond one or several terminal points w® and terminal Lagrangian costs
¢, as well as a terminal time a, + o, , an initial time a*. + ! , and an initial
state z'. In particular, this gives rise to “switching points” ¢* € Q%,, defined
by

ol = (w'al +a, 2 a T ot (19)

Moreover, p also gives rise to a cost og, given by
s . (ol . . . . L~ L~ L~
oo = Zﬂl JrZwl(wl,afF +a1,zl+1,al+l +att). (20)
i=1 i=1
We will define ©(p) to be the set of all 4 + 1-tuples
(oh,... 0" 00) € Qu xR (21)

obtained from p in this way.
The precise definition is as follows. Let

p:(plaap#)EQ*:QiXQ‘:
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Define 2%, ', o’ , €' by means of (18), so
2 eq@, o\ €R., o €R., € €ER,.
Then O(p) is the set of all p + 1-tuples (21) such that, for some
wte ... ,wr e Q" (P ER,... "R,
the conditions (19) and (w’,¢') € O (p') hold whenever i = 1,...,u, and
(20) is satisfied.
This completes the definition of of @. Let

p=®,....0",

where p* = (2*,0,0,0) for i = 1,..., u. Then
6(p) = {(a,00)},

where
_ ~1 _
o=0G,...,0"),
i _ (i i ol iFl .
7' = (x! a2 a™) for i=1,...,p,

M
5o =Y N(d}).
1=1

(Recall that we are assuming that (8) holds.)

Let
K=K'x...x K*.

We now write down a GDQ

For this purpose, we first define a linear map Ar_w, for each p-tuple
L. = (LL,..., L") of measurable selections L of A’ and each p-tuple
w=(w!,... wH) such that w® € Q' fori=1,...,pu.

We then let D denote the set of all maps Ay, w, for all possible pairs (L., w)
of p-tuples.

Let
u=(u',,...,u") € T;Q..
Write _ S
ul = (vl,aq,al,el),
so u' €Ty QL for each 4. Let ' =(e},...,e",) for each i.

Let L. = (LL,..., L") be a u-tuple of measurable selections L of A¢. Write

o= [£414]
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Then define
Ar, w(u) = (s'... 5", s0),

where

i (4 i 41 iFl
S _(Qaa+av y O )a

i
i |4
=7,

vt

§ =Y M, Zi+ ML (5 —a' V) +al Y]
j=1
so= Y (g.+ (W' s")).

i=1
Then it is easily verified that (22) holds.
Now let v be a smooth real-valued function on the manifold Q4 such that
~v(6) = 0 and v(o) > 0 whenever o # 7.
Let
Cyp=Chx...xC'x]—00,0].
Define a subset Srest,# of Qu x R by letting

& def
Srest,# =

{(01 UO) € Q# xR:o€ STEStv# ; 00+ 7(0’) < 60}5

where ot
el o1 o
Srest,# - Srest Koo X Srest

Then Cy is a GDQ approximating multicone to Srest,# at the point (&,35¢).

Clearly, if p € K is such that (d,00) € Syest4 for some (a,00) € O(p),
then p,o give rise to an admissible trajectory-control pair (£,%) with cost
oo. If @ # &, then 0¢ < ¢, contradicting the optimality of (£,1). So ¢ = &.
Moreover, the fact that (a,00) € Srest,# also implies that o9 < &g, so the
optimality of (§,7) tells us that oo = 9. Hence

6(K> N Srest,# - {(5’, 5’0)} .

It then follows from the transversal intersection theorem that the multicones
D(K) and Cy are not transversal. Therefore there exists a nontrivial linear
functional ¥ € T(%‘,&g)(Q# x R) such that

1. there exist C' € C',...,CH* € C* such that
<'I/, (s, ... ,5“,T)> >0

whenever st € C1,... s# € CH, r <0;
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2. there exist p-tuples

L.= (L., ..., L") e (AL x ... x ['(A%),
w=@",...,0M et x.. . x 0",
such that
(0,4, (W) <0
for all u € K.
Now write

]p:(]jla"' 7@#571/)0)5

where ' € TgiQ;& fori=1,...,u, and g € R.
Then

‘ 1o >0 ‘

and, for each i,
<L1:/i, 51> >0 whenever s'eC".
Since Q' = Q, x Qijll, we can write
v = ( _li’ 7Tli, 1/_}; Wé) )

and

-1 4 9 9 9
W = (wlawl,Oaw%wQ,O)a

where

B eTLQ meR,, Bel’ Q7 meRT,

and

i % i i i i * iF1 i it1
UJl S TIEFQ y w170 S R+, w2 S TI'L;IQ 5 w270 S Ri .

Now pick

R N S B T
and write u' = (v*, o, o’ ,€").

Define the s?, ¢%, ¢%, and so as above. Then

m
Z<@ia s') —oso <0,
1=1

(23)

(24)

(25)
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SO

o
Z ( )+ (P, v Ty + Tk + 7720/“) < 9o0s0 - (28)

=1

Let

in = [J&a 71#0]5 1/)2 [1/)2a ]a (:Ji = [Wliao]a "Dé = [wé’o]’ 61 - |:’Lg:| ,

P = % — ot (29)
Pl = Pl — o, (30)
frli = 7Tli 1/)0(.0;70, (31)
Ty = T — howh g - (32)

Then (28) says that

n n n
S (@) + (o) + e+ wa™) <Y ai Yo @s).
i=1 i=1 i=1

that is
> (W' = vodt) + (Wb, ') + miad, +mha¥1) < 9o Y (wh, 57,
i=1 i=1
which can be rewritten as
Z( D) + (5, 7T +mal +7T20/+1)
i=1
< o Z@‘)i’ q') + (Wi, v') + wi gay + wh 004hLl
i=1
i.e., as
m
Z ( B @) 4 (%, 0 + whal, + 71'20/“) <0. (33)
i=1

We now extract information from (33) by making special choices of u, i.e.,

of the v', ', o', '. First, we write
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define
V() = - My (al 1) (34)
fori=1,...,u, and observe that 1/;1 is absolutely continuous and

d - ;
3(1/’ (1)) = ='(t) - Le(t) cee..
Therefore, if we write

P (1) = [ (1), 0" (1) (35)

PH(t) = —¢'(t) - L'(t) — o' (1) - £(F)
and ¢ (t) = 0. Since ¢ (a%, ) = ¥i = [¢*(a’,), —1bo], we can conclude that

o' (t) = —vo, (36)

)
GH(E) = = (t) - L (E) + o - £(8),
that is

90 = 0wl | 1) |

(1)

Since t — [L(t)] is a measurable selection of A?, we have shown that

‘ i(t) is absolutely continuous ‘ (37)

and

—i(t) € [P (1), o] - A'(t)  ae. i (38)

i.e., that ¢’ is a solution of the adjoint differential inclusion.

Next, fix a value ig of i, let i = ig+1 choose all the a_’s, a,’s, and &’s
equal to zero, and let v* = 0 for ¢ # i/, v = v € T .vQ". Then ¢ =

My (a%,a’)- 4", and ¢ = 0 if i #7'. So (33) tells us that

W1, q") + @y, ") <0,
that is,

W7 My, (a%,a”) + 4k, 5) <0, (39)
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so that
(W (a') + i, D) < 0. (40)
Since 3 B _
5 = [V —owy , 0]
(40) says that
(W (a¥) + P — powi,v) < 0. (41)

Since v is an arbitrary vector in Tmi/Qi/, we have established that

by = owy’ — 9" (al). (42)
Since g was an arbitrary index in the set {1,...,u}, and i’ = ip+1, we have
in fact shown that

Uh = owh — (@) if i€ {1,... ) (43)

On the other hand, the fact that ¢} = [¢)'(a’.), —to], and ¥} = ¢} — ot
imply

P = owi +¢i(al) if i € {1,..., u}. (44)
Since 7} = m} — ow} o and T = wh — Yow} o, we have

o = ot + 7 (45)
and

5 = Yows o + 7. (46)
It follows from (43), (44), (45), and (46), that

U= (i, P, mh) = 0+ o
where . .
B = (), @), ).

Then (25) says that

Ut —ow' € (C)E (47)

Next, we fix a value ig of i, let i’ = ig+1, choose all the v’s, a’s, and &’s
equal to zero, and let o’ =0 for i #4', a® = a_ € C”. Then

v v v

q = fa,MLZ/ (ai, ai,/) . 15:7// (z*,a"),
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and ' =0 if i # i'. So (33) tells us that

~ .7

—a (9, My (@il a”) - Fio (o7 ) + 75 -0 <0,

that is,

v

—a_ (¥ (a) - Bl (2% al)) +75 - <0,
or, equivalently,
—a-(f (a¥) - Fii(@”a")) + ay Ly (a¥ a”) + 7 -a <0,

that is, _ 3
a_ - (7 —h") <0.

Since this is true for all sufficiently small a_ € C¥ | we conclude that
~ 10 hl (CZ)L

Since g was an arbitrary index in the set {1,...,u}, and i’ = ip+1, we have
in fact shown that

Ty — R e (CFNYE whenever i € {1,...,u}. (48)

Given any i € {1,...,u}, let i—1 be the unique index ig € {1,...,u} such
that i9g+1 = 4. Define

PR (49)

Then (48) says that

k. € (C)t  whenever i€ {l,...,u}. (50)

Next, we fix once again a value i of 4, choose all the v’s, a_’s, and &’s equal
to zero, and let o = 0 for i # ig, @Y = ay € C°. Then

7 = 0 Fi (X0 ),
and q* = 0 if i # ip. So (33) tells us that
oy (gl Fl0 L (270,a%)) + 710 - ay <0,

that is,
as(Pio(d] ) on (x+,a+)>+”“ ay <0,

or, equivalently,

a+< ;0( ) Flo( $,a+)>+a+1/10 10(:C+,a+)+7r1 caq <0,
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that is, _ _
ay - (72 +h'°) <0.

Since this is true for all sufficiently small a_ € Ci”, we conclude that

T+ R € (C0)* .

Since ig was an arbitrary index in the set {1,..., u}, we have in fact shown
that

7t 4+ hi € (CL)* whenever i € {1,...,u}. (51)
Define

Ky =&+ b (52)

Then (51) says that

kY € (C')+  whenever i€ {l,...,u}. (53)
-7y =—kY +hY cend —7y=—-k". —h',
(47) implies
(= (al), =y + b, v (@), =kt — hi) € o2+ (C)E. | (54)

Then (50), (53) and (54) show that the switching conditions hold.

The next step is to fix a value ig € {1,...u} and a jo € {1,...,v%}, choose
all the v’s, a_’s, and a’s equal to zero, and let € = 0 for i # iy, and
€0 = (e1,...,&,i), where g; = 0 if j # jo, £, =€, with 0 < e < 7. Then

o = My a2, 7
and q* = 0 if i # ip. So (33) tells us that
e(io, M, i (a’,t0)- Z1) <0,

that is, _ o _
€< ;U ’ MLiﬂ (a$at;2)azjg> < Oa

or, equivalently, o ,
(o (tin), Z) < 0.

Since this is true for all sufficiently small nonnegative e, we conclude that

(W (th), Z5) < 0.
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Since ig and jo are arbitrary, we have shown that
(W'(5), Z5) < 0 (55)

whenever i € {1,...u}, j € {1,... v}
Now, given any 4, j, (55) says that

W (E), V) < (i(E), Y},
that is,
(W (t5), Fa(6(8),15)) = doLs (€1(8), 1)
< (WD), Fi(E1(E), t0)) — oL (€1(£h), £1),

or

We have thus established that the 3u + 1-tuple
(d)la cee 7¢#a1/)05 K/lfa K/}H cee aK’li) Hi)
satisfies all the conditions of the definition of Wy, except possibly for the

normalization condition (9).

On the other hand, if we let v be the left-hand side of (9), then v > 0. If we
show that 7 > 0, then we can divide the 9%, k% and 1y by v, and obtain a
new multiplier for which (9) holds. Hence the conclusion that ¥y # @ will
follow if the prove that v # 0.

Assume that v = 0. Then ¥y = 0, and the equalities k. = k. = 0 and
¥*(a’.) = 0 hold for all i. It then follows from the adjoint differential inclusion
that, for every 7, /*(t) = 0 for all ¢ € [a’ ,a%]. In particular, the definitions
of the A’y imply that A, = h”. =0 for all ¢. Then (49) and (52) imply that
7l = 7% = 0 for all i. Then (31) and (32) imply (since 19 = 0) that

i =mb=0 for all i. (56)
Moreover, since 1 (t) = 0 and 1)y = 0, (43) and (44) imply that

Pt =0 and 5 =0 for all 3. (57)
Then (26), (56) and (57) imply that

U'=0 for all i. (58)

Then (23) implies that ¥ = 0, contradicting the nontriviality of ¥. This
contradiction shows that v # 0, and our proof is complete.
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11 Path-integral generalized differentials

If n,m € Z4, «:[0,1] —>R" is a Lipschitz function, and A : [0, 1] — R™*" is
integrable, we use h * o to denote the “chronological product” of h and «,
that is, the absolutely continous function 8:[0,1] =R™ given by

Let n € Z, and let S be a subset of R™. We write A(S) to denote the subset
of CY(]0,1] ; R™) consisting of all absolutely continuous curves « : [0, 1] — R
such that a(0) = 0 and &(t) € S for almost all ¢ € [0, 1].

If C is a convex cone in R™, and r > 0, we write C(r) ={v e C: |jv|| < r}.

Definition 12. Let n,m € Z,, let F : R"——R™, and let C' be a closed
convex cone in R™. We say that A is a path-integral generalized differential
of F at (0,0) in the direction of C, and write A € PIGD(F,C), if A is a
nonempty compact subset of R™*" and for every positive real number §
there exists a number R €]0, oo [ with the property that

(#) for every r €]0, R] there exists a map
G €REG(A(C(r)); C°([0,1]; R™™) x R™)

such that
(#.a) h(t)€ A and ||v|| <6r whenever a € A(C(r)), (h,v) € G(a), t € [0,1],
(#.b) Gr(®g) C Gr(F), where P¢ is the set-valued map from A(C(r)) to
R™ such that, if « belongs to A(C(r)), then ®¢(z) is the set of all
y € R™ for which y = (h % a)(1)+v for some triple («, h,v) € Gr(G)
such that a(1)==x. O

It then turns out that every GDQ is a PIGD, and every derivate container,
semidifferential, and multidifferential is also a PIGD. Moreover, PIGDs are
intirinsically defined of manifolds, and satisfy all the desirable properties such
as the chain rule (for polyhedral cones) and the directional open mapping
theorem. The resulting version of the maximum principle is thus even more
general than the one involving GDQs.
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