Chattering variations, finitely additive measures, and the nonsmooth
maximum principle with state space constraints

Héctor J. Sussmann

Abstract—We discuss the proof of a version of the ul) is a finite sequencgui,...,uJ ) of control
maximum principle with state space constraints for data with values. ’
very weak regularity properties, using the classical method _
of packets of needle variations (PNVs), as in Pontryagin's If p = Z;‘):l p;j, then one constructs a-parameter
book, but coupling it with a nonclassical theory of multivalued  yariation—the PNV associated tgi—Dby letting =, for

differentials, the so-called “generalized differential quotients”
(GDQs). The key technical point of our argument is the
use of a different type of PNVs, that we call “chattering a. We group the components, of £ into p vectors

€= (e1,...,6p) € RE, be the control defined as follows:

PNVs.” These variations make it possible to get a conclusion gV .. &®) of dimensionsp, .y, by writing
involving finitely additive vector-valued measures of finite ) _ (o j h i 4
total variation. The theory presented here applies to control eV = (e1,...,e,), whereej = ey 4 tp; 1 +i-

dynamics without uniqueness of trajectories (so that the flow 0. We then assign to each padii, j) of indices such

maps are set-valued) and to differential inclusions (so that thatj € {1,...,p} andi € {1,...,p;} the interval
the “differentials” of maps are also set-valued). D@ =W +el+ - +e_th+el+-+e |,
Keywords— Maximum Principle, state constraints, additive so that, iflg] = ¢e1 + ... + ¢, is sufficiently small,

measures then the/ () are pairwise disjoint subintervals of

| INTRODUCTION [a,b], and T} (£) has lengthe] for eachi, j.

c. Finally, we definen® by letting it be the control
obtained from the reference contrgl by substituting
the constant control value! for 7, (t) for t € I} (£).

Since the work of Milyutin and his collaborators in the
1970s, it has been clear that the correct formulation
of the Pontryagin maximum principle with state space
constraints must involve finitely additive vector-valued For a chattering PNV, we will do a similar thing, except
measures of finite total variation. In this paper—whicthat the variation involves in addition a positive-integer
should be regarded as a continuation of'[Wjhere the PparameterN and, fore" € R, ; such thatle] is small
reader will find the definitions of all the technical termsenough, the controlg=" are constructed by
occuring in the stateme_-nt of our main theorem—we focugqy first defining I7(Z) to be, for eachj, the interval
on fhe role of “chatterln.g _PN\is“_ (where “PNV” stand.s 9,47 + |8—-(j)| [, whose length i$€—(j)‘ _ E{+_ ted
for “packet of needle var|at|or_1$ ) in the proof of the main (2) subdividing each/’(£) into N subintervals[j*z(aj”)
result of [1], stated there without proof. Here, we will |20)] ) B
not repeat the rather long list of definitions of [1], and Of, length o SO th&t vag _~<j>1"”’N then
we will instead refer the reader to the paper itself. We — [7(8) = [tj + (0= v
will, however, restate the theorem in full, and will then (3) subdividing eachl?“() into p; subintervals of
outline the proof, focusing on a detailed explanation of the :
main new technical point, namely, how chattering PNVs
are defined and used and how they lead to finitely additiv@nce this is donen=" is the control obtained by
measures. substituting the constant control value! for .(t)
_ whenevert € I7“(&) for somet.

Il CHATTERING PNVS: AN INTRODUCTION In other words, the classical PNV as well as the chat-

In a standard PNV, one is given a “reference controltering one involve the substitution of a contrg! for the

1« : [a,b] — U (where U is the set of control values of reference control on a seft/ () of measures? located

el
Pj

Ej
lengths =, ..., .

our optimal control problem), and one specifies nearf;, but in the classical PNV this set is itself an
(1) a finite sequenceé = (ti,...,t;) of distinct times, interval, whereas in the chattering PN/ (£) is the union
such thata <, <ty <--- <1 <b; of N intervals (&) of length <, evenly distributed on

(2) a sequencei = (u'!),..., u®) such that, for each the intervalz; (). The effect of this variation is that the
index j € {1,...,p}, ul? belongs toU?, that is, trajectories¢=V corresponding to the controls®" can
Research supported in part by NSF Grant DMS01-03901 be well approximated, for largé/, by trajectories of the
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As in [1], we consider dixed time-interval optimal control
problem with state space constraints the form

. THE MAXIMUM PRINCIPLE

minimize w(&(b)) + ff fo(&(t),n(t),t) dt
() € Whi([a, b] X)
ggt)) = f(g(t)7dng() 7)t) a.€.,

subject 1o 2 e(4),£) < 0 for t€a, b] i=1...m,
hj(§(b)) =0 for j=1,... 7,
n()eu,

and areference trajectory-control paif., 7).
We assume that the data 14-tuple

D= (X,WL,m,U,a,b7Q0, vafai'*agahvsvu)

satisfies the following conditions (using “FDNRLS” and
“ppd” for “finite-dimensional normed real linear space“
and “possibly partially defined,” respectively):

(H1) X is a FDNRLSmm € Z,, m € Z4; U is a set,
a,beR,a<b, z,€ X andS C X,

(H2) fo is a ppd function fromX x U x R to R;

(H3) f is a ppd function fromX x U x R to X

H4) g = (g1,---,9m) is anm-tuple of ppd functions
from X x R to R;

(H5) h = (hq,...,hs) is anm-tuple of ppd functions
from X to R;

(H6) ¢ is a ppd function fromX to R;

(H7) U is a set of controllers.

(A controller is a ppd function fronR to U whose domain
iS a nonempty compact interval.)

An admissible controlleiis a member olf. If «, 3 € R
and a < 3, then we uséV!(]a, 3], X) to denote the
space of all absolutely continuous maps [a, §] — X.
A trajectory for a controllern : [«, 5] — U is a map
¢ € Wh([oy, 8], X) such that, for almost everye [o, 3],
(€(t),n(t), t) belongs taDo( ) andé (1) = f(£(¢), n(t), t).
A trajectory-control pair(abbr. TCP) is a paif¢, ) such
thatn is a controller and is a trajectory for. Thedomain
of a TCP(&, n) is the domain of), which is, by definition,
the same as domain @ A TCP (£,n) is admissibleif
neu.

A TCP (&,n) with domain [«, 3] is cost and con-
straint admissibleif (i) (£,n) is admissible, (i) the
function [a, 8] 2 t — fo(&(t),n(t),t) is a. e. defined and

measurable, (iii)ff min (0, fo(g(t),n(t),t)) dt > —oo,
(iv) £(B) € Do(y), and (v)¢ satisfies all our state space
constraints, that is (usinBo(-) for “domain of”),

(CA1) £(a) = 7. and€(B) € SN (m;ﬁ:l Do(h;)
(CA2) (&(t),t) € Do(g;) and g;(&(t),t) < 0 for all
te€la,p],and alli € {1,...,m},
(CA3) h;(¢(B)=0forj=1,...,m
We use ADM (D) and ADM|, (D) to denote the sets

of (i) all cost and constraint admissible TCRs ), and
(iiy all (¢,m) € ADM (D) whose domain iga, b].

It follows that if (€, n) € ADM[LL 3 (D) then the number

J(f n) = +j fo(&(t),n(t),t) dt—called thecost
of (¢, )—|s weII defined and belongs td— oo, +0].
The hypothesis on the reference TQR, n.) is that it

is a cost-minimizer inAD M, ;) (D). In other words,
(H8) (&,mi) € ADMq (D), J(&i,m:) < +o0, and

J (&, ) < J(&,m) for all members(€,n) of
ADM, (D).

The “cost-augmented dynamic’and the “epi-augmented

dynamics”f are the set-valued maps froii x U xR to

R x X such thatDo(f) = Do(f) = Do(fy) N Do(f) and,

for z = (z,u,t) € X xU xR,

£(2) = {(fo(2), f(2))} and f(z) =

(sof is actually single-valued).
We will also use theconstraint indicator maps
Xg, : X xR—R, fori =1,...,m, and theepifuncion
: X —» R, defined as foIIows (whereA' : B +— C”
stands for A is a set-valued map fron® to C"):

o X&(x,t) = 0if gi(z,t) < 0 or (x,t) ¢ Do(g;),

[fo(2), +oo[x{f(2)}

and

X7 (z,t) = [0, 400 [ if g(z,t) >0.
o p(x) ={p(x)+v:veR,v>0}if x € Do(p), and
P(x) =0 if x ¢ Do(p).
Fori e {1,...,m}, we let
o (1) =E(Ea(t), ma(6), 1) and 0% (6)=0  if t € [a, 1],
Avg, ={(z,t) € X x [a,b] : gi(x,t) > 0},

(so theAw,, are the “sets to be avoided”). We then define
K; to be the set of alt € [a, b] such that(é.(t),t) belongs

to the closure ofdv,,. Then K; is obviously a compact
subset offa, b]..

We now make technical hypotheses tn &., 7., and
five new objects called\f, A8, AP, A¢, andC. To state
these hypotheses, we lét.,; denote the set of all
constantU-valued functions defined ofu, b], and define
Ueifap)x = Ucsjap) U {n}. We useT¥(&,,6) to denote
the tube{(z,t) € X x [a,b] : ||z — &.(¢)|| < 0}, and write
fn(.%',t) = f(fCﬂ?(t)at)' fO,n(x7t) = fO(x7n(t)7t)! and
f,(z,t) = f(x,n(t),t). We useL(X) to denote the set
of all linear maps fromX to X.

(H9) For eachn € Ueqp);s-
numberd,, such that
(H9.a) f,(z,t) is defined whenevefzr,t) belongs to
TX (5*7 577)1
(H9.b) the mapf, is co-IBIC onTX (,,4,), and the
function— fo,, is co-ILBILSC orZ X (¢, d,,).
(H10) The numben, can be chosen so that (i) each
function g; is defined on7X(¢.,4,.), and
(i) for eachi € {1,...,m}, t € [a,b], the set
{o€ X :gla,t) >0,z — (0] <5,.}
is relatively open in the
{reX:|lz— &) <6y}

24co-IBIC” and “co-ILBILSC” stand for “co-integrably bounded
integrally continuous” and “co-integrably lower bounded integrally lower
semicontinuous,” respectively. These concepts are defined in [1].

there exist a positive
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(H11) Af is a measurable integrably bounded If Y is a FDNRLS, we useBvadd([a,b],Y) to de-
set-valued map fromfa,b] to X' x L£(X) note the set of all additivé-valued interval set func-
with compact convex values such thattions on [a,b] that are of bounded variation, and write
Af € VGé},’S(f; [a,b]; €., 05 X x R), bvadd([a,b],Y) to denote the subset dBvadd([a,b],Y)

(H12) A® is an m-tuple (A9,...,A9") such that, whose members are the ¢ Bvadd([a,b],Y’) such that
for eachi € {1,...,m}, A% is an upper pu({t}) = 0 for everyt € [a,b]. We let bvadd, ([a,b])
semicontinous set-valued map frofa,b] to denote the set of ajk € bvadd([a,b], R) that are nonneg-
Xt with compact convex values, such thawtive.

A% € VGEEE (X5 6 08, Avy,), If v € bvadd, (Ja,b]) andY is a FDNRLS, we would
(H13) AP is a generalized differential quotiehof h at  like to be able to multiplys by a bounded Borel measur-
(£.(b),h(£.(D))) in the direction ofX. able mapy : [a,b] — Y and obtain a € bvadd([a,b],Y)

(H14) A® is a generalized differential quotient of the such that, formallydu = ~ - dv. It turns out that this is
epifunction at (&, (b), o(£.(b))) in the direction Nnot quite the right thing to do, and that what really can

of X, be done is multiplyr by a “bounded Borel measurable
(H15) C is a limiting Boltyanskii approximating cone pair,” as we now explain. IfZ is any FDNRLS, then
of S at &,(b). every u € bvadd([a,b],Z) has a unique decomposition

In our last hypothesis, we use the abbreviation ETIVN? = Hat,—  fat4 T ey where ., is a continuous (i.e.,
nonatomic) countably additivéZ-valued Borel measure

for “equal-time interval-variational neighborhood,” and as- : :
sume on [a.b], and pq:,—, pat+ are, respectively, left-atomic
) e and right-atomic members ébadd([a,b], Z). (Givent €
(H16) The clasg/ is an ETIVN of 7.. [a,b, and z € Z, the right delta function at ¢ with
We are now almost ready to state our version of th¥alue z is the memben: ; of bvadd((a, b], Z) such that
maximum principle. All we need is a few preliminary 9% (/) = Z if the interval J contains the seft,t + ¢
definitions. for some positives, and 6% ,(J) = 0 otherwisé. A ;i €
First, we define thédamiltonian to be the ppd function bvadd([a,b], Z) is right-atomic if it is the sum of a series
H, from XxUxXxRto R (depending on a real parameterOf right delta functions, converging in the total variation
a) given by Hy (z,u,p,t)=p - f(z,u,t)—afo(z, u, t). norm. Theleft delta functionsé” , are defined in a similar
Next, we uselnt([a,b]) to denote the set of all real W&, fort €a,b], and then it is clear what is meant by a
intervals J such thatJ C [a,b]. (SO J € Int([a,b]) l€ft-atomicu € bvadd([a,b], Z).) Let us define dounded
if and only if J is a connected subset d&,b].) We Mmeasurable pair ofY-valued maps onfa,] to be an
let PDSeq([a,b]) denote the set of all finite sequencesPrdered pairy = (7-,~,) of bounded Borel measurable
of pairwise disjoint members ofnt([a,]), and write Y -valued maps ona,b] such thaty_(t) = () for all
PDSeq#([a,b]) to denote the set of all memberst in the complement of a finite or countable set. Given
(J1,...,Jm) Of PDSeq([a,b]) such thatJ; U---UJ, Such a pairy = (yv-,74), and av € bvaddy([a,b]),
belongs tdnt ([a, b]). If Y is a FDNRLS, dinitely additive the product p = -v & buadd([a,b],Y) is given by
Y-valued interval set function on[a,b] (or “additive # = Hat,— + [at,+ + e, where Hat,—» Hat 4, fe aI€
measure off, b]") is a mapy : Int([a, b]) — Y having the defined, in terms of the canonical decomposition
property that p(J; U~ U Jp) = u(J1) + -+ p(Jy) Y = Vat,— + Var 4+ + Ve, by letting 1. be the product of

wheneverm € Z, m > 0, and (Jy,...,J,,) belongs to Ye With.% or" v, while piar,—, par+ are Obtai”ed by
PDSeq# ([a, b]). Thetotal variation of 1 is the supremum MUltPIYiNg vas, —, vt 1 by - and~y, respectively.
1]l of the real numbers|u(J1)[| + -+ + [[u(Jm)l, We are now, finally, ready to state the main result.

ranging over all(Jy, ..., ) € PDSeq([a,b]). We say
that 12 is of of bounded variationif ||ul|s, < co. We say  1heorem 3.1:Assume that (H1-16) hold, and let
that ;2 is nonnegativeif ¥ = R and uu(J) > 0 for every 1 = i € {1,...,m}: Ki # 0}. Then there exist
J € Int([a, b]). (Then every nonnegative is of bounded ~ 1. @ covectorr € X', a nonnegative real number,
variation and satisfiel||., = u([a, b]).) and anm-tuple A = (A1,..., A\;z) of real numbers,

2. ameasurable mdp, b] > t — (Lo(t), L(t)) € Af(2),

3The complicated expressioﬂéGgL’,g(f‘; [a,b]; €«,0f; X x R) and 3. bounded Borel measurable paiys = (’Yi,’yi) of

vag“gg”’(xgj; €, 0", Avy,) refer, respectively, t(f, the set of alll selections of the set-valued mafié, defined onk;,
fixed-time GDQ variational generators pfalong(¢«, o) in the direction BNl s - _ " )
of X x R and the set of all pointwise robust GDQ variational generators Notice that 6% ,([t,t + ¢]) =z for every positives; hence
of x¢o along (&.,0¢") in the direction of Av,,. These concepts are limj—co 03 ,([t,¢+277]) = 0, while on the other handi; , ({t}) = 0.
defined in [1]. So 67 , is not countably additive.

4Generalized differential quotients (GDQs) and limiting Boltyanski “The productsy— - v and~4 - v are equal, becausg_ — ~+ vanishes
approximating cones are defined in [1]. outside a countable set, and is nonatomic.

5Again, the concept of ETIVN is defined in [1]. What (H16) means is, 8The reason for considering paifs_,~. ) is, of course, that may
essentially, that whenever we consider a packet of needle variations @ntain both a left atom and a right atom at a pejreind in that case one
1+, the controls corresponding to a paramefesre admissible as long should allow these two atoms to be multiplied by tdifferent vectors
as|é] is small enough. Y= (t), v+ (¢).



foriel,
4. amembel® = (LM, ...,
5. a memberl¥ of A?,

Lhm) e (XT)™ of AR,

both augmented vector fieldér,t) — f(x,u,t) and

(x,t) — £z, n.(t),1).
Fix a pair (V,=<) such that (i) V is a nonempty

6. a family {v;};c; of nonnegative finitely additive finite subset ofV, and (ii) < is a total ordering ofV

interval set functions; € bvadd, ([a,b]) such that which is time-compatible, in the sense tiatt) <

support(y;) C K; for everyi € I,
having the property that, if we define; = ~; - v;, and

(1)
whenever(u,t) € V, (v/,t') € V, andt < ¢'. For (V, <),
we define a “packet of chattering needle control variations

let 7 : [a,b] — XT be the unique solution of the adjoint as follows. First lep be the cardinality oV, and letT(V)

Cauchy problem

{470~ T a0t
w(b)=7 — Z;n:l )\jL;‘ —moL?

then the following three conditions are satisfied:
I. the Hamiltonian maximization condition

Hio (&(8), 04(8), (1)) = Hro (&4 (F), u, 7 (2))

wheneveru € U, ¢t € [a,b] are such that
(£.(1),1) is a point of approximate continuityof
both augmented vector fields;, t) — f(x,u,t) and
(2,1) = £(2, 7 (1), 8),
. the transversality condition which asserts that-7
belongs toCT (whereC' is the polar cone o€, i.e.,
CT={we X":w-c<0 whenever c € C}),
the nontriviality condition

||7T||+7To+Z\>\ |+ il > 0.

el

)

Remark 3.2:The premse interpretation of the adjomt

equation (1) is as follows: defing?(t) = —u;([t,b]), so
that $¢ is the “cumulative distribution” ofs; (in the sense
that, for exampleu$?(s) + pi([s,t]) = ué(t) whenever
a < s <t < b), normalized so thap¢(b) = 0. Let

e = 3. ust. Thenw is a solution of (1) if and only
—Z )\jL?—ﬂ'oL@—ﬂ'O

W
b
/ Lo(s)ds
j=1 t

if
b b
+ [ ) =) Ly dst [ ) Loy ds

€ |[a,bl.
— pcd(t), then 7*

m

m(t)—po(t)

if we write
is absolutely

for all ¢
T (t) = m(t)

Equivalently,
(which

continuous) must be a solution of the differential equation

(t) = —7*(t)
terminal valuerr*(b)

- L(t) + moLo(t) — (1) - L(t), with
= W(b):’l_rfzgnzl )\jL?*’]TQL(’O. |

IV. OUTLINE OF THE PROOF OFTHEOREM 3.1

For simplicity, we make the additional assumptidthat
K; # 0 forallie{1,...,m}, so that the sef occurring
in the statement of Theorem 3.1{%,...,m}.

Packets of chatttering needle variationd.et V be
the set of all pairs(u,t) such thatu € U, ¢t € [a,b],
and (&,.(t),t) is a point of approximate continuity of

9This concept is defined in [1]
101t js a trivial exercise to get rid of this assumption.

be the set of all times that occur inV, so thatt € T(V)
if and only if there existsu € U such that(u,t) € V.
Let (¢1,...,¢;) be the strictly increasing sequence of
members ofT'(V). We setty = a, t;4+1 = b, so that the
tj satisfya =ty <t; <ty <--- <ty <tzy1 =0b. Welet
r—mln{tJ+1 —tj:j=1,. ..,p} so thatr < t;41 — t;
forj=1,....p

For each index € {1,...,7}, we useV[{;] to denote
the set of all pairJu,t) € V such thatt = ¢;. We then
definep; to be the cardinality oV [¢;] (sop = ZP 1D05)

and Iet((uj,tj), (u3,t5), .- ( ?J,tj)) be the<-ordered

sequence of members ¥|t;].
We identify the space&R, with the Cartesian product

Ry, xRy, x--- xR, . Hence, if &€= (c1,...,65) €Ry,
we can also write & = (uy,...,E&p), Where
gy =(ef,-.,e) eR,, for j = 1,...,p, so that
E§ = Epi4otp;are fOr je{1,...,p}, £ € {1,...,p;}.
We define

Ry, + ={&= (e1,..., , 0}
and, for each positive real numberwe IetS »(r) be the
simplex{¢' e R, ; : |&] <7}, where|§| ey 4 Ep-

ep) ER,ie; >0forj=1,...

For & € S,(r), we deflne mtervals[(g), for
je{1,....p}, by letting I; (5) [tj,t + 1Ep[. We
remark that the mtervals] (&), for ]E{l ., D}
are contained infa,b) and pairwise disjoint, since
lEpyl < e <F<tjy1—t;. Fooo N € N and
ke{l,...,N}, we define timest}"*(&) € [a,0]
and subintervald " (&) of [a,b] by letting
{év,kﬁdﬁf{Jrkf\(fj)\ ’ I;V,k(g)(iéf Ejy,k_1(g)7£§y,k(g)[7

so the IV*(2), as k varies from 1 to N, constitute
a subdivision of I;(¢€) into N equal subintervals
of length 'E Finally, for each; € {1,...,p},
N € N, k:e{l ,N}, we divide the interval
M@ into p; subintervals IVR4E) of Iength

]

g def

2, by leting VME@OEEF @) + LY
and IJJ_V,kl(_»)def t;vk 1,6~ 1(-»)7tNk 12(5)[ for
éZO,...,pj.

For & € S,(7), N € N, we define a controh®", by
letting »*" be theU-valued function or{a, b] given by

ng’N(t) = uﬁ if te I]N’k’z(g),
NN = () if € [a,B\I(E).
whereI(2) < (J7_, I;(2).



It follows from (H16) that we can pickV-dependent
numbers #V €]0,7] such thatn®™Y € U whenever
|&] < #N . For eaché € S,(7), let N(£) be the set of
all N € N such thatjg] < #V.

Definition 4.1: The set-valued mag" -~ that assigns to
eaché € S,(7) the set{n®" : N e N(¢)} is the packet
of chattering needle control variationgorresponding to
the pair(V, <). [ |

Definition 4.2: The  N-chattering parameter-to-
trajectory  map corresponding to the pai(V, <)
and the positive integerN is the set-valued map
EViN L S, (#N) = C%([a,b], X) that assigns to each z
£e S,(*N) the set EV:5N(&) of all absolutely
continuous maps ¢ :[a,b] — X that satisfy the
conditions (i)¢(a) = z, and (ii) £(¢) = F(£(t), n©N (1),1)
for almost allt € [a, b].

The set-valued magV:~ : S,(7) — C°([a,b], X) that
assigns to each € S,(7) the setlUycpr o EV N (E) is
the combined parameter-to-trajectory magorresponding
to the pair(V, <). [

We now define X R x X xR,, xR;, and
X = (RU{+00}) x X x R,, x R, and introduce set-

Construction of a GDQ of the augmented end-

point map. The crucial point of the proof of
our theorem is to find a GDQ of¢V:< at the
point P, , = (0,, (0.4, éx(D), 0, 0) ) € R, x X in the

direction of the nonnegative orthaRt, , of R,. To do this,
we first construct a s&t of linear maps fronR,, to X'. For
eachi € {1,...,m}, we let M, be the set of all measures
p € bvadd([a,b], XT) such thatu is of the form~ - v, for
some finitely additive probability measureon [a, b] sup-
ported byK; and some bounded Borel measurable pair

of selections of\%:. Forj =1,...,p,{ =1,...,p;, we let
f*() = (z;,t )V f( )Vjoffo( i)
/ fu( ) o—fo( ih Z Wf—Vj,and
Z] 0 — Wj 0 ‘/170
We then let G, = Gy~ be the set of all
5-tuples Z = (Lo, L, p, L?, L*) such that (i)(Lo, L) is
a measurable selection af, (i) g = (i1, ..., ttm) € M
(WhereM = My x---xMy,), (i) L¥ € A®, and, finally,

(iv) LB = (LM ,... Lh») € AP,
For any glven memberZ (Lo, L, p, L¥, L?)
of Gy, we construct a linear mapl? : R, — X

~ zZ _ p Pj ¢ L2
valued maps V<N S, (#V) — X (called the N- by defining £=(2) = 231 Zf:ﬁ SJ'Q?] foreach
chattering augmented endpoint mapsby letting e=(en - ep) = (€)oo E(p) € Ry, where
EV:IN(E) be, for & e S,(7Y), the set of all (L _ My (t,t;) - Zt if t>1;,
4-tuples (zg, z,w,2) € X _such tha_t_, for some trajectory G = 0 if t<t;,
¢ € 2V-=N(2), the following conditions hold: L 2ot [P Lo(s)C M (s)ds i 15T,
) Gio " (2) 0 it ot<t,
€ — Y7
T9 > +/ fo(€),noN (), ¢) dt, (2 Qb7 = (b3 Qe,z,Q Qz,z,s Qb2
r = g(b)7 (3) QFJ21 _ LLPJ'C ( )+<(LLU( )7]
w; > 0 if ie{l,...,m} and Qezz th,L(b)
sup{g:(£(t), ) t € a,b]} >0, (4) 0,23 ! 0,231 0,Z,3,;m
Z _ h(f(b))’ (5) Q] - (Q] 7"'7Qj )7
0,2,3,i 0L
T = 7.d i/
wherew = (wq, ..., wy). In addition, we also define the @ /[a,b] (G dp)
combined augmented parameter-to-trajectory map Qe Z4 (Q@z,m Qe,z,4,m)
corresponding to the pair (V,<) to be the s ST ’
setvalued map EV<:S,(F)—» X such that @777 = L"™-¢(b),
5V’<(g):UNeN(g)S =N () wheneverg € S, (7). for j = 1,...,13, ¢ = 1,...,p5, 1 = 1,....m,
The separation propertyThe crucial property of the 5= 1:- (Here My, : [a,b] x [a,b] — L(X) is

set-valued malﬁV < is the following separation result. In
the statement$ is the subset oft’ given by

S:{(xo,a:,u_}',z):x0<x07*,x65,w<6m,226m},

where(, is, for any v, the origin ofR,, and “% < 0.,
means “the inequalityy; < 0 holds forj = 1,...,m,
if &= (wy,...,wy)."In addition Zo,« IS the reference
cost, so thatrg . = (& (b +f fo(&x(t),m(t),t), and
zo+ € R, because of (H8).

The following fact is then a trivial corollary of the
optimality of our reference trajectory-control pair.

Proposition 4.3: The image £V~ (S,,(F)) does not

intersect the se$. m

the fundamental matrix solution of the linear differential
equationV/ = L-M, soM, is characterized by the integral
condition My (t,s) = idx + [ L(r) - My (r, s) dr.)

We defineG = GV°= to be the set of all linear maps
L2, forall Z € Gy ~.

The following is then the key result.

Lemma 4.4:The setGV-= is a generalized differential
quotient of the augmented endpoint maf:~ at P, , in
the direction ofR .

Once Lemma 4.4 is proved, the main theorem follows

by standard arguments: Proposition 4.3 implies a restricted

form of the theorem, in which all the conditions of the
conclusion are satisfied, except only for the fact that the
inequalities of the Hamiltonian maximization condition



only holds for those pairgu,t) € V; a compactness yields the desired inequalitf.>°(¢9°,e5°) > 0. It then
argument is then used to pass to the limit and obtain orfellows that B is a Cellina continuously approximable
adjoint covectorr and multipliers such that the inequalitiesmap, and by constructioh(e1,¢2) € ©(e1,e2) whenever
hold for all (u,t) € V. L € B(e1,¢e2), showing thatA is indeed a GDQ 0B.)

The proof of Lemma 4.4 is based on a long series of SO let(e1,¢2) be given, and let us prove the existence
estimates, to be described in detail in a forthcoming pape¥f L- Naturally, the case whefi(e;,e;) < 0 is trivial,

Here, we limit ourselves to pointing out why thesmce in this situation any, € A will do. So assume

i €1,€2 1
“chattering variations” are crucial for the proof, and WhymzIt sﬂf’;g zzp)ac>e fg,n;fr'éirt,?a;t c;l(;rm(e:utri\;neéThen V:? <|j tiS

ordinary packets of needle variations (corresponding 1,60 B .

N = 1) do not suffice. This can be understood b)t/%]fégz(lg))é ghn?alrr uer?rtz)er)r@gegcausgg)al’52§(>;-()T))>>|802an(():i

means of the following highly simplified example. Supposé (€.(7) < 0. If we coulld replacets <2 (r) — £.(7) b

p=2andp =1, so we are dealing with a 2-parameter’ >*"" '/ —= = = o . P o1 oo pondef - y
its “linearization” ¢*°2(7) (where ¢**°2(t)=¢e1( (t) +

variation at a single timef, using two control values 3 > 2
ul, u?. Assume, moreover, that: — 1, so there is a £2¢2(1)), we would get the inequalityw, (= (7)) > 0,

single state space constraiptz, ) < 0 and a single set €+ {¢7V*(7), 1) = 0, wherey is the right delta function
M, = M. Also, assume global existence and uniquened 7 With valuew. Sincex € M, the linear mapL given
of trajectories for all possible controls, so for eagk ¢/ PY L(€1,€2) = {€1G1 + €262, 1) belongs toA and satisfies
there exists a unique trajectofy : [a, b] — X with initial L(e1,e2) > 0, as desired.

conditioné”(a) = 7. Even more strongly, assume that all_ 1€ above argument works as long&@s®(7) — &.(7)
the vector fieldgz, t) — f(z,u, ) are in fact constant, so 'S Well approximated by=-*(r). It is easy to see that
F(a,u,t) = f(u), and the reference contrgl is equal to & 7 (f) = &(t) — ¢7=(1) is o(|¢]) as long ast does

a constantu,. Finally, assume thay is independent of MOt belong to the interval (€) = [t,# + &1 + e2]. But
and of clasg!. the approximation fails when € I(&). (For example,

i fLe2(f) = g1 V) + eaVh, but€ere2(t) — £,(¢) = 0.)
Let us see what happens when we use a classical pacﬁeh turns out that the argument can be modified so as
of needle variations, withV = 1. For a vector(eq, €2),

write €512 — €12 and letd( ) be the supremum to make it work even on the bad interva(s). For this
1,62 , €1,€2 urpose, suppose first that the ma fLe2(t) — €,.(¢t
of the numberg;(¢51-°2(t), ), for ¢t € [a,b]}. Then let© burp PP ¢ (t) = &(1)

was actually linear affine ofi(£). Then, if r € I(), we
be the set-valued map that sends e@ghez) to [0,+00[ 1 conclude as before théb, €512 (1) — £,(7)) > 0
if 9(81,52) > 0, and toR if 9(61,82) < 0. Then© is the ’ -

. .~ _modulo a small error. Bu®»=2(7) — &,.(7) is a convex
state space constraint part of the augmented endpoint map. . - Ofc1 =2 () — £, () and e =2 (F-+|&]) — £, (F+

£, and to prove Lemma 4.4 in this special situation we hav ere
, SO at least one of the two numbefs, £51°2(t) —

to show that a GDQ 08 is given by the sefi of all linear Fﬂ)t d c1.62(F _e(f e(r >§0 (2 |

o &«(B) and(w, &2 (t + [€]) — &i (T + [€])) is > 0 (modulo
maps(e1, e2) — (€161 + 262, 1), for € M, whereg; is - 2 spaayi error). On the other hange <2 (t) — &.(), for
the function given by(;(t) = 0 for ¢ <, and(;(t) = Vi \oihy — 7 andt = 7 + |21, is well appproximated by
fort = t. (HereV; = f(“j)_f(“*)’. and(., ) is the pairing -, corresponding vecta:°2(t—), so we conclude that
that sends a curvg: [a,b] — X with left and right limits (w52 (t) — &,(1)) >0 for t = ort = £+ |2]. The
at each point and a measytes bvadd([a,b], XT) to the aréument then proceTeds as before.

integral (¢, )= Jiap S()du(t).) To prove this, it suffices  The purpose of the chattering parametstis to make

to show that, modulo a small error (where “small” meange1.=2(¢) — ¢, (¢), approximately, a linear affine function of
“o(|€1)"), for every sufficiently smalley, e2) € Ry 4 there 4 on (). By choosingV large, in anz-dependent way,
exists a membet of A such thatl(e1,e2) > 0 whenever e achieve the desired approximability by a linear affine
9(51,52) > 0. (Indeed, if we IetB(Sl,Ez) be the set function of¢ up to ano(‘é‘D error.

of all L € A such thatL(e1,e2) > 0 if 6(e1,e2) > 0, To conclude, we remark that in the above sketch
and B(ey,e2) = A if f(e1,e2) < 0, then it would of a proof it is clear that, ift = #, then one has
follow that B is a map with compact convex nonemptyig yse (w, =2 (t—)), since ¢°1°2(¢+) is not a good
values. Furthermorel3 is upper semicontinuous, becauseypproximation tat=: =2 (£) — &.(D). (if t = £+ |2] then one

if {(c}, 5, L¥)}ren is @ sequence in the graph Bfsuch  can just usdw, ¢*12(t)), since¢**=2 is continuous at.)
that the (¢f,£5) converge to a limit(e5°,£5°), then the  This shows that the distinction between left and right delta
compactness afl enables us to pass to a subsequence afghctions matters, thus providing a partial explanation for

assume that thé* converge to a limitL.> € A. To prove  the occurence of finitely additive measures in our setting.
that (¢§°,e5°, L>°) belongs to the graph oB, we have

to show that if0(£5°,£5°) > 0 then L=($°,5°) > 0. REFERENCES
But if 0(°,e°) > 0 then g(&57 52 (t),t) > 0 for [1] Sussmann, H. J., “A very nonsmooth maximum principle with
k _k H ” H
€1 ,65 i state space constraints.” IRroceedings of the 44rd IEEE 2005
somet, so g(¢ (t),t) > 0 for sufflcklen]'gly large £, Conference on Decision and Control (Sevilla, Spain, December 12-
because of (H10). Then, for largg 60(c7,c5) > 0, SO 15, 2005) IEEE Publications, New York, 2005.

L¥(k. e5) > 0, and passage to the limit @ — oo



