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Abstract.
If T = {Tt}t∈R is an aperiodic measure-preserving jointly continuous flow on a compact metric

space Ω endowed with a Borel probability measure m, and G is a compact Lie group with Lie

algebra L, then to each continuous map A : Ω 7→ L we can associate the fundamental matrix
solution Ω × R 3 (ω, t) 7→ XA(ω, t) ∈ G of the family of time-dependent ordinary differential

equations

X′(t) = A(Ttω)(X(t)) , x ∈ G , ω ∈ Ω .

The corresponding skew-product flow T A = {T A
t }t∈R on G × Ω is then defined by letting

T A
t (g, ω) = (XA(ω, t)g, Ttω) for (g, ω) ∈ G× Ω, t ∈ R. The flow T A is measure-preserving on

(G × Ω, νG ⊗m) (where νG is normalized Haar measure on G) and jointly continuous. For a

given closed convex subset S of L, we study the set Cerg(Ω, S) of all continuous maps A : Ω 7→ S

for which the flow T A is ergodic. We develop a new technique to determine a necessary and

sufficient condition for the set Cerg(Ω, S) to be residual. It turns out that there is, associated

to Ω, T , G, and S, a flow T torus on the product T × Ω—where T is a torus associated to S
and G—which is a lift of T . The desired necessary and sufficient condition is then expressed

in terms of this lift: Cerg(Ω, S) is residual if and only if the following three properties are
satisfied: (a) G is connected, (b) S satisfies an algebraic controllability condition, known as the

“dense accessibility property,” and (c) the torus lift T torus is ergodic. As a special case of this,

Cerg(Ω, S) is always residual if T is ergodic, G is connected and S satisfies the “dense strong
accessibility property,” because in this situation the torus lift is just T . Since the dimension

of S can be much smaller than that of L, our result proves that ergodicity is typical even

within very “thin” classes of cocycles. This covers a number of differential equations arising
in mathematical physics, and in particular applies to the widely studied example of the Rabi

oscillator. As a consequence of our ergodicity theorem, it follows that the spectrum of the

quasi-energy operator associated with the cocycle XA is purely continuous for a typical A. In
the case of the Rabi oscillator, this shows that the situation for a generic continuous map A is

quite different from what had been found earlier, using the K.A.M. technique, for some highly

non-generic classes of very special maps, for which the quasi-energy operator had been proved
to have a pure point spectrum.
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2003, and is very grateful to the Institute for its kind hospitality.
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§1. Introduction.

In this paper we develop a new technique to construct ergodic cocycles that arise as the
fundamental matrix solutions to linear differential equations of a given form. These con-
structions are motivated by questions regarding spectral and stability of forced quantum
oscillator systems (in particular the so called “Rabi oscillator,” which models forced oscilla-
tions of a spin 1/2 particle moving under an external stationary stochastic field [BJL,DGP]).
These questions lead to problems about ergodic properties of certain skew-product flows (see
[NJ]). In [NS] we had established that the cocycle arising from a generic Rabi oscillator is
minimal. In this paper we shall prove that in fact it is ergodic. This will help us establish
that typically the spectrum of the “quasi-energy operator” associated with such systems is
only continuous. This fact should be contrasted with a result of [BJL], where the authors
prove the existence of only discrete pure point spectrum using the KAM technique.

As in [NS], our result will in fact be valid for a wide class of time dependent linear
differential systems of a specific given form, where the time dependence is recurrent. Such
systems are given by specifying data Ω, T , m, G, L, S, where

(1) Ω is a compact metric space, m is a Borel probability measure on Ω, and T = {Tt}t∈R
is a jointly continuous aperiodic m-preserving flow (cf. Defs. 2.3, 2.4, 2.5 below) on
Ω,

(2) G is a compact connected Lie group and L is the Lie algebra of G;
(3) S is a subset of L.

(A particular case of the situation considered here arises when the flow is quasi-periodic.)
We use e

G
, ν

G
to denote, respectively, the identity element of G, and Haar measure on

G, normalized so that ν
G
(G) = 1. We write C0(Ω, S) to denote the space of continuous

S-valued maps on Ω. Then every map A ∈ C0(Ω, S) gives rise to a family of ordinary
differential equations (parametrized by points ω ∈ Ω)

(1.1) x′ = A(Ttω)x, x ∈ G, ω ∈ Ω .

Here the meaning of the product notation used in (1.1) is as follows. We identify L with the
tangent space of G at the identity. If g ∈ G, and Rg denotes the right translation by g—i.e.
the map G 3 h 7→ hg ∈ G—then, if v ∈ L, the expression vg denotes the vector (dRg)(v),

so vg is a tangent vector to G at g. It follows that the map G 3 g 7→ vrinv(g)
def
= vg ∈ TG

(where TG is the tangent bundle of G) is a right-invariant vector field on G. Using the
bijection L 3 v 7→ vrinv ∈ Lrinv from L onto the set Lrinv of right-invariant vector fields on
G, we can identify L with Lrinv. Then the right hand side of (1.1) is the value at x of the
right invariant vector field A(Ttω)rinv.

For each fixed ω ∈ Ω, we let R 3 t 7→ XA(ω, t) ∈ G denote the fundamental matrix
solution to (1.1), i.e., the solution x(·) of (1.1) such that x(0) = e

G
. Then the map

XA : Ω× R 7→ G is continuous and satisfies the cocycle identity

(1.2) XA(ω, t+ s) = XA(Ttω, s)XA(ω, t) for all ω ∈ Ω, t, s ∈ R.
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Using XA, we define the skew-product flow TA = {TAt }t∈R on G× Ω, by letting

(1.3) TAt (g, ω) = (XA(ω, t)g, Ttω).

Notice that TA is jointly continuous, and the product measure ν
G
⊗m is invariant under

TA.
If G is a matrix Lie group, say G ⊆ GL(n,C), then each map A gives rise to a one-

parameter group V A = {V At }t∈R of bounded operators on L2(Ω,Cn,m), defined by setting

(1.4) V At f(ω) = XA(ω, t)−1f(Ttω) for f ∈ L2(Ω,Cn,m) , ω ∈ Ω , t ∈ R .

IfG is a subgroup of the unitary group U(n), then V A is a strongly continuous one-parameter
group of unitary operators, i.e., a unitary representation of R. In the Physics literature the
infinitesimal generator of this one-parameter group is called the quasi-energy operator, and
the stability properties of the evolution of such systems are studied through the spectral
properties of this representation. The evolution is regarded as stable if the spectrum of
the quasi-energy operators is discrete pure point. Here we shall show, in Theorem B, that
within very thin classes of linear differential systems of a special form, those for which the
quasi-energy operator has only purely continuous spectrum are generic.

The absence of point spectrum for a quasi-energy operator is very closely related to the
problem of “lifting ergodicity.” The ergodicity lifting problem involves constructing ergodic
skew-product flows TA that are ergodic on (G×Ω, ν

G
⊗m), where the map A is constrained

by the special form of the underlying family of differential equations. In Theorem A we
will determine a necessary and sufficient condition for the flow TA to be ergodic for maps
A that are generic within the class of all maps satisfying the constraints. In particular,
Theorem A will imply that, under suitable hypothesis on the nature of the constraints, the
skew-product flow is ergodic for a generic map A that satisfies the constraints. The spectral
result of Theorem B will then follow as a corollary.

The special class of maps A is described by specifying a fixed subset S of the Lie algebra
L and requiring that the map A be S-valued. The conditions on S that will guarantee
ergodicity of the generic lifts are all properties commonly encountered in control theory,
under various names such as “accessibility” and “strong accessibility” (cf. [SJ], [JS], [S]).

An obvious necessary condition for ergodicity of the generic flows TA is that G be con-
nected. Assuming that G is connected, it turns out that a certain Lie algebraic condition,
called strong accessibility (cf. Definition 2.1 below), is sufficient for the desired ergodicity.
On the other hand, this condition is not necessary, since a weaker condition that we call
“strong dense accessibility” (cf. Definition 2.2) suffices. But even strong dense accessibility
fails to be necessary. It turns out that an even weaker condition, called “dense accessibility”
(cf. Definition 2.2), is necessary for the desired ergodicity. With these observations, it is
clear that he only case where it may be unclear whether generic ergodicity holds in when
the dense accessibility condition is satisfied but the strong dense accessibility condition is
not. In this case, the gap between the two conditions results in the existence of a compact,
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connected, Abelian quotient T of G and a lift of T to the product T × Ω. The necessary
and sufficient condition for generic ergodicity is then that this lift be ergodic.

If the strong dense accessibility condition holds, and a fortiori if strong accessibility holds,
then T is trivial, so the lift of T is just T , and then ergodicity of T implies ergodicity of the
generic lifts. With this condition, the set S can still be very “thin” in L, as in the following
example.

Example. (The Rabi-oscillator.) Consider the system

(1.5) i
dψ

dt
=

(
λ f(t)
f(t) −λ

)
ψ, ψ ∈ C2.

(This is the Schrödinger equation which describes the dynamics of a two-level atom or a
spin 1/2 particle moving under an external magnetic field f(t).) The function f : R → C
is a complex-valued potential, typically quasiperiodic in t, and λ ∈ R is a fixed parameter.
Here the Lie algebra L is su(2,C), the Lie algebra of all 2× 2 skew-hermitian matrices, and

S ≡ Sλ is the set of matrices in L of the form
(
−iλ ia+ b
ia− b iλ

)
, where a, b ∈ R. So S is a

two-dimensional affine subspace of a three dimensional Lie algebra L.
It is easy to verify (see [NS]) that the set Sλ has the strong accessibility property in L.]

§2. Statement of the main results.

If G is a Lie group, and g ∈ G, we use Rg, Lg, Ag, to denote, respectively, the right
translation by g, the left translation by g, and the inner automorphism determined by g, so
that Rg, Lg and Ag are maps from G to G, given by

Rg(x)
def
= xg , Lg(x)

def
= gxG , Ag(x)

def
= gxg−1 ∈ G , if x, g ∈ G .

Clearly, the identities

Ag = LgRg−1 = Rg−1Lg , AgAg′ = Agg′ , RgRg′ = Rg′g , LgLg′ = Lgg′ , LgRg′ = Rg′Lg

hold for every g, g′ ∈ G
We use L(G), e

G
, TgG, TG to denote, respectively, the Lie algebra of G, the identity

element of G, the tangent space of G at a point g ∈ G, and the tangent bundle of G. As
explained in §1, L(G) is, by definition, the tangent space Te

G
G, and we identify L(G) with

the space Lrinv(G) of right-invariant vector fields on G. Furthemore, if v ∈ L(G) = Te
G
G,

then the map G 3 g 7→ vg
def
= dRg(v) ∈ TG is the right-invariant vector field that corresponds

to v under the identification of L(G) with Lrinv(G).
If L is a real Lie algebra, and S is a subset of L, we use Lie(S;L) to denote the Lie

subalgebra of L generated by S. We write

S − S = {x− y | x ∈ S, y ∈ S} ,

and let Lie0(S;L) be the ideal of Lie(S;L) generated by S − S.
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2.1 Definition. A subset S of the Lie algebra L has the accessibility property in L if
Lie(S;L) = L, and the strong accessibility property in L if Lie0(S : L) = L. ♦

If G is a Lie group and S is a subset of L(G), we use Gr(S;G), Gr0(S;G) to denote,
respectively, the connected Lie subgroups of G whose corresponding Lie subalgebras are
Lie(S;L(G)) and Lie0(S;L(G)).

2.2 Definition. If G is a Lie group and S is a subset of the Lie algebra L(G), we say that
S has the dense accessibility property in G if Gr(S;G) is dense in G, and that S has the
strong dense accessibility property in G if Gr0(S;G) is dense in G. ♦

If L is a Lie algebra, S ⊆ L, and s̄ is any member of S, then Lie(S;L) = Lie0(S;L) + Rs̄.
(Indeed, let Λ = Lie0(S;L) + Rs̄. Then Λ is clearly a Lie subalgebra of L, because
[X + rs̄,X ′ + r′s̄] = [X,X ′] + r[s̄, X ′]− r′[X, s̄] whenever X,X ′ ∈ Lie0(S;L) and r, r′ ∈ R,
and [X,X ′], [s̄, X ′], [X, s̄] belong to Lie0(S;L) because X,X ′ ∈ Lie0(S;L), s̄ ∈ Lie(S;L),
and Lie0(S;L) is an ideal of Lie(S;L). Furthemore, S ⊆ Λ, because if s ∈ S then
s = s − s̄ + s̄, and s − s̄ ∈ Lie0(S;L). So Lie(S;L) ⊆ Λ, and then So Lie(S;L) = Λ.)
It follows that

(2.1) Either Lie0(S;L) = Lie(S;L) or dimLie(S;L)/Lie0(S;L) = 1 .

If G is a Lie group and S ⊆ L(G), then

(A) Gr0(S;G) is a normal subgroup of Gr(S;G);
(B) if s̄ is any member of S, then every g ∈ Gr(S;G) can be expressed as a product

g = g0e
ts̄ for some g0 ∈ Gr0(S;G), t ∈ R.

(Indeed, (A) and (B) are obviously true if Lie0(S;L) = Lie(S;L), so we may assume that
Lie(S; R) = Lie0(S;L)⊕ Rs̄. Let H be the set of those g ∈ Gr(S;G) that have the desired
expression. It then follows immediately from the implicit function theorem, applied to
the map Gr0(S;G)× R 3 (g0, t) 7→ g0e

ts̄ ∈ Gr(S;G), that H contains some neighborhood
U of e

G
relative to Gr(S;G). If g, g′ ∈ H, then we can write g = g0e

ts̄, g′ = g′0e
t′s̄,

with g0, g′0 ∈ Gr0(S;G) and t, t′ ∈ R. Then g−1 = ĝ0e
ts̄, where ĝ = ets̄g0e

−ts̄ ∈ Gr0(S;G),
and gg′ = g0e

ts̄g′0e
t′s̄ = g̃0e

(t+t′)s̄, where g̃ = g0(ets̄g′0e
−ts̄) ∈ Gr0(S;G). So g−1 ∈ H and

gg′ ∈ H, showing that H is a subgroup of Gr(S;G). But then H = Gr(S;G), because
Gr(S;G) is connected and H contains a neighborhood of e

G
in Gr(S;G).)

Furthemore,

(2.2) The class of ets̄ modulo Gr0(S;G) is independent of the choice of s̄ ∈ S .

(Indeed, if s, s̃ ∈ S, and ζ(t) = etse−ts̃, then

ζ ′(t) = setse−ts̃ − etss̃e−ts̃ =
(
s− etss̃e−ts

)
ζ(t) =

(
s− dAets(s̃)

)
ζ(t) ∈ Lie0(S;L(G))ζ(t) ,
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so the curve ζ is tangent to the foliation of Gr(S;G) whose leaves are the translates of
Gr0(S;G), and this implies that ζ is entirely contained in one leaf, so ζ(t) ∈ Gr0(S;G) for
all t, since ζ(0) = e

G
.)

Let Gr(S;G), Gr0(S;G) denote, respectively, the closures of Gr(S;G), Gr0(S;G) in G.
Then Gr(S;G) and Gr0(S;G) are closed, connected subgroups of G, and Gr0(S;G) is a
normal subgroup of Gr(S;G). Use [g] to denote, for each g ∈ Gr(S;G), the class of g
modulo Gr0(S;G), so [g] coincides with the right translate Gr0(S;G)g and also with the
left translate gGr0(S;G).

In view of (2.2), if s, s′ ∈ S then etse−ts
′ ∈ Gr0(S;G), so etse−ts

′ ∈ Gr0(S;G) and
then [ets] = [ets

′
]. It follows that if s ∈ S, then {[ets]}t∈R is a one-parameter subgroup of

the quotient Q(S;G)
def
= Gr(S;G)/Gr0(S;G), which does not depend on the choice of s and

is dense in Q(S;G). (The density follows because if [g] ∈ Q(S;G) then g = limj→∞ gj ,
gj ∈ Gr(S;G), and gj = g0,je

tjs, g0,j ∈ Gr0(S;G), so [gj ] = [etjs], and then
[g] = limj→∞[gj ] = limj→∞[etjs].) Therefore the group Q(S;G) is Abelian, because (a) if
S 6= ∅ then Q(S;G) has a dense one-parameter subgroup, and (b) if S is empty then
Gr(S;G) = Gr0(S;G) = {e

G
}, so Q(S;G) is trivial. In the special case when G is compact,

the subgroup Gr(S;G) is compact as well, so Q(S;G) is a compact, connected, Abelian Lie
group, i.e., a torus.

As is customary when a group is Abelian, we use additive rather than multiplicative
notation for the group operation on Q(S;G). If S 6= ∅, we let sS;G be the infinitesimal
generator of the one-parameter subgroup {[ets]}t∈R defined by any s ∈ S. (Equivalently: if
s ∈ S, then s belongs to L(Gr(S;G)), and then sS;G is the class of s modulo L(Gr0(S;G)),
so sS;G ∈ L(Gr(S;G))/L(Gr0(S;G)) ∼ L(Q(S;G)).) If S = ∅, so L(Q(S;G)) = {0}, we let
sS;G = 0. Again, we use additive rather than multiplicative notation, and write tsS;G rather
than etsS;G .

If G is compact, we write TS;G instead of Q(S;G), and use mS;G to denote the dimension
of TS;G, so TS;G is an mS;G-dimensional torus, i.e., a product (R/Z)mS;G of mS;G copies of
the one-dimensional torus R/Z. If we identify TS;G with (R/Z)mS;G by choosing a basis of
L(TS;G), thereby identifying L(TS;G) with RmS;G , then sS;G = (s1, . . . , smS;G), where the
real numbers s1, . . . , smS;G are linearly independent over Q.

2.3 Definition. If X is a set, a flow on X is a one-parameter family T = {Tt}t∈R of maps
X 3 x 7→ Ttx ∈ X such that T0 is the identity map of X and Tt+s = Tt ◦ Ts whenever
t, s ∈ R. If X is a topological space and T = {Tt}t∈R is a flow on X, then T is continuous if
every map Tt is continuous, and T is jointly continuous if the map X×R 3 (x, t) 7→ Ttx ∈ X
is continuous. If (X,B) is a measurable space (that is, X is a set and B is a σ-algebra of
subsets of X), then T is measurable if Tt(E) ∈ B whenever E ∈ B and t ∈ R. If (X,B,m) is a
measure space, then an m-preserving flow on X (or a measure-preserving flow on (X,B,m))
is a measurable flow T = {Tt}t∈R on X maps X 3 x 7→ Ttx ∈ X such that m(TtA) = m(A)
for every A ∈ B, t ∈ R. ♦
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2.4 Definition. A measure-preserving flow T = {Tt}t∈R on a probability space (X,B,m)
is said to be ergodic if, whenever a set A belongs to B and is T -invariant (i.e., such that
m(A∆TtA) = 0 for all t ∈ R, where ∆ denotes symmetric difference), it follows that
m(A) = 0 or m(A) = 1. ♦

2.5 Definition. A flow T = {Tt}t∈R on a probability space (X,B,m) is said to be aperiodic
if there exists a set B ∈ B (the “bad” set) such that m(B) = 0, having the property that
Ttx 6= x whenever x /∈ B and t 6= 0. ♦

If Ω is a topological space, we write BΩ to denote the Borel σ-algebra of Ω. A Borel
probability measure on Ω, is a probability measure defined on the Borel σ-algebra BΩ. A
Borel probability space is a probability space (Ω,F ,m) such that Ω is a topological space
and F is the Borel σ-algebra BΩ, in which case, of course, m is a Borel probability measure
on Ω. The phrase “the Borel probability space (Ω,m)” will mean “the probability space
(Ω,BΩ,m).” A Borel probability space (Ω,BΩ,m) will be said to be metric if Ω is a metric
space, and compact if Ω is a compact.

If Ω is a metric space, then dΩ will denote the distance function of Ω.
If Ω, U are topological spaces, then C0(Ω, U) will denote the space of all continuous

maps from Ω to U . If Ω is compact and U is complete metric then C0(Ω, U) is a complete
metric space, endowed with the supremum distance dsup : C0(Ω, U)× C0(Ω, U) 7→ R given
by dsup(f, g) = sup{dU (f(x), g(x)) : x ∈ Ω}. Clearly, C0(Ω, U) is a Banach space if Ω is
compact and U is a Banach space.

If G is a compact Lie group and S ⊆ L(G), then the torus TS;G is a probability
space, endowed with its normalized Haar measure νTS;G , and we use TTS;G to denote the
flow on TS;G determined by the one-parameter group {tsS;G}t∈R introduced above. So
TTS;G =

{
T

TS;G
t

}
t∈R where, for each t ∈ R, TTS;G

t is the map TS;G 3 τ 7→ τ+tsS;G ∈ TS;G.
It is clear that

(2.3) TTS;G is a jointly continuous, νTS;G -preserving, ergodic flow on T .

2.6 Definition. Let T = {Tt}t∈R be a flow on a set Ω. Let G be a compact Lie group, and
let S be a subset of the Lie algebra L(G). Define

T
TS;G×Ω
t (τ, ω) = (TTS;G

t (τ), Ttω) for τ ∈ TS;G , ω ∈ Ω , t ∈ R .

Then TTS;G×Ω = {TTS;G×Ω
t }t∈R, which is clearly a flow on TS;G×Ω, is called the torus lift

of T determined by the pair (G,S). ♦

It is clear that if T preserves a probability measure m on ω then TTS;G×Ω preserves the
product measure νTS;G ⊗m on TS;G × Ω.
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Our two main results are

Theorem A. Let (Ω,m) be a compact metric Borel probability measure space, and let
T = {Tt}t∈R be a jointly continuous aperiodic m-preserving flow on Ω. Let G be a compact
connected Lie group with Lie algebra L and let S be a nonempty closed convex subset of
L. Let ν

G
be Haar measure on G, normalized so that ν(G) = 1. Then the following three

conditions are equivalent:
(1) The set S has the dense accessibility property in G and the torus lift TTS;G×Ω is

ergodic on the Borel probability space (TS;G × Ω, ν
TS;G

⊗m).
(2) The set

(2.1) Cerg(Ω, S) = {A ∈ C0(Ω, S) : TA is ergodic on (G× Ω, ν
G
⊗m)},

is nonempty.
(3) Cerg(Ω, S) is a residual subset of C0(Ω, S).

and

Theorem B. Assume that the hypothesis of Theorem A, and condition (1) of the conclusion
hold, and suppose in addition that

(1) n is a positive integer,
(2) G is a closed subgroup of the unitary group U(n),

and
(3) G does not fix any ray in the complex projective n-space P (Cn).

Let Ccont(Ω, S) be the set

{A ∈ C0(Ω, S) : the quasi-energy operator of V A has only continuous spectrum}.

Then Ccont(Ω, S) is a residual subset of C0(Ω, S).

The proof of Theorem A will involve a series of constructions based on applying three
general results. The first one is a corollary of the version of Rokhlin’s lemma, due to D.
Lind [L], for continuous-time flows. The second one is a slight generalization of a well
known control theory result that relates the equal-time reachable sets to the accessibility
Lie algebra of a control system. The third one is about approximating the integral of a
function over a compact group by an average of translates of the function. Sections 4, 5 and
6 are devoted to the statements and proofs of these three background results. But first we
turn to the easy proof that Theorem B follows from Thoerem A.

§3. Proof that Theorem A implies Theorem B.

We use the following lemma.
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3.1 Lemma. Suppose that the conditions of Theorem B are satisfied, and let A ∈ C0(Ω, S)
be such that TA is ergodic on (G×Ω, ν

G
⊗m). Then the point spectrum of the one-parameter

group V A is empty.

Proof. Suppose f ∈ L2(Ω,Cn,m) is an eigenvector of V A. Since V A is a unitary one-
parameter group, our assumption implies the existence of a λ ∈ R such that the condition

(V At f)(ω) = eiλtf(ω) for a.e. ω ∈ Ω

holds for all t ∈ R. Consider the map ρ : U(n)× Ω → P (Cn), defined by

ρ(g, ω) = π(g−1f(ω)),

where π : Cn → P (Cn) is the canonical projection onto the projective space. Then, if t ∈ R
and g ∈ U(n), the equalities

ρ(TAt (g, ω)) = ρ
(
XA(ω, t)g, Ttω

)
= π

(
g−1XA(ω, t)−1f(Ttω)

)
= π

(
g−1V At f(ω)

)
= π

(
eiλtg−1f(ω)

)
= π

(
g−1f(ω)

)
= ρ(g, ω)

hold for a.e. ω. Thus (ρ ◦ TAt )(g, ω) = ρ(g, ω) for a.e. (g, ω). Thus ρ is TA-invariant and
hence, by the ergodicity assumption, it is a.e. constant. Thus there is a non-zero vector
v ∈ Cn such that

π(g−1f(ω)) = π(v) for a.e. (g, ω).

In particular, we can pick ω such that

π(g−1f(ω)) = π(v)

for all g in a subset E of G of full measure. Then

π(hv) = π(hg−1f(ω)) = π((gh−1)−1f(ω))

for all h ∈ G and all g ∈ E. Fix g ∈ E. Then the set Ẽ
g

= {h ∈ G : gh−1 ∈ E} is of full
measure, and

π((gh−1)−1f(ω)) = π(v) whenever h ∈ Ẽg ,

because gh−1 ∈ E, and

π((gh−1)−1f(ω)) = π(hv) whenever h ∈ Ẽg ,

because g ∈ E. Therefore π(hv) = π(v) for all h ∈ Ẽ
g
, and then π(hv) = π(v) for all h ∈ G,

since Ẽg is of full measure. Hence the stabilizer of this fixed ray is all of G, contradicting
Assumption (6) of Theorem B. ♦
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§4. Background results: Rokhlin towers and Lind’s theorem.

The first background result—stated below as Proposition 4.2—will be a corollary of a
theorem of D. Lind (see [L]) which extends the classical lemma of Rokhlin for aperiodic
measure-preserving transformations to aperiodic, measure-preserving R-actions. We first
review Lind’s theorem, for which purpose we need to introduce some more notations.

If N ∈ R, N > 0, we use Bor
N

, LebN , to denote, respectively, the σ-algebras of Borel- and
Lebesgue-measurable subsets of the interval [0, N ], and bor

N
, leb

N
to denote the normalized

Borel and Lebesgue measures on [0, N ], so that bor
N

: Bor
N
7→ R, leb

N
: Leb

N
7→ R,

bor
N

(E) = |E|
N whenever E ∈ Bor

N
, and leb

N
(E) = |E|

N whenever E ∈ Leb
N

, where | · | is
the usual Lebesgue measure on R.

If (X,B,m) is a probability space, then B̂m is the m-completion of the σ-algebra B, i.e.,
the set of all E ⊆ X such that E = B ∪N for some B ∈ B and some N such that N ⊆ N ′

for an N ′ ∈ B for which m(N ′) = 0. We use m̂ to denote the natural extension of m to B̂m.
The probability space (X, B̂m, m̂) is the completion of (X,B,m).

If (X1,B1,m1), (X2,B2,m2) are probability spaces, then (X1,B1,m1)× (X2,B2,m2) will
denote the usual product probability space (X1×X2,B1⊗B2,m1⊗m2), where B1⊗B2 is the
σ-algebra of subsets ofX1×X2 generated by the products E1×E2, for E1 ∈ B1, E2 ∈ B2, and
m1 ⊗m2 is the product measure. We will then write (X1,B1,m1)×̂(X2,B2,m2) to denote
the completed product, i.e., the completion of (X1,B1,m1)× (X2,B2,m2). Therefore,

(4.1) (X1,B1,m1)×̂(X2,B2,m2)
def
= (X1×X2, B̂m, m̂) , where B = B1⊗B2 , m = m1⊗m2 .

If (X,B) is a measurable space, and E ∈ B, then BdE is the restriction of B to E, i.e.,
the set {S ∈ B : S ⊆ E}. Then (E,BdE) is a measurable space as well.

If (X,B,m) is a probability space, E ∈ B, and m(E) > 0, md
nrm

E denotes the normalized
restriction of m to E, that is, the function mdnrmE : BdE 7→ R given by mdnrmE(S) = m(S)

m(E)

for S ∈ BdE. Then (E,BdE,mdnrmE) is a probability space as well. ♦

Recall that a Lebesgue probability space is a probability space (X,B,m) such that there
exist

(a) an X0 ∈ B such that m(X0) = 0,
(b) a finite or countable subset S of X such that {s} ∈ B and m({s}) > 0 whenever

s ∈ S,
(c) a real number a such that 0 ≤ a and a+

∑
s∈Sm({s}) = 1,

(d) a subset I0 of the interval I = [0, a] such that λ(I0) = 0,
and

(e) a bijective map ϕ from X\(X0 ∪ S) onto I\I0, such that ϕ and ϕ−1 are measurable
and λ(ϕ(E)) = m(E) for every E such that E ⊆ X\(X0 ∪ S) and E ∈ B.

It was proved by von Neumann in [vN] (cf. also Billingsley [BI], p. 69), that ifX is a complete
separable metric space, B is the Borel σ-algebra of X, and m is a Borel probability measure
on X, then (X, B̂m, m̂) is a Lebesgue space.

Lind’s result is then as follows.
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Theorem 4.1. Assume that (X,B,m) is a Lebesgue space and T = {Tt}t∈R is a jointly
measurable, m-preserving, aperiodic flow on X. Then, given N ∈ N and ε > 0 there exists
a set F ⊆ X such that

(1) the sets F and T[0,N ](F )
def
= ∪ {Tt(F ) : 0 ≤ t ≤ N} belong to B;

(2) TtF ∩ TsF = ∅ whenever t 6= s, t, s ∈ [0, N ];
(3) m(T[0,N ](F )) > 1− ε;
(4) there exist a σ-algebra B̃ of subsets of F , and a probability measure m̃ defined on

B̃, such that the bijective map ϕ : F × [0, N ] 7→ T[0,N ](F ) defined by ϕ(x, t) = Ttx

is an isomorphism from the probability space (F, B̃, m̃)×̂([0, N ], Bor
N
, bor

N
) to the

probability space
(
T[0,N ](F ),BdT[0,N ](F ),mdnrmT[0,N ](F )

)
. ♦

We will use Lind’s theorem in the form of the following corollary.

Proposition 4.2. Assume that Ω is a compact metric space, m is a Borel probability
measure on Ω, and T = {Tt}t∈R is a jointly continuous, m-preserving, aperiodic flow on X.
Then, given N ∈ N and ε > 0 there exists a compact subset E ⊆ X such that

(1) TtE ∩ TsE = ∅ whenever t 6= s, t, s ∈ [0, N ];

(2) m(T[0,N ](E)) > 1− ε (where T[0,N ](E)
def
= ∪ {Tt(E) : 0 ≤ t ≤ N});

(3) there exists a unique Borel probability measure m̌ on E having the property that
the homeomorphism ϕ : E × [0, N ] 7→ T[0,N ](E) defined by ϕ(x, t) = Ttx is an
isomorphism from the probability space (E × [0, N ], m̌ ⊗ bor

N
) to the probability

space
(
T[0,N ](E),md

nrm
T[0,N ](E)

)
.

Proof. We assume, as we clearly may without loss of generality, that ε < 1.
Let B be the Borel σ-algebra BΩ. By von Neumann’s theorem, the completed probability

space (Ω, B̂m, m̂) is a Lebesgue space. Let B# be the m̃-completion of B̃.
Apply Theorem 5.2 with ε

2 instead of ε, and get F , B̃, m̃ having the properties of the
conclusion of that theorem. Let S1 = F × [0, N ], S2 = T[0,N ](F ), and let B1, B2, be,
respectively, the m̃⊗ bor

N
-completion of the σ-algebra B̃⊗Bor

N
, and the σ-algebra B̂mdS2.

Write m1, m1 to denote, respectively, the natural extension of m̃ ⊗ bor
N

to B1, and the
measure m̂d

nrm
S2, so that m2(S) = m̂(S)

m̂(S2)
whenever S ∈ B̂m and S ⊆ S2.

Then the bijective map ϕ : S1 7→ S2 is a B1-B2-isomorphism, in the sense that if B ⊆ S1

then B ∈ B1 if and only if ϕ(B) ∈ B2.
We claim that the inclusion map ι : F × [0, N ] 7→ Ω× [0, N ] is B1-to-Borel measurable, in

the sense that if E is a Borel subset of Ω× [0, N ], then E ∩ (F × [0, N ]) ∈ B1. To see this,
observe that ι = Ψ ◦Θ ◦ Φ, where

(a) Φ is the map F × [0, N ] 3 (ω, t) 7→ (Ttω, t) ∈ S2 × [0, N ],
(b) Θ is the inclusion map from S2 × [0, N ] to Ω× [0, N ],

and
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(c) Ψ is the map Ω× [0, N ] 3 (ω, t) 7→ (T−tω, t) ∈ Ω× [0, N ].

The map Φ is given by Φ(ω, t) = (ϕ(ω, t), t). It then follows easily that

(A) If E ∈ B2 ⊗BorN then Φ−1(E) ∈ B1.

(Indeed, it suffices to prove this if E = E′ × E′′, E′ ∈ B2, E′′ ∈ BorN . But in this case

Φ−1(E) = {(ω, t) ∈ F × [0, N ] : ϕ(ω, t) ∈ E′, t ∈ E′′} = ϕ−1(E′) ∩ F × E′′ ,

so Φ−1(E) ∈ B1.) Furthermore,

(B) The inclusion map Θ is measurable, i.e., if E ∈ B ⊗BorN then E ∩ (S2 × [0, N ])
belongs to B2 ⊗BorN .

(Again, it suffices to prove this if E = E′ × E′′, E′ ∈ B, E′′ ∈ BorN , and in this case
E ∩ (S2× [0, N ]) = (E′ ∩S2)×E′′, which clearly belongs to B2⊗BorN , since E′ ∩S2 ∈ B2,
because S2 ∈ B̂m.) Finally, Ψ is continuous, so

(C) Ψ−1(E) ∈ B ⊗BorNwhenever E ∈ B ⊗BorN .

Combining (A), (B), and (C), we find that ι is measurable, and our claim is proved.
Now, given a positive integer k, we can find a finite partitionW1,k, . . . ,Ws̄(k),k of Ω×[0, N ]

into Borel subsets whose diameter—with respect to the distance function D on Ω × [0, N ]
given by D((ω, t), (ω′, t′)) = dΩ(ω, ω′) + |t − t′|—is not greater than 2−k. After relabeling,
we may assume that there exists ŝ(k) ∈ {1, . . . , s̄(k)} such that Ws,k ∩ (F × [0, N ]) 6= ∅
for s = 1, . . . , ŝ(k) and Ws,k ∩ (F × [0, N ]) = ∅ for s = ŝ(k) + 1, . . . , s̄(k). If we define
Vs,k = Ws,k ∩ (F × [0, N ]) for s = 1, . . . , ŝ(k), then (V1,k, . . . , Vŝ(k),k) is a partition of
F × [0, N ] into nonempty sets of diameter not greater than 2−k, and the fact that ι is
measurable implies that the Vs,k belong to B1. Let Xs,k = ϕ(Vs,k), so (X1,k, . . . , Xŝ(k),k) is
a partition of S2 for each k. Since ϕ is a B1-B2-isomorphism, the sets Xs,k belong to B2.
Using the regularity of the measure m̂, we can find compact sets Ks,k such that Ks,k ⊆ Xs,k

and m̂(Xs,k\Ks,k) < ŝ(k)−12−1−kε. Let K∗
k = ∪ŝ(k)s=1Ksk, so K∗

k is a compact subset of S2

such that m̂(S2\K∗
k) ≤ 2−1−kε. Let K∗ = ∩∞k=1K

∗
k . Then K∗ is a compact subset of S2

such that m̂(S2\K∗) ≤ ε
2 . Since m̂(S2) > 1− ε

2 , we conclude that m̂(K∗) > 1− ε.
Pick points vs,k ∈ Vs,k, and define ψk : K∗

k 7→ S1 by letting ψ(ω) = vs,k if ω ∈ Ks,k.
Then ψk is continuous on K∗

k , and D(ϕ−1(ω), ψk(ω)) ≤ 21−k for all ω ∈ K∗
k . It follows that

all the maps ψk are continuous on K∗. Since the ψk converge uniformly to ϕ−1 on K∗,
we conclude that ϕ−1 is continuous on K∗. Hence E∗

def
= ϕ−1(K∗) is a compact subset of

F × [0, N ]. Furthermore, E∗ ∈ B1 (because K∗ ∈ B and K∗ ⊆ S2, so K∗ ∈ B2, and then
E∗ ∈ B1, since ϕ is a B1-B2-isomorphism).

Let E be the image of E∗ under the projection (ω, t) 7→ ω. Then E is a compact subset
of F , and E∗ ⊆ E× [0, N ]. Furthermore, the set K = ϕ(E× [0, N ]) = T[0,N ](E) is compact,
since ϕ is continuous. Therefore K ∈ B2, and then E× [0, N ] ∈ B1. Since K∗ ⊆ K, we have
m(K) = m̂(K) ≥ m̂(K∗) > 1− ε. It is clear that the sets TtE, for 0 ≤ t ≤ N , are pairwise
disjoint, since the TtF are pairwise disjoint and E ⊆ F .
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Finally, we construct the Borel measure m̌. For this purpose, we first show that the Borel
σ-algebra BE of E is contained in B#. To see this, observe that if E′ is a compact subset of
E, then E′ × [0, N ] is compact, so ϕ(E′ × [0, N ]) is compact, and then ϕ(E′ × [0, N ]) ∈ B2,
from which it follows that E′ = E′ × [0, N ]) ∈ B1. It follows that for almost every t the
section E′t = {ω : (ω, t) ∈ E′ belongs to B#. But E′t = E′ for all t, and then E′ ∈ B#. It
follows that every compact subset of E is in B#, and then BE ⊆ B#, as stated.

We can now define a finite Borel measure µ on E by restricting to BE the natural extension
m̃# of m̃ to B#. Then

µ(E) = m1(E × [0, N ]) = m2(K) =
m̂(K)
m̂(S2)

>
1− ε

m̂(S2)
≥ 1− ε > 0 .

It is therefore possible to normalize µ and define a Borel probability measure m̌ on E by
letting m̌(A) = µ(A)

µ(E) for A ∈ BE .
It is clear that ϕ is a homeomorphism from E × [0, N ] onto K, since ϕ is a continuous

bijection and E × [0, N ] is compact. Furthermore, the Borel σ-algebra of E × [0, N ] is
the product BE ⊗ Bor

N
. Hence the restriction ψ of ϕ to E × [0, N ] is a BE ⊗ Bor

N
-BK-

isomorphism. To conclude our proof, we have to show that (m̌ ⊗ bor
N

)(A) = m(ψ(A))
m(K)

whenever A ∈ BE ⊗ Bor
N

. Clearly, it suffices to prove this if A = X × Y , where X is a
Borel subset of E and Y is a Borel subset of [0, N ]. In that case, X ∈ B#, and

(m̌⊗ bor
N

)(A) =
λ(Y )µ(X)
Nµ(E)

=
λ(Y )m̃#(X)
Nµ(E)

=
(m̃# ⊗ bor

N
)(X × Y )

µ(E)
=
m1(A)
µ(E)

.

On the other hand, m1(A) = m2(ψ(A)), and µ(E) = m1(E × [0, N ]) = m2(K). Therefore

(m̌⊗ bor
N

)(A) =
m2(ψ(A)
m2(K)

=
m̂(ψ(A))
m̂(S2)

m̂(K)
m̂(S2)

=
m̂(ψ(A))
m̂(K)

=
m(ψ(A))
m(K)

,

and our proof is complete. ♦

The set F in Theorem is 4.1 a “transversal” to the flow and m̃ is a “transversal measure”
induced by m on F . The family of sets {TtF}t∈[0,N ] is known as a Rokhlin tower of height N ,
and the sets F , T[0,N ](F ) are, respectively, the base and the strip of the tower. Proposition
4.2 says that in the case of a compact metric space the transversal (i.e., the base of the
tower) can be chosen to be a compact set (in which case of course the strip will be compact
as well), and the transversal measure can be chosen to be a Borel probability measure.

§5. Background results on accessibility.

In this section G is a connected Lie group, L is its Lie algebra, S is a nonempty subset of L,
Lie(S;L), Lie0(S;L) are the Lie subalgebras of L defined in §2, and Gr(S;G), Gr0(S;G) are
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the corresponding connected Lie subgroups of G. We assume L is endowed with a Euclidean
inner product and its corresponding norm.

Then Gr0(S;G) is a normal subgroup of Gr(S;G), and one of the following possibilities
occurs:

(1) Lie0(S;L) = Lie(S;L) and Gr0(S;G) = Gr(S;G),
(2) dimLie0(S;L) = dimLie(S;L)−1, and Gr0(S;G) has codimension one in Gr(S;G)

and is dense in Gr(S;G),
(3) dimLie0(S;L) = dimLie(S;L)−1, Gr0(S;G) has codimension one in Gr(S;G) and

is closed in Gr(S;G), and the quotient Gr(S;G)/Gr0(S;G) is isomorphic to S1,
(4) dimLie0(S;L) = dimLie(S;L)−1, Gr0(S;G) has codimension one in Gr(S;G) and

is closed in Gr(S;G), and the quotient Gr(S;G)/Gr0(S;G) is isomorphic to R.

5.1 Definition. Given a, b ∈ R such that b > a, an S-valued control on the interval [a, b]
is a Lebesgue integrable map η : [a, b] 7→ S. ♦

Naturally, then, L1([a, b], S) is the set of all S-valued controls on [a, b], and it is a metric
space endowed with the distance obtained by restricting the distance function of the Banach
space L1([, b],L). Clearly, if S is closed and convex in L, then L1([a, b], S) is a closed convex
subset of L1([a, b],L).

If η ∈ L1([a, b], S) is a control, we let Ξη denote the fundamental solution of the ordinary
differential equation

(5.1) g′(t) = η(t) · g(t) .

In other words, [a, b] × [a, b] 3 (t, s) 7→ Ξη(t, s) ∈ G is the map characterized by the fact
that for each s ∈ [a, b] the map [a, b] 3 t 7→ Ξη(t, s) is absolutely continuous and satisfies

(5.2)
{
∂Ξη

∂t (t, s) = η(t)Ξη(t, s) for a.e. t ∈ [a, b],
Ξη(s, s) = e

G
.

The existence and uniqueness of Ξη follows from standard facts about ordinary differential
equations. (Local existence and global uniqueness of the solutions of (5.2) follow because
the right-hand side is measurable with respect to t and locally Lipschitz with respect to g
with an integrable Lipschitz constant. Global existence is a consequence of the translation
invariance of (5.2), as follows. We can fix a compact neighborhood K of e

G
and a positive

number α such that the solution ξη of (5.1) with initial condition ξ(a) = e
G

can never leave
K as long as ‖η‖L1 ≤ α. This implies that ξη exists globally on [a, b] if ‖η‖L1 ≤ α. Then,
if η : [a, b] 7→ S is an arbitrary control, we can divide the interval [a, b] into subintervals
[t0, t1], [t1, t2], . . . , [tk−1, tk], with t0 = a, tk = b such that the restriction ηi of η to [ti−1, ti]
has L1 norm not greater than α. If we then define ξ : [a, b] 7→ G inductively by letting
ξ(t) = ξηi(t)ξ(ti−1) for ti−1 < t ≤ ti, starting with ξ(t0) = e

G
, we see that ξ is a solution of

(5.3) on [a, b] such that ξ(a) = e
G
.)
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Given s, r ∈ [a, b], both functions [a, b] 3 t 7→ Ξη(t, s)Ξη(s, r) and [a, b] 3 t 7→ Ξη(t, r) are
solutions of (5.1) which take the value Ξη(s, r) for t = s. Hence these two solutions coincide,
which means that

(5.3) Ξη(t, r) = Ξη(t, s)Ξη(s, r) whenever t, s, r ∈ [a, b] .

In particular, if we take r = t and use the fact that Ξη(t, t) = e
G
, we find

(5.4) Ξη(s, t) = Ξη(t, s)−1 whenever t, s ∈ [a, b] .

Also, Ξη(t, s) = Ξη(t, a)Ξη(a, s) = Ξη(t, a)Ξη(s, a)−1 = ξη(t)ξη(s)−1, so

(5.5) Ξη(t, s) = ξη(t)ξη(s)−1 whenever t, s ∈ [a, b] .

Furthermore, since η is S-valued,

(5.6) Ξη(t, s) ∈ Gr(S;G) whenever t, s ∈ [a, b] .

In addition, we can compare points accessible at a given time, and show that

(5.7) if η1, η2 ∈ L1([a, b], S) then ξη1(t)
(
ξη2(t)

)−1

∈ Gr0(S;G) whenever t ∈ [a, b] .

To see this, we first remark that

(5.8) if g ∈ Gr(S;G) and s ∈ S , then gsg−1 − s ∈ Lie0(S;L) .

Indeed, etuse−tu − s ∈ Lie0(S;L) if u ∈ S, because (a) etuse−tu − s =
∫ t
0
eru[u, s]e−rudr,

(b) [u, s] = [u, s− u], so [u, s] ∈ Lie0(S;L) because s− u ∈ Lie0(S;L) and Lie0(S;L) is an
ideal of Lie(S;L), and (c) eru[u, s]e−ru ∈ Lie0(S;L) for each r, because [u, s] ∈ Lie0(S;L),
Lie0(S;L) is an ideal of Lie(S;L), and eru[u, s]e−ru = er adu [u, s]. It then follows by
induction that gsg−1 − s ∈ Lie0(S;L) if s ∈ S, g = et1u1et2u2 · · · etmum , u1, u2, . . . , um ∈ S
and t1, t2, . . . , tm ∈ R, because

gsg−1 − s = et1u1(hsh−1 − s)e−t1u1 + et1u1se−t1u1 − s , where h = et2u2 · · · etmum .

Since every g ∈ Lie(S;L) can be expressed as a product et1u1et2u2 · · · etmum as above, (5.8)
follows.

Now fix s ∈ [a, b], and let ζs(t) = Ξη1(t, s)Ξη2(t, s)−1. Then Ξη1(t, s) = ζs(t)Ξη2(t, s), so

η1(t)ζs(t)Ξη2(t, s) = η1(t)Ξη1(t, s)

=
∂Ξη1

∂t
(t, s)

=
dζs
dt

(t)Ξη2(t, s) + ζs(t)
∂Ξη2

∂t
(t, s)

=
dζs
dt

(t)Ξη2(t, s) + ζs(t)η2(t)Ξη2(t, s)

=
dζs
dt

(t)Ξη2(t, s) + ζs(t)η2(t)ζs(t)−1ζs(t)Ξη2(t, s)

=
dζs
dt

(t)Ξη2(t, s) + ζs(t)η2(t)ζs(t)−1ζs(t)Ξη2(t, s)
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from which it follows that

(5.9)
dζs
dt

(t) = θs(t)ζs(t) , where θs(t) = η1(t)− ζs(t)η2(t)ζs(t)−1 .

Since θs(t) = η1(t)−η2(t)−
(
ζs(t)η2(t)ζs(t)−1−η2(t)

)
, (5.8) implies that θs(t) ∈ Lie0(S;G)

for every t. It then follows from (5.9) that ζs(t) ∈ Gr0(S;G) for every t, since ζs(s) = e
G
,

and (5.7) is proved.
A trivial consequence of (5.7) is the fact that etse−ts

′ ∈ Gr0(S;G) whenever s, s′ ∈ S and
t ∈ R. Hence Gr0(S;G)etse−ts

′
= Gr0(S;G), so Gr0(S;G)ets = Gr0(S;G)ets

′
. Further-

more, Gr0(S;G)ets = etsGr0(S;G) because Gr0(S;G) is a normal subgroup of Gr(S;G).
Hence the left translate etsGr0(S;G) coincides with the right translate Gr0(S;G)ets and
does not depend on s. We will use Grt(S;G) to denote the translate Gr0(S;G)ets for s ∈ S.
It then follows from (5.7) (taking η1 = η, and letting η2 be a constant control) that

(5.10) if η ∈ L1([a, b], S) then ξη(t) ∈ Grt−a(S;G) whenever t ∈ [a, b] .

Finally, we will need the fact that

(5.11) the map L1([a, b], S)× [a, b]× [a, b] 3 (η, t, s) 7→ Ξη(t, s) ∈ G is continuous.

(To prove this, it suffices to show that if {ηk}∞k=1 is a sequence of controls on [a, b] that
converges in L1 to a control η∞, then the trajectories ξη

k

converge uniformly to ξη
∞

, since
once this is proved the uniform convergence of Ξη

k

to Ξη
∞

on [a, b] follows from the formula
Ξη

k

(t, s) = ξη
k

(t)ξη
k

(s)−1. Using right invariance as before, it suffices to consider the case
when the L1 norms of all the ηk are bounded by a constant α such that all the trajectories
ξη

k

are contained in a compact neighborhood K of e
G

which is a subset of the domain U
of a cubic coordinate chart. If X1, . . . , Xn is a basis of L, then the vector fields Xj can be
regarded, on U , as smooth Rn-valued functions of g ∈ [−1, 1]n. Then ηk(t) =

∑n
i=1 η

k
i (t)Xi,

where the functions ηki are integrable, and each trajectory ξη
k

has a time derivative bounded
by C‖ηk(t)‖, for some constant C. To prove that ξη

k → ξη
∞

uniformly, it suffices to take an
arbitrary subsequence {ξηk(`)} and prove that it has a subsequence {ξηk(`(j))} that converges
uniformly to ξη

∞
. Given the sequence {ξηk(`)}, pick a subsequence {ξηk(`(j))} such that

‖ηk(`(j)) − η∞‖ ≤ 2−j . Then the function

[a, b] 3 t 7→ ψ(t)
def
= ‖η∞(t)‖+

∞∑
j=1

‖ηk(`(j))(t)− η∞(t)‖

is integrable, and ‖ηk(`(j))(t)‖ ≤ ψ(t) for all t and all j. Therefore the sequence {ξηk(`(j))}∞j=1

is bounded and equicontinuous, so we can extract a uniformly convergent subsequence, and
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then it follows by standard arguments that the limit ξ of this subsequence must be a solution
of (5.1) for η = η∞. Hence ξ = ξη

∞
, completing the proof.)

We now study perturbations of continuous controls, If η ∈ C0([a, b], S)—i.e., if η is a
continuous control—and δ > 0, we use NS(η, δ) to denote the open δ-neighborhood of η in
C0([a, b], S), that is,

NS(η, δ) = {η̃ ∈ C0([a, b], S) : sup
t∈[a,b]

‖η̃(t)− η(t)‖ < δ},

so the sets NS(η, δ), as δ varies over all positive numbers, form a fundamental system of
neighborhoods of the control η in C0([a, b], S). We use N0

S(η, δ) to denote the set of all η̃ in
NS(η, δ) such that η̃ − η vanishes on [a, a+ ε] ∪ [b− ε, b] for some positive ε.

5.2 Definition. Given a set N of controls defined on a fixed interval of the form [0, T ],
and a g ∈ G, the N -reachable set from g is the subset R(N , g) of G defined by

(5.12) R(N , g)def= {ξη(T )g : η ∈ N} . ♦

Clearly, the family {R(N , g)}g∈G of N -reachable sets satisfies the following right-invariance
property:

(5.13) R(N , gg′) = R(N , g)g′ whenever g, g′ ∈ G .

In particular, the N -reachable set from a given g ∈ G is the right translate by g of the
N -reachable set from e

G
.

Furthermore, (5.10) implies that

(5.14) R(N , e
G
) ⊆ Gr

T
(S;G) whenever N ⊆ L1([0, T ], S) .

The following assertion is then the first of the two main results of this section.

Proposition 5.3. Let G be a Lie group with Lie algebra L, and let S be a nonempty closed
convex subset of L. Let T > 0, and let F be a compact subset of C0([0, T ], S). Then given
δ̄ > 0 there exist a neighbourhood W in Gr0(S;G) of the identity e

G
of G, depending on

δ̄ but independent of η ∈ F , such that for every η ∈ F the reachable set R(N0
S(η, δ̄), e

G
)

contains some right translate of W by a member of Gr(S;G).

Proof. For each k ∈ N, define a function νk : Rk 7→ R by letting νk(t1, . . . , tk) = t1+ · · ·+tk.
For each t̄ ∈ Rk, let Ak(t̄) = {t ∈ Rk : νk(t) = νk(t̄)}. Then Ak(t̄) is an affine subspace of
Rk of dimension k − 1. For each k-tuple s = (s1, . . . , sk) of members of S, let µk,s be the
map from Rk to Gr(S;G) given by

(5.15) µk,s(t1, . . . , tk) = et1s1et2s2 · · · etksk .
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For each k ∈ N, s ∈ Sk, t ∈ Rk, we let ρ(k, s, t), ρ0(k, s, t) be, respectively, the rank at
t of the differential dµk,s, and the rank at t of the differential dµk,s,0,t of the restriction
µk,s,0,t of µk,s to Ak(t). Let ρ̄ (resp. ρ̄0) be the maximum of all the numbers ρ(k, s, t) (resp.
ρ0(k, s, t)) for all possible (k, s, t). We will show that

(5.16) ρ̄ = dimGr(S;G) and ρ̄0 = dimGr0(S;G) .

To prove that ρ̄ = dimGr(S;G), we pick (k̄, s̄, t̄) such that ρ(k̄, s̄, t̄) = ρ̄. Then in particular
the map Rk 3 t 7→ µk̄,s̄(t) ∈ Gr(S;G) has constant rank ρ̄ near t̄, so µk̄,s̄(t) maps some
open neighborhood N of t̄ submersively onto a ρ̄-dimensional embedded submanifold M of
Gr(S;G). It follows that every member of Lie(S;L)—regarded as a right-invariant vector
field on Gr(S;G)—is tangent to M at every point of M . (Indeed, the set of vector fields
X on Gr(S;G) that are tangent to M is a Lie algebra, and the Lie subalgebra of Lie(S;L)
generated by S is Lie(S;L). So it suffices to prove that every member of S is tangent to
M . If s ∈ S is not tangent to M , we may pick t̃ ∈ N such that the vector s(µk̄,s̄(t̃)) is not
tangent to M at µk̄,s̄(t̃). But then, if s̄ = (s̄1, . . . , s̄k̄), and t̃ = (t̃1, . . . , t̃k̄) the map

Rk̄+1 3 (t1, . . . , tk, t) 7→ et1s̄1et2s̄2 · · · etk s̄kets

has rank ρ̄ + 1 at (t̃1, . . . , t̃k̄, 0), contradicting the maximality of ρ̄.) It follows that M is
open in Gr(S;G), and ρ̄ = dimGr(S;G).

In order to prove that ρ̄0 = dimGr0(S;G), we first observe that ρ̄0 ≤ dimGr0(S;G),
because for every k, t, s, the map µk,s,0,t takes values in Grνk(t)(S;G), since

eu1s1eu2s2 · · · euksk ∈ Gr0(S;G)eu1s1eu2s2 · · · euksk = Gru1+u2+...+uk
(S;G) .

Let n = dimGr0(S;G). Then either dimGr(S;G) = n + 1 or dimGr(S;G) = n. If
dimGr(S;G) = n + 1 then ρ̄ = n + 1, and this easily implies that ρ̄0 = n, since we know
that ρ̄0 ≤ n, and the rank of the differential dµk̄,s̄,0,t̄(t̄) cannot possibly be smaller than n.

We now consider the case when dimGr(S;G) = n, i.e., when Lie0(S;G) = Lie(S;G). In
that case, we augment our system, by writing G = Gr(S;G) × R and L = Lie(S;L) × R,
so G is a connected Lie group with Lie algebra L, and the Lie bracket in L is given by
[(X, r), (Y, s)] = ([X,Y ], 0) whenever (X, r) and (Y, s) belong to L. Let S={(X, 1) : X ∈ S},
and let L(S), L0(S) be, respectively, the Lie subalgebra of L generated by S, and the smallest
ideal of L(S) that contains S − S. Then S is a closed convex subset of L.

Furthermore, the fact that Lie0(S;L) = Lie(S;L) implies that L(S) = L. (Indeed, let
U be the set of those X ∈ Lie(S;L) such that (X, 0) ∈ L(S). Then U is a Lie subalgebra
of Lie(S;L), and X − Y ∈ U whenever X,Y ∈ S. Let V be the set of all X ∈ Lie(S;L)
such that adX(U) ⊆ U . Then V is a Lie subalgebra of Lie(S;L), and S ⊆ V , because if
X ∈ S and Y ∈ U then (X, 1) ∈ L(S) and (Y, 0) ∈ L(S), so ([X,Y ], 0) ∈ L(S), and then
[X,Y ] ∈ U . So Lie(S;L) ⊆ V , and then V = Lie(S;L), because Lie(S;L) ⊆ V . But then U
is an ideal of Lie(S;L). Since S −S ⊆ U , U = Lie0(S;L), and then U = Lie(S;L) because
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we are assuming that Lie0(S;L) = Lie(S;L). Hence (X, 0) ∈ L(S) for all X ∈ Lie(S;L), so
Lie(S;L)×{0} ⊆ L(S). Furthermore, if we fix an X ∈ S, then (X, 1) ∈ S, so (X, 1) ∈ L(S).
On the other hand, (X, 0) ∈ L(S) because X ∈ U . Hence (0, 1) ∈ L(S). Therefore
Lie(S;L)× {0} ⊆ L(S) and {0} × R ⊆ L(S). So L(S) = L.)

The set Lie(S;L) × {0} is clearly an ideal of L(S) and contains S − S. Therefore
L0(S) ⊆ Lie(S;L)× {0}, and then L0(S) = L(S)×{0}, because L(S) = L = Lie(S;L)×R,
and the codimension of L0(S) in L(S) is 0 or 1. It follows that if we replace G by G and S
by S then we are in the situation considered earlier, i.e., dimL(S) = 1 + dimL0(S). Hence,
if for each positive integer k and each k-tuple s = (s1, . . . , sk) of members of S we let µ̂k,s
be the map from Rk to G given by

µ̂k,s(t1, . . . , tk) = et1σ1et2σ2 · · · etkσk ,

where σi = (si, 1) for i = 1, . . . , k, and L 3 u 7→ eu ∈ G is the exponential map of G, we
can conclude that the maximum rank of the differentials of the maps µ̂k,s is the dimension
of dimL(S), i.e., n+ 1. On the other hand, it is easy to see that

µ̂k,s(t1, . . . , tk) = (et1s1et2s2 · · · etksk , t1 + t2 + · · ·+ tk) = (µk,s(t1, . . . , tk), t1 + t2 + · · ·+ tk) .

Therefore, if we pick (k̄, s̄, t̄) such that dµ̂k,s̄(t̄) has rank n+ 1, then dµ̂k,s̄,0,t̄(t̄) has rank n,
completing the proof of (5.16).

If we now fix s∗ ∈ S, pick (k̄, s̄, t̄) such that ρ0(k̄, s̄, t̄) = n, and write s̄ = (s̄1, s̄2, . . . , s̄k̄),
we can let

s̄(h) = ((1− h)s∗ + hs̄1, (1− h)s∗ + hs̄2, . . . , (1− h)s∗ + hs̄k̄) .

It is clear that the map R × Rk̄ 3 (h, t) 7→ µk̄,s̄(h)(t) is real-analytic. Hence the fact that
for h = 1 the map Ak̄(t̄) 3 t 7→ µk̄,s̄,0,t̄(t) has rank n at t̄ implies that for arbitrarily small
positive ε there exist points t̄ε = (t1,ε, . . . , tk̄,ε) ∈ ]0, ε[k̄ and hε ∈ ]0, ε[ such that the map
Ak̄(t̄ε) 3 t 7→ µk̄,s̄(hε),0,t̄ε

(t) has rank n at t̄ε. Since the convexity of S implies that the
points (1− h)s∗ + hs̄j belong to S if 0 ≤ h ≤ 1, we can conclude that

(#) for every positive ε there exist s̄ε = (s̄1,ε, s̄2,ε, . . . , s̄k̄,ε) ∈ Sk, t̄ε ∈ ]0, ε[k̄, such that

‖s̄j,ε − s∗‖ < ε and the map Ak̄(t̄ε) 3 t 7→ µk̄,s̄ε,0,t̄ε
(t) has rank n at t̄ε.

Now let ε = whatever. Using the fact that F is compact and hence equicontinuous,
choose a positive α such that ‖η(t) − η(t′)‖ < ε whenever t, t′ ∈ [0, T ], |t − t′| ≤ α, and
η ∈ F .

Now fix an η∗ ∈ F , and a T0 such that 0 < T0 < T , and then choose T−, T+ such that

0 < T− < T0 < T+ < T and θ
def
= T+ − T− < α. Then, using (#) with η∗(T0) in the role

of s∗, choose k̄ ∈ N, t̄ = (t̄1, . . . , t̄k̄) such that t̄j > 0 for all j and t̄1 + . . . + t̄k̄ < θ, and
s̄ = (s̄1, . . . , s̄k̄) ∈ Sk such that ‖s̄j − η∗(T0)‖ < ε for all j, having the property that the
map

Ak̄(t̄) 3 (t1, . . . , tk̄) 7→ et1s̄1et2s̄2 · · · etk s̄k
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has rank n at t̄.
Now fix a compact subinterval I = [T̄ , T̄ + θ̄] of the open interval ]T−, T+[ , and a

neighborhood N of t̄ relative to Ak̄(t̄) all whose members (t1, . . . , tk̄) have positive
coordinates. For each (t1, . . . , tk̄) ∈ N and each η ∈ F , let ηt1,... ,tk̄ be the control defined
by

(5.17) ηt1,... ,tk̄(t) =
{
η(t) if t<T̄ or t ≥ T̄ + θ̄
sj if T̄+t1+ . . .+tj−1≤ t<T̄+t1+. . .+tj , j= 1, . . . , k̄ .

Then the controls ηt1,... ,tk̄ satisfy

(5.18) ‖ηt1,... ,tk̄(t)−η(t)‖ ≤ 3ε if t ∈ [0, T ], η ∈ F , ‖η−η∗‖sup < ε , and (t1, . . . , tk̄) ∈ N ,

since ηt1,... ,tk̄(t) = η(t) if t < T̄ or t ≥ T̄+ θ̄, and ηt1,... ,tk̄(t) = s̄j for some j if T̄ ≤ t < T̄+ θ̄,
while ‖η(t)− η(T0)‖ < ε, ‖η(T0)− η∗(T0)‖ < ε, and ‖s̄j − η∗(T0)‖ < ε.

Clearly, if (t1, . . . , tk̄) ∈ N and η ∈ F , we have

ξη
t1,... ,t

k̄ (1) = Ξη(T̄ + θ̄, T )etk̄ s̄k̄ · · · et2s̄2et1s̄1ξη(T̄ )

from which it follows that for each η ∈ F the map N 3 (t1, . . . , tk̄) 7→ ξη
t1,... ,t

k̄ (1) ∈ G has
rank n at t̄.

We now regularize the controls ηt1,... ,tk̄ using a positive real regularization parameter
ρ. First, we extend each η and its corresponding controls ηt1,... ,tk̄—all of which agree
with η near T—to maps η̃, η̃t1,... ,tk̄ , defined on the whole half-line [0,∞[ , by letting
η̃(t) = η̃t1,... ,tk̄(t) = η(T ) if t > T , η ∈ F . Then the inequality of (5.18) is true for all
t ∈ [0,+∞[. We then define

(5.20) ηt1,... ,tk̄;ρ(t) =
1
ρ

∫ t+ρ

t

η̃t1,... ,tk̄(s) ds for t ∈ [0, T ] , ρ > 0.

It is clear that the functions ηt1,... ,tk̄;ρ take values in S, because the η̃t1,... ,tk̄ take values in S,
and S is closed and convex. It is also clear that the ηt1,... ,tk̄;ρ are continuous. Furthermore,
if ‖η − η∗‖sup < ε, then ‖η̃t1,... ,tk̄(t) − η(t)‖ ≤ 3ε for each t, and ‖η(t) − η(t′)‖ ≤ ε if

t ≤ s ≤ t+ α. Hence, if we define ηt1,... ,tk̄;0def= ηt1,... ,tk̄ , the inequalities

(5.21) ‖ηt1,... ,tk̄;ρ(t)− η(t)‖ ≤ 4ε

hold for all (t1, . . . , tk̄) ∈ N , all t ∈ [0, T ], and all η ∈ F such that ‖η − η∗‖sup < ε, as long
as 0 ≤ ρ ≤ α.

Next, we pick a smooth function ϕ : [0, T ] 7→ R such that 0 ≤ ϕ(t) ≤ 1 for all t, ϕ(t) = 0
for 0 ≤ t ≤ T−

2 and for T++T
2 ≤ t ≤ T , and ϕ(t) = 1 for T− ≤ t ≤ T+. We then define

(5.22) η#,t1,... ,tk̄;ρ(t) =
(
1− ϕ(t)

)
η(t) + ϕ(t)ηt1,... ,tk̄;ρ(t)
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for η ∈ F , t ∈ [0, T ], (t1, . . . , tk̄) ∈ N , ρ ∈ [0, α]. Then the functions η#,t1,... ,tk̄;ρ are also
S-valued (because their value at each t is a convex combination of η(t) and ηt1,... ,tk̄,;ρ(t).
both of which belong to S). Also, the η#,t1,... ,tk̄;ρ are continuous if ρ > 0. Furthermore,
(5.21) implies

(5.23) ‖η#,t1,... ,tk̄;ρ − η‖sup ≤ 4ε if η ∈ F , ‖η − η∗‖sup < ε , (t1, . . . , tk̄) ∈ N , ρ ∈ [0, α] ,

and it follows from our construction of the η#,t1,... ,tk̄;ρ that, if we let β = min
(T−

2 , T−T+
2

)
,

then

(5.24) η#,t1,... ,tk̄;ρ(t) = η(t) if t ∈ [0, β] ∪ [T − β, T ]

whenever η ∈ F , ‖η − η∗‖sup < ε, (t1, . . . , tk̄) ∈ N , and ρ ∈ [0, α].
We will also need the fact that

(5.25) the map F×N×[0, α]3(η, (t1, . . . , tk̄), ρ) 7→ η#,t1,... ,tk̄;ρ∈L1([0, T ], S) is continuous.

(Indeed, let C = max(‖s̄1‖, ‖s̄2‖, . . . , ‖s̄k̄‖) + sup{‖η‖sup : η ∈ F}. Then the bounds
‖ηt1,... ,tk̄ −ζt′1,... ,t′k̄‖L1 ≤ ‖η−ζ‖L1 +C

∑k̄
j=1 |ti− t′i| hold for η, ζ ∈ F , and this implies that

‖η#,t1,... ,tk̄;ρ − ζ#,t′1,... ,t
′
k̄
;ρ‖L1 ≤ ‖η − ζ‖L1 + ‖η − ζ‖sup + C

k̄∑
j=1

|ti − t′i|

≤ (1 + T )‖η − ζ‖sup + C
k̄∑
j=1

|ti − t′i|

for η, ζ ∈ F , ρ ≥ 0. Hence, if we define maps Ψρ : F × N 7→ L1([0, τ ], S) by letting
Ψρ(η; t1, . . . , tk̄) = η#,t1,... ,tk̄;ρ, the Ψρ are continuous for each ρ ∈ [0, α], and the family
{Ψρ}0≤ρ≤α is uniformly bounded and equicontinuous on N . Let {ρj}∞j=1 be a sequence
in [0, α] that converges to a limit ρ. Then for each fixed η ∈ F , (t1, . . . , tk̄) ∈ N , the
functions η#,t1,... ,tk̄;ρ, for 0 ≤ ρ ≤ α, are bounded by a fixed constant. In addition, it is
clear that as j → ∞ the functions η#,t1,... ,tk̄;ρj converge uniformly to η#,t1,... ,tk̄;ρ if ρ > 0,
and pointwise at every point of continuity t of η#,t1,... ,tk̄;0 if ρ = 0. Since η#,t1,... ,tk̄;0 is
piecewise continuous, the η#,t1,... ,tk̄;ρj converge to η∗,t1,... ,tk̄;ρ in L1 (even if ρ = 0). Hence
the maps Ψρj converge pointwise to Ψρ as as j →∞, and the equicontinuity of {Ψρj}0<ρ≤α
implies that the convergence is uniform of compact subsets of F ×N . Since this is true for
every convergent sequence {ρj}∞j=1 in [0, α], (5.25) follows immediately.)

Let M be the map from F ×N ×[0, α] to G given by

(5.26) M(η, (t1, . . . , tk̄), ρ) = ξη
#,t1,... ,t

k̄
;ρ
(T ) .
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Then M takes values in Gr
T
(S;G), and (5.11) and (5.25) imply that M is continuous.

Furthermore, (5.19) implies that

M(η∗, (t1, . . . , tk̄), 0) = ξη
#,t1,... ,t

k̄
;ρ

∗ (T ) = Ξη(T̄ + θ̄, T )etk̄ s̄k̄ · · · et2s̄2et1s̄1ξη(T̄ ) ,

from which it follows that the map

N 3 t 7→ M(η∗, t, 0) ∈ Gr
T
(S;G)

has rank n at t̄. Hence (if we write Bn(r) = {x ∈ Rn : ‖x‖ ≤ r}), the implicit function
theorem implies that there exist (a) a neighborhood B1 of M(η∗, t, 0) in Gr

T
(S;G) which

is diffeomorphic by means of a map Φ to the closed unit ball Bn(1), (b) an r such that
0 < r < 1, (c) a smooth map Θ : Bn(r) 7→ N such that

Φ
(
M(η∗,Θ(x), 0) = x for all x ∈ Bn(r) .

The continuity of M then implies that there exists a positive number γ such that

(5.27) M(η,Θ(x), ρ) ∈ B1 and ‖Φ
(
M(η,Θ(x), ρ)

)
− x‖ ≤ r

2

whenever x ∈ Bn(r), η ∈ F , ‖η − η∗‖sup ≤ γ, and 0 ≤ ρ ≤ γ. It follows that

if x∈Bn
(r

2

)
, η∈F , ‖η−η∗‖sup≤γ , ρ∈ [0, γ] , then (∃t∈N)

(
Φ

(
M(η, t, ρ)

)
=x

)
(Indeed, suppose that x ∈ Rn, ‖x‖ ≤ r

2 , η ∈ F , ‖η−η∗‖sup ≤ γ, and ρ ∈ [0, γ]. Define
H(y) = x + y − Φ

(
M(η,Θ(y), ρ)

)
, for y ∈ Bn(r). Then ((5.27)) implies that ‖H(y)‖ ≤ r

whenever ‖y‖ ≤ r, so H is a continuous map from Bn(r) to Bn(r). By Brouwer’s fixed point
theorem, there exists y ∈ Bn(r) such that H(y) = y. If we let t = Φ(y), then t ∈ N and
Φ

(
M(η, t, ρ)

)
= x.)

Therefore, if we write Mη,ρ(t)
def
=M(η, t, ρ), and let W̃ = Φ−1

(
{x ∈ Rn : ‖x‖ < r

2}
)
,

then W̃ is a nonempty relatively open subset of Gr
T
(S;G), and W̃ ⊆ Mη,ρ(N) whenever

η ∈ F , ‖η − η∗‖sup ≤ γ, and ρ ∈ [0, γ]. In particular, suppose we fix η ∈ F such that
‖η−η∗‖sup ≤ min(γ, ε), and ρ such that 0 < ρ ≤ min(γ, α). Now, if t ∈ N , then the control
η#,t;ρ satisfies ‖η#,t;ρ − η‖sup ≤ 4ε = δ̄, and in addition η#,t;ρ is continuous and η#,t;ρ ≡ η
on the set [0, β] ∪ [T − β, T ]. Therefore η#,t;ρ ∈ N0

S(η, δ̄). Hence the set R(N0
S(η, δ̄), e

G
)

contains the set {ξη#,t;ρ
(T ) : t ∈ N}, which is equal to Mη,ρ(N). So R(N0

S(η, δ̄), e
G
)

contains W̃ . If we fix a member g of W̃ , and let W = W̃g−1, then W is a neighborhood of
e

G
in Gr0(S;G), and

Wg ⊆ R(N0
S(η, δ̄), e

G
) whenever η ∈ F and ‖η − η∗‖sup ≤ min(γ, ε) .
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So we have found, for each η∗ ∈ F , a neighborhood Wη∗ of e
G

in Gr0(S;G), a member
gη∗ of Gr

T
(S;G), and a positive number γη∗ , such that

Wη∗gη∗ ⊆ R(N0
S(η, δ̄), e

G
) whenever η ∈ F and ‖η − η∗‖sup ≤ γη∗ .

Now find a finite subset {η1
∗, . . . , η

m
∗ } of F such that the sets

Fj def= {η ∈ F : ‖η − ηj∗‖sup ≤ γηj
∗
} ,

for j = 1, . . . ,m, cover F . Let W =
⋂m
j=1Wηj

∗
. Then W is a neighborhood of e

G
in

Gr0(S;G). Furthermore, if η ∈ F then we can find j ∈ {1, . . . ,m} such that η ∈ F j . Then
‖η − ηj∗‖sup ≤ γηj

∗
}, so Wηj

∗
gηj

∗
⊆ R(N0

S(η, δ̄), e
G
). Therefore

Wgηj
∗
⊆ R(N0

S(η, δ̄), e
G
) ,

since W ⊆ Wηj
∗
. Hence the set R(N0

S(η, δ̄), e
G
) contains a right translate of W , and our

proof is complete. ♦

The second main result of the section is a simple corollary of the first one. In order to
state it, we need to introduce some notations.

If ηi, for i = 1, 2, are continuous functions on intervals [0, Ti] with values in a topological
space X, such that η1(T1) = η2(0), then the concatenation η2#η1 of η1 and η2 is the function
η2#η1 : [0, T1 + T2] 7→ X defined by

(η2#η1)(t) =
{
η1(t) if t ∈ [0, T1]
η2(t− T1) if t ∈ [T1, T1 + T2] .

If T > 0, X is a topological space, F is a subset of C0([0, T ], X), and N is a positive
integer, we use F (N) to denote the set of all η ∈ C0([0, NT ], X) that are concatenations
η1#η2# · · ·#ηN of N members of F .

Proposition 5.4. Let G be a compact Lie group with Lie algebra L, and let S be a nonempty
closed convex subset of L. Let T > 0, and let F be a compact subset of C0([0, T ], S). Let K
b e a compact subset of Gr0(S;G). Then given δ̄ > 0 there exists a positive integer N such
that for every η ∈ F (N) the reachable set R(N0

S(η, δ̄), e
G
) contains some right translate of

K by a member of Gr(S;G).

Proof. Using the fact that G is compact, we endow G with a bi-invariant Riemannian
metric ΓG. Then ΓG induces bi-invariant Riemannian metrics ΓGr(S;G), ΓGr0(S;G), on
the Lie subgroups Gr(S;G), Gr0(S;G) of G. It is then clear that the automorphisms
Gr0(S;G) 3 g 7→ hgh−1 ∈ Gr0(S;G), for h ∈ Gr(S;G), are isometric maps relative to the
metric ΓGr0(S;G).
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We then apply Proposition 5.4 and find an open neighborhood W of e
G

in Gr0(S;G)
such that R(N0

S(η, δ̄), e
G
) contains some right translate of W by a member of Gr(S;G)

whenever η ∈ F . By making W smaller, if necessary, we assume that W is the open ball
{g ∈ Gr0(S;G) : distΓGr0(S;G)(x, eG

) < γ}, for some positive γ. Then hW = Wh whenever
h ∈ Gr(S;G), because hWh−1 = W .

The sets W k = {g1g2 · · · gk : g1 ∈ W, g2 ∈ W, . . . , gk ∈ W} cover Gr0(S;G), since
Gr0(S;G) is connected. Hence we can find N ∈ N such that K ⊆ WN . Now, if η ∈ F (N),
and we write η as a concatenation η1#η2# · · ·#ηN of N members of F , it follows that the
set R(N0

S(η, δ̄), e
G
) contains the product

P = R(N0
S(ηN , δ̄), eG

) · R(N0
S(ηN−1, δ̄), eG

) · · · · R(N0
S(η2, δ̄), eG

) · R(N0
S(η1, δ̄), eG

) .

For each of the factors R(N0
S(ηj , δ̄), eG

) we can choose a member gj of Gr(S;G) such that
Wgj ⊆ R(N0

S(ηj , δ̄), eG
). Then

R(N0
S(η, δ̄), e

G
) ⊇ P ⊇WgN ·WgN−1 · · · · ·Wg2 ·Wg1 = WNg ⊇ Kg ,

where g = gN · gN−1 · · · · · g2 · g1. So R(N0
S(η, δ̄), e

G
) contains a right-translate of K by a

member of Gr(S;G), as stated. ♦

§6. Background results: discrete approximations of Haar measures.

The third background result is about approximating the integral of a function over a compact
group by the average of its translates. This result basically restates, in a way that will be
particularly convenient for us to use, the evident facts that (a) the Haar measure ν

G
is a

weak∗-limit—in the space of finite Borel measures on G, regarded as the dual C0(G,C)∗ of
C0(G,C)—of measures νj that are averages of finitely many Delta functions, and (b) since
the νj weak∗-converge to νG, they are uniformly bounded in norm, so on any bounded subset
K of C0(G,C) the sequence {νj}∞j=1 is uniformly bounded, equicontinuous, and pointwise
convergent to νG, from which it follows that the convergence has to be uniform on K if K
is compact. For completeness, we include a direct proof.

Recall that C0(G,C) denotes the Banach space of all continuous complex-valued functions
on G with the supremum metric. If h ∈ C0(G,C) and g ∈ G, we define functions τgh ∈
C0(G,C) by setting

(6.1) (τgh)(x) = h(g−1x), for x ∈ G.

Clearly, each τg is an isometric linear map from C0(G,C) onto C0(G,C). Furthermore,
τe

G
is the identity map of C0(G,C), and τg ◦ τg′ = τgg′ whenever g, g′ ∈ G, so the map

g 7→ τg is a homomorphism from G to the group of isometric linear maps from C0(G,C)
onto C0(G,C).
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Proposition 6.1. Let G be a compact metric group. If K ⊆ C0(G,C) is compact and
β > 0, then there exist a positive integer P , and members g1 , . . . , gP

of G, such that

(6.2)
∥∥∥〈h〉 − 1

P

P∑
p=1

τg−1
p
h
∥∥∥
sup

≤ β for all h ∈ K .

Proof. Since K is a compact subset of C0(G,C), it is bounded and equicontinuous. Hence
there exist (a) a constant C such that er|h(x)| ≤ C whenever x ∈ G and h ∈ K, and
(b) a neighborhood W of e

G
such that |h(x) − h(y)| < β

2 whenever xy−1 ∈ W and h ∈ K.
Partition G into measurable subsets G1 , . . . , GR

such that each Gr is contained in a left
translate ξ

r
W of W . Let p̃r = ν

G
(Gr).

If h ∈ K and x ∈ G, then

〈h〉 =
∫
G

h(gx) dν
G
(g) =

R∑
r=1

∫
Gr

h(gx) dν
G
(g)

=
R∑
r=1

∫
Gr

(h(gx)− h(ξrx)) dνG
(g) +

R∑
r=1

p̃r(τξ−1
r
h)(x) .

If g ∈ Gr, then (gx)(ξrx)−1 = gξ−1
r ∈W , so |h(gx)− h(ξrx)| ≤ β

2 . Therefore

∣∣∣〈h〉 − R∑
r=1

p̃rτξ−1
r
h(x)

∣∣∣ ≤ β

2

for all h ∈ K, x ∈ G. Now, let M be a positive integer, and write

p̃r =
pr
M

+ p̂r ,

where 0 ≤ p̂r <
1
M . Let P = p1+. . .+pR. Then 1− R

M ≤ P
M ≤ 1. Therefore 0 ≤ 1− P

M ≤ R
M .

Moreover, ∣∣∣ R∑
r=1

p̂rτξ−1
r
h(x)

∣∣∣ ≤ CR

M
.

So ∣∣∣〈h〉 − R∑
r=1

pr
M
τξ−1

r
h(x)

∣∣∣ ≤ β

2
+
CR

M
.
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Therefore∣∣∣〈h〉 − R∑
r=1

pr
P
τξ−1

r
h(x)

∣∣∣ ≤ ∣∣∣〈h〉 − R∑
r=1

pr
M
τξ−1

r
h(x)

∣∣∣ +
∣∣∣ R∑
r=1

( pr
M

− pr
P

)
τξ−1

r
h(x)

∣∣∣
≤ β

2
+
CR

M
+

(
1− P

M

)∣∣∣ R∑
r=1

pr
P
τξ−1

r
h(x)

∣∣∣
≤ β

2
+
CR

M
+
CR

M

R∑
r=1

pr
P

≤ β

2
+

2CR
M

.

Now choose M such that 4CR < Mβ. Then

∥∥∥〈h〉 − R∑
r=1

pr
P
τξ−1

r
h
∥∥∥
sup

≤ β for all h ∈ K .

If we now define

g1 = g2 = · · · = gp1
= ξ1 ,

g
p1+1 = g

p1+2 = · · · = g
p1+p2

= ξ2 ,

· · ·
g

p1+p2+···+pR−1+1 = g
p1+p2+·+pR−1+2 = · · · = g

P
= ξR ,

then ∥∥∥〈h〉 − 1
P

P∑
r=1

τg−1
r
h
∥∥∥
sup

≤ β for all h ∈ K ,

and our proof is complete. ♦

§7. Introduction to the proof of Theorem A.

It is clear that condition (3) of Theorem A implies condition (2). The implication (2)⇒(1) is
trivial, because (a) every right coset Gr(S;G)g is invariant under the flow of the differential
equation (1.1), from which it follows that if E is any union of cosets then E×Ω is invariant
under TA; therefore TA cannot be ergodic unless Gr(S;G) = G; (b) if Gr(S;G) = G, then

the map G×Ω 3 (g, ω) 7→ π(g, ω)
def
= ([g], ω) ∈ TS;G ×Ω—where [g] is the class of g modulo

Gr0(S;G)—satisfies

T
TS;G×Ω
t (π(g, ω)) = π(TAt (g, ω)) whenever g ∈ G , ω ∈ Ω , t ∈ R
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and
(ν

G
⊗m)(π−1(E)) = (ν

TS;G
⊗m)(E) whenever E ∈ BTS;G×Ω ;

therefore, if E is a TTS;G×Ω-invariant Borel subset of TS;G × Ω for which the inequalities
0 < (ν

TS;G
⊗m)(E) < 1 hold, then π−1(E) is a TA-invariant Borel subset of G×Ω 3 (g, ω),

and 0 < (ν
G
⊗m)(π−1(E)) < 1; hence TTS;G×Ω must be ergodic if TA is ergodic.

The remainder of the paper is devoted to the proof of the implication (1)⇒(3). The first
step will be to introduce some notational conventions.

To begin with, we will work from now with a fixed Lie group G, that we assume to be
compact and connected, a fixed compact metric Borel probability space (Ω,m), and a flow
T = {Tt}t∈R on Ω, that we assume to bem-preserving and aperiodic. In addition, we assume
that a nonempty, closed, convex subset S of the Lie algebra of G is fixed as well, and that
the pair (G,S) has the dense accessibility property, i.e., Gr(S;G) = G. We use F to denote
the subgroup Gr0(S;G) of G, and T to denote the quotient group TS;G = G/F. Then F is
a closed normal subgroup of G, and T is a compact connected Abelian group, i.e., T a torus.
We let m be the dimension of T. We identify T with the product (R/Z)m = R/Z×· · ·×R/Z
of m copies of the circle R/Z, and we use coordinates τ1, . . . , τm, (which are real numbers
modulo Z) for T, so the symbol τ will denote a typical point of T, regarded as a member
of (R/Z)m.

We use [g] to denote the equivalence class modulo F of a member g of G, so [g] is the
right translate Fg, which coincides with the left translate gF, since gFg−1 = F, because
F is a normal subgroup. Then [g] is a member of T, and we use τi(g), i = 1, . . . ,m to
denote its τ coordinates, and ~τ(g) to denote the coordinate vector of [g], which is a member
of (R/Z)m. With these conventions and identifications, if g ∈ G then [g], Fg, and gF, are
really three different names of the same object, and the three notations for it will be used
interchangeably.

We use L(G), L(F), L(T) to denote, respectively, the Lie algebras of the Lie groups G,
T, F, regarded as the tangent spaces Te

G
G, Te

G
F, Te

G
T to G, T, F at the identity element

e
G

of G, and identified in the standard way with the spaces of right-invariant vector fields
on G, T, F. Then L(F) is an ideal of L(G), L(T) is the quotient L(G)/L(F), and L(T)
is naturally identified with Rm using the coordinates τ1, . . . , τm introduced above. The
identity element e

T
of T then just becomes the m-tuple 0m = (0, . . . , 0) ∈ (R/Z)m.

We fix an inner product 〈·, ·〉e
G

on the Lie algebra L(G) which is invariant under the
inner automorphisms dAg of L(G) induced, for each g ∈ G, by the inner autmorphism Ag
of G. We let ‖ · ‖ be the corresponding norm.

We define an inner product 〈·, ·〉g at each tangent space TgG by right-translating 〈·, ·〉e
G

via the differential dRg. Then the family ΓG = {〈·, ·〉g}g∈G is a bi-invariant Riemannian
metric on G. We let d

G
be the distance function associated to this metric. Then the right

translations G 3 h 7→ Rg(h)
def
= hg ∈ G and the left translations G 3 h 7→ Lg(h)

def
= gh ∈ G

are isometries.
We view G as a fiber bundle B over the base space T with fiber F. (Actually, B is a
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principal bundle, but we will not use this fact.) The fibers of B are then the cosets Fg, for
g ∈ G.

More precisely, given any τ ∈ T, the fiber Fτ over τ is the coset Fg, where g is any
member of G such that ~τ(g) = τ . With these notations, F~τ(g) = Fg = gF = [g] for every
g ∈ G. Clearly, F0m = F.

The bi-invariant Riemannian metric ΓG induces, by restriction, Euclidean inner products
〈·, ·〉F,g : Tg[g]× Tg[g] 7→ R on the tangent spaces Tg[g] of the fibers. These tangent spaces
are of course mapped to one another by the differentials dRg, dLg, of the right translations
and of the left translations of G, and these maps are isometries, so the family of inner
products 〈·, ·〉F,g, g ∈ G, is bi-invariant.

In particular, the inner products 〈·, ·〉F,g for g ∈ F define a Riemannian metric ΓF on F
which is F-bi-invariant, i.e., invariant under right and left translations of F by members of
F. More generally, for each τ ∈ T the fiber Fτ has a Riemannian metric ΓFτ —consisting
of the inner products 〈·, ·〉g for g ∈ Fτ—which is invariant under right and left translations
of Fτ by members of F.

The Riemannian metrics ΓG, ΓFτ
on the compact manifolds G, Fτ , give rise to volume

forms which, normalized so that the total volume is 1, define probability measures ν
G
, ν

Fτ
,

on G and the fibers Fτ . We write ν
F

= νF0m
. Then ν

G
, ν

F
are the normalized Haar

measures on G, F. For each fiber Fτ = Fg, the measure ν
Fτ

is the image of ν
F

under the
translations Rg, Lg.

The normalized Haar measure on T ∼ (R/Z)m is ν
T
, the product of m copies of the stan-

dard Borel measure on R/Z. We will write
∫
. . . dτ—rather than

∫
. . . dν

T
(τ)– to indicate

integration with respect to this measure.
The measures ν

G
, ν

Fτ
, ν

T
are related by the formula∫

G

f(g) dν
G
(g) =

∫
T

( ∫
Fτ

f(g)dν
Fτ

(g)
)
dτ

for every bounded Borel measurable function f on G.
If s ∈ S, then we know that the one-parameter subgroup {[ets]}t∈R of T does not depend

on the choice of s and is dense in T. Let s be the infinitesimal generator of this subgroup.
Then s ∈ L(T) = Rm, so s = (s1, . . . , sm), where the real numbers s1, . . . , sm are linearly
independent over Q. Clearly,

~τ(ets) = (ts1, . . . , tsm) ∈ (R/Z)m for each t ∈ R .

We write TT rather than TTS;G to denote the flow on T determined by the one-parameter
group {[ets]}t∈R introduced above, and use TT×Ω, rather than TTS;G×Ω for the torus lift
of T determined by (G,S). Then TT×Ω is jointly continuous and ν

T
⊗m-preserving. The

assumption that T is aperiodic implies that TT×Ω is aperiodic as well.
If f ∈ L2(G, ν

G
), we use 〈f〉 to denote the average of f over G with respect to ν

G
, and

〈f〉Fτ
to denote the average of f over the fiber Fτ with respect to ν

Fτ
, so

〈f〉 =
∫
G

f(g) dν
G
(g) and 〈f〉Fτ

=
∫
Fτ

f(g) dν
Fτ

(g) .
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If f belongs to L2(G×Ω, ν
G
⊗m), τ ∈ T, and ω ∈ Ω, we use fω, fτ ;ω to denote, respectively,

the functions

G 3 g 7→ fω(g)
def
= f(g, ω) ∈ C , Fτ 3 g 7→ fτ,ω(g)

def
= f(g, ω) ∈ C .

Then fω ∈ L2(G, ν
G
) for m-almost all ω ∈ Ω, fτ ;ω ∈ L2(Fτ ; C) for ν

T
⊗ m-almost all

(τ, ω) ∈ T× Ω, and

‖f‖2L2 =
∫

Ω

‖fω‖2L2dm(ω) =
∫
T×Ω

‖fτ ;ω‖2L2d(νT
⊗m)(τ, ω) .

For f ∈ L2(G× Ω, ν
G
⊗m), set

f̂(g, ω) = 〈f~τ(g), ω〉Fτ

def
=

∫
F~τ(g)

f(g, ω)dν
Fτ

(g) .

Then f̂ is in fact the orthogonal projection of f on the space of square-integrable functions
on G× Ω that are functions of (τ, ω) only, i.e., constant on each fiber Fτ × {ω}.

We use

H = L2(G× Ω, ν
G
⊗m) ,

H0 = {f ∈ H :
∫
G×Ω

f(g, ω) d(ν
G
⊗m)(g, ω) = 0 } ,

H0,av = {f ∈ H : f̂ ≡ 0} .

Given A ∈ C0(Ω,L) and t ∈ R, define a unitary operator UAt on H by setting

(7.1) UAt f = f ◦ TAt .

Next, given a positive real number M , define the time-averaging operator WM,A on H by
setting y

(7.2) WM,Af =
1
M

∫ M

0

UAt fdt.

We will then prove the following.

Theorem 7.1. Under the hypotheses of Theorem A, if S has the dense accessibility property
in G, then the set

Cerg,av(Ω, S) = {A ∈ C0(Ω, S) : lim
M→∞

WM,Af = 0 for all f ∈ H0,av},
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is a residual subset of C0(Ω, S).

PROOF THAT THEOREM 7.1 IMPLIES THAT (1)⇒(3) IN THEOREM A. Assume that
the hypotheses of Theorem A hold, and condition (1) of that theorem holds as well. Then
S has the dense accessibilit property in G, so we can apply Theorem 4.1 and conclude that
Cerg,av(Ω, S) is a residual subset of C0(Ω, S). Furthemore, the torus lift TT×Ω is ergodic.

Let A ∈ Cerg,av(Ω, S). If f ∈ H0, then f̃
def
= f − f̂ ∈ H0,av, so WM,Af̃ → 0 as M → ∞.

Moreover, since TT×Ω is ergodic on (T× Ω, ν
T
⊗m), the time averages

WMh
def
=

1
M

∫ M

0

(h ◦ Tt)dt

converge to 0, if we let h(τ, ω)
def
= 〈fω〉Fτ , because∫

T×Ω

h(τ, ω) d(ν
T
⊗m)(τ, ω) =

∫
T×Ω

( ∫
Fτ

f(g, ω)dν
Fτ

(g)
)
d(ν

T
⊗m)(ω)

=
∫
G×Ω

f(g, ω) d(ν
G
⊗m)(g, ω)

= 0 .

Observe that
WMh = WM,Af̂ .

Therefore WM,Af = WM,Af̃ + WM,Af̂ → 0 as M → ∞. Since this is true for all f ∈ H0,
we have shown that TA is ergodic on (G× Ω, ν

G
⊗m). Therefore A ∈ Cerg(Ω, S).

Hence Cerg,av(Ω, S) ⊆ Cerg(Ω, S). Since Cerg,av(Ω, S) is residual, the set Cerg(Ω, S) is
residual as well. ♦

For f ∈ H0,av, ε > 0 and n̄ ∈ N, define a set E(f, ε, n̄) as follows:

(7.3) E(f, ε, n̄) = {A ∈ C0(Ω, S) : ‖Wn,Af‖L2 < ε for some n ∈ N such that n > n̄} .

Lemma 7.2. Let A ∈ C0(Ω, S), and let F be a dense subset of H0,av. If A ∈ E(f, 1
n , n) for

all f ∈ F , n ∈ N, n ∈ N, then A ∈ Cerg,av(Ω, S).

Proof. Fix an f ∈ F . By the L2 ergodic theorem, the sequence Wn,Af converges in H as
n→∞ to some f∗ ∈ H. Since A ∈ E(f, 1

n , n) for all n, n ∈ N, f∗ must be the zero function.
So Wn,Af → 0 for every f ∈ F . Since F is dense in H0,av, and ‖Wn,A‖L2 ≤ 1 for all n, it
follows that Wn,Af → 0 as n→∞ for all f ∈ H0,av, so A ∈ Cerg,av(Ω, S). ♦

In view of Lemma 7.2, Theorem 7.1 will follow from the Baire category theorem—together
with the facts that (a) C0(Ω, S) is a complete metric space, (b) C0(G × Ω; C) ∩ H0,av is
dense in H0,av, and (c) C0(G× Ω; C) is separable— if we prove
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Lemma 7.3. Let f ∈ C0(G×Ω; C)∩H0,av. Then E(f, 1
n , n) is open and dense in C0(Ω, S).

The openness of the sets E(f, ε, n̄) is easily checked. We shall establish their density in
the next section.

§8. Density of E(f, ε, n̄).

We now turn to the proof of the density of E(f, ε, n̄). For this purpose, we fix the following
objects:

(1) a function f ∈ C0(G× Ω; C) ∩H0,av;
(2) a map A0 ∈ C0(Ω, S);
(3) a positive number ε;
(4) a positive number δ and
(5) a positive integer n̄.

To prove the density of E(f, ε, n̄) we shall construct a map A ∈ C0(Ω, S) such that
(1) ‖A0 −A‖sup < δ and
(2) A ∈ E(f, ε, n̄).

The construction of the desired map A will be carried out in several steps..

Step 1 : Recall that if g ∈ G then τg is the map from C0(G; C) to C0(G; C) given by
(τgh)(x) = h(g−1x) for x ∈ G. It is clear that τg ◦ τg̃ = τgg̃ whenever g, g̃ ∈ G.

Similarly, we define λg : C0(G; C) 7→ C0(G; C) by letting λgh(x) = h(xg) for x ∈ G.
Then λg ◦ λg̃ = λgg̃ whenever g, g̃ ∈ G. It is clear that if g, g̃ ∈ G, then the maps τg and λg̃
commute.

The map G×G× Ω 3 (g̃, g, ω) 7→ λg̃τg(fω) ∈ C0(G; C) is continuous. Therefore the set

(8.1) K∗ = {λg̃τg(fω) : ω ∈ Ω , g, g̃ ∈ G} ⊆ C0(G; C)

is compact. If restF denotes the restriction map from C0(G; C) to C0(F; C) that sends
each continuous function f ∈ C0(G; C) to its restriction to the subgroup F, then restF is
continuous, so the set

(8.2) KF
∗ = restF(K∗) = {restF(λg̃τg(fω)) : ω ∈ Ω , g, g̃ ∈ G} ⊆ C0(F; C)

is compact as well. Furthermore, K∗ is invariant under τg and λg for all g ∈ G, and KF
∗ is

invariant under τg and λg for all g ∈ F. (The invariance of K∗ under the λg’s is obvious,
and the invariance under the τg’s follows from the fact that τg and λg̃ commute. The
invariance of KF

∗ under λg for g ∈ F follows because, if h ∈ KF
∗ and h = restF(λγ̃τγ(fω)),

then λgh = restF(λgλγ̃τγ(fω)) = restF(λgγ̃τγ(fω)) ∈ KF
∗ . The invariance under τg for

g ∈ F follows because, if h ∈ KF
∗ and h = restF(λγ̃τγ(fω)), then τgh = restF(τgλγ̃τγ(fω)) =

restF(λγ̃τgγ(fω)) ∈ KF
∗ .)

We let K be the closed convex hull of K∗ , so K is a compact convex subset of C0(G; C)
such that τgh ∈ K and λgh ∈ K whenever h ∈ K and g ∈ G. Similarly, we let KF be the
closed convex hull of KF

∗ , so KF is a compact convex subset of C0(F; C) such that τgh ∈ KF

and λgh ∈ KF whenever h ∈ KF and g ∈ F.
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Step 2 : The equality 〈h〉F = 0 holds for every h ∈ KF. Indeed, it clearly suffices to prove
the equality for h ∈ KF

∗ . But in that case h = restF(λg̃τg(fω)) for some ω ∈ Ω, g, g̃ ∈ G, so

〈h〉F =
∫
F

h(u)dν
F
(u)

=
∫
F

fω(g−1ug̃)dν
F
(u)

=
∫
g−1F

fω(vg̃)dνg−1F(v)

=
∫
g−1Fg̃

fω(w)dνg−1Fg̃(w)

=
∫
Fg−1g̃

fω(w)dνFg−1g̃(w)

= 〈fω〉Fg−1g̃

= 0 ,

where we have used the change of variables v = g−1u and the fact that the left translation
Lg−1 maps ν

F
to νg−1F to go from the integration over F to that over g−1F, and then the

change of variables w = vg̃ and the fact that the right translation Rg̃ maps νg−1F to νg−1Fg̃

to go from the integration over g−1F to that over g−1Fg̃.

Step 3 : We fix a finite subset K0 of K such that every h ∈ K satisfies the inequality

(8.3) ‖h− h0‖sup <
ε

16

for some h0 ∈ K0.

Step 4 : We let κ̂ be the number of members of K0, and define

(8.4) β =
ε

8(1 + κ̂)
.

Step 5 : We pick δ1 such that δ1 > 0 and

(8.5) |h(g1)− h(g2)| < β whenever g1, g2 ∈ F , h ∈ K , and d
G
(g1, g2) < δ1 .

Step 6 : We apply Proposition 6.1 to the set KF and the number β. We get a positive
integer R and members ḡ0, . . . , ḡR−1 of F such that

(8.6)
∥∥∥ 1
R

R−1∑
r=0

τ(ḡr)−1h
∥∥∥
sup

≤ β for all h ∈ KF .
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It follows from (8.6) that

(8.7)
∥∥∥ 1
R

R−1∑
r=0

τ(ḡr)−1h
∥∥∥
sup

≤ β for all h ∈ K .

Indeed, if h ∈ K and g ∈ G, then, if we let ĥ = restF(λgh), we have

(R−1∑
r=0

τ(ḡr)−1h
)
(g) =

R−1∑
r=0

h(ḡrg) =
R−1∑
r=0

(λgh)(ḡr) =
R−1∑
r=0

ĥ(ḡr) =
R−1∑
r=0

(τ(ḡr)−1 ĥ)(e
F
) .

Since the function λgh belongs to K, its restriction ĥ belongs to KF. We can then apply (8.6)

and conclude that
∥∥∥ 1
R

∑R−1
r=0 τ(ḡr)−1 ĥ

∥∥∥
sup

≤ β. In particular, 1
R

∣∣∣ ∑R−1
r=0 (τ(ḡr)−1 ĥ)(e

F
)
∣∣∣ ≤ β,

so 1
R

∣∣∣( ∑R−1
r=0 τ(ḡr)−1h

)
(g)

∣∣∣ ≤ β. Since g is an arbitrary member of G, we have shown that∥∥∥ 1
R

∑R−1
r=0 τ(ḡr)−1h

∥∥∥
sup

≤ β, concluding the proof of (8.7).

Step 7 : We pick a compact subset G of G0(S) which is δ1-dense in F (relative to the distance
d

G
restricted to F).

Step 8 : Each point ω of Ω gives rise, for each positive number a, to a continuous control
η∗,ω,a : [0, a] 7→ S, defined by

(8.8) η∗,ω,a(t) = A0(Ttω) for t ∈ [0, a] .

In particular, if we take a = 1, the map Ω 3 ω 7→ η∗,ω,1 ∈ C0([0, 1], S) is continuous.
Therefore, if we let

(8.9) F = {η∗,ω,1 : ω ∈ Ω} ,

then F is a compact subset of C0([0, 1], S). Hence Proposition 5.4 enables us to pick, for
this F , and with τ = 1, δ̄ = δ

2 , a positive integer κ and a ĝω ∈ G for each ω ∈ Ω, such that

(8.10) Gĝω ⊆ R
(
NS(η∗,ω,κ, δ/2), e

G

)
.

Step 9 : For every g ∈ G the set Gg is δ1-dense in Fg. (Indeed, Gg ⊆ Fg because G ⊆ F. If
g′ ∈ Fg then g′g−1 ∈ F, and the fact that G is δ1-dense in F implies that there exists h ∈ G
such that d

G
(h, g′g−1) < δ1. Then hg ∈ Gg, and d

G
(hg, g′) < δ1, because Rg is an isometry

of G.)

Step 10 : We choose µ ∈ N such that

(8.11)
‖f‖sup
µ

≤ ε

16
.
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and let

(8.12) c1 =
7ε2

128‖f‖2sup
.

We then choose N = (1 + µ)κΛ where Λ is a large positive integer. The precise choice of Λ
will be made later, in Step 22.

Step 11 : Using Proposition 4.2, we pick a compact subset Ě of Ω and a Borel probability
measure m̌ on Ě with the following properties:

(1) Ts(Ě) ∩ Tt(Ě) = ∅ for all t, s ∈ [0, N ] such that t 6= s;
(2) m(T[0,N ](Ě)) ≥ 1− c1.
(3) the map ϕ : Ě × [0, N ] 7→ T[0,N ](Ě) defined by ϕ(x, t) = Ttx (which is clearly

a homeomorphism in view of property (1)—because the set Ě is compact and
ϕ is continuous—and is therefore an isomorphism of measurable spaces from the
product (Ě × [0, N ],BĚ ⊗BorN ) to (T[0,N ](Ě),BT[0,N](Ě))) is in fact an isomorphism
of probability spaces from the product (Ě × [0, N ],BĚ ⊗ BorN , m̌ ⊗ borN ) to the
space (T[0,N ](Ě),BT[0,N](Ě),mdnmT[0,N ](Ě)), where mdnmT[0,N ](Ě) is the normalized
restriction of m to the set T[0,N ](Ě), and borN is the usual Lebesgue measure on
[0, N ], restricted to the Borel subsets of [0, N ], and normalized in such a way that
borN ([0, N ]) = 1.

Step 12 : Using the uniform continuity of f on G×Ω, we choose a positive number c2 such
that

(8.13) |f(g, ω1)− f(g, ω2)| ≤
ε

8
whenever g ∈ G , ω1, ω2 ∈ Ω , and dΩ(ω1, ω2) ≤ c2 .

Step 13 : Using the uniform continuity of the map [0, N ] × Ω 3 (t, ω) 7→ A0(Ttω) ∈ S, we
choose a positive constant c3 such that

(8.14) ‖A0(Ttω)−A0(Ttω′)‖ <
δ

2
whenever dΩ(ω, ω′) < c3 and t ∈ [0, N ] .

Step 14 : Using the uniform continuity of the maps [0, N ] × Ω 3 (t, ω) 7→ Ttω ∈ Ω and
[0, N ]×T 3 (t, τ) 7→ TT

t τ ∈ T, we choose a positive constant c4 such that
(1) dΩ(Ttω, Ttω′) ≤ c2 whenever dΩ(ω, ω′) ≤ c4 and t ∈ [0, N ],
(2) dT(TT

t τ, T
T
t τ

′) ≤ c2 whenever dT(τ, τ) ≤ c4 and t ∈ [0, N ],
(3) c4 < c3.

Step 15 : We partition Ě into finitely many Borel-measurable sets Ě1, . . . , ĚǏ of diameter
less than c4. Write Ǐ = {1, . . . , Ǐ}. Using the fact that m̌ is regular, we pick for each i ∈ Ǐ a
compact set Ei such that Ei ⊆ Ěi and m̌(Ěi\Ei) < c1

š . After making a permutation of the



ERGODIC COCYCLES 35

set Ǐ, if neccessary, we assume that {i ∈ Ǐ : m̌(Ei) = 0} = {i ∈ Ǐ : i > I} for an I ∈ Ǐ. We
then let I = {1, . . . , I}, E = E1 ∪ · · · ∪ EI , and write

Er = T[0,r](E)
(

i.e., Er = ϕ(E × [0, r]) =
⋃

0≤t≤r

TtE
)

for 0 ≤ r ≤ N .

Then m(Er) = r
N · m̌(E) =

(
1− N−r

N

)
m̌(E), and

m̌(E) =
I∑
i=1

m̌(Ei) =
Ǐ∑
i=1

m̌(Ei) ≥
Ǐ∑
i=1

(
m̌(Ěi)−

c1
š

)
=

( Ǐ∑
i=1

m̌(Ěi)
)
− c1 = 1− c1 .

Therefore

(8.15) m(Er) ≥
(
1− N − r

N

)
(1− c1) ≥ 1− c1 −

N − r

N
.

Step 16 : Let J def
= {0, 1, . . . , (1+µ)Λ−1}, so J is an integer interval with (1+µ)Λ members

whose leftmost point is 0. We pick points ω̄i ∈ Ei for each i ∈ I, and then set

(8.16) ω̄i,j = Tjκ(ω̄i) for i ∈ I , j ∈ J .

We associate to each index j ∈ J the real interval I(j) = [jκ, (1 + j)κ], so the I(j)

constitute a partition of the interval [0, N ] into (1 + µ)Λ intervals of length κ.

Step 17 : We divide the integer interval J into Λ blocks J0, J1, . . . , JΛ−1 of length 1 + µ,
given by

J` = {j ∈ N : `(1 + µ) ≤ j ≤ (1 + `)(1 + µ)− 1} for ` ∈ L ,

where L = {0, 1, . . . ,Λ− 1}.
In addition, we also associate to each ` ∈ L the µ+ 1 real intervals of length κ given by

(8.17) I`,k = [`κ(1 + µ) + kκ, `κ(1 + µ) + (1 + k)κ] for k = 0, 1, . . . , µ ,

and the real interval

(8.18) I` = [`κ(1 + µ), (1 + `)κ(1 + µ)] =
µ⋃
k=0

I`,k .

Clearly,

(8.19) I`,k = I(j) if j = `(1 + µ) + k .
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(The reader should think of the members of J as (1 + µ)Λ integer indices whose values
j range from 0 to (1 + µ)Λ − 1. Each j gives rise to a real interval I(j) = [jκ, (j + 1)κ].
As the index j grows from 0 to (1 + µ)Λ − 1, it goes successively through the intervals
J0, J1, . . . , JΛ−1 . The index k is like the index j, except that at the beginning of each J`
we reset k to 0, so that in fact k is j modulo 1 + µ. On J`, we have j = `(1 + µ) + k, and k
varies from 0 to µ. For each `, each index k gives rise to a real interval of length κ, namely,
the interval I`,k defined by (8.17). Since, for a given `, k corresponds to j = `(1 + µ) + k,
the interval I`,k can also be labelled by j, as I(j), as indicated in (8.19).)

Step 18 : In a way to be described later, in Steps 23.x and 23.xi, we select, for each
i ∈ {1, . . . , I}, j ∈ J , a point g#,ω̄i,j belonging to Gĝω̄i,j and a control η#,ω̄i,j ,κ such that

(8.20) η#,ω̄i,j ,κ ∈ N0
S(η∗,ω̄i,j ,κ, δ/2) and ξη

#,ω̄i,j ,κ

(κ) = g#,ω̄i,j .

We then let

η∗,i,(j),κ = η∗,ω̄i,j ,κ ,

η#,i,(j),κ = η#,ω̄i,j ,κ ,

g#,i,(j) = g#,ω̄i,j = ξη
#,i,(j),κ

(κ) .

We also use the indices `, k as labels, as an alternative to using j, and write

(8.21) η∗,i;`,k;κ = η∗,i,(j),κ , η#,i;`,k;κ = η#,i,(j),κ , and g#,i;`,k = g#,i,(j)

if j = `(1 + µ) + k , ` ∈ L , k ∈ {0, . . . , µ} .

Step 19 : For each ω ∈ E = ∪Ii=1Ei, we define η#,ω,N : [0, N ] 7→ S by setting

(8.22) η#,ω,N (t) = η#,i,(j),κ(t− jκ) if ω ∈ Ei , j ∈ J , and t ∈ I(j) .

Clearly, the controls η#,ω,N satisfy

(8.23) η#,ω,N ∈ C0([0, N ], S) for each ω ∈ E = ∪Ii=1Ei ,

(8.24) ‖η#,ω,N (t)− η∗,ω,N (t)‖ < δ whenever ω ∈ E and t ∈ [0, N ] ,

(8.25) η#,ω,N ≡ η#,ω̄i,N for ω ∈ Ei , i ∈ {1, . . . , I} .
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(Indeed, (8.25) follows trivially from (8.22). To prove (8.24), we observe that if ω ∈ Ei,
j ∈ J , and t ∈ [jκ, (1 + j)κ], then

‖η#,ω,N (t)− η∗,ω,N (t)‖ = (‖η#,i,(j),κ(t− jκ)−A0(Ttω)‖

< ‖η#,i,(j),κ(t− jκ)−A0(Ttω̄i)‖+ ‖A0(Ttω̄i)−A0(Ttω)‖

≤ ‖η#,i,(j),κ(t− jκ)−A0(Ttω̄i)‖+
δ

2

= ‖η#,i,(j),κ(t− jκ)−A0(Tt−jκTjκω̄i)‖+
δ

2

= ‖η#,i,(j),κ(t− jκ)−A0(Tt−jκω̄i,j)‖+
δ

2

= ‖η#,i,(j),κ(t− jκ)− η∗,ω̄i,j ,κ(t− jκ)‖+
δ

2

= ‖η#,ω̄i,j ,κ(t− jκ)− η∗,ω̄i,j ,κ(t− jκ)‖+
δ

2
< δ ,

where the second inequality follows from the fact that ‖A0(Ttωi) − A0(Ttω)‖ ≤ δ
2 , which

is true in view of (8.14), because both ω̄i and ω belong to Ei and diameter(Ei) < c3, and
the last inequality follows from (8.20). Furthermore, (8.20) also implies that the functions
η#,i,(j),κ are continuous on [0, κ], from which it follows that η#,ω,N is continuous on [0, N ],
except possibly at the points jκ, j = 0, 1, . . . , (1 +µ)Λ. On the other hand, if ω ∈ Ei, then
the function η#,ω,N coincides with η∗,ω̄i,N near jκ for every j ∈ {0, . . . (1 + µ)Λ}, because

η#,ω,N (t) = η#,i,(j),κ(t− jκ)

= η#,ω̄i,j (t− jκ)

= η∗,ω̄i,j ,κ(t− jκ)

= A0(Tt−jκω̄i,j)

= A0(Ttω̄i)

= η∗,ω̄i,N (t)

if t− jκ is nonnegative and sufficiently small, whereas

η#,ω,N (t) = η#,i,(j−1),κ(t− (j − 1)κ)

= η#,ω̄i,j−1(t− (j − 1)κ)

= η∗,ω̄i,j−1,κ(t− (j − 1)κ)

= A0(Tt−(j−1)κω̄i,j−1)

= A0(Ttω̄i)

= η∗,ω̄i,N (t)
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if t− jκ is negative and sufficiently small. Hence η#,ω,N is also continuous near jκ, because
η∗,ω̄i,N is. So η#,ω,N is continuous on [0, N ], as stated, and (8.23) is proved.)

Step 20 : We let Ã# be the map

E × [0, N ] 3 (ω, t) 7→ Ã#(ω, t)
def
= η#,ω,N (t) ∈ S .

It is clear that Ã# is continuous. Using the bijection

E × [0, N ] 3 (ω, t) 7→ ϕ(ω, t)
def
= Ttω ∈ T[0,N ](E) ,

we associate to Ã# the continuous map A#
def
= Ã# ◦ ϕ−1 : T[0,N ](E) 7→ S.

Step 21 : Using the Tietze extension theorem, we extend A# to a continuous map A : Ω → S
such that

(8.26) ‖A(ω)−A0(ω)‖ < δ for all ω ∈ Ω .

In principle, Tietze’s theorem yields an extension A1 of A# to a continuous map from Ω to
L(G). To get an S-valued extension that satisfies (8.26), we modify A1 as follows. First, we
define A2 = π◦A1, where π is a continuous projection from L(G) to S. (Precisely, using the
distance function dL(G) : L(G)×L(G) 7→ R arising from a Euclidean inner product on L(G),
we let π(x) be, for x ∈ L(G), the point of S closest to x. Since S is closed and convex, it is
well known that π is well defined—i.e., that the point of S closest to x exists and is unique
for every x ∈ L(G)— and continuous.) Since π(x) = x when x ∈ S, and A1(ω) = A#(ω) ∈ S
when ω ∈ T[0,N ](E), we see that A2 agrees with A# on T[0,N ](E), while in addition A2 is
S-valued. We then define δ̃ = max{‖A#(ω)−A0(ω)‖ : ω ∈ T[0,N ](E)}, so δ̃ < δ, and we let
A(ω) be, for each ω ∈ Ω, the point of the closed ball Bω = {x ∈ L : dL(x,A0(ω)) ≤ δ̃} that is
closest to A2(ω). Then A is continuous, because A(ω) = A0(ω)+Π(A2(ω)−A0(ω)), where Π
is the projection on the closed ball {x ∈ L(G) : ‖x‖ ≤ δ̃}. In addition, A agrees with A# on
T[0,N ](E), because if ω belongs to T[0,N ](E) then A2(ω) ∈ Bω, so A(ω) = A2(ω) = A#(ω).
Furthermore, A takes values in S, because S is convex, and for every ω ∈ Ω the point A(ω)
is a convex combination of A0(ω) and A2(ω), both of which belong to S. Finally, the fact
that A(ω) ∈ Bω for each ω implies that the bound (8.26) holds.

Step 22 : We choose λ ∈ N such that

(8.27) κλ(1 + µ) > n̄ ,
‖f‖sup
λ

≤ ε

16
, and

Rκ̂‖f‖sup
λ

≤ ε

16
,

and then define n = κλ(1 + µ). Then

(8.28)
2κ(1 + µ)

n
‖f‖sup <

ε

8
.



ERGODIC COCYCLES 39

Next, we choose Λ so that

(8.29) (c1 +
λ

Λ
)‖f‖2sup≤

7ε2

32
.

Step 23 : We are now going to estimate the norm ‖Wn,Af‖L2 .

Step 23.i : We estimate the contribution to ‖Wn,Af‖L2 of the points ω that do not belong
to the set EN−n =

⋃
t∈[0,N−n] Tt(E).

In view of (8.15), EN−n satisfies

m(EN−n) ≥ 1− c1 −
n

N
, m(Ω\EN−n) ≤ c1 +

n

N
.

Outside G×EN−n, the function Wn,Af is bounded pointwise by ‖f‖sup, so

(8.30)
∫
G×(Ω\EN−n)

|Wn,Af(g, ω)|2d(ν
G
⊗m)(g, ω) ≤

( n
N

+ c1

)
‖f‖2sup .

Step 23.ii : In order to estimate Wn,Af(g, ω) for a point (g, ω) ∈ G×EN−n, we first reduce
that task to that of estimating a time average of f along a lift of a trajectory t 7→ Ttω̄i.

Assume that (g, ω) belongs to G × EN−n. Then there exist unique i ∈ {1, . . . , I},
t ∈ [0, N − n], ω̃ ∈ Ei, such that ω = Ttω̃. The time t belongs to I(j) for a j ∈ J ,
which is unique, except if t is an integer multiple of κ. Equivalently, t ∈ I`,k for an
` ∈ {0, . . . ,Λ− 1} and a k ∈ {0, . . . , µ}. Clearly, j, `, and k are related by j = `(1 + µ) + k,
and t = jκ + t′ = `κ(1 + µ) + kκ + t′, where 0 ≤ t′ ≤ κ. The fact that t ≤ N − n implies
that

` ∈ {0, . . . ,Λ− λ− 1} and j ∈ J ′ ,

where
J ′ def= {0, . . . , (Λ− λ)(1 + µ)− 1} .

Furthermore, ω = Tjκ+t′ ω̃, from which it follows, if we write “a
ε
≈ b” to mean “|a− b| < ε,”

that

Wn,Af(g, ω) =
1
n

∫ n

0

f(XA(ω, s)g, Tsω)ds

=
1
n

∫ n

0

f(XA(ω, s)g, Ts+jκ+t′ ω̃)ds

ε
8≈ 1
n

∫ n

0

f(XA(ω, s)g, Ts+jκ+t′ ω̄i)ds ,(8.31)

where, in the last step, we use the facts that
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(a) dΩ(ω̃, ω̄i) < c4, since both ω̃ and ω̄i belong to Ei,
(b) dΩ(Ts+jκ+t′ ω̃, Ts+jκ+t′ ω̄i) < c2 by (1) of Step 17, because s+ jκ+ t′ ∈ [0, N ], and

dΩ(ω̃, ω̄i) < c3 by (2) of Step 17,
and

(c) |f(XA(ω, s)g, Ts+jκ+t′ ω̃)− f(XA(ω, s)g, Ts+jκ+t′ ω̄i)| ≤ ε
8 by Step 15.

Thus, writing ω̄i,j
def
= Tjκω̄i as before, we get

Wn,Af(g, ω)
ε
8≈ 1
n

∫ n

0

f(XA(ω, s)g, Ts+t′ ω̄i,j)ds =
1
n

∫ n+t′

t′
f(XA(ω, s′ − t′)g, Ts′ ω̄i,j)ds′ .

Then (8.28) yields 2t′

n ‖f‖sup ≤
2κ
n ‖f‖sup <

ε
8 and hence

1
n

∫ n+t′

t′
f(XA(ω, s′ − t′)g, Ts′ ω̄i,j)ds′

ε
8≈ 1
n

∫ n

0

f(XA(ω, s′ − t′)g, Ts′ ω̄i,j)ds′ .

We then obtain

Wn,Af(g, ω)
ε
4≈ 1
n

∫ n

0

f(XA(ω, s′ − t′)g, Ts′ ω̄i,j)ds′

=
1
n

∫ n

0

f(XA(Tjκω̃, s)XA(Tjκω̃, t′)−1g, Tsω̄i,j)ds ,(8.32)

because the cocycle identity XA(ω, s1 + s2) = XA(Ts1ω, s2)X
A(ω, s1) implies, if we use −t′

in the role of s1 and s′ in that of s2, the identity XA(ω, s′−t′) = XA(T−t′(ω), s′)XA(ω,−t′),
while on the other hand XA(ω,−t′)−1 = XA(T−t′(ω), t′)−1, and T−t′(ω) = Tjκω̃.

Next, we claim that

(8.33) XA(Tjκω′, s) = XA(ω̄i,j , s) if s ∈ [0, n] , ω′ ∈ Ei , j ∈ J ′ .

To prove (8.33), we first observe that

A(Tτω′) = η#,ω′,N (τ) = η#,ω̄i,N (τ) = A(Tτ ω̄i) ,

for all τ ∈ [0, N ]. Thus, XA(ω′, τ) = XA(ω̄i, τ) for all τ ∈ [0, N ]. Now the claim follows by
using the cocycle identity XA(ω′, s+ jκ) = XA(Tjκω′, s)XA(ω′, jκ) to conclude that

XA(Tjκω′, s) = XA(ω′, s+ jκ)XA(ω′, jκ)−1

= XA(ω̄i, s+ jκ)XA(ω̄i, jκ)−1 (since s+ jκ ∈ [0, N ])

= XA(Tjω̄i, s)

= XA(ω̄i,j , s) .
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It follows from (8.32) and (8.33) that

Wn,Af(g, ω)
ε
4≈ 1
n

∫ n

0

f(XA(ω̄i,j , s)XA(ω̄i,j , t′)−1g, Tsω̄i,j)ds ,

i.e., that

Wn,Af(g, ω)
ε
4≈ 1
n
Wn,A;i,j,t′f(g) ,(8.34)

where

(8.35) Wn,A;i,j,t′f(g)
def
=

∫ n

0

f(XA(ω̄i,j , s)XA(ω̄i,j , t′)−1g, Tsω̄i,j)ds .

Step 23.iii : We break up the integral over [0, n] that occurs in (8.35) into λ(1+µ) integrals
over [0, κ] (recall that n = λκ(1 + µ)) by writing

Wn,A;i,j,t′f(g) =
λ(1+µ)−1∑

q=0

∫ (q+1)κ

qκ

f(XA(ω̄i,j , s′)XA(ω̄i,j , t′)−1g, Ts′ ω̄i,j)ds′

=
λ(1+µ)−1∑

q=0

∫ κ

0

f(XA(ω̄i,j , s+ qκ)XA(ω̄i,j , t′)−1g, Tsω̄i,j+q)ds ,(8.36)

where we have used the fact that if s′ = s+ qκ then

Tsω̄i,j+q = TsT(j+q)κω̄i = Ts+jκ+qκω̄i = Ts+qκTjκω̄i = Ts+qκω̄i,j = Ts′ ω̄i,j .

Step 23.iv : As q varies from 0 to λ(1 + µ)− 1, the index j + q that occurs in the integrals
of (8.36) takes values in the integer interval

Qn(j) = {j, j + 1, . . . , j + λ(1 + µ)− 1} ,

which is a subset of J because j ≤ (Λ− λ)(1 + µ)− 1. We group the λ(1 + µ) indices j + q
into the blocks J` (of length 1 + µ) for those ` such that J` ⊆ Qn(j), and separate out the
remaining values of j + q.

For this purpose, we write Qn(j) = Qcn(j) ∪ Qbn(j), where the “central part” Qcn(j) is a
disjoint union of intervals J` and the “boundary part” Qbn(j) has at most 2(1+µ) members.
Let ∆n(j) be the set of indices ` such that J` ⊆ Qn(j). Then

(8.37) Wn,A;i,j,t′f(g) = W c
n,A;i,j,t′f(g) +W b

n,A;i,j,t′f(g) ,
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where W c
n,A;i,j,t′f(g), W b

n,A;i,j,t′f(g) are respectively the contributions to the right-hand side
of (8.36) of the terms for which j + q ∈ Qcn(j) and those for which j + q ∈ Qbn(j). Thus, in
particular,

W c
n,A;i,j,t′f(g) =

∑
j+q∈Qc

n(j)

∫ κ

0

f(XA(ω̄i,j , s+ qκ)XA(ω̄i,j , t′)−1g, Tsω̄i,j+q)ds

=
∑

`∈∆n(j)

W c
n,A;i,j,t′;`f(g) ,(8.38)

where

(8.39) W c
n,A;i,j,t′;`f(g)

def
=

∑
j+q∈J`

∫ κ

0

f(XA(ω̄i,j , s+ qκ)XA(ω̄i,j , t′)−1g, Tsω̄i,j+q)ds ,

and

(8.40) W b
n,A;i,j,t′f(g) =

∑
j+q∈Qb

n(j)

∫ κ

0

f(XA(ω̄i,j , s+ qκ)XA(ω̄i,j , t′)−1g, Tsω̄i,j+q)ds .

Step 23.v : We estimate the contribution of the terms in the “boundary part.”
Since Qbn(j) has at most 2(1 + µ) indices, (8.40) implies the bound

(8.41)
1
n

∣∣∣W b
n,A;i,j,t′f(g)

∣∣∣ ≤ 2κ(1 + µ)‖f‖sup
n

=
2‖f‖sup

λ
.

Step 23.vi : In order to estimate W c
n,A;i,j,t′f(g), we get a bound for each of the terms

W c
n,A;i,j,t′;`f(g) of the summation in (8.38).
Let a` be the smallest member of J`, so a` = `(1 + µ), and J` = {a`, a`+1, . . . , a`+µ}.

Then in (8.39) we can rewrite the summation with j + q = a` + v, and get

(8.42) W c
n,A;i,j,t′;`f(g)=

µ∑
v=0

∫ κ

0

f(XA(ω̄i,j , s+(a`−j+v)κ)XA(ω̄i,j , t′)−1g, Tsω̄i,a`+v)ds.

Using the cocycle identity we get

XA(ω̄i,j , s+ (a` + v − j)κ) = XA(T(a`−j)κω̄i,j , vκ+ s)XA(ω̄i,j , (a` − j)κ)

= XA(T(a`−j)κTjκω̄i, vκ+ s)XA(ω̄i,j , (a` − j)κ)

= XA(Ta`κω̄i, vκ+ s)XA(ω̄i,j , (a` − j)κ)

= XA(ω̄i,a`
, vκ+ s)XA(ω̄i,j , (a` − j)κ) .
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Therefore

W c
n,A;i,j,t′;`f(g) =

µ∑
v=0

∫ κ

0

f(XA(ω̄i,a`
, vκ+ s)XA(ω̄i,j , (a` − j)κ)XA(ω̄i,j , t′)−1g, Tsω̄i,a`+v)ds .

(8.43)

Step 23.vii : We split the sum of (8.43) by separating out the first term from the µ remaining
ones. We get

(8.44) W c
n,A;i,j;t′;`f(g) = W c,−

n,A;i,j,t′;`f(g) +W c,+
n,A;i,j,t′;`f(g) ,

where

W c,−
n,A;i,j,t′;`f(g) =

∫ κ

0

f(XA(ω̄i,a`
, s)XA(ω̄i,j , (a` − j)κ)XA(ω̄i,j , t′)−1g, Tsω̄i,a`

)ds ,

(8.45) W c,+
n,A;i,j,t′;`f(g) =

µ∑
v=1

∫ κ

0

W̄ c,+;f,g;s
n,A;i,j,t′;`;v ds ,

and

(8.46) W̄ c,+;f,g;s
n,A;i,j,t′;`;v=f(XA(ω̄i,a`

, vκ+s)XA(ω̄i,j , (a`−j)κ)XA(ω̄i,j , t′)−1g, Tsω̄i,a`+v) .

Step 23.viii : We estimate the contribution of W c,−
n,A;i,j,t′;`f by observing that each function

W c,−
n,A;i,j,t′;`f is pointwise bounded by κ‖f‖sup. Since the number of members of ∆n(j) is at

most λ, we have the estimate

(8.47)
1
n

∣∣∣ ∑
`∈∆n(j)

W c,−
n;A,i,j,t′;`f(g)

∣∣∣ ≤ λκ‖f‖sup
n

=
‖f‖sup
1 + µ

.

Step 23.ix : We now do some preliminary work towards the key step of our construction,
namely, getting bounds for W c,+

n,A;i,j,t′;`f(g), This will be done by estimating W̄ c,+;f,g;s
n,A;i,j,t′;`;v

and using (8.45), and our first step is to rewrite W̄ c,+;f,g;s
n,A;i,j,t′;`;v is a convenient way.

We use the cocycle identity to compute the factor by which g is left-multiplied in the first
of the two arguments of f in (8.46).

XA(ω̄i,a`
, vκ+ s)XA(ω̄i,j , (a` − j)κ)XA(ω̄i,j , t′)−1

= XA(ω̄i,a`+1, (v − 1)κ+ s)XA(ω̄i,a`
, κ)XA(ω̄i,j , (a` − j)κ)XA(ω̄i,j , t′)−1

= XA(ω̄i,a`+1, (v − 1)κ+ s)XA(ω̄i,a`
, κ)XA(ω̄i, a`κ)XA(ω̄i, jκ)−1XA(ω̄i,j , t′)−1

= XA(ω̄i,a`+1, (v − 1)κ+ s)XA(ω̄i,a`
, κ)XA(ω̄i, a`κ)

(
XA(ω̄i,j , t′)XA(ω̄i, jκ)

)−1

= XA(ω̄i,a`+1, (v − 1)κ+ s)XA(ω̄i,a`
, κ)XA(ω̄i, a`κ)XA(ω̄i, jκ+ t′)−1 .
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Therefore,

W̄ c,+;f,g;s
n,A;i,j,t′;`;v

= f(XA(ω̄i,a`+1, (v − 1)κ+ s)XA(ω̄i,a`
, κ)XA(ω̄i, a`κ)XA(ω̄i, jκ+ t′)−1g, Tsω̄i,a`+v) .

Step 23.x : We still have to choose the points g#,ω̄i,j ∈ G and the controls η#,ω̄i,j ,κ, as
indicated in Step 18. We begin by making the choice

η#,ω̄i,j ,κ = η∗,ω̄i,j ,κ g#,ω̄i,j = ξη
∗,ω̄i,j ,κ

(κ) if j /∈ {`(1 + µ) : ` ∈ L} .

It then follows from (8.22) that

A(Ttω̄i) = A#(ω̄i, t)

= η#,ω̄i,N (t)

= η#,i,(j),κ(t− jκ)

= η#,ω̄i,j ,κ(t− jκ)

= η∗,ω̄i,j ,κ(t− jκ)

= A0(Tt−jκω̄i,j)

= A0(Tt−jκTjκω̄i)

= A0(Ttω̄i)

whenever i ∈ I, j ∈ J , j /∈ {`(1 + µ) : ` ∈ L}, and t ∈ [jκ, (1 + j)κ]. Therefore

(8.48) A(Ttω̄i) = A0(Ttω̄i) whenever t ∈
Λ−1⋃
`=0

[a`κ+ κ, a`+1κ] .

For each i, `, we let Fi,` be the function on G defined by

(8.49) Fi,`(g) =
1
κµ

µ∑
v=1

∫ κ

0

f(XA(ω̄i,a`+1, (v − 1)κ+ s)g, Tsω̄i,a`+v)ds .

Notice that XA(ω̄i,a`+1, τ), for τ ∈ [0, κµ], is obtained by solving the differential equation
ξ′(τ) = A(Tτ ω̄i,a`+1)ξ(τ) with initial condition ξ(0) = e

G
, whereas XA0(ω̄i,a`+1, τ) is ob-

tained by solving the same initial value problem, with A replaced by A0. On the other hand,
(8.48) tells us that A(Tτ+a`κ+κω̄i) = A0(Tτ+a`κ+κω̄i) whenever 0 ≤ τ ≤ a`+1κ− (a` + 1)κ,
i.e., whenever 0 ≤ τ ≤ κµ. In other words, A(Tτ ω̄i,a`+1) = A0(Tτ ω̄i,a`+1) whenever
0 ≤ τ ≤ κµ. It follows that XA(ω̄i,a`+1, τ) = XA0(ω̄i,a`+1, τ) when τ ∈ [0, κµ]. Hence
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XA(ω̄i,a`+1, (v− 1)κ+ s) = XA0(ω̄i,a`+1, (v− 1)κ+ s) whenever v = 1, . . . , µ, s ∈ [0, κ]. So
we can rewrite (8.49) as

(8.50) Fi,`(g) =
1
κµ

µ∑
v=1

∫ κ

0

f(XA0(ω̄i,a`+1, (v − 1)κ+ s)g, Tsω̄i,a`+v)ds .

We observe that

(8.51) W c,+
n,A;i,j,t′;`f(g) = κµFi,`

(
XA(ω̄i,a`

, κ)XA(ω̄i, a`κ)XA(ω̄i, jκ+ t′)−1g
)
.

Step 23.xi : We have already chosen the g#,ω̄i,j and the controls η#,ω̄i,j ,κ when j is not one
of the a`. We will now choose g#,ω̄i,a` and η#,ω̄i,a`

,κ for each index i ∈ I = {1, . . . , I} and
each ` ∈ L = {0, 1, . . . ,Λ− 1}.

For each v ∈ {1, . . . , µ} and each s ∈ [0, κ], the function

(8.52) g 7→ f(XA0(ω̄i,a`+1, (v − 1)κ+ s)g, Tsω̄i,a`+v)

is equal to τh(fω
′
), if h = (XA0(ω̄i,a`+1, (v− 1)κ+ s))−1 and ω′ = Tsω̄i,a`+v. Therefore this

function belongs to the set K∗ defined in Step 2. It clearly follows from (8.50) that Fi,` is
an average of functions of the type (8.52). Hence Fi` belongs to the closed convex hull K of
K∗. Consequently, each Fi,` also belongs to K. Thus, for each i, ` we can choose Hi,` ∈ K0

such that
‖Fi,` −Hi,`‖sup ≤

ε

8
.

For each i ∈ I, H ∈ K0, let A(i,H) be the set of those indices ` ∈ L such that Hi,` = H,
and let a(i,H) be the number of members of A(i,H). Enumerate the members of A(i,H),
from left to right, so that

A(i,H) = {αi,H,1, . . . , αi,H,a(i,H)} and αi,H,1 < αi,H,2 < . . . < αi,H,a(i,H) .

Then for each i ∈ I, ` ∈ L, there exists a unique θ = θ(i, `) ∈ {1, . . . ,a(i,Hi,`)} such that
` = αi,Hi,`,θ. We then define σ(i, `), ρ(i, `) to be, respectively, the quotient and remainder
of θ(i, `) modulo R, so that

θ(i, `) = σ(i, `)R+ ρ(i, `) , σ(i, `) ∈ Z , ρ(i, `) ∈ Z , σ(i, `) ≥ 0 , and 0 ≤ ρ(i, `) < R .

We are now ready to define the g#,ω̄i,a` and the η#,ω̄i,a`
,κ for i ∈ I, ` ∈ L. We will do

this by induction with respect to `.
Fix an `, and assume that the g#,ω̄i,a

`′ and the η#,ω̄i,a
`′
,κ have already been chosen

for all `′ such that `′ < `. Then the point XA(ω̄i, a`κ) is determined, because the curve
[0, a`κ] 3 τ 7→ XA(ω̄i, a`κ) ∈ G is the unique solution ξ̃ of the initial value problem{

ξ′(τ) = A(Tτ ω̄i)ξ(τ) ,
ξ(0) = e

G
,
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so ξ̃ is determined by the function [0, a`κ] 3 τ 7→ A(Tτ ω̄i) ∈ S which, by construction, is
the restriction to [0, a`κ] of the control η#,ω̄i,N .

On the other hand, XA(ω̄i,a`
, κ) is not determined before we choose g#,ω̄i,a` , and the

η#,ω̄i,a`
,κ , because the curve [0, κ] 3 τ 7→ XA(ω̄i,a`

, τ) ∈ G is the solution ξ̂ of the initial
value problem {

ξ′(τ) = A(Tτ ω̄i,a`
)ξ(τ) ,

ξ(0) = e
G
,

and, if we let j = `(1 + µ) = a`, then

A(Tτ ω̄i,a`
) = A(TτTa`κω̄i)

= A(Tτ+a`κω̄i)

= η#,ω̄i,N (τ + a`κ)

= η#,i,(j),κ((τ + a`κ)− jκ)

= η#,i,(j),κ(τ) ,

and
XA(ω̄i,a`

, κ) = ξ̂(κ) = ξη
#,i,(j),κ

(κ) = g#,ω̄i,j = g#,ω̄i,a` ,

so the function [0, κ] 3 τ 7→ A(Tτ ω̄i,a`
) ∈ D and the point XA(ω̄i,a`

, κ) ∈ G depend very
much on the choice of g#,ω̄i,a` and η#,ω̄i,a`

,κ .
If we apply the result of Step 9 with ĝω̄i,a`XA(ω̄i, a`κ) in the role og g, we can conclude

that that the set Gĝω̄i,a`XA(ω̄i, a`κ) is δ1-dense in Fĝω̄i,a`XA(ω̄i, a`κ). We can therefore
choose a member γi,` of this set such that

(8.53) dG(γi,`, ḡρ(i,`)) < δ1 .

We then let
g#,ω̄i,a` = γi,`X

A(ω̄i, a`κ)−1 .

It follows that
g#,ω̄i,a` ∈ Gĝω̄i,a` .

Then (8.10) implies that we can pick a control η#,ω̄i,a`
,κ ∈ N0

S(η∗,ω̄i,a`
,κ, δ/2) such that

ξη
#,ω̄i,a`

,κ

(κ) = g#,ω̄i,a` .
It follows from our choice of g#,ω̄i,a` and η#,ω̄i,a`

,κ that

(8.54) XA(ω̄i,a`
, κ)XA(ω̄i, a`κ) = γi,` .

Therefore,

(8.55) W c,+
n,A;i,j,t′;`f(g) = κµFi,`

(
γi,`X

A(ω̄i, jκ+ t′)−1g
)
.
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Then (8.55) implies that

(8.56) dG(γi,`XA(ω̄i, jκ+ t′)−1g, ḡρ(i,`)XA(ω̄i, jκ+ t′)−1g) < δ1 for all g ∈ G .

Let

(8.57) W̃ c,+
n,A;i,j,t′;`f(g) = κµFi,`

(
ḡρ(i,`)XA(ω̄i, jκ+ t′)−1g

)
.

Then (8.5), (8.55), and the fact that Fi,` ∈ K, imply that

(8.58) |W c,+
n,A;i,j,t′;`f(g)− W̃ c,+

n,A;i,j,t′;`f(g)| ≤ κµβ for all g ∈ G .

For any i, j,∑
`∈∆n(j)

W̃ c,+
n,A;i,j,t′;`f(g) = κµ

∑
`∈∆n(j)

Fi,`
(
ḡρ(i,`)XA(ω̄i, jκ+ t′)−1g

)
= κµ

∑
H∈K0

∑
`∈A(i,H)∩∆n(j)

τ(ḡρ(i,`))−1Fi,`
(
XA(ωi, jκ+ t′)−1g

)
.

Let

(8.59) Wn,A;i,j(g) = κµ
∑
H∈K0

∑
`∈A(i,H)∩∆n(j)

τ(ḡρ(i,`))−1H(g).

Since ‖H − Fi,`‖sup ≤ ε
4 whenever ` ∈ A(i,H), we have the bound

(8.60)
∣∣∣Wn,A;i,j(XA(ωi, jκ+ t′)−1g)−

∑
`∈∆n(j)

W̃ c,+
n,A;i,j,t′;`f(g)

∣∣∣ ≤ κµλε

4
,

using the fact that ∆n(j) has at most λ members. Then (8.58) implies

(8.61)
∣∣∣Wn,A;i,j(XA(ωi, jκ+ t′)−1g)−

∑
`∈∆n(j)

W c,+
n,A;i,j,t′;`f(g)

∣∣∣ ≤ κµλ
(
β +

ε

4

)
.

Observing that κµλ
n ≤ 1, we get

(8.62)
1
n

∣∣∣Wn,A;i,j(XA(ωi, jκ+ t′)−1g)−
∑

`∈∆n(j)

W c,+
n,A;i,j,t′;`f(g)

∣∣∣ ≤ β +
ε

4
.

We now turn to the task of estimating Wn,A;i,j . We write

Wn,A;i,j(g) = κµ
∑
H∈K0

Wn,A;i,j;H(g),
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where

(8.63) Wn,A;i,j;H(g) =
∑

`∈A(i,H)∩∆n(j)

τ(ḡρ(i,`))−1H(g).

Now suppose that A(i,H)∩∆n(j) has qi,j,HR+ ri,j,H members, where qi,j,H and ri,j,H are
integers such that qi,j,H ≥ 0 and 0 ≤ ri,j,H < R. Then the sum of the first qi,j,HP terms of
(8.63) is equal to qi,j,H

∑R−1
r=0 τ(ḡρ(i,`))−1H(g), whose absolute value is bounded by Rβqi,j,H ,

because H ∈ K (cf. (8.7)).
The sum of the remaining pi,j,H terms is bounded by pi,j,H‖f‖sup. Thus∣∣∣Wn,A;i,j;H(g)

∣∣∣ ≤ Rβqi,j,H + pi,j,H‖f‖sup .

Each number qi,j,H is bounded by λ
R , and pi,j,H ≤ R. So∣∣∣Wn,A;i,j;H(g)

∣∣∣ ≤ λβ +R‖f‖sup .

Therefore

(8.64) ‖Wn,A;i,j‖sup ≤ κµκ̂(λβ +R‖f‖sup) .

If we combine (8.62) and (8.64), we find

(8.65)
1
n

∥∥∥ ∑
`∈∆n(j)

W c,+
n,A;i,j,t′;`f(g)

∥∥∥
sup

≤ β +
ε

4
+
κµκ̂λβ

n
+
κµκ̂R

n
‖f‖sup ,

We now use (8.44) and (8.47) and get

1
n

∣∣∣W c
n,A;i,j,t′

∣∣∣
sup

=
1
n

∣∣∣ ∑
`∈∆n(j)

W c
n,A;i,j,t′;`

∣∣∣
sup

≤ ‖f‖sup
1 + µ

+ β +
ε

4
+
κµκ̂λβ

n
+
κµκ̂R

n
‖f‖sup .

Then (8.37) and (8.41) imply

(8.66) |Wn,A,i,j,t′(g)| ≤
2‖f‖sup

λ
+
‖f‖sup
1 + µ

+ β +
ε

4
+
κµκ̂λβ

n
+
κµκ̂R

n
‖f‖sup .

Finally, we use (8.34) and get the pointwise estimate

(8.67) |Wn,Af(g, ω)| ≤ 2‖f‖sup
λ

+
‖f‖sup
1 + µ

+ β +
ε

2
+
κµκ̂λβ

n
+
κµκ̂R

n
‖f‖sup ,

valid whenever g ∈ G and ω ∈ EN−n.
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Since n = λκ(1 + µ), (8.67) implies

(8.68) |Wn,Af(g, ω)| ≤ 2‖f‖sup
λ

+
‖f‖sup
1 + µ

+ β +
ε

2
+ κ̂β +

κ̂R

λ
‖f‖sup ,

that is,

(8.69) |Wn,Af(g, ω)| ≤ ε

2
+ (1 + κ̂)β +

( 2
λ

+
1

1 + µ
+
κ̂R

λ

)
‖f‖sup ,

In view of (8.4), (1 + κ̂)β = ε
8 . Clearly, (8.11) and (8.27) imply that the last of the three

terms of the right-hand side of (8.69) is bounded by ε
4 . Therefore

(8.70) |Wn,Af(ḡ, ω)| ≤ 7ε
8

whenever g ∈ G and ω ∈ EN−n .

This, together with (8.30), gives∫
G×Ω

|Wn,Af |2 ≤
49ε2

64
+

(
c1 +

n

N

)
‖f‖2sup =

49ε2

64
+

(
c1 +

λ

Λ

)
‖f‖2sup

because n
N = λ

Λ . Since
(
c1 + λ

Λ

)
‖f‖2sup ≤ 7ε2

32 in view of (8.29), we can conclude that
‖Wn,Af‖L2<ε.

Since n > n̄, we have proved that A ∈ E(f, ε, n̄). By construction, ‖A − A0‖sup < δ.
This concludes the proof of Lemma 7.3, and then the proof of Theorem 7.1 is complete. ♦
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