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1 Introduction

The purpose of this note is to announce two new theories of generalized
differentials—the “generalized differential quotients,” abbr. GDQs, and the
“path-integral generalized differentials”, abbr. PIGDs—which have good
open mapping properties and lead to general versions of the maximum prin-
ciple. In particular, we use GDQ theory to state—in Theorem 5— a version
of the maximum principle for hybrid optimal control problems under weak
regularity conditions. For single-valued maps, our GDQ theory essentially co-
incides with the one proposed by H. Halkin in [4], but GDQ theory applies as
well to multivalued maps, thus making it possible to deal with non-Lipschitz
vector fields, whose flow maps are in general set-valued.

The results presented here are much weaker than what can actually be proved
by our methods. More general versions, involving systems of differential in-
clusions, are discussed in other detailed papers currently in preparation.

The GDQ concept contains several other notions of generalized differen-
tial, but does not include some important theories such as J. Warga’s
“derivate containers” (cf. [9]) and the “semidifferentials” and “multidiffer-
entials” proposed by us in previous work (cf. [7]).

For this reason, we conclude the paper by giving, in §11, a brief sketch of the
definition of our second theory—the PIGDs—that contains that of GDQs as
well as the other theories mentioned above.

? Research supported in part by NSF Grant DMS98-03411-00798 and AFOSR
Grant 0923.
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2 Notational preliminaries

A set-valued map is a triple F = (A,B,G) such that A and B are sets and
G is a subset of A × B. If F = (A,B,G) is a set-valued map, we say that
F is a set-valued map from A to B. In that case, we refer to the sets A, B,
G as the source, target, and graph of F , respectively, and write A = So(F ),
B = Ta(F ), G = Gr(F ). If x ∈ So(F ), we write F (x) = {y : (x, y) ∈ Gr(F )}.
The set Do(F ) = {x ∈ So(F ) : F (x) 6= ∅} is the domain of F . If A, B are
sets, we use SV M (A,B) to denote the set of all set-valued maps from A to
B, and write F : A−→−→B to indicate that F ∈ SV M (A,B).

If F1 and F2 are set-valued maps, then the composite F2 ◦ F1 is defined iff
Ta(F1) = So(F2) and in that case:

So(F2 ◦ F1)
def
= So(F1)

Ta(F2 ◦ F1)
def
= Ta(F2)

Gr(F2 ◦ F1)
def
= {(x, z) : (∃y) ((x, y) ∈ Gr(F1), (y, z) ∈ Gr(F2))}.

If A is a set, then I1A denotes the identity map of A, that is, the triple
(A,A,∆A), where ∆A = {(x, x) : x ∈ A}.
Throughout this paper, the word “map” always stands for “set-valued map.”
The expression “ppd map” stands for “possibly partially defined (that is, not
necessarily everywhere defined) ordinary (that is, single-valued) map,” and
we write f : A ----> B to indicate that f is a ppd map from a set A to
a set B. A time-varying ppd map from a set A to a set B is a ppd map from
A× R to B.

A cone in a real linear space X is a nonempty subset C of X such that
r · c ∈ C whenever c ∈ C, r ∈ R and r ≥ 0.

We use N to denote the set of strictly positive integers, and write Z+
def
=N∪{0}.

If n ∈ Z+, r ∈ R, and r > 0, we use B̄n(r),Bn(r) to denote, respectively, the
closed and open balls in Rn with radius r. We write B̄n,Bn for B̄n(1),Bn(1).

If k ∈ N and M is a manifold of class Ck, then TM and T ∗M denote the
tangent and cotangent bundles of M , so TM and T ∗M are manifolds of class
Ck−1. If x ∈ M , then TxM and T ∗xM denote the tangent and cotangent
spaces of M at x.

3 Regular maps

If X, Y are metric spaces, then SV Mcomp(X,Y ) will denote the subset of
SV M (X,Y ) whose members are the set-valued maps from X to Y that
have a compact graph. We say that a sequence {Fj}j∈N of members of
SV Mcomp(X,Y ) inward graph-converges to an F ∈ SV Mcomp(X,Y )—and

write Fj
igr−→ F—if for every open subset Ω of X × Y such that Gr(F ) ⊆ Ω

there exists a jΩ ∈ N such that Gr(Fj) ⊆ Ω whenever j ≥ jΩ.
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Definition 1. Assume that X, Y are metric spaces. A regular set-valued
map from X to Y is a set-valued map F ∈ SV M (X,Y ) such that

• for every compact subset K of X, the restriction F dK of F to K be-
longs to SV Mcomp(K,Y ) and is a limit—in the sense of inward graph-
convergence—of a sequence of continuous single-valued maps from K to
Y .

We use REG(X;Y ) to denote the set of all regular set-valued maps from X
to Y . ♦

It is easy to see that if F : X → Y is an ordinary (that is, single-valued and
everywhere defined) map, then F belongs to REG(X;Y ) if and only if F is
continuous.

It is not hard to prove the following

Theorem 1. Let X, Y , Z be metric spaces, and suppose that F belongs to
REG(X;Y ) and G belongs to REG(Y ;Z). Then the composite map G ◦ F
belongs to REG(X;Z). ♦

4 Generalized differential quotients (GDQs)

Definition 2. Let m,n be nonnegative integers, let F : Rm−→−→Rn be a set-
valued map, and let Λ be a nonempty compact subset of Rn×m. Let S be a
subset of Rm. We say that Λ is a generalized differential quotient (abbreviated
“GDQ”) of F at (0, 0) in the direction of S, and write Λ ∈ GDQ(F ; 0, 0;S),
if for every positive real number δ there exist U , G such that

1. U is a compact neighborhood of 0 in Rm and U ∩ S is compact;
2. G is a regular set-valued map from U ∩S to the δ-neighborhood Λδ of Λ

in Rn×m;
3. G(x) · x ⊆ F (x) for every x ∈ U ∩ S. ♦

If M , N are C1 manifolds, x̄∈M , ȳ∈N , S⊆M , and F : M−→−→N , then we
can define a set GDQ(F ; x̄, ȳ;S) of compact nonempty subsets of the space
Lin(Tx̄M,TȳN ) of linear maps from Tx̄M to TȳN by picking coordinate charts
M 3 x→ ξ(x) ∈ Rm, N 3 y → η(y) ∈ Rn—where m = dimM , n = dimN—
defined near x̄, ȳ and such that ξ(x) = 0, η(y) = 0, and declaring a subset
Λ of Lin(Tx̄M,TȳN ) to belong to GDQ(F ; x̄, ȳ;S) if Dη(ȳ) ◦ Λ ◦ Dξ(x̄)−1

is in GDQ(η ◦ F ◦ ξ−1; 0, 0; ξ(S)). It turns out that, with this definition,
the set GDQ(F ; x̄, ȳ;S) does not depend on the choice of the charts ξ, η. In
other words, the notion of a GDQ is invariant under C1 diffeomorphisms
and makes sense intrinsically on C1 manifolds.

The following facts about GDQs can be verified.
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1. If M , N are C1 manifolds, x̄ ∈ M , U is a neighborhood of x̄ in M ,
F : U → N is a continuous map, F is differentiable at x̄, ȳ = F (x̄), and
L = DF (x̄), then {L} ∈ GDQ(F ; x̄, ȳ;M ).

2. If M , N are C1 manifolds, x̄ ∈ M , U is a neighborhood of x̄ in M ,
F : U → N is a Lipschitz continuous map, ȳ = F (x̄), and Λ is the Clarke
generalized Jacobian of F at x̄, then Λ ∈ GDQ(F ; x̄, ȳ;M ).

3. (The chain rule.) If Mi is a C1 manifold and x̄i∈Mi for i = 1, 2, 3,
Si ⊆Mi, Fi : Mi−→−→Mi+1, and Λi ∈ GDQ(Fi; x̄i, x̄i+1;Si) for i = 1, 2,
and either S2 ∩U is a retract of U for some compact neighborhood U of
x̄2 in M2 or F1 is single-valued, then Λ2 ◦Λ1 ∈ GDQ(F2 ◦F1; x̄1, x̄3;S1).

4. (The product rule.) If M1, M2, N1, N2, are C1 manifolds, and, for
i = 1, 2, x̄i ∈Mi, ȳi ∈ Ni, Si ⊆Mi, Fi : Mi−→−→Ni, and Λi belongs to
GDQ(Fi; x̄i, ȳi;Si), then

Λ1 × Λ2 ∈ GDQ(F1 × F2; (x̄1, x̄2), (ȳ1, ȳ2);S1 × S2).
5. (Locality.) If M , N , are C1 manifolds, x̄ ∈ M , ȳ ∈ N , and, for i = 1, 2,
Si ⊆ M , Fi : M−→−→N , and there exist neighborhoods U , V of x̄, ȳ, in
M , N , respectively, such that (U × V )∩Gr(F1) = (U × V )∩Gr(F2) and
U ∩ S1 = U ∩ S2, then GDQ(F1; x̄, ȳ;S1) = GDQ(F2; x̄, ȳ;S2).

It is easy to exhibit maps that have GDQs at a point x̄ but are not classi-
cally differentiable at x̄ and do not have differentials at x̄ in the sense of other
theories such as Clarke’s generalized Jacobians, Warga’s derivate containers,
or our “semidifferentials” and “multidifferentials”. (A simple example is pro-
vided by the function f : R → R given by f(x) = x sin 1/x if x 6= 0, and
f(0) = 0. The set [−1, 1] belongs to GDQ(f ; 0, 0;R), but is not a differential
of f at 0 in the sense of any of the other theories.)

In addition, GDQs have the following directional open mapping property.

Theorem 2. Let m,n be nonnegative integers, and let C be a convex cone in
Rm. Let F : Rm−→−→Rn be a set-valued map, and let Λ ∈ GDQ(F ; 0, 0;C).
Let D be a closed convex cone in Rn such that D ⊆ Int(LC) ∪ {0} for every
L ∈ Λ. Then there exist a convex cone ∆ in Rn such that D ⊆ Int(∆)∪ {0},
and positive constants ε̄, κ, having the property that

(I) if y ∈ ∆ and ‖y‖ ≤ ε̄, then there exists an x ∈ C such that ‖x‖ ≤ κ‖y‖
and y ∈ F (x).

Moreover, the cone ∆ and the constants ε̄, κ can be chosen so that the fol-
lowing stronger conclusion holds:

(II) if y ∈ ∆ and ‖y‖ = ε ≤ ε̄ then there exists a compact connected subset
Zy of (C ∩ B̄n(κε)) × [0, 1] such that (0, 0) ∈ Zy, (x, 1) ∈ Zy for some
x belonging to C ∩ B̄n(κε), and ry ∈F (x) whenever 0≤ r≤ 1 and (x, r)
belongs to Zy. ♦

Associated to the concept of a GDQ there is a notion of “GDQ approximating
multicone to a set at a point”:
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Definition 3. If X is a finite-dimensional real linear space, a convex multi-
cone in X is a nonempty set of convex cones in X.

If M is a manifold of class C1, S ⊆ M and x ∈ S, a GDQ approximating
multicone to S at x is a convex multicone C in TxM such that there exist
an m ∈ Z+, a map F : Rm−→−→M , a closed convex cone D in Rm, and a
Λ ∈ GDQ(F ; 0, x;D), such that F (D) ⊆ S and C = {LD : L ∈ Λ}. ♦

If X is a finite-dimensional real linear space, then X† denotes the dual of X.
If S is a subset of X, the polar of S in X is the set

S⊥X ={y∈X† :y(x)≤1 wheneverx∈S}.
If C is a cone in X, then C⊥X is a closed convex cone in X†, and

C⊥X ={y∈X† :y(x)≤0 whenever x∈C} .

When it is clear from the context what the space X is, we will write C⊥

rather than C⊥X . We remark, however, that if C is a cone in a linear subspace
Y of a linear space X, then C⊥Y and C⊥X are different objects, and this dis-
tinction will be crucial in the statement of our main result (cf. the definition
of “multiplier,” Def. 10).

If C is a convex multicone in X, the polar of C is the set

C⊥ = Clos
(⋃
{C⊥ : C ∈ C}

)
,

so C⊥ is a (not necessarily convex) closed cone in X†.

5 Discontinuous vector fields and their flows

If n ∈ N, we use B(Rn), BL(Rn,R), to denote, respectively, the σ-algebra
of Borel subsets of Rn and the product σ-algebra B(Rn)⊗ Lebesgue(R). We
let N (Rn,R) denote the set of all subsets S of Rn × R such that Πn(S) is
a Lebesgue-null subset of the real line, where Πn is the canonical projection
Rn×R 3 (x, t)→ t ∈ R. Finally, we use BLe(Rn,R) to denote the σ-algebra
of subsets of Rn×R generated by BL(Rn,R)∪N (Rn,R). It is then clear that
B(Rn × R) ⊂ BL(Rn,R) ⊂ BLe(Rn,R), and both inclusions are strict.

Definition 4. Let n,m ∈ Z+, and let f be a ppd map from Rn × R to Rm.

1. We say that f is locally essentially Borel×Lebesgue measurable, or locally
BLe(Rn,R)-measurable, if f−1(U )∩K ∈ BLe(Rn,R) for all open subsets
U of Rm and all compact subsets K of Do(f).

2. We use Me,loc
BL (Rn × R;Rm) to denote the set of all locally BLe(Rn,R)-

measurable ppd maps from Rn × R to Rm.
3. We call f locally integrably bounded (LIB) if for every compact subset K

of Do(f) there exists an integrable funtion R 3 t → ϕ(t) ∈ [0,+∞] such
that ||f(x, t)|| ≤ ϕ(t) for all (x, t) ∈ K. ♦
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If n,m ∈ Z+, f : Rn × R ----> Rm, I is a compact interval, and S ⊆ Do(f),
we write ΞS(f, I) to denote the set of all curves ξ ∈ C0( I ; Rn ) such that
(ξ(t), t)∈S for all t ∈ I. We write Ξ(f, I) for ΞDo(f)(f, I),

If ψ : R → R+ ∪ {+∞} is a function, we use Ξψ
S (f, I) to denote the set of

all curves ξ ∈ ΞS(f, I) such that

lim sup
t↓t̄

||ξ(t)− ξ(t̄)||
t − t̄ ≤ ψ(t̄) (1)

for almost every t̄ ∈ I.

Fact 1 If n,m ∈ Z+, f ∈Me,loc
BL (Rn × R;Rm), I is a compact interval, and

ξ ∈ Ξ(f, I), then the function I 3 t 7→ f(ξ(t), t) ∈ Rm is measurable. ♦

If n,m ∈ Z+, f ∈Me,loc
BL (Rn×R;Rm), I is a compact interval, and f is locally

integrably bounded, then we can define a map Tf,I : I × I × Ξ(f, I) → Rm
by letting

Tf,I(a, t, ξ) =

∫ t

a

f(ξ(s), s) ds (2)

if a ∈ I, t ∈ I, ξ ∈ Ξ(f, I).

Definition 5. If n,m ∈ Z+ and f : Rn × R ----> Rm, we call f locally
integrally continuous if

1. f ∈ Me,loc
BL (Rn × R;Rm),

2. for every compact subset K of Do(f) and every compact interval I there
exists an integrable funtion R 3 t → ψ(t) ∈ [0,+∞] with the property

that ||f(x, t)|| ≤ ψ(t) for all (x, t) ∈ K and the restriction to Ξψ
K(f, I) of

the map Tf,I is continuous. ♦

By taking coordinate charts, it is easy to see that the concept of a “locally
integrally continuous time-varying ppd section f :M×R----> E ” is well de-
fined if M is a manifold and E is a vector bundle over M .

Definition 6. Let M be a manifold of class C1.

1. A time-varying vector field (abbreviated “TVVF”) on M is a ppd map
f : M × R ----> TM such that f(x, t) ∈ TxM whenever (x, t) ∈ Do(f).

2. We use TV V F (M ) to denote the set of all TVVFs on M .
3. If f ∈ TV V F (M ), a trajectory (or integral curve) of f is a locally abso-

lutely continuous map ξ : I →M , defined on a nonempty subinterval I
of R, such that the conditions (ξ(t), t) ∈ Do(f) and ξ̇(t) = f(ξ(t), t) are
satisfied for a.e. t ∈ I.
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4. We use Traj (f) to denote the set of all trajectories of f , and Traj c(f) to
denote the set of all ξ ∈ Traj (f) whose domain is a compact interval.

5. For (x, b, a) ∈M × R× R, we define

Φf (x, b, a) = { ξ(b) : ξ ∈ Traj (f) : ξ(a) = x } . (3)

The map Φf : M × R× R−→−→M is the flow of f .
6. For each (b, a) ∈ R × R, we define a map Φfb,a : M−→−→M by letting

Φfb,a(x) = Φf (x, b, a) for x ∈M . The maps Φfb,a : M−→−→M are the flow
maps of f . ♦

Fact 2 Let M be a manifold of class C1, and assume f ∈ TV V F (M ). Then

the flow maps Φfb,a satisfy the identities Φfa,a = I1M and Φfc,b ◦ Φfb,a=Φfc,a, if
a, b, c∈R and a ≤ b ≤ c. ♦

6 Approximate limits

If n,m ∈ Z+, f is a ppd map from Rn × R to Rm, β > 0, x̄ ∈ Rn, and v is a
nonempty subset of Rm, we define

σf,x̄,v,β(t) = sup{ dist(f(x, t),v) : x ∈ Rn , ‖x− x̄‖ ≤ β } ,

so σf,x̄,v,β is a function on R with values in [0,∞]. (We take the value of the
right-hand side to be zero if the set of those x ∈ Rn such that ‖x − x̄‖ ≤ β
and f(x, t) is defined is empty.)

If I is a subinterval of R, x̄ ∈ Rn, and β > 0, we define

Sx̄,I,β = {(x, t) : x ∈ Rn, ‖x− x̄‖ ≤ β, t ∈ I} . (4)

Fact 3 Assume that n,m ∈ Z+, f belongs to Me,loc
BL (Rn × R;Rm), x ∈ Rn,

v ⊆ Rm, and v 6= ∅. Let I be a nonempty subinterval of R, and assume
that β̄ > 0 and Sx,I,β̄ ⊆ Do(f). Then σf,x̄,v,β is measurable on I whenever

0 < β ≤ β̄. ♦

We let C(1) be the set of all cones in R. Then C(1) has exactly four members,
and “C ∈ C(1)” is an alternative way of saying that C is one of the four sets
{0}, [0,+∞ [ , ] −∞, 0], R. If C ∈ C(1), t̄ ∈ R, and h > 0, we use t̄ + C(h),
t̄+C, to denote the sets {t̄+ r : r ∈ C, |r| ≤ h}, {t̄+ r : r ∈ C}, respectively.

Definition 7. Assume that n,m ∈ Z+, f belongs to Me,loc
BL (Rn × R;Rm),

v ⊆ Rm, v 6= ∅, (x̄, t̄) ∈ Rn × R. Let C ∈ C(1).

1. We say that v is an approximate limit set of f at (x̄, t̄) along C, and write

v ∈ App−limx→x̄ , t→t̄,t−t̄∈Cf(x, t) ,
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if (x̄, t̄) ∈ IntRn×(t̄+C)(Do(f)) and

lim
(h,β)→(0,0) , h>0, β≥0

1

h

∫

t̄+C(h)

σf,x̄,v,β(t) dt = 0 .

2. We say that a vector v is an approximate limit value of f at (x̄, t̄) along
C, and write

v = app−limx→x̄ , t→t̄,t−t̄∈Cf(x, t) ,

if {v} ∈ App−limx→x̄ , t→t̄,t−t̄∈Cf(x, t). ♦

We say that (x̄, t̄) is a point of approximate continuity along C if

f(x̄, t̄) = app−limx→x̄,t→t̄,t−t̄∈Cf(x, t).

We use the expressions “approximate right limit,” “approximate left limit,”
“approximate limit,” “point of approximate right continuity,” “point of ap-
proximate left continuity,” “point of approximate continuity,” respectively, as
alternative names of “approximate limit along [0,+∞ [ ,” “approximate limit
along ]−∞, 0],” “approximate limit along R,” “point of approximate conti-
nuity along [0,+∞ [ ,” “point of approximate continuity along ]−∞, 0],” and
“point of approximate continuity along R.” By taking coordinate charts, it is
easy to see that all these concepts are well defined if M is a manifold, E is a
vector bundle over M , and f is a time-varying ppd section f :M×R----> E.

The following lemma gives a useful sufficient condition for a point (x, t) to
be a point of approximate continuity of a time-varying vector field. To state
the lemma, we first introduce the obvious one-sided analogues of the usual
notions of a Lebesgue point and a point density.

• if I ⊆ R is an interval, and C ∈ C(1), then a C-Lebesgue point of a
locally integrable function ϕ : I → R ∪ {+∞} is a point t̄ ∈ I such that
|ϕ(t̄)| <∞, t̄+ C(h̄) ⊆ I for some positive number h̄, and

lim
h→0+

1

h

∫

t̄+C(h)

∣∣∣ϕ(t)− ϕ(t̄)
∣∣∣ dt = 0 .

• If E ⊆ R is a measurable set, a point of C-density of E is a point t̄ ∈ E
such that

lim
h→0+

h−1meas
(

(t̄ + C(h))\E
)

= 0 .

Lemma 1. Assume that n,m ∈ Z+, C ∈ C(1), C 6= {0}, (x̄, t̄) ∈ Rn × R,

and f ∈ Me,loc
BL (Rn × R;Rm). Assume, moreover, that (x̄, t̄) belongs to

IntRn×(t̄+C)(Do(f)), and there exist positive numbers h̄, β̄, an integrable func-
tion ϕ : t̄+ C(h̄)→ R∪{+∞}, and a measurable subset E of t̄+C(h̄), such
that

(a) the set S = Sx̄,t̄+C(h̄),β̄ is contained in Do(f),
(b) ||f(x, t)|| ≤ ϕ(t) for all (x, t) ∈ S,
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(c) t̄ is a C-Lebesgue point of ϕ,
(d) t̄ is a point of C-density of E,
(e) limx→x̄,t→t̄,t∈E∩(t̄+C) f(x, t) = f(x̄, t̄).

Then (x̄, t̄) is a point of approximate continuity of f . ♦

7 Variational generators

If ξ : [a, b]→ Rn is a continuous curve, and α > 0, we use T n(ξ, α) to denote
the “α-tube about ξ in Rn,” that is, the set

T n(ξ, α)
def
= {(x, t) : x ∈ Rn, a ≤ t ≤ b, ‖x− ξ(t)‖ ≤ α} .

Definition 8. Let n,m ∈ Z+, and let f be a ppd map from Rn × R to Rm.
Let a, b, ξ be such that a, b ∈ R, a ≤ b, and ξ ∈ C0( [a, b] ; Rn ). A variational
generator for f about ξ is a measurable set-valued map Λ : [a, b]−→−→Rm×n
with compact convex nonempty values such that there exist kΛ, ᾱ, k having
the following three properties:

1. kΛ : [a, b]→ [0,+∞] is integrable and such that

sup
{
‖L‖ : L ∈ Λ(t)

}
≤ kΛ(t)

for all t ∈ [a, b];
2. ᾱ > 0 and T n(ξ, ᾱ) ⊆ Do(f);
3. k = {kα}0<α≤ᾱ is a family of Lebesgue-integrable functions

kα : [a, b]→ [0,+∞], for 0<α≤ ᾱ,
such that limα↓0

∫ b
a
kα(t)dt=0 and

sup
{
min

{
‖∆f

ξ (x, t, L)‖ :L∈Λ(t)
}

:‖x−ξ(t)‖≤α
}
≤αkα(t)

for all t ∈ [a, b] and all α ∈ ] 0, ᾱ], where

∆f
ξ (x, t, L)

def
= f(x, t) − f(ξ(t), t) − L · (x− ξ(t)) .

We use V G(f, ξ) to denote the set of all variational generators of f about
the curve ξ. ♦

If n, m, f , a, b, ξ, Λ are as in Definition 8, we use Γ (Λ) to denote the set of
all measurable single-valued selections of Λ. Then Γ (Λ) is a nonempty convex
weakly compact subset of L1([a, b];Rm×n).

We now specialize to the case when m = n. If L belongs to L1([a, b];Rn×n),
we let ML be the fundamental matrix solution of the linear time-varying
equation Ṁ = L(t) ·M . That is, ML is a continuous map from [a, b]× [a, b]
to Rn×n that satisfies

ML(t, s) = I1Rn +

∫ t

s

L(r) ·ML(r, s) dr . (5)
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Fact 4 If B ⊆ L1([a, b],Rn×n) and B is bounded, then the map

Bweak3L 7→ML∈C0( [a, b]×[a, b] ; Rn×n )
is continuous. ♦
If n, m, f , a, b, ξ, Λ are as in Definition 8, and m = n, we define

M(Λ)
def
= {ML : L ∈ Γ (Λ) } ⊆ C0( [a, b]× [a, b] ; Rn×n ) .

Fact 5 M(Λ) is nonempty and compact. In particular, if t, s ∈ [a, b] then
the set

Mt,s(Λ)
def
= {ML(t, s) : L ∈ Γ (Λ) } (6)

is a nonempty compact subset of Rn×n. ♦

8 Differentiation of flows

We let C(2) be the set of all cones in R2 that are products C+ × C−, where
C+ ∈ C(1) and C− ∈ C(1). Then C(2) has exactly sixteen members.

If X−, X+ are finite-dimensional real linear spaces, M is a set of linear maps
from X− to X+, and v+, v−, are nonempty subsets of X−, X+, we define a
set [M; v+,v−] of linear maps from X− × R2 to X+ by letting [M; v+,v−]
be the set of all maps [M ; v+, v−], for all M ∈M, v+ ∈ v+, v− ∈ v−, where
[M ; v+, v−] is the linear map from X− × R2 to X+ given by

[M ; v+, v−](y, β, α)
def
= M · y + β · v+ − α ·M · v− .

It is then clear that if M, v+, v− are compact, then [M; v+,v−] is compact.

The following result is the general theorem on GDQ differentiation with
respect to the state and the endpoints, along a trajectory ξ ∈ Traj c(f), of
the flow Φf generated by a time-varying vector field f . The basic requirements
are local integral continuity, the existence of a variational generator, and the
existence of approximate limits of f at the endpoints of ξ.

Theorem 3. Assume that Q is a manifold of class C1, f is a time-varying
ppd vector field on Q, a, b ∈ R, a ≤ b, C+, C− ∈ C(1), C = C+ × C− ∈ C(2),
and Cb,a = (b, a) + C = (b+ C+)× (a+ C−). Assume, in addition, that

1. f is locally integrally continuous,
2. Λ is a variational generator for f along ξ,
3. v+, v− are nonempty compact convex subsets of Tξ(b)Q, Tξ(a)Q, such

that

v+ ∈ App−limx→ξ(b) , t→b,t−b∈C+
f(x, t) ,

v− ∈ App−limx→ξ(a) , t→a,t−a∈C−f(x, t) .

Then the set [Mb,a(Λ); v+,v−] belongs to

GDQ
(
Φf ; (ξ(a), b, a), ξ(b);Q×Cb,a

)
. ♦
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Theorem 3, combined with the chain rule, yields a result for products of
flows. To state this result, we first define, if M1, . . . ,Mm ⊆ Rn×n and
v1

+, . . . ,v
m
+ ,v

0
−, . . . ,v

m−1
− ⊆ Rn, a set

[M1, . . . ,Mm; v1
+, . . . ,v

m
+ ,v

0
−, . . . ,v

m−1
− ]

of linear maps from Rn × Rm+1 to Rn. Precisely, this set consists of all
the maps [M 1, . . . ,Mm; v1

+, . . . , v
m
+ , v

0
−, . . . , v

m−1
− ], for all M 1 ∈M1, . . . ,

Mm ∈Mm, v1
+ ∈ v1

+, . . . , v
m
+ ∈ vm+ , v0

− ∈ v0
−, . . . , vm−1

− ∈ vm−1
− , given by

[M1, . . . ,Mm; v1
+, . . . , v

m
+ , v

0
−, . . . , v

m−1
− ](y, αm, . . . , α0)

def
= Pm,0 · y + αmvm+ − α0Pm,0v0

− +
m−1∑

k=1

αkPm,k · (vk+ − vk−)

where
P `,k = M ` ·M `−1 · . . . ·Mk+1 if k, `∈N, 1≤k≤`≤m.

Also, if f = (f1, . . . , fm) is an m-tuple of time-varying vector fields on Rn,
we define the product flow map

Φf : Rn × Rm+1−→−→Rn
by letting

Φf (x, am, . . . , a1, a0)
def
=
(
Φf

m

am,am−1 ◦ Φf
m−1

am−1 ,am−2 ◦ . . . ◦ Φf
1

a1,a0

)
(x)

for (x, am, . . . , a1, a0) ∈ Rn × Rm+1.

Remark 1. The concept of a variational generator also makes intrinsic sense
on manifolds. The important new point is that now Λ has to be taken to be
a section along ξ of an appropriate bundle. We make this precise in the only
case that will be used here, namely, when f is an “augmented ppd vector
field” on a manifold M , that is, a time-varying ppd section of the bundle
TM × R. In that case, we let EM be the vector bundle over M whose fiber
EM(x) at each x ∈M is the product J1

x(V F (M ))×T ∗xM , where J1
x(V F (M ))

is the space of 1-jets at x of smooth vector fields on M . Then, if a, b, ξ are
such that a, b ∈ R, a ≤ b, and ξ ∈ C0( [a, b] ; M ), a variational generator for
f about ξ is a measurable set-valued map Λ : [a, b]−→−→EM such that

• Λ(t) is, for a.e. t, a compact convex nonempty subset of EM(ξ(t)) such
that π1,0(v) = f1(ξ(t), t) for every v ∈ Λ(t), where π1,0 is the canonical
projection from J1(V F (M )) to J0(V F (M )) and f1 is the TM component
of f ;
• locally, relatively to suitable coordinate charts, there exist kΛ, ᾱ, k having

the three properties of Definition 8.

With this definition of variational generator Theorem 3 remains true on man-
ifolds.

A more detailed discussion of the invariant definition of variational genera-
tors is given in Sussmann [6]. ♦
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Theorem 4. Let n, m, a∗, a0
∗, . . . , a

m
∗ , f1, . . . , fm, f , x0

∗, . . . , x
m
∗ ,

ξ1
∗, . . . , ξ

m
∗ , C, C, C0, . . . , Cm, be such that n ∈ Z+, m ∈ N,

a∗ = (am∗ , . . . , a
0
∗) ∈ Rm+1, a0

∗ ≤ a1
∗ ≤ · · · ≤ am∗ ,

C0, . . . , Cm ∈ C(1), C = Cm × Cm−1 × . . .× C1 × C0,

C = Ca∗ = a∗ + C = (am∗ + Cm)× . . .× (a0
∗ + C0) ,

and f = (f1, . . . , fm) ∈
(
TV V F (Rn)

)m
. Assume that, for i = 1, . . . ,m,

1. f i is locally integrally continuous;
2. ξi∗ ∈ C0( [ai−1

∗ , ai∗] ; Rn ) ∩ Traj c(f
i),

3. ξi∗(a
i−1
∗ ) = xi−1

∗ , and ξi∗(a
i
∗) = xi∗;

4. Λi is a variational generator for f i along ξi∗,
5. vi+, vi−1

− are nonempty compact convex subsets of Rn such that

vi+ ∈ App−limx→xi∗ , t→ai∗,t−ai∗∈Cif
i(x, t) ,

vi−1
− ∈ App−limx→xi−1

∗ , t→ai−1
∗ ,t−ai−1

∗ ∈Ci−1f
i(x, t) .

Let Mi =Mai∗,a
i−1
∗

(Λi), for i = 1, . . . ,m. Then the set

[M1, . . . ,Mm; v1
+, . . . ,v

m
+ ,v

0
−, . . . ,v

m−1
− ]

belongs to GDQ
(
Φf ; (x0

∗, a
m
∗ , . . . , a

0
∗), x

m
∗ ;Rn ×C

)
. ♦

9 A GDQ maximum principle

Theorem 3, together with the directional open mapping theorem 2, imply a
version of the maximum principle that contains and improves upon several
previous smooth and nonsmooth versions, for vector field systems as well as
for differential inclusions and systems of differential inclusions. Moreover, one
can also allow “jump maps,” and obtain a “hybrid” version. We state this
more general version directly but, for simplicity, we only discuss the vector
field case.

For our restricted purposes, let us define a hybrid optimal control prob-
lem to consist of the specification of a finite sequence (Σ1, . . . , Σµ) of
“ordinary control systems,” together with “Lagrangians” L1, . . . , Lµ for
Σ1, . . . , Σµ, “switching constraints” S1, . . . ,Sµ, “switching cost functions”
ϕ1, . . . , ϕµ, and “time sets” T 1

−, T
1
+, T

2
−, T

2
+, . . . , T

µ
−, T

µ
+.

Precisely, each Σi is a triple Σi = (Qi,U i, F i) consisting of a state space Qi, a
controller space U i, and a controlled dynamics, that is, a parametrized family
F i = {F iη}η∈Ui such that, for each η ∈ U i, F iη is a ppd time-varying vector

field on Qi. Each Li is a family {Liη}η∈Ui of ppd functions Liη : Qi×R ----> R.

For each i ∈ {1, . . . , µ}, the switching constraint S i is a subset of the product

Qi × R × Qi+̃1 × R, where “i+̃1” means “i + 1” if i < µ, and “1” if i = µ.
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The switching cost functions are functions ϕi : Qi ×R×Qi+̃1 ×R→ R. The
time sets T i−, T

i
+ are subsets of R. A controller is a µ-tuple

ηηη = (η1, . . . , ηµ) ∈ U1 × · · · × Uµ.
A trajectory for a controller ηηη = (η1, . . . , ηµ) is a µ-tuple ξξξ = (ξ1, . . . , ξµ)
with the property that, for each i, ξi is an absolutely continuous curve in
Qi, defined on a compact interval I(ξi) = [a−(ξi), a+(ξi)], that satisfies the

conditions ξ̂i(t) ∈ Do(F iηi) and ξ̇i(t) = F iηi(ξ̂
i(t)) for a.e. t ∈ I(ξi), and is

such that
σi(ξξξ) ∈ Si,

where

ξ̂i(t)
def
= (ξi(t), t) and σi(ξξξ)

def
= (ξ̂i(a+(ξi)), ξ̂i+̃1(a−(ξi+̃1))).

A trajectory-control pair (abbr. TCP) is a pair (ξξξ, ηηη) such that ηηη is a controller
and ξξξ is a trajectory for ηηη. A TCP (ξξξ, ηηη) is admissible if, for each index i,

a−(ξi) ∈ T i−, a+(ξi) ∈ T i+, and the functions I(ξi) 3 t → Liηi (ξ̂
i(t)) ∈ R

are a.e. defined—that is, ξ̂i(t) ∈ Do(Liηi ) for a.e. t ∈ I(ξi)—and Lebesgue

integrable. The cost of an admissible TCP (ξξξ, ηηη) is the number

J(ξξξ, ηηη)
def
=

µ∑

i=1

∫ a+(ξi)

a−(ξi)

Liηi (ξ̂
i(t)) dt+

µ∑

i=1

ϕi
(
σi(ξξξ)

)
.

An optimal TCP is an admissible TCP (ξξξ, ηηη) such that J(ξξξ, ηηη) ≤ J(ξξξ′, ηηη′) for
every admissible TCP (ξξξ ′, ηηη′).

For each i, we define the L-augmented dynamics to be the family

F̃ i = {F̃ iη}η∈Ui

of ppd maps from Qi × R to TQi × R given by

F̃ iη(q, t) =

[
F iη(q, t)
Liη(q, t)

]
for (q, t) ∈ Qi × R .

Now assume that

H1. (ξξξ, ηηη) = ((ξ1, . . . , ξµ), (η1, . . . , ηµ)) is an admissible TCP, and

ai−=a−(ξi), ai+ =a+(ξi), xi−=ξi(ai−), xi+ =ξi(ai+),

for i = 1, . . . , µ.
H2. Λ̃1, . . . , Λ̃µ are variational generators for F̃ 1

η1 , . . . , F̃
µ
ηµ along ξ1, . . . , ξµ.

H3. Ciσ are, for i = 1, . . . , µ, σ ∈ {+,−}, cones in R such that

aiσ ∈ Intaiσ+Ciσ
T iσ

and Ξiσ
def
= (xiσ, a

i
σ) is a point of approximate continuity of F̃ iηi along Ciσ .
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H4. For each i ∈ {1, . . . , µ}, Ci is a convex multicone in TΞi+Q
i
+×TΞi+̃1

−
Qi+̃1
− ,

where, for σ ∈ {+,−},

Riσ
def
=

{
{0} if Ciσ = {0} ,
R if Ciσ 6= {0} ,

Qiσ
def
= Qi × (aiσ +Riσ) .

H5. Ci is a GDQ approximating multicone for the restricted switching set

Sirest
def
= Si ∩ (Qi+ ×Qi+̃1

− ) .

at the switching point P i = σi(ξξξ) = (Ξi+, Ξ
i+̃1
− ).

H6. For each i ∈ {1, . . . , µ}, Ωi is a subset of the dual space
(
Txi+Q

i × R× Txi+̃1Q
i+̃1 × R

)†

(that is, of
(
TΞi+ (Qi × R) × T

Ξi+̃1
−

(Qi+̃1 × R)
)†

, or, equivalently, of
(
T

(Ξi+,Ξ
i+̃1
− )

(Qi × R × Qi+̃1 × R)
)†

), and Ωi belongs to the generalized

differential quotient GDQ(ϕi;P i, ϕi(P i);Qi+ × Qi+̃1
− ).

H7. For each i ∈ {1, . . . , µ} and each η ∈ U i, the time-varying map F̃ iη is
locally integrally continuous.

H8. Each control system Σi is invariant under time-interval substitutions.
(That is, if η, ζ ∈ U i, ξ ∈ C0( [a, b] ; Qi )∩Traj c(F

i
η), and J is a compact

subinterval of [a, b] such that (ξ(t), t) ∈ Do(F i
ζ) for t ∈ J , then there

exists a controller θ ∈ U i such that F iθ(q, t) = F iη(q, t) whenever q ∈ Qi,
t ∈ [a, b], t /∈ J , and F iθ(q, t) = F iζ(q, t) whenever q ∈ Qi, t ∈ J .)

We now define the notion of a “multiplier” along (ξξξ, ηηη), and what it means
for a multiplier to be “Hamiltonian-maximizing.”

For i = 1, . . . , µ, and ζ ∈ U i, we define the Hamiltonian

Hi
ζ : T ∗Qi × R× R ----> R

by letting
Hi
ζ(q, λ, t, λ0) = λ ·F iζ (q, t)− λ0L

i
ζ(q, t) .

Definition 9. If H1-H8 hold, then a multiplier along (ξξξ, ηηη) is a triple
(ψψψ, ψ0, κκκ) with the property that:

• ψψψ is a µ-tuple (ψ1, . . . , ψµ) such that each ψi is a field of covectors along
ξi (that is, ψi is a map from the interval [ai−, a

i
+] to T ∗Qi, such that ψi(t)

belongs to T ∗ξi(t)Q
i for every t ∈ [ai−, a

i
+]);

• κκκ is a 2µ-tuple (κ1
−, κ

1
+, . . . , κ

µ
−, κ

µ
+) such that κiσ∈Riσ whenever i belongs

to {1, . . . , µ} and σ ∈ {+,−};
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• each ψi is absolutely continuous and satisfies the adjoint differential in-
clusion

−ψ̇i(t)∈ [ψi(t),−ψ0] · Λ̃(t) for a.e. t∈ [ai−, a
i
+];

• ψ0 ∈ R and ψ0 ≥ 0;
• for each i∈{1, . . . , µ}, σ∈{+,−}, the switching conditions

Ψ̌i ∈ ψ0Ω
i + (Ci)⊥

Ξ̌i
, κiσ ∈ (Ciσ)⊥Riσ

hold, where

Ψ̌i = (−ψi(ai+),−κi++hi+, ψ
i+̃1(ai+̃1

− ),−κi−−hi+̃1
− ) ,

Ξ̌⊥i = T
(Ξi+,Ξ

i+̃1
− )

(Qi × R× Qi+̃1
− × R) ,

and
hiσ = Hi

ηi(x
i
σ, ψ

i(aiσ), aiσ, ψ0) .

Remark 2. The switching conditions take a more familiar form in the case of
“fixed switching times” (that is, when the sets T iσ consist of the single points
aiσ) or of “totally free switching times,” that is, when the T iσ are equal to the
whole real line R or, more generally, are neighborhoods of the aiσ. Indeed, in
both cases we can take Ciσ = Riσ, and then (Ciσ)⊥Riσ = {0}. It follows that the

κiσ vanish, and the switching condition becomes

(−ψi(ai+),hi+, ψ
i+̃1(ai+̃1

− ),−hi+̃1
− ) ∈ ψ0Ω

i + (Ci)⊥
Ξ̌i
.

Suppose, in addition, that either

I. we are in the fixed switching times case and the switching conditions are

“(xi+, x
i+̃1
− ) ∈ Si0,” where each Si0 is a subset of Qi × Qi+̃1,

or

II. we are in the free switching times case, the switching conditions are of

the form (xi+, x
i+̃1
− ) ∈ Si0, where each Si0 is a subset of Qi × Qi+̃1, the

switching cost functions ϕi do not depend on the times, and the times

aiσ are required to satisfy ai+ = ai+̃1
− .

Then, in case I, each Ci will be a multicone in the product

Txi+Q
i × {0} × T

xi+̃1
−
Qi+̃1 × {0},

so the switching condition will not impose any restriction on the hiσ . On the
other hand, in Case II each Ci will be a multicone in the set

{(v, r, w, s) ∈ Txi+Q
i × R× T

xi+̃1
−
Qi+̃1 × R : r = s}.
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Hence all the members (v̂, r̂, ŵ, ŝ) of C⊥i will satisfy r̂+ ŝ = 0. Moreover, the
fact that the ϕi do not depend on the times implies that we can choose the
Ωi to have vanishing time components. It then follows that the time-part of
the switching condition becomes the familiar requirement that

hi+ = h−
i+̃1

,

that is, the condition that the Hamiltonian should not jump at the switchings.

Definition 10. If H1-H8 hold, and (ψψψ, ψ0, κκκ) is a multiplier along (ξξξ, ηηη), we
say that (ψψψ, ψ0, κκκ) is Hamiltonian-maximizing if, for every i ∈ {1, . . . , µ}, the
inequality

Hi
ζ(ξ

i(t), ψi(t), t, ψ0) ≤ Hi
ηi(ξ

i(t), ψi(t), t, ψ0)

holds whenever ζ ∈ U i, t ∈]ai−, a
i
+[, and (ξi(t), t) is a point of approximate

continuity of F̃ iηi and F̃ iζ . ♦

Definition 11. If (ψψψ, ψ0, κκκ) is a multiplier along (ξξξ, ηηη), we say that (ψψψ, ψ0, κκκ)
is nontrivial if it is not true that ψ0 = κ1

− = κ1
+ = . . . = κµ− = κµ+ = 0 and

all the functions ψi are identically zero. ♦

Theorem 5. If H1-H8 hold, and the pair (ξξξ, ηηη) is optimal, then there exists
a nontrivial Hamiltonian-maximizing multiplier along (ξξξ, ηηη). ♦

By taking µ = 1, Theorem 5 can be shown to include the classical “non-
hybrid” smooth and nonmsooth versions of the maximum principle given,
for example, in Pontryagin et al. [5], Berkovitz [1], Clarke [3,2]. In that case,
the switching condition of Definition 9 becomes the transversality condition.
When the augmented vector fields F̃ iηi are of class C1, one can take

Λ̃i(t) =

{
∂F̃ iηi

∂x
(ξi(t), t)

}
, (7)

and the adjoint differential inclusion becomes the classical adjoint equation.
On the other hand, if the function x → F̃ iηi (x, t) is differentiable at ξi(t)

for almost all t, then one can still take Λ̃i to be given by (7), and Λ̃i is
a variational generator, provided that the differentiability of x → F̃ iηi(x, t)

at ξi(t) has an obvious integral uniformity property with respect to t. So
Theorem 5 is in fact stronger than the classical versions, even in the setting
of single-valued differentials.

In addition, when the F̃ iηi are Lipschitz continuous on some tube about the
reference trajectory, with an integrable Lipschitz constant, then one can take
Λ̃i(t) to be ∂F̃ iηi,t(ξ

i(t)), where F̃ iηi,t is the map x→ F̃ iηi(x, t), and “∂” stands
for “Clarke generalized Jacobian.” Moreover, in the Lipschitz case one can
often take the Λ̃i to be smaller than the Clarke generalized Jacobian (for
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example, equal to the classical differential, when it exists), so even in the
Lipschitz case Theorem 5 often yields a stronger conclusion than the usual
nonsmooth results.

Theorem 5 also applies to problems where the vector fields are only contin-
uous with respect to the state (in which case the flow maps are set-valued)
and to problems with discontinuous vector fields. An important class of such
problems arises from differential inclusion systems. As long as the inclusions
under consideration are almost lower semicontinuous, then there exist suffi-
ciently many integrally continuous selections to make our theorem applicable.
All these applications will be discussed in a subsequent paper.

10 Proof of Theorem 5

It is clear that we can assume, without loss of generality, that

ϕi(xi+, a
i
+, x

i+̃1
− , ai+̃1

− ) = 0 for i = 1, . . . , µ . (8)

We make this assumption throughout our proof.

For each i ∈ {1, . . . , µ}, we let X i denote the space of all continuous fields
of covectors along ξi, so the members of X i are the maps

[ai−, a
i
+] 3 t→ ψ(t) ∈ T ∗ξi(t)Qi

such that ψ is continuous as a map from [ai−, a
i
+] to T ∗Qi. Then X i is a

Banach space.

If i ∈ {1, . . . , µ}, we use V i to denote the set of all pairs (ζ, t) such that
ai− < t < ai+, ζ ∈ U i and (ξ(t), t) is a point of approximate continuity of

F̃ iηi and F̃ iζ . We then write V to denote the set of all triples (i, ζ, t) such that

i ∈ {1, . . . ,m} and (ζ, t) ∈ V i.
If W is a subset of V, define ΨW to be the set of all multipliers

(ψψψ, ψ0, κκκ) = (ψ1, . . . , ψµ, ψ0, κ
1
−, κ

1
+, . . . , κ

µ
−, κ

µ
+)

along (ξξξ, ηηη) such that

ψ0 +

µ∑

i=1

(‖ψi(ai+)‖+ |κi−|+ |κi+|) = 1 (9)

and

(&) the inequality

Hi
ζ(ξ

i(t), ψi(t), t, ψ0) ≤ Hi
ηi(ξ

i(t), ψi(t), t, ψ0)

holds whenever (i, ζ, t) ∈ W.



504 Héctor J. Sussmann

Then ΨW is a compact subset of the product space

X def
= X 1 ×X 2 × · · · × X µ × R2µ+1 .

Our goal is to prove that ΨV 6= ∅. It is clear that, ifW1, . . . ,Wk are subsets
of V, then

ΨW1∪...∪Wk = ΨW1 ∩ . . . ΨWk .

Therefore, if we prove that

(*) ΨW 6= ∅ whenever W is finite,

then we will have shown that

{ΨW}W⊆V,W finite

is a family of nonempty compact subsets of X that has the finite intersection
property. Since

ΨV =
⋂{

ΨW :W ⊆ V, W finite
}

it will follow that ΨV 6= ∅, proving our conclusion.

So it suffices to prove (*). For this purpose, we fix a finite subset W of V,
and write W = ∪µi=1Ŵi, where Ŵi ⊆ {i} × Vi. Write Ŵi = {i} × Wi, so
Wi ⊆ Vi.

We introduce the cost-augmented state spaces

Qic
def
= Qi × R ,

together with the cost-augmented time-varying vector fields

F iζ,c ∈ TV V F (Qic),

defined by

Do(F̂ iζ,c) ={ (q, r, t)∈Qic: (q, t)∈Do(F iζ )∩Do(Liζ) },

F iζ,c(q, r, t)=

[
F iζ (q, t)
Liζ(q, t)

]
if (q, r, t)∈Do(F iζ ).

(Here we are using the canonical identification of T(q,r)(Q
i×R) with TqQ

i×R
and writing the members of TqQ

i × R as column pairs. The above for-
mula defines F iζ,c(q, r, t) as a member of TqQ

i × R, so F iζ,c(q, r, t) belongs

to T(q,r)(Q
i×R). Therefore F iζ,c is indeed a time-varying vector field on Qic.)

Then an integral curve of F iζ,c is a locally absolutely continuous curve

I ∈ t→ ξc(t) = (ξ(t), λ(t)) ∈ Qic,

defined on an interval I, such that
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(a) ξ is an integral curve of F iζ ,

(b) the function I ∈ t→ Liζ(ξ(t), t) is a.e. defined and locally integrable,

and

(c) λ(t) = λ(s) +
∫ t
s L

i
ζ(ξ(u), u) du for all s, t ∈ I.

(In other words, ξc consists of an integral curve ξ of F iζ together with a
“running cost” function λ along ξ.)

We also introduce the cost-augmented variational generators Λic, defined by

Λic(t) = Λ̃i(t)× {0} .

Precisely:

• If Qi is Rn or an open subset of Rn, so that Qic is an open subset of
Rn × R = Rn+1, then Λ̃i(t) is a subset of R(n+1)×n, whose members are
(n+ 1)× n block matrices

L =

[
L
`

]
, L ∈ Rn×n , ` ∈ R1×n ,

so the adjoint differential inclusion is equivalent to the assertion that

−ψ̇(t) = [ψ(t),−ψ0] ·
[
L(t)
`(t)

]
a.e.

for some measurable selection

t→ L(t) =

[
L(t)
`(t)

]

of Λ̃i. In that case, the set Λic(t) is a subset of R(n+1)×(n+1), whose mem-
bers are the square (n+ 1) × (n+ 1) block matrices

Lc =

[
L 0
` 0

]

such that Lc =

[
L
`

]
∈ Λ̃i(t). The adjoint differential inclusion, together

with the statement that ψ0 is constant, is equivalent to the assertion that

−ψ̇c(t) = ψc(t) ·Lc(t)

for some measurable selection

t→ Lc(t) =

[
L(t) 0
`(t) 0

]
.

of Λ̃i, where
ψc(t) = [ψ(t),−ψ0] .
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• If Qi is a manifold, then the above description of the nature of Λ̃i and Λic
and their relation to the adjoint equation remains true locally, in coordi-
nates, and can be made valid globally, in an intrinsic way, as explained
in Remark 1.

We now let ξic be the cost-augmented version of ξi, obtained by initializing
the running cost to the value 0 at time ai−. That is, ξic : [ai−, a

i
+]→ Qic is the

curve given by

ξic(t) =

[
ξi(t)
λi(t)

]
,

where

λi(t) =

∫ t

ai−

Liηi (ξ
i(s), s) ds .

If ν ∈ N, we use R+,ν to denote the nonnegative orthant of Rν , that is, the
set of all row vectors ε = (ε1, . . . , εν) ∈ Rν such that εj ≥ 0 for j = 1, . . . , ν.
For ε = (ε1, . . . , εν) ∈ Rµ, we write

|ε| def
= |ε1|+ · · ·+ |εν | .

In particular, if ε ∈ R+,ν , then |ε| = ε1 + · · ·+ εν .

If r > 0, we use Pν(r) to denote the ν-dimensional simplex

Pν(r)
def
= { ε ∈ R+,ν : |ε| ≤ r } .

For each i, we let νi be the cardinality ofW i. We choose once and for all an
ordered νi-tuple

Wi = ( (ζi1, t
i
1) , (ζi2, t

i
2) , . . . , (ζiνi , t

i
νi) ) (10)

such that the times tij satisfy

ti1 ≤ ti2 ≤ . . . ≤ tiνi ,
and Wi is the set { (ζi1, t

i
1) , (ζi2, t

i
2) , . . . , (ζiνi , t

i
νi) }. (The ordered νi-tuple

Wi is of course uniquely determined by the set W i in the special case when
Wi has no “repeated times”—i.e., if (ζ, t) ∈ W i, (ζ ′, t) ∈ Wi implies ζ = ζ ′.)
Also, we write ti0 = ai−, tiνi+1 = ai+.

We let r̂ be the minimum of all the nonzero members of the set
{
tij+1 − tij : j = 0, . . . , νi , i = 1, . . . , µ

}
.

We then define, for each i, affine functions

Rνi(r̂) 3 εi −→ τ ij(ε
i) ∈ R

inductively for j = 1, . . . , ν i + 1, and prove inductively that the inequality

tij ≤ τ ij (εi) ≤ tij + εi1 + . . .+ εij−1 if εi = (εi1, . . . , ε
i
νi) ∈ Pνi(r̂) (11)
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holds if j ∈ {1, . . . , ν i}.
The construction is as follows. First, we define τ i1(εi) = ti1, so (11) is trivially
true when j = 1. Next, assume that τ ij(ε

i) has been defined for some j ∈ N
such that 1 ≤ j < νi, and (11) holds. If tij+1 is equal to tij, then we let

τ ij+1(εi) = τ ij(ε
i) + εij . If tij+1 > tij, then we define τ ij+1(εi) = tij+1. It is then

clear that, in both cases, εi → τ ij+1(εi) is an affine function, and (11) holds if

j is replaced by j + 1. We complete the definition by letting τ iνi+1(εi) = ai+.

It is clear that τ ij (0) = tij for all i, j.

It follows from the construction that the inequalities

τ ij (ε
i) + εj ≤ τ ij+1(εi) (12)

hold for j = 1, . . . , ν i and εi ∈ Pνi(r̂). Indeed, (12) follows clearly from the
definition of τ ij+1(εi) if tij+1 = tij . If tij+1 > tij , then (12) follows because (11)
implies that

τ ij (ε
i) + εij ≤ tij + εi1 + . . .+ εij−1 + εij

≤ tij + |εi|
≤ tij + r̂ ≤ tij+1 = τ ij+1(εi) .

The inequality (12) implies that, if we write

Iij(ε
i)

def
= [ τ ij(ε

i) , τ ij(ε
i) + εij [ ,

then for each i, {Iij(εi)}j∈{1,... ,νi} is a familiy of pairwise disjoint subintervals

of [ai−, a
i
+], such that Iij(ε

i) has length εij and Iij(ε
i) ⊆ [tij, t

i
j + r̂] for

j = 1, . . . , νi. We let

Ii(εi) def
=

νi⋃

j=1

Ij(ε
i) ,

so Ii(εi) has measure |εi|. Write
Qi∗ = Qi ×Ri+ × Ri− × Rνi .

Fix i, and define set-valued maps
Θij : Qi∗−→−→Qic

inductively, for j = 1, . . . , ν i + 1, as follows. First of all, we let

Θi1(z, α+, α−, ε) = Φ
F i
ηi,c

t1i ,a
i
−+α−

(z, 0) .

We then define

Θij+1(z, α+, α−, ε) =

(
Φ
F i
ηi,c

τij+1(ε),τij (ε)+εj
◦Φ

F i
ζij ,c

τij (ε)+εj ,τij (ε)

)
(
Θij(z, α+, α−, ε)

)

for j = 1, . . . , νi − 1, and

Θiνi+1(z, α+, α−, ε) =
(
Φ
F i
ηi,c

ai++α+ ,τi
νi

(ε)+ενi
◦ Φ

F i
ζi
νi
,c

τi
νi

(ε)+ενi ,τ
i
νi

(ε)

)
(
Θiνi(z, α+, α−, ε)

)
.
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We let

Θi#
def
= Θiνi+1 .

(In other words: we make a “packet of needle variations of ηi,” by substituting
the controller ζij for ηi on the interval [τ ij(ε), τ

i
j(ε) + εj ] for j = 1, . . . , νi;

then, using the new control—which depends on ε as a parameter—we move
in the cost-augmented state space Qic by initializing the state component at
z and the running cost component at 0 at time ai− + α−, and then following
integral curves of the new dynamics up to time ai+ + α+, thus obtaining, for
each value of z, α+, α− and ε, a not necessarily unique point in Qic; then
Θi#(z, α+, α−, ε) is the set of all points that can be obtained in this way. The

fact that the endtimes are ai+ + α+ and ai− + α− rather than ai+, ai− means
that we are also making “variations of the endtimes;” the fact that the initial
condition is z rather than xi− means that we are making “variations of the
initial state” as well.)

Write

Xi
− = ξic(ai−) = (xi−, 0) ,

Xi,1
− = (Xi

−, a
i
−) ,

Y i− = F iηi,c(X
i,1
− ) ,

Xi
+ = ξic(ai+) = (ξi(ai+), λi(ai+)) ,

Xi,1
+ = (Xi

+, a
i
+) ,

Y i+ = F iηi,c(X
i,1
+ ) ,

xij = ξi(tij) ,
Xi
j = ξic(tij) = (ξi(tij), λ

i(tij)) ,

Xi,1
j = (Xi

j , t
i
j) ,

Y ij = F iηi,c(X
i,1
j ) ,

Ŷ ij = F i
ζij ,c

(Xi,1
j ) ,

Zij = Ŷ ij − Y ij ,
Xi,2
j = (Xi

j , t
i
j+1, t

i
j) ,

Xi,3
j = (Xi

j , t
i
j, t

i
j, t

i
j+1) .

It is then clear that Θi#(xi−, 0, 0, 0) = {Xi
+} and Θij(x

i
−, 0, 0, 0) = {Xi

j} for

j = 1, . . . , νi. We now let

Ki = Qi × Ci+ × Ci− ×Pνi(r̂) , (13)

and compute GDQs

Di
j ∈ GDQ(Θij; (xi−, 0, 0, 0), Xi

j;K
i) (14)

inductively, by applying Theorem 3 and the chain rule.
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For j = 1, . . . , νi, we let Di
j be the set of all linear maps ∆i

j,Lc
, for all

measurable selections Lc of Λic, where

∆i
j,Lc

(v, α+, α−, ε)
def
= M i

j,− ·
(
ṽ − α−Y i−

)
+

j−1∑

k=1

εkM
i
j,k · Zik + (τ ij (εj)− tij)Y ij ,

M i
j,−

def
= MLc(t

i
j , a

i
−) ,

M i
j,k

def
= MLc(t

i
j , t

i
k) , and

ṽ
def
=

[
v
0

]
,

and prove by induction on j that (14) holds for every j ∈ {1, . . . , ν i}.
First of all, let Ai1 : Qi × R× R × Rνi → Qic × R× R be the map

(z, α+, α−, ε)→ ((z, 0), t1, ai− + α−).

Then
Θi1 = Φ

F i
ηi,c ◦Ai1 .

The map Ai1 is of class C1. Therefore, if Bi1 is the linear map

Bi1 : Txi−Q
i × R× R× Rνi → TXi−Q

i
c × R× R

given by
Bi1(v, α+, α−, ε) = (ṽ, 0, α−) ,

then
{Bi1} ∈ GDQ(Ai1; (xi−, 0, 0, 0), (Xi

−, t
i
1, a

i
−);Ki) .

Let
Ki

1 = Qi × (ti1 + Ci) × (ai− + C−) .

Theorem 3 tells us that a member ∆i
1 of GDQ(Φ

F i
ηi,c; (Xi

−, t
i
1, a

i
−), Xi

1;Ki
1)

is given by

∆i
1 = [Mti1,a

i
−

(Λic); {F iηi,c(Xi,1
1 )}, {F iηi,c(Xi,1

− )}] .

Clearly, Ai1K
i ⊆ Ki

1, so the chain rule applies, and we can conclude that

Di
1 = ∆i

1 ◦Bi! ∈ GDQ(Θi1; (xi−, 0, 0, 0), Xi
1;K

i
1) .

Now assume that j ∈ {2, . . . , ν i}, and we have shown that Di
j−1 belongs to

GDQ(Θij−1; (xi−, 0, 0, 0), Xi
j−1;K

i). Let

Aij : Qi × R× R× Rνi−→−→Qic × R× R× R

be the set-valued map that sends (z, α+, α−, ε) to the set

Θij−1(z, α+, α−, ε)×{τ ij−1(ε)+εj−1} × {τ ij−1(ε)}×{τ ij (ε)}.
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Let Ãij : Qic × R× R× R−→−→Qic × R × R be the set-valued map that sends
the point (Z, r1, r2, r3) to the set

Φ
F i
ζi,c(Z, r1, r2)× {r3} × {r1}.

Then
Θij = Φ

F i
ηi,c ◦ Ãij ◦Aij .

It follows from the inductive hypothesis that, if Bi
j is the set of all linear

maps
Bij,Lc

: Txi−Q
i × R× R × Rνi → TXij−1

Qic × R× R × R ,

for all measurable selections Lc of Λic, where

Bij,Lc
(v, α+, α−, ε) =

(
∆i
j−1,Lc

(v, α+, α−, ε) , B
i
j,2(ε) , Bij,3(ε) , Bij,4(ε)

)
,

Bij,2(ε) = τ ij−1(ε) + εj−1 − tij−1 ,

Bij,3(ε) = τ ij−1(ε)− tij−1 ,

Bij,4(ε) = τ ij(ε)− tij ,

then
Bi
j ∈ GDQ(Aij; (xi−, 0, 0, 0), Xi,3

j−1;K
i) .

Theorem 3 implies that, if B̃ij is the linear map

B̃ij : TXij−1
Qic × R× R× R→ TXij−1

Qic × R× R

given by
B̃ij(V, ρ1, ρ2, ρ3) = (V + (ρ1 − ρ2)Ŷ ij−1, ρ3, ρ1) ,

then
{B̃ij} ∈ GDQ(Ãij ;X

i,3
j−1, X

i,2
j−1;Qic × R3) .

Finally, Theorem 3 also implies that, if B̂ij,Lc
is the linear map

B̂ij,Lc
: TXij−1

Qic × R× R→ TXijQc

given by
B̂ij,Lc

(V, σ1, σ2) = σ1Y
j
j +M i

j,j−1 · (V − σ2Y
i
j−1) ,

and B̂i
j is the set of all B̂j,Lc for all measurable selections Lc of Λic, then

B̂i
j ∈ GDQ(Φ

F i
ηi,c ;Xi,2

j−1, X
i
j;Q

i
c × R2) .

Then the chain rule implies that

B̂i
j ◦ B̃ij ◦Bi

j ∈ GDQ(Θij; (xi−, 0, 0, 0), Xi,3
j ;Ki) .
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Clearly, B̂i
j ◦ B̃ij ◦ Bi

j is the set of all maps B̂ij,Lc
◦ B̃ij ◦ Bij,Lc

, for all

Lc ∈ Γ (Λic). Given a point (v, α+, α−, ε) ∈ TXi−Q
i
c × R× R× Rνi, we have

Bij,Lc
(v, α+, α−, ε) = (V, ρ1, ρ2, ρ3) ,

and
B̃ij(V, ρ1, ρ2, ρ3) = (V + (ρ1 − ρ2)Ŷ ij−1, ρ3, ρ1) ,

where

V = ∆i
j−1,Lc

(v, α+, α−, ε) , ρ1 = Bij,2(ε) , ρ2 = Bij,3(ε)) , ρ3 = Bij,4(ε) .

It follows that

(B̂i
j,Lc
◦ B̃ij ◦Bi

j,Lc
)(v, α+, α−, ε) = B̂i

j,Lc

(
B̃ij(V, ρ1, ρ2, ρ3)

)

= Bi
j,Lc

(
(V + (ρ1 − ρ2)Ŷ ij−1, ρ3, ρ1)

)

= ρ3Y
i
j + M i

j,j−1 ·W ,

where
W = V + (ρ1 − ρ2)Ŷ ij−1 − ρ1Y

i
j−1 .

Since ρ1 − ρ2 = εj−1 and ρ1 = τ ij−1(ε)− tij−1 + εj−1, we find

W = V + εj−1Ŷ
i
j−1 − ρ1Y

i
j−1

= ∆i
j−1,Lc

(v, α+, α−, ε) + εj−1Ŷ
i
j−1 − ρ1Y

i
j−1

= M i
j−1,− ·

(
ṽ − α−Y i−

)
+

j−2∑

k=1

εkM
i
j−1,k · Zik

+(τ ij−1(ε) − tij−1)Y ij−1 + εj−1Ŷ
i
j−1 − ρ1Y

i
j−1

= M i
j−1,− ·

(
ṽ − α−Y i−

)
+

j−2∑

k=1

εkM
i
j−1,k · Zik

+(τ ij−1(ε) − tij−1 + εj−1)Y ij−1 + εj−1(Ŷ ij−1 − Y ij−1)− ρ1Y
i
j−1

= M i
j−1,− ·

(
ṽ − α−Y i−

)
+

j−2∑

k=1

εkM
i
j−1,k · Zik

+(τ ij−1(ε) − tij−1 + εj−1 − ρ1)Y =
j−1i + εj−1Z

i
j−1

= M i
j−1,− ·

(
ṽ − α−Y i−

)
+

j−1∑

k=1

εkM
i
j−1,k · Zik .

Therefore

M i
j,j−1 ·W = M i

j,− ·
(
ṽ−α−Y i−

)
+

j−1∑

k=1

εkM
i
j,k · Zik .



512 Héctor J. Sussmann

Then

(B̂i
j,Lc
◦ B̃ij ◦Bi

j,Lc
)(v, α+, α−, ε) = ρ3Y

i
j + M i

j,j−1 ·W

= M i
j,− ·

(
ṽ − α−Y i−

)
+

j−1∑

k=1

εkM
i
j,k ·Zik + (τ ij (ε)− tij)Y ij

= ∆i
j,Lc

(v, α+, α−, ε) .

It follows that

B̂i
j,Lc
◦ B̃ij ◦Bi

j,Lc
= Di

j ,

so (14) holds.

Now that we have proved that (14) holds for all indices j ∈ {1, . . . , ν i}, we
know in particular that

Di
νi ∈ GDQ(Θiνi ; (xi−, 0, 0, 0), Xi

νi;K
i) . (15)

We let Di
# be the set of all linear maps ∆i

#,Lc
, for all measurable selections

Lc of Λic, where

∆i
#,Lc

(v, α+, α−, ε)
def
=α+Y

i
+ +M i

+,− ·
(
ṽ − α−Y i−

)
+

νi∑

k=1

εkM
i
+,k · Zik , (16)

and we let

M i
+,−

def
=MLc(ai+, a

i
−) and M i

+,k
def
=MLc(ai+, t

i
k) .

We will prove that

Di
# ∈ GDQ(Θi#; (xi−, 0, 0, 0), Xi

+;Ki) . (17)

Let Ai# : Qi ×R×R×Rνi−→−→Qic ×R×R×R be the set-valued map that
sends (z, α+, α−, ε) to the set

Θiνi(z, α+, α−, ε) × {τ iνi(ε) + ενi} × {τ iνi(ε)} × {ai+ + α+}.

Let Ãi# : Qic ×R×R×R−→−→Qic×R×R be the set-valued map that sends

(Z, r1, r2, r3) to the set Φ
F i
ζi,c(Z, r1, r2)× {r3} × {r1}. Then

Θi# = Φ
F i
ηi,c ◦ Ãi# ◦Ai# .

It follows from (15) that, if Bi
# is the set of all linear maps

Bi#,Lc
: Txi−Q

i × R× R× Rνi → TXi
νi
Qic × R× R× R ,
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for all measurable selections Lc of Λic, where

Bi#,Lc
(v, α+, α−, ε) =

(
∆i
νi,Lc

(v, α+, α−, ε) , B
i
#,2(ε) , Bi#,3(ε) , α+

)
,

Bi#,2(ε) = τ iνi(ε) + ενi − tiνi ,
Bi#,3(ε) = τ iνi(ε) − tiνi ,

then
Bi

# ∈ GDQ(Ai#; (xi−, 0, 0, 0), Xi,3
νi

;Ki) .

Theorem 3 then implies that, if B̃i# is the linear map

B̃i# : TXi
νi
Qic × R× R× R→ TXi

νi
Qic × R× R

given by
B̃i#(V, ρ1, ρ2, ρ3) = (V + (ρ1 − ρ2)Ŷ iνi , ρ3, ρ1) ,

then
{B̃i#} ∈ GDQ(Ãi#;Xi,3

νi
, Xi,2

νi
;Qic × R3) .

Finally, Theorem 3 also implies that, if B̂i#,Lc
is the linear map

B̂i#,Lc
: TXi

νi
Qic × R× R→ Txi+Qc

given by
B̂i#,Lc

(V, σ1, σ2) = σ1Y
i
+ + M i

+,νi · (V − σ2Y
i
νi) ,

and B̂i
# is the set of all B̂#,Lc for all measurable selections Lc of Λic, then

B̂i
# ∈ GDQ(Φ

F i
ηi,c;Xi,2

νi , X
i
+;Qic × (ai+ + Ci+)× R) .

It is easy to verify that

(Ãi# ◦Ai#)(Ki) ⊆ Qic × (ai+ + Ci+)× R) .

Therefore the chain rule implies that

B̂i
# ◦ B̃i# ◦Bi

# ∈ GDQ(Θi#; (xi−, 0, 0, 0), Xi,3
# ;Ki) .

Clearly, B̂i
# ◦ B̃i# ◦Bi

# is the set of all maps

B̂i#,Lc
◦ B̃i# ◦Bi#,Lc

,

for all Lc ∈ Γ (Λic).

Given a point (v, α+, α−, ε) belonging to the product TXi−Q
i
c×R×R×Rνi ,

we have
Bi#,Lc

(v, α+, α−, ε) = (V, ρ1, ρ2, ρ3) ,
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and

B̃i#(V, ρ1, ρ2, ρ3) = (V + (ρ1 − ρ2)Ŷ iνi , ρ3, ρ1) ,

where

V = ∆i
νi,Lc

(v, α+, α−, ε) , ρ1 = Bi#,2(ε) , ρ2 = Bi#,3(ε)) , ρ3 = α+ .

It follows that

(B̂i
#,Lc

◦ B̃i# ◦Bi
#,Lc

)(v, α+, α−, ε) = B̂i
#,Lc

(
B̃i#(V, ρ1, ρ2, ρ3)

)

= Bi
#,Lc

(
(V + (ρ1 − ρ2)Ŷ iνi , ρ3, ρ1)

)

= ρ3Y
i
− +M i

+,νi ·W ,

where
W = V + (ρ1 − ρ2)Ŷ iνi − ρ1Y

i
νi .

Since ρ1 − ρ2 = ενi and ρ1 = τ iνi(ε) − tiνi + ενi , we find

W = V + ενi Ŷ
i
νi − ρ1Y

i
νi

= ∆i
νi,Lc

(v, α+, α−, ε) + ενi Ŷ
i
νi − ρ1Y

i
νi

= M i
νi,− ·

(
ṽ−α−Y i−

)
+
νi−1∑

k=1

εkMνi,k · Zik−ρ1Y
i
νi

+(τ iνi(ε) − tiνi)Y iνi + ενi Ŷ
i
νi

= M i
νi,− ·

(
ṽ−α−Y i−

)
+
νi−1∑

k=1

εkM
i
νi,k · Zik−ρ1Y

i
νi

+(τ ij−1(ε) − tij−1 + εj)Y
i
j−1 + ενi(Ŷ

i
νi − Y iνi)

= M i
νi,− ·

(
ṽ−α−Y i−

)
+
νi−1∑

k=1

εkM
i
νi,k · Zik

+(τ iνi(ε) − tiνi + ενi − ρ1)Y iνi + ενiZ
i
k

= M i
νi,− ·

(
ṽ−α−Y i−

)
+

νi∑

k=1

εkM
i
νi,k · Zik.

Therefore

M i
+,νi ·W = M i

+,νi ·
(
M i
νi,− · (ṽ−α−Y i−)+

νi∑

k=1

εkM
i
νi,k ·Zik

)

= M i
+,− · (ṽ − α−Y i−) +

νi∑

k=1

εkM
i
+,k ·Zik .
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Then

(B̂i
#,Lc

◦ B̃i# ◦Bi
#,Lc

)(v, α+, α−, ε) = ρ3Y
i

+ + M i
+,νi ·W

= α+Y
i
+ +M i

+,− · (ṽ − α−Y i−) +
νi∑

k=1

εkM
i
+,k · Zik

= ∆i
#,Lc

(v, α+, α−, ε) .

It follows that
B̂i

#,Lc
◦ B̃i# ◦Bi

#,Lc
= Di

# ,

so (17) holds.

We have thus shown that for each i ∈ {1, . . . , µ}, the set Di
# of all linear

maps ∆i
#,Lc

defined by (16), for all measurable selections Lc of Λic, is a GDQ

of Θi# at ((xi−, 0, 0, 0), xi+) along the set Ki defined by (13).

We now combine all the Θi# into a single “grand map”

ΘΘΘ : Q∗−→−→Q# × R ,
where Q∗ = Q1

∗ × . . .× Qµ∗ , and Q# = Q1
# × . . .× Qµ# .

Roughly speaking, if p ∈ Q∗, then p = (p1, . . . , pµ), where

pi = (zi, αi+, α
i
−, ε

i) for i = 1 . . . , µ . (18)

Then each pi gives rise to one or several points Θi#(pi). So to each pi there

correspond one or several terminal points wi and terminal Lagrangian costs
`i, as well as a terminal time ai+ +αi+, an initial time ai−+αi−, and an initial
state zi. In particular, this gives rise to “switching points” σi ∈ Qi#, defined
by

σi = (wi, ai+ + αi+, z
i+̃1, ai+̃1

− + αi+̃1
− ) . (19)

Moreover, p also gives rise to a cost σ0, given by

σ0 =

µ∑

i=1

`i +

µ∑

i=1

ϕi(wi, ai+ + αi+, z
i+̃1, ai+̃1

− + αi+̃1
− ) . (20)

We will define ΘΘΘ(p) to be the set of all µ + 1-tuples

(σ1, . . . , σµ, σ0) ∈ Q# × R (21)

obtained from p in this way.

The precise definition is as follows. Let

p = (p1, . . . , pµ) ∈ Q∗ = Q1
∗ × . . .Qµ∗ .
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Define zi, αi+, αi−, εi by means of (18), so

zi ∈ Qi , αi+ ∈ R+ , αi− ∈ R− , εi ∈ Rνi .

Then ΘΘΘ(p) is the set of all µ+ 1-tuples (21) such that, for some

w1 ∈ Q1, . . . , wµ ∈ Qµ, `1 ∈ R, . . . , `µ ∈ R,
the conditions (19) and (wi, `i) ∈ Θi#(pi) hold whenever i = 1, . . . , µ, and
(20) is satisfied.

This completes the definition of of ΘΘΘ. Let

p̄ = (p̄1, . . . , p̄µ) ,

where p̄i = (xi−, 0, 0, 0) for i = 1, . . . , µ. Then

ΘΘΘ(p̄) = {(σ̄σσ, σ̄0)} ,

where

σ̄σσ = (σ̄1, . . . , σ̄µ) ,

σ̄i = (xi+, a
i
+, x

i+̃1
− , ai+̃1

− ) for i = 1, . . . , µ ,

σ̄0 =

µ∑

i=1

λi(ai+) .

(Recall that we are assuming that (8) holds.)

Let
K = K1 × . . .×Kµ .

We now write down a GDQ

D ∈ GDQ(ΘΘΘ; p̄, (σ̄σσ, σ̄0); K) . (22)

For this purpose, we first define a linear map ∆∆∆Lc,ωωω , for each µ-tuple
Lc = (L1

c , . . . , L
µ
c ) of measurable selections Lic of Λic and each µ-tuple

ωωω = (ω1, . . . , ωµ) such that ωi ∈ Ωi for i = 1, . . . , µ.

We then let D denote the set of all maps ∆∆∆Lc,ωωω, for all possible pairs (Lc, ωωω)
of µ-tuples.

Let
u = (u1, , . . . , uµ) ∈ Tp̄Q∗ .

Write
ui = (vi, αi+, α

i
−, ε

i) ,

so ui∈Tp̄iQi∗ for each i. Let εi=(εi1, . . . , ε
i
νi) for each i.

Let Lc = (L1
c , . . . , L

µ
c ) be a µ-tuple of measurable selections Lic of Λic. Write

Lic(t) =

[
Li(t) 0
`i(t) 0

]
.
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Then define
∆∆∆Lc ,ωωω(u) = (s1, . . . , sµ, s0) ,

where

si = (qi, αi+, v
i+̃1, αi+̃1

− ) ,

q̃i =

[
qi

qic

]
,

q̃i =
νi∑

j=1

εijM
i
+,j · Zij + M i

+,− · (ṽi − αi−Y i−) + αi+Y
i

+ ,

s0 =

µ∑

i=1

(qic + 〈ωi, si〉) .

Then it is easily verified that (22) holds.

Now let γ be a smooth real-valued function on the manifold Q# such that
γ(σ̄σσ) = 0 and γ(σσσ) > 0 whenever σσσ 6= σ̄σσ.

Let
C# = C1 × . . .× Cµ×]−∞, 0] .

Define a subset S̃rest,# of Q# × R by letting

S̃rest,# def
=

{(σσσ, σ0) ∈ Q# × R : σσσ ∈ Srest,# , σ0 + γ(σσσ) ≤ σ̄0} ,

where
Srest,# def

= S1
rest × . . .× Sµrest

Then C# is a GDQ approximating multicone to S̃rest,# at the point (σ̄σσ, σ̄0).

Clearly, if p ∈ K is such that (σσσ, σ0) ∈ S̃rest,# for some (σσσ, σ0) ∈ ΘΘΘ(p),

then p,σσσ give rise to an admissible trajectory-control pair (ξ̌ξξ, η̌ηη) with cost
σ0. If σσσ 6= σ̄σσ, then σ0 < σ̄0, contradicting the optimality of (ξξξ, ηηη). So σσσ = σ̄σσ.
Moreover, the fact that (σσσ, σ0) ∈ S̃rest,# also implies that σ0 ≤ σ̄0, so the
optimality of (ξξξ, ηηη) tells us that σ0 = σ̄0. Hence

ΘΘΘ(K) ∩ S̃rest,# = {(σ̄σσ, σ̄0)} .

It then follows from the transversal intersection theorem that the multicones
D(K) and C# are not transversal. Therefore there exists a nontrivial linear
functional Ψ̄ ∈ T ∗

(σ̄σσ,σ̄0)
(Q# × R) such that

1. there exist C1 ∈ C1, . . . , Cµ ∈ Cµ such that
〈
Ψ̄ , (s1, . . . , sµ, r)

〉
≥ 0

whenever s1 ∈ C1, . . . , sµ ∈ Cµ, r ≤ 0;
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2. there exist µ-tuples

Lc = (L1
c , . . . , L

µ
c ) ∈ Γ (Λ1

c × . . .× Γ (Λµc ) ,

ω̄ωω = (ω̄1, . . . , ω̄µ) ∈ Ω1 × . . .× Ωµ ,

such that 〈
Ψ̄ ,∆∆∆Lc,ω̄ωω(u)

〉
≤ 0

for all u ∈ K.

Now write

Ψ̄ = (Ψ̄1, . . . , Ψ̄µ,−ψ0) , (23)

where Ψ̄ i ∈ Tσ̄iQi# for i = 1, . . . , µ, and ψ0 ∈ R.

Then

ψ0 ≥ 0 (24)

and, for each i,

〈
Ψ̄ i, si

〉
≥ 0 whenever si ∈ Ci . (25)

Since Qi# = Qi+ × Qi+̃1
− , we can write

Ψ̄ i = (ψ̄i1, π
i
1, ψ̄

i
2, π

i
2) , (26)

and (27)

ω̄i = (ωi1, ω
i
1,0, ω

i
2, ω

i
2,0) ,

where

ψ̄i1 ∈ T ∗xi+Q
i , πi1 ∈ Ri+ , ψ̄i2 ∈ T ∗xi+̃1

−
Qi+̃1 , πi2 ∈ Ri+̃1

− ,

and

ωi1 ∈ T ∗xi+Q
i , ωi1,0 ∈ Ri+ , ωi2 ∈ T ∗xi+̃1

−
Qi+̃1 , ωi2,0 ∈ Ri+̃1

− .

Now pick
u = (u1, . . . , uµ) ∈K ,

and write ui = (vi, αi+, α
i
−, ε

i).

Define the si, qi, qic, and s0 as above. Then

µ∑

i=1

〈Ψ̄ i, si〉 − ψ0s0 ≤ 0 ,
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so

µ∑

i=1

(
〈ψ̄i1, qi〉+ 〈ψ̄i2, vi+̃1〉 + πi1α

i
+ + πi2α

i+̃1
−
)
≤ ψ0s0 . (28)

Let

ψ̃i1 = [ψ̄i1,−ψ0] , ψ̃i2 = [ψ̄i2, 0] , ω̃i1 = [ωi1, 0] , ω̃i2 = [ωi2, 0] , ṽi =

[
vi

0

]
,

ψ̌i1 = ψ̃i1 − ψ0ω̃
i
1 , (29)

ψ̌i2 = ψ̃i2 − ψ0ω̃
i
2 , (30)

π̌i1 = πi1 − ψ0ω
i
1,0 , (31)

π̌i2 = πi2 − ψ0ω
i
2,0 . (32)

Then (28) says that

µ∑

i=1

(
〈ψ̄i1, qi〉 + 〈ψ̄i2, vi+̃1〉+ πi1α

i
+ + πi2α

i+̃1
−
)
≤ ψ0

( µ∑

i=1

qic +

µ∑

i=1

〈ω̄i, si〉
)
,

that is

µ∑

i=1

((
〈ψ̄i1, qi〉 − ψ0q

i
c

)
+ 〈ψ̄i2, vi+̃1〉+ πi1α

i
+ + πi2α

i+̃1
−
)
≤ ψ0

µ∑

i=1

〈ωi1, si〉 ,

which can be rewritten as

µ∑

i=1

(
〈ψ̃i1, q̃i〉+ 〈ψ̃i2, ṽi+̃1〉 + πi1α

i
+ + πi2α

i+̃1
−
)

≤ ψ0

µ∑

i=1

〈ωi1, qi〉+ 〈ωi2, vi〉 + ωi1,0α
i
+ + ωi2,0α

i+̃1
− ,

i.e., as

µ∑

i=1

(
〈ψ̌i1, q̃i〉+ 〈ψ̌i2, ṽi+̃1〉 + π̌i1α

i
+ + π̌i2α

i+̃1
−
)
≤ 0 . (33)

We now extract information from (33) by making special choices of u, i.e.,
of the vi, αi+, αi−, εi. First, we write

Lc(t) =

[
L(t) 0
`(t) 0

]
,
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define

ψ̂i(t) = ψ̌i1 ·MLic
(ai+, t) (34)

for i = 1, . . . , µ, and observe that ψ̂i is absolutely continuous and

d

dt
(ψ̂i(t)) = −ψ̂i(t) · Lc(t) c.e. .

Therefore, if we write

ψ̂i(t) = [ψi(t), σi(t)] , (35)

then

ψ̇i(t) = −ψi(t) ·Li(t) − σi(t) · `(t)

and σ̇i(t) ≡ 0. Since ψ̂i(ai+) = ψ̌i1 = [ψi(ai+),−ψ0], we can conclude that

σi(t) ≡ −ψ0 , (36)

so

ψ̇i(t) = −ψi(t) · Li(t) + ψ0 · `(t) ,
that is

−ψ̇i(t) = [ψi(t),−ψ0] ·
[
L(t)
`(t)

]
.

Since t→
[
L(t)
`(t)

]
is a measurable selection of Λ̃i, we have shown that

ψi(t) is absolutely continuous (37)

and

−ψ̇i(t) ∈ [ψi(t),−ψ0] · Λ̃i(t) a.e. t (38)

i.e., that ψi is a solution of the adjoint differential inclusion.

Next, fix a value i0 of i, let i′ = i0+̃1 choose all the α−’s, α+’s, and ε’s
equal to zero, and let vi = 0 for i 6= i′, vi

′
= v ∈ Txi′−

Qi
′
. Then q̄i

′
=

MLi′c
(ai
′

+, a
i′
−) · ṽi′ , and q̄i = 0 if i 6= i′. So (33) tells us that

〈ψ̌i′1 , q̃i
′〉 + 〈ψ̌i02 , ṽi

′〉 ≤ 0 ,

that is,

〈ψ̌i′1 ·MLc(ai
′

+, a
i′
−) + ψ̌i02 , ṽ〉 ≤ 0 , (39)
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so that

〈ψ̂i′ (ai′−) + ψ̌i02 , ṽ〉 ≤ 0 . (40)

Since
ψ̌i02 = [ψ̄i02 − ψ0ω

i0
2 , 0]

(40) says that

〈ψi′ (ai′−) + ψ̄i02 − ψ0ω
i0
2 , v〉 ≤ 0 . (41)

Since v is an arbitrary vector in Txi′−
Qi
′
, we have established that

ψ̄i02 = ψ0ω
i0
2 − ψi

′
(ai
′
−) . (42)

Since i0 was an arbitrary index in the set {1, . . . , µ}, and i′ = i0+̃1, we have
in fact shown that

ψ̄i2 = ψ0ω
i
2 − ψi+̃1(ai+̃1

− ) if i ∈ {1, . . . , µ} . (43)

On the other hand, the fact that ψ̌i1 = [ψi(ai+),−ψ0], and ψ̌i1 = ψ̃i1 − ψ0ω̃
i
1

imply

ψ̄i1 = ψ0ω
i
1 + ψi(ai+) if i ∈ {1, . . . , µ} . (44)

Since π̌i1 = πi1 − ψ0ω
i
1,0 and π̌i2 = πi2 − ψ0ω

i
2,0, we have

πi1 = ψ0ω
i
1,0 + π̌i1 (45)

and

πi2 = ψ0ω
i
2,0 + π̌i2 . (46)

It follows from (43), (44), (45), and (46), that

Ψ̄ i = (ψ̄i1, π
i
1, ψ̄

i
2, π

i
2) = −Ψ̂ i + ψ0ω

i ,

where
Ψ̂ i = (−ψi(ai+),−π̌i1, ψi+̃1(ai+̃1

− ),−π̌i2) .

Then (25) says that

Ψ̂ i − ψ0ω
i ∈ (Ci)⊥ . (47)

Next, we fix a value i0 of i, let i′ = i0+̃1, choose all the v’s, α+’s, and ε’s
equal to zero, and let αi− = 0 for i 6= i′, αi

′
− = α− ∈ Ci

′
−. Then

q̄i
′

= −α−MLi′c
(ai
′

+, a
i′
−) · F̃ i′

ηi′ (x
i′
−, a

i′
−) ,
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and q̄i = 0 if i 6= i′. So (33) tells us that

−α−〈ψ̌i
′

1 ,MLi
′

c
(ai
′

+, a
i′
−) · F̃ i′

ηi
′ (xi

′
−, a

i′
−)〉+ π̌i02 · α− ≤ 0 ,

that is,
−α−〈ψ̂i

′
1 (ai

′
−) · F̃ i′

ηi
′ (xi

′
−, a

i′
−)〉 + π̌i02 · α− ≤ 0 ,

or, equivalently,

−α−〈ψi
′

1 (ai
′
−) ·F i′

ηi
′ (xi

′
−, a

i′
−)〉+ α−ψ0L

i′

ηi
′ (xi

′
−, a

i′
−) + π̌i02 ·α− ≤ 0 ,

that is,
α− · (π̌i02 − hi

′
−) ≤ 0 .

Since this is true for all sufficiently small α− ∈ Ci
′
−, we conclude that

π̌i02 − hi
′
− ∈ (Ci

′
−)⊥ .

Since i0 was an arbitrary index in the set {1, . . . , µ}, and i′ = i0+̃1, we have
in fact shown that

π̌i2 − hi+̃1
− ∈ (Ci+̃1

− )⊥ whenever i ∈ {1, . . . , µ} . (48)

Given any i ∈ {1, . . . , µ}, let i−̃1 be the unique index i0 ∈ {1, . . . , µ} such
that i0+̃1 = i. Define

κi− = π̌i−̃1
2 − hi− . (49)

Then (48) says that

κi− ∈ (Ci−)⊥ whenever i ∈ {1, . . . , µ} . (50)

Next, we fix once again a value i0 of i, choose all the v’s, α−’s, and ε’s equal
to zero, and let αi+ = 0 for i 6= i0, αi0+ = α+ ∈ Ci0+ . Then

q̄i0 = α+F̃
i0
ηi0

(Xi0
− , a

i0
+) ,

and q̄i = 0 if i 6= i0. So (33) tells us that

α+〈ψ̌i01 , F̃ i0ηi0 (xi0+ , a
i0
+)〉+ π̌i01 · α+ ≤ 0 ,

that is,
α+〈ψ̂i0 (ai0+ ) · F̃ i0

ηi0
(xi0+ , a

i0
+ )〉+ π̌i01 · α+ ≤ 0 ,

or, equivalently,

α+〈ψi01 (ai0+ ) · F i0
ηi0

(xi0+ , a
i0
+)〉 + α+ψ0L

i0
ηi0

(xi0+ , a
i0
+) + π̌i01 ·α+ ≤ 0 ,
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that is,
α+ · (π̌i01 + hi0−) ≤ 0 .

Since this is true for all sufficiently small α− ∈ Ci0+ , we conclude that

π̌i01 + hi0+ ∈ (Ci0+ )⊥ .

Since i0 was an arbitrary index in the set {1, . . . , µ}, we have in fact shown
that

π̌i1 + hi+ ∈ (Ci+)⊥ whenever i ∈ {1, . . . , µ} . (51)

Define

κi+ = π̌i1 + hi+ . (52)

Then (51) says that

κi+ ∈ (Ci+)⊥ whenever i ∈ {1, . . . , µ} . (53)

Since
−π̌i1 = −κi+ + hi+ cnd − π̌i2 = −κi− − hi− ,

(47) implies

(−ψi(ai+),−κi+ + hi+, ψ
i+̃1(ai+̃1

− ),−κi− − hi−) ∈ ψ0Ω
i + (Ci)⊥ . (54)

Then (50), (53) and (54) show that the switching conditions hold.

The next step is to fix a value i0 ∈ {1, . . .µ} and a j0 ∈ {1, . . . , νi0}, choose
all the v’s, α−’s, and α+’s equal to zero, and let εi = 0 for i 6= i0, and
εi0 = (ε1, . . . , ενi0 ), where εj = 0 if j 6= j0, εj0 = ε, with 0 ≤ ε ≤ r̂. Then

q̄i0 = εM
L
i0
c

(ai0+ , t
i0
j0

) · Zi0j0 ,

and q̄i = 0 if i 6= i0. So (33) tells us that

ε〈ψ̌i01 ,ML
i0
c

(ai0+ , t
i0
j0

) · Zi0j0 〉 ≤ 0 ,

that is,
ε〈ψ̌i01 ·ML

i0
c

(ai0+ , t
i0
j0

), Zi0j0 〉 ≤ 0 ,

or, equivalently,
ε〈ψ̂i0 (ti0j0), Zi0j0 〉 ≤ 0 .

Since this is true for all sufficiently small nonnegative ε, we conclude that

〈ψ̂i0 (ti0j0), Zi0j0 〉 ≤ 0 .
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Since i0 and j0 are arbitrary, we have shown that

〈ψ̂i(tij), Zij〉 ≤ 0 (55)

whenever i ∈ {1, . . .µ}, j ∈ {1, . . . , ν i0}.
Now, given any i, j, (55) says that

〈ψ̂i(tij), Ŷ ij 〉 ≤ 〈ψ̂i(tij), Y ij 〉 ,

that is,

〈ψi(tij), F iζij (ξ
i(tij), t

i
j)〉 − ψ0L

i
ζij

(ξi(tij), t
i
j)

≤ 〈ψi(tij), F iηi(ξi(tij), tij)〉 − ψ0L
i
ηi (ξ

i(tij), t
i
j) ,

or

Hi
ζij

(ξi(tij), ψ
i(tij), t

i
j , ψ0) ≤ Hi

ηi(ξ
i(tij), ψ

i(tij), t
i
j, ψ0) .

We have thus established that the 3µ+ 1-tuple

(ψ1, . . . , ψµ, ψ0, κ
1
−, κ

1
+, . . . , κ

µ
−, κ

µ
+)

satisfies all the conditions of the definition of ΨW , except possibly for the
normalization condition (9).

On the other hand, if we let γ be the left-hand side of (9), then γ ≥ 0. If we
show that γ > 0, then we can divide the ψi, κi± and ψ0 by γ, and obtain a
new multiplier for which (9) holds. Hence the conclusion that ΨW 6= ∅ will
follow if the prove that γ 6= 0.

Assume that γ = 0. Then ψ0 = 0, and the equalities κi− = κi+ = 0 and
ψi(ai+) = 0 hold for all i. It then follows from the adjoint differential inclusion
that, for every i, ψi(t) = 0 for all t ∈ [ai−, a

i
+]. In particular, the definitions

of the hi± imply that hi+ = hi− = 0 for all i. Then (49) and (52) imply that
π̌i1 = π̌i2 = 0 for all i. Then (31) and (32) imply (since ψ0 = 0) that

πi1 = πi2 = 0 for all i . (56)

Moreover, since ψi(t) ≡ 0 and ψ0 = 0, (43) and (44) imply that

ψ̄i1 = 0 and ψ̄i2 = 0 for all i . (57)

Then (26), (56) and (57) imply that

Ψ̄ i = 0 for all i . (58)

Then (23) implies that Ψ̄ = 0, contradicting the nontriviality of Ψ̄ . This
contradiction shows that γ 6= 0, and our proof is complete.
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11 Path-integral generalized differentials

If n,m ∈ Z+, α : [0, 1]→Rn is a Lipschitz function, and h : [0, 1]→ Rm×n is
integrable, we use h ∗ α to denote the “chronological product” of h and α,
that is, the absolutely continous function β : [0, 1]→Rm given by

β(t) =

∫ t

0

h(s) · α̇(s) ds .

Let n ∈ Z+, and let S be a subset of Rn. We write A(S) to denote the subset
ofC0( [0, 1] ; Rn ) consisting of all absolutely continuous curves α : [0, 1]→ Rn
such that α(0) = 0 and α̇(t) ∈ S for almost all t ∈ [0, 1] .

If C is a convex cone in Rn, and r > 0, we write C(r) = {v ∈ C : ‖v‖ ≤ r}.

Definition 12. Let n,m ∈ Z+, let F : Rn−→−→Rm, and let C be a closed
convex cone in Rn. We say that Λ is a path-integral generalized differential
of F at (0, 0) in the direction of C, and write Λ ∈ PIGD(F,C), if Λ is a
nonempty compact subset of Rm×n, and for every positive real number δ
there exists a number R ∈ ] 0,∞ [ with the property that

(#) for every r ∈ ] 0, R] there exists a map

G∈REG(A(C(r));C0( [0, 1] ; Rm×n )× Rm)

such that
(#.a) h(t)∈Λδ and ‖v‖≤δr whenever α∈A(C(r)), (h, v) ∈ G(α), t ∈ [0, 1],
(#.b) Gr(ΦG) ⊆ Gr(F ), where ΦG is the set-valued map from A(C(r)) to

Rm such that, if x belongs to A(C(r)), then ΦG(x) is the set of all
y ∈Rm for which y = (h ∗ α)(1)+v for some triple (α, h, v)∈Gr(G)
such that α(1)=x. ♦

It then turns out that every GDQ is a PIGD, and every derivate container,
semidifferential, and multidifferential is also a PIGD. Moreover, PIGDs are
intirinsically defined of manifolds, and satisfy all the desirable properties such
as the chain rule (for polyhedral cones) and the directional open mapping
theorem. The resulting version of the maximum principle is thus even more
general than the one involving GDQs.
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