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ABSTRACT.
If T = {Tt }+cr is an aperiodic measure-preserving jointly continuous flow on a compact metric
space (2 endowed with a Borel probability measure m, and G is a compact Lie group with Lie
algebra L, then to each continuous map A : Q — L we can associate the fundamental matrix
solution @ X R 3 (w,t) — X4 (w,t) € G of the family of time-dependent ordinary differential
equations

X'(t) = A(Tw)(X(t), z€G, weN.

The corresponding skew-product flow T4 = {TtA}teR on G x € is then defined by letting
TA(g,w) = (XA (w,t)g, Tiw) for (g,w) € G x Q, t € R. The flow T is measure-preserving on
(G x Q,vy ® m) (where v, is normalized Haar measure on G) and jointly continuous. For a
given closed convex subset S of L, we study the set Cerg(€2, S) of all continuous maps A : Q +— S
for which the flow T4 is ergodic. We develop a new technique to determine a necessary and
sufficient condition for the set Cerg(£2,.5) to be residual. It turns out that there is, associated
to Q, T, G, and S, a flow Tt°"%$ on the product T X Q—where T is a torus associated to S
and G—which is a lift of T. The desired necessary and sufficient condition is then expressed
in terms of this lift: Cerg(£2,5) is residual if and only if the following three properties are
satisfied: (a) G is connected, (b) S satisfies an algebraic controllability condition, known as the
“dense accessibility property,” and (c) the torus lift 7¢°"%* is ergodic. As a special case of this,
Cerg(Q2, S) is always residual if T is ergodic, G is connected and S satisfies the “dense strong
accessibility property,” because in this situation the torus lift is just 7. Since the dimension
of S can be much smaller than that of L, our result proves that ergodicity is typical even
within very “thin” classes of cocycles. This covers a number of differential equations arising
in mathematical physics, and in particular applies to the widely studied example of the Rabi
oscillator. As a consequence of our ergodicity theorem, it follows that the spectrum of the
quasi-energy operator associated with the cocycle X4 is purely continuous for a typical A. In
the case of the Rabi oscillator, this shows that the situation for a generic continuous map A is
quite different from what had been found earlier, using the K.A.M. technique, for some highly
non-generic classes of very special maps, for which the quasi-energy operator had been proved
to have a pure point spectrum.
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§1. Introduction.

In this paper we develop a new technique to construct ergodic cocycles that arise as the
fundamental matrix solutions to linear differential equations of a given form. These con-
structions are motivated by questions regarding spectral and stability of forced quantum
oscillator systems (in particular the so called “Rabi oscillator,” which models forced oscilla-
tions of a spin 1/2 particle moving under an external stationary stochastic field [BJL,DGP]).
These questions lead to problems about ergodic properties of certain skew-product flows (see
[NJ]). In [NS] we had established that the cocycle arising from a generic Rabi oscillator is
minimal. In this paper we shall prove that in fact it is ergodic. This will help us establish
that typically the spectrum of the “quasi-energy operator” associated with such systems is
only continuous. This fact should be contrasted with a result of [BJL], where the authors
prove the existence of only discrete pure point spectrum using the KAM technique.

As in [NS], our result will in fact be valid for a wide class of time dependent linear
differential systems of a specific given form, where the time dependence is recurrent. Such
systems are given by specifying data 2, T, m, G, L, S, where

(1) Qisacompact metric space, m is a Borel probability measure on 2, and T' = {T} }+cr
is a jointly continuous aperiodic m-preserving flow (cf. Defs. 2.3, 2.4, 2.5 below) on
Q;

(2) G is a compact connected Lie group and L is the Lie algebra of G;

(3) S is a subset of L.

(A particular case of the situation considered here arises when the flow is quasi-periodic.)

We use e, v, to denote, respectively, the identity element of (G, and Haar measure on
G, normalized so that v, (G) = 1. We write C°(€,S) to denote the space of continuous
S-valued maps on €. Then every map A € C%(§,S) gives rise to a family of ordinary
differential equations (parametrized by points w € 2)

(1.1) ¥ =ATw)r, 7€G, weN.

Here the meaning of the product notation used in (1.1) is as follows. We identify L with the
tangent space of G at the identity. If g € G, and R, denotes the right translation by g—i.e.
the map G' 3 h — hg € G—then, if v € L, the expression vg denotes the vector (dRy)(v),

so vg is a tangent vector to G at g. It follows that the map G > g — v™"™? (g)défvg e TG
(where TG is the tangent bundle of G) is a right-invariant vector field on G. Using the
bijection L 3 v +— v""? € L™ from L onto the set L™"" of right-invariant vector fields on
G, we can identify L with L™, Then the right hand side of (1.1) is the value at = of the
right invariant vector field A(T;w)™"".

For each fixed w € 2, we let R 3 t — X“(w,t) € G denote the fundamental matrix
solution to (1.1), i.e., the solution x(-) of (1.1) such that z(0) = e,. Then the map
X4 :Q xR~ G is continuous and satisfies the cocycle identity

(1.2) XA (w,t+5) = XY Tw, ) XA (w, 1) forallw e Q, t,s € R.
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Using X4, we define the skew-product flow T4 = {T/};cr on G x €, by letting
(1.3) T (g:w) = (X (w, t)g, Tw).

Notice that T is jointly continuous, and the product measure v, ® m is invariant under
T4

If G is a matrix Lie group, say G C GL(n,C), then each map A gives rise to a one-
parameter group V4 = {V,A};cr of bounded operators on L2(£2, C",m), defined by setting

(1.4) VAf(w) = XMNw, t) " f(Tw) for f e L2(Q,C"m), weQ, teR.

If G is a subgroup of the unitary group U (n), then V4 is a strongly continuous one-parameter
group of unitary operators, i.e., a unitary representation of R. In the Physics literature the
infinitesimal generator of this one-parameter group is called the quasi-energy operator, and
the stability properties of the evolution of such systems are studied through the spectral
properties of this representation. The evolution is regarded as stable if the spectrum of
the quasi-energy operators is discrete pure point. Here we shall show, in Theorem B, that
within very thin classes of linear differential systems of a special form, those for which the
quasi-energy operator has only purely continuous spectrum are generic.

The absence of point spectrum for a quasi-energy operator is very closely related to the
problem of “lifting ergodicity.” The ergodicity lifting problem involves constructing ergodic
skew-product flows T that are ergodic on (G x €2, v, ® m), where the map A is constrained
by the special form of the underlying family of differential equations. In Theorem A we
will determine a necessary and sufficient condition for the flow T to be ergodic for maps
A that are generic within the class of all maps satisfying the constraints. In particular,
Theorem A will imply that, under suitable hypothesis on the nature of the constraints, the
skew-product flow is ergodic for a generic map A that satisfies the constraints. The spectral
result of Theorem B will then follow as a corollary.

The special class of maps A is described by specifying a fixed subset S of the Lie algebra
L and requiring that the map A be S-valued. The conditions on S that will guarantee
ergodicity of the generic lifts are all properties commonly encountered in control theory,
under various names such as “accessibility” and “strong accessibility” (cf. [SJ], [JS], [9]).

An obvious necessary condition for ergodicity of the generic flows T4 is that G be con-
nected. Assuming that G is connected, it turns out that a certain Lie algebraic condition,
called strong accessibility (cf. Definition 2.1 below), is sufficient for the desired ergodicity.
On the other hand, this condition is not necessary, since a weaker condition that we call
“strong dense accessibility” (cf. Definition 2.2) suffices. But even strong dense accessibility
fails to be necessary. It turns out that an even weaker condition, called “dense accessibility”
(cf. Definition 2.2), is necessary for the desired ergodicity. With these observations, it is
clear that he only case where it may be unclear whether generic ergodicity holds in when
the dense accessibility condition is satisfied but the strong dense accessibility condition is
not. In this case, the gap between the two conditions results in the existence of a compact,
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connected, Abelian quotient T of G and a lift of T" to the product T x 2. The necessary
and sufficient condition for generic ergodicity is then that this lift be ergodic.

If the strong dense accessibility condition holds, and a fortiori if strong accessibility holds,
then T is trivial, so the lift of T is just T', and then ergodicity of T" implies ergodicity of the
generic lifts. With this condition, the set S can still be very “thin” in L, as in the following
example.

Example. (The Rabi-oscillator.) Consider the system

dp A F(®) 2
(1.5) Zdt_(m Y >w, Y e C-.
(This is the Schrodinger equation which describes the dynamics of a two-level atom or a
spin 1/2 particle moving under an external magnetic field f(¢).) The function f: R — C
is a complex-valued potential, typically quasiperiodic in ¢, and A € R is a fixed parameter.
Here the Lie algebra L is su(2,C), the Lie algebra of all 2 x 2 skew-hermitian matrices, and
—iA  ta+b
1a—0b A
two-dimensional affine subspace of a three dimensional Lie algebra L.
It is easy to verify (see [NS]) that the set Sy has the strong accessibility property in L.]

S = S, is the set of matrices in L of the form , where a,b € R. So S'is a

§2. Statement of the main results.

If G is a Lie group, and g € G, we use Ry, Ly, Ay, to denote, respectively, the right
translation by g, the left translation by g, and the inner automorphism determined by g, so
that Ry, L, and A, are maps from G to G, given by

Rg(x)d;fxg, Lg(x)d;fng, Ag(x)d;fga:g_1 eG, if z,ged.
Clearly, the identities
Ay=LyR,1+ =Ry 1Ly, AjAy =Ayy, RgRy = Ryy, LyLy = Lgy, LyRy = Ry Ly

hold for every g,¢' € G

We use L(G), e, T,G, TG to denote, respectively, the Lie algebra of G, the identity
element of GG, the tangent space of G at a point g € GG, and the tangent bundle of G. As
explained in §1, L(G) is, by definition, the tangent space T, G, and we identify L(G) with
the space L™"(G) of right-invariant vector fields on G. Furthemore, if v € L(G) = T, e, G

then the map G 3 g — vgd;deg (v) € TG is the right-invariant vector field that corresponds
to v under the identification of L(G) with L™"(G).

If L is a real Lie algebra, and S is a subset of L, we use Lie(S; L) to denote the Lie
subalgebra of L generated by S. We write

S—S={zx—yl|lzeS yeS},
and let Lieg(S; L) be the ideal of Lie(S; L) generated by S — S.
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2.1 Definition. A subset S of the Lie algebra L has the accessibility property in L if
Lie(S; L) = L, and the strong accessibility property in L if Lieg(S : L) = L. O

If G is a Lie group and S is a subset of L(G), we use Gr(S;G), Gro(S;G) to denote,
respectively, the connected Lie subgroups of G whose corresponding Lie subalgebras are
Lie(S; L(G)) and Lieo(S; L(Q)).

2.2 Definition. If G is a Lie group and S is a subset of the Lie algebra L(G), we say that
S has the dense accessibility property in G if Gr(S;G) is dense in G, and that S has the
strong dense accessibility property in G if Gro(S; G) is dense in G. &

If L is a Lie algebra, S C L, and § is any member of S, then Lie(S; L) = Liey(S; L) + Rs.
(Indeed, let A = Lieg(S;L) + Rs. Then A is clearly a Lie subalgebra of L, because
(X + 75, X' +1'5] = [X, X'] + r[s, X'] — r'[X, 5] whenever X, X' € Lieg(S; L) and r,7’" € R,
and [X, X'], [s, X'], [X, §] belong to Lieyg(S; L) because X, X' € Lieg(S; L), § € Lie(S; L),
and Lieg(S; L) is an ideal of Lie(S;L). Furthemore, S C A, because if s € S then
s=s—5+35 and s —§ € Lieg(S;L). So Lie(S;L) C A, and then So Lie(S;L) = A.)
It follows that

(2.1) Either Liey(S;L) = Lie(S;L) or dim Lie(S;L)/Lieg(S;L) =1.

If G is a Lie group and S C L(G), then

(A) Gro(S; Q) is a normal subgroup of Gr(S; G);
(B) if 5 is any member of S, then every g € Gr(S;G) can be expressed as a product
g = goe'® for some gg € Gro(S;G), t € R.

(Indeed, (A) and (B) are obviously true if Lieg(S; L) = Lie(S; L), so we may assume that
Lie(S;R) = Lieg(S; L) ® Rs. Let H be the set of those g € Gr(S;G) that have the desired
expression. It then follows immediately from the implicit function theorem, applied to
the map Gro(S; G) x R 3 (go,t) — goe'® € Gr(S;G), that H contains some neighborhood
U of e, relative to Gr(S;G). 1If g,¢’ € H, then we can write g = goe'®, ¢ = ghe'?,
with go, gh € Gro(S;G) and t,t' € R. Then g=1 = goe®, where g = e'¥goe™* € Gro(S; G),
and gg’ = goe®ghe!’® = Goe't)3 where § = go(e'*ghe ) € Gro(S;G). So g~ € H and
g9’ € H, showing that H is a subgroup of Gr(S;G). But then H = Gr(S;G), because
Gr(S;G) is connected and H contains a neighborhood of e, in Gr(S;G).)

Furthemore,
(2.2) The class of '* modulo Gry(S;G) is independent of the choice of 5 € S.
(Indeed, if 5,5 € S, and ((t) = e'*e~* then

('(t) = se'e ™™ —e'5e " = (s — " 5e7")((t) = (s — dAe=(3))((t) € Lieo(S; L(G))((),
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so the curve ( is tangent to the foliation of Gr(S;G) whose leaves are the translates of
Gro(S;G), and this implies that ( is entirely contained in one leaf, so ((t) € Gro(S;G) for
all ¢, since ((0) = e .)

Let Gr(S;G), Gro(S; G) denote, respectively, the closures of Gr(S;G), Gro(S;G) in G.
Then Gr(S;G) and Gry(S;G) are closed, connected subgroups of G, and Gry(S;G) is a
normal subgroup of Gr(S;G). Use [g] to denote, for each g € Gr(S;G), the class of g
modulo Gr(S;G), so [g] coincides with the right translate Gro(S;G)g and also with the
left translate gGro(S; G).

In view of (2.2), if 5,5’ € S then e'e™'" € Gro(S;G), so ee ™' € Gro(S;G) and
then [e**] = [e*]. Tt follows that if s € S, then {[e’*]};er is a one-parameter subgroup of

the quotient Q(S; G)dg Gr(S; G)/Gry(S; G), which does not depend on the choice of s and
is dense in Q(S;G). (The density follows because if [g] € Q(S;G) then g = lim;_, gj,
g; € Gr(S;G), and g; = goje"%, go; € Gro(S;G), so [g;] = [e°], and then
lg] = lim;_o[g;] = lim; oo [e%°].) Therefore the group Q(S;G) is Abelian, because (a) if
S # () then Q(S;G) has a dense one-parameter subgroup, and (b) if S is empty then
Gr(S;G) = Gro(S; G) = {e,}, so Q(5;G) is trivial. In the special case when G is compact,
the subgroup Gr(S; G) is compact as well, so Q(S; G) is a compact, connected, Abelian Lie
group, i.e., a torus.

As is customary when a group is Abelian, we use additive rather than multiplicative
notation for the group operation on Q(S;G). If S # 0, we let ss.¢ be the infinitesimal
generator of the one-parameter subgroup {[e**]};cr defined by any s € S. (Equivalently: if

s € S, then s belongs to L(Gr(S;G)), and then sg.¢ is the class of s modulo L(Gry(S;G)),
s0 ss.q € L(Gr(S;G))/L(Gro(S;G)) ~ L(Q(S; G)).) If S =10, so L(Q(S;G)) = {0}, we let
ss;c = 0. Again, we use additive rather than multiplicative notation, and write ¢sg.c rather
than e!ss:G.

If G is compact, we write Tg,¢ instead of Q(S; G), and use mg, to denote the dimension
of Tg.q, so Tg,¢ is an mg.g-dimensional torus, i.e., a product (R/Z)™s:¢ of mg, copies of
the one-dimensional torus R/Z. If we identify Tg.¢ with (R/Z)™s:¢ by choosing a basis of
L(Ts,q), thereby identifying L(Tg,g) with R™s:¢ then sg,g = (51,... ,5mg,.), Where the
real numbers s1,... ,Smg, are linearly independent over Q.

2.3 Definition. If X is a set, a flow on X is a one-parameter family 7' = {7} };cr of maps
X 5 x — Tiyx € X such that Ty is the identity map of X and T}, = T} o Ty whenever
t,s € R. If X is a topological space and T' = {T; }+cr is a flow on X, then T is continuous if
every map T3 is continuous, and T is jointly continuous if the map X xR > (z,t) — Tyx € X
is continuous. If (X, B) is a measurable space (that is, X is a set and B is a o-algebra of
subsets of X)), then T is measurable if T;(E) € B whenever F € Band t € R. If (X,B,m) isa
measure space, then an m-preserving flow on X (or a measure-preserving flow on (X, B,m))
is a measurable flow T' = {T} };cr on X maps X > z — Tyz € X such that m(T3A) = m(A)
for every A € B, t € R. &
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2.4 Definition. A measure-preserving flow 7' = {T} };cr on a probability space (X, B, m)
is said to be ergodic if, whenever a set A belongs to B and is T-invariant (i.e., such that
m(AAT;A) = 0 for all ¢t € R, where A denotes symmetric difference), it follows that
m(A) =0 or m(A) = 1. &

2.5 Definition. A flow T' = {T}};cr on a probability space (X, B, m) is said to be aperiodic
if there exists a set B € B (the “bad” set) such that m(B) = 0, having the property that
Ti;x # x whenever x ¢ B and t # 0. O

If Q is a topological space, we write Bg to denote the Borel o-algebra of 2. A Borel
probability measure on 2, is a probability measure defined on the Borel o-algebra Bgo. A
Borel probability space is a probability space (£2, F,m) such that €2 is a topological space
and F is the Borel o-algebra Bg, in which case, of course, m is a Borel probability measure
on ). The phrase “the Borel probability space (2, m)” will mean “the probability space
(Q, Ba,m).” A Borel probability space (€2, Bg, m) will be said to be metric if Q is a metric
space, and compact if {2 is a compact.

If © is a metric space, then dg will denote the distance function of 2.

If Q,U are topological spaces, then C°(Q,U) will denote the space of all continuous
maps from Q to U. If Q is compact and U is complete metric then C°(Q, U) is a complete
metric space, endowed with the supremum distance dg,;, : C°(Q,U) x C°(Q,U) — R given
by dsup(f,9) = sup{dy(f(z),g9(z)) : x € Q}. Clearly, C°(Q2,U) is a Banach space if  is
compact and U is a Banach space.

If G is a compact Lie group and S C L(G), then the torus Tg,c is a probability
space, endowed with its normalized Haar measure vt ., and we use TTs:6 to denote the
flow on Tg,; determined by the one-parameter group {tss.q}icr introduced above. So
TTsc — {TtTS;G}
It is clear that

+cp Where, for each t € R, TtTS;G is the map Ts.¢ 3 7 — T+1tss.¢ € Ts.a.

(2.3) TTs:¢ is a jointly continuous, Vg -Preserving, ergodic flow on T'.

2.6 Definition. Let T'= {T}}:cr be a flow on a set ). Let G be a compact Lie group, and
let S be a subset of the Lie algebra L(G). Define

T 5 w) = (T,79 (1), Tw) for 7€ Tsq, weQ, tER.
Then TTsiex? = {TtTS;GXQ}teR, which is clearly a flow on Tg.¢ x €2, is called the torus lift
of T determined by the pair (G, S). &

It is clear that if T preserves a probability measure m on w then TTs:¢*? preserves the
product measure vy, ® m on Tg.q X (2.
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Our two main results are

Theorem A. Let (2,m) be a compact metric Borel probability measure space, and let
T = {T}}ier be a jointly continuous aperiodic m-preserving flow on Q. Let G be a compact
connected Lie group with Lie algebra L and let S be a nonempty closed convexr subset of
L. Let v, be Haar measure on G, normalized so that v(G) = 1. Then the following three
conditions are equivalent:

(1) The set S has the dense accessibility property in G and the torus lift TTs:*% s

ergodic on the Borel probability space (Ts.q x €, Vrgo © m).
(2) The set

(2.1) Corg(2,8) = {A € C°Q,S) : T is ergodic on (G x Q,v, @ m)},

18 nonempty.
(3) Cerg(2,S) is a residual subset of C°(Q, S).

and
Theorem B. Assume that the hypothesis of Theorem A, and condition (1) of the conclusion
hold, and suppose in addition that
(1) n is a positive integer,
(2) G is a closed subgroup of the unitary group U(n),
and
(3) G does not fix any ray in the complex projective n-space P(C™).
Let Cont (2, S) be the set

{A € C%Q,S) : the quasi-energy operator of VA has only continuous spectrumy}.
Then Cieont(€2,9) is a residual subset of C°(,.9).

The proof of Theorem A will involve a series of constructions based on applying three
general results. The first one is a corollary of the version of Rokhlin’s lemma, due to D.
Lind [L], for continuous-time flows. The second one is a slight generalization of a well
known control theory result that relates the equal-time reachable sets to the accessibility
Lie algebra of a control system. The third one is about approximating the integral of a
function over a compact group by an average of translates of the function. Sections 4, 5 and
6 are devoted to the statements and proofs of these three background results. But first we
turn to the easy proof that Theorem B follows from Thoerem A.

63. Proof that Theorem A implies Theorem B.

We use the following lemma.
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3.1 Lemma. Suppose that the conditions of Theorem B are satisfied, and let A € C°(Q, S)
be such that T4 is ergodic on (G x Q, v, ®@m). Then the point spectrum of the one-parameter
group VA is empty.

Proof. Suppose f € L?(2,C",m) is an eigenvector of V4. Since V4 is a unitary one-
parameter group, our assumption implies the existence of a A € R such that the condition

(VA (w) = e f(w) for a.e. w € N
holds for all ¢ € R. Consider the map p: U(n) x Q — P(C"), defined by
plg,w) = (g~ f(w)),

where 7 : C" — P(C"™) is the canonical projection onto the projective space. Then, if ¢t € R
and g € U(n), the equalities

p(T g, w

(w,t) g,Ttw)
“1xA(w,t) 1 (Tw))

p(X4
(9
( _1VAf )
(
(

I
:1

'L>\t )

Il
3
o

g 1f )
(g, w)
hold for a.e. w. Thus (po T/)(g,w) = p(g,w) for a.e. (g,w). Thus p is TA-invariant and
hence, by the ergodicity assumption, it is a.e. constant. Thus there is a non-zero vector
v € C" such that
(g f(w)) = n(v) for a.e. (g,w).
In particular, we can pick w such that
(g f(w)) = 7(v)
for all g in a subset E of G of full measure. Then
(hv) = m(hg™" f(w)) = 7((gh™") "' f(w))

for all h € G and all g € E. Fix g € E. Then the set Eg ={he€G:gh~t e E}is of full
measure, and

|
3

s

7((gh )7 f(w)) = 7(v) whenever h € E’g )
because gh~! € E, and
7((gh )7 f(w)) = w(hv) whenever h € Eg ,
because g € E. Therefore w(hv) = 7(v) for all h € EQ, and then 7(hv) = 7(v) for all h € G,

since E’g is of full measure. Hence the stabilizer of this fixed ray is all of GG, contradicting
Assumption (6) of Theorem B. &
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§4. Background results: Rokhlin towers and Lind’s theorem.

The first background result—stated below as Proposition 4.2—will be a corollary of a
theorem of D. Lind (see [L]) which extends the classical lemma of Rokhlin for aperiodic
measure-preserving transformations to aperiodic, measure-preserving R-actions. We first
review Lind’s theorem, for which purpose we need to introduce some more notations.

It N e R, N > 0, we use Bor,,, Leby, to denote, respectively, the o-algebras of Borel- and
Lebesgue-measurable subsets of the interval [0, N|, and bor,,, leb,, to denote the normalized
Borel and Lebesgue measures on [0, N], so that bor, : Bor, +— R, leb, : Leb, — R,
bor, (E) = % whenever E € Bor,,, and leb, (E) = ‘Nﬂ whenever E € Leb,,, where | - | is
the usual Lebesgue measure on R.

If (X, B,m) is a probability space, then B, is the m-completion of the o-algebra B, i.e.,
the set of all E C X such that £ = BU N for some B € B and some N such that N C N’
for an N’ € B for which m(N’) = 0. We use 7 to denote the natural extension of m to B,.
The probability space (X, B, m) is the completion of (X, B, m).

If (X4, B1,m1), (X2, B2, my) are probability spaces, then (X1, B1,my) X (Xs, Ba, ms) will
denote the usual product probability space (X; X Xs, By ® By, mq ® ms), where By ® By is the
o-algebra of subsets of X x X5 generated by the products Ey X Es, for Ey € By, Es € By, and
my ® my is the product measure. We will then write (X1, By, m1)x (X2, B2, m2) to denote
the completed product, i.e., the completion of (X1, By, m1) X (X3, Ba, ma). Therefore,

(4.1) (X1, By, m1) % (X, Bo,mo) < (X1 x X, By, 1), where B =By ® B, m = m; @ms.

If (X, B) is a measurable space, and E € B, then B[ E is the restriction of B to E, i.e.,
the set {S € B: S C E}. Then (F,B[FE) is a measurable space as well.
If (X, B,m) is a probability space, E € B, and m(E) > 0, m[__FE denotes the normalized

nrm

restriction of m to E, that is, the function m[,_  FE : B[E +— Rgiven by m[ . E(S) = %
for S € B[E. Then (E,B[E,m[, . F) is a probability space as well. &

Recall that a Lebesgue probability space is a probability space (X, 3, m) such that there
exist
(a) an Xy € B such that m(Xp) = 0,
(b) a finite or countable subset S of X such that {s} € B and m({s}) > 0 whenever
se S,
(c) a real number a such that 0 < a and a+ ), gm({s}) = 1,
(d) a subset Iy of the interval I = [0, a] such that A(Ip) = 0,
and
(e) a bijective map ¢ from X\ (Xo U S) onto I'\Ip, such that ¢ and ¢ ~! are measurable
and A\(p(FE)) = m(E) for every E such that £ C X\(XqU S) and E € B.

It was proved by von Neumann in [vN] (cf. also Billingsley [BI], p. 69), that if X is a complete
separable metric space, B is the Borel o-algebra of X, and m is a Borel probability measure
on X, then (X, ,,,m) is a Lebesgue space.

Lind’s result is then as follows.
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Theorem 4.1. Assume that (X,B,m) is a Lebesgue space and T = {T;}ier s a jointly
measurable, m-preserving, aperiodic flow on X. Then, given N € N and € > 0 there exists
a set F' C X such that

) the sets F' and Tjo n1(F) = U{Ty(F):0 <t < N} belong to B;
) ToF NT,F = () whenevert # s, t,s € [0,N];
3) m(Too,ny(F)) > 1 —¢;
)

def

(1
(2
(
(4) there exist a o-algebra B of subsets of F, and a probability measure m defined on
B, such that the bijective map ¢ : F x [0, N] — Tio,n)(F) defined by p(x,t) = Tyx
is an isomorphism from the probability space (F,B,m)x ([0, N], Bor,,bor,) to the

probability space ( To,n1(F), B[To,x1(F),ml.,,.. To.x1(F) ) o

We will use Lind’s theorem in the form of the following corollary.

Proposition 4.2. Assume that € is a compact metric space, m is a Borel probability
measure on S, and T' = {T; }+er is a jointly continuous, m-preserving, aperiodic flow on X.
Then, given N € N and € > 0 there exists a compact subset E C X such that

(1) TRENTE = 0 whenever t # s, t,s € [0, N];
def
(2) m(To.ny(E)) > 1 — & (where T x(B)S U{TL(E) 10 < ¢ < N});
(3) there exists a unique Borel probability measure mm on E having the property that
the homeomorphism ¢ : E x [0,N] — T n|(E)  defined by p(x,t) = Tz is an
isomorphism from the probability space (E x [0, N],m ® bor,) to the probability

space (7'[07]\7] (E),m][,,..70,~(E) >

Proof. We assume, as we clearly may without loss of generality, that ¢ < 1.

Let B be the Borel o-algebra Bg. By von Neumann’s theorem, the completed probability
space (€2, Bm, m) is a Lebesgue space. Let B# be the m- Completlon of B.

Apply Theorem 5.2 with § instead of €, and get F, B, 7 having the properties of the
conclusion of that theorem. Let S; = F x [0,N], SQ = Tio,n)(F), and let By, Bs, be,
respectively, the m ® bor, -completion of the o-algebra B® Bor ~» and the o-algebra B, [Ss.
Write mi, m; to denote, respectively, the natural extension of m ® bor, to Bj, and the
measure M| Sa, so that ma(S) = ﬁ(i)) whenever S € B,, and S C S,.

Then the bijective map ¢ : S1 +— Ss is a Bi-Bs-isomorphism, in the sense that if B C 5
then B € B, if and only if (B) € Bs.

We claim that the inclusion map ¢ : F' x [0, N| — Q x [0, N] is B;-to-Borel measurable, in
the sense that if E is a Borel subset of Q x [0, N], then E N (F x [0, N]) € By. To see this,
observe that 1 = W o © o ®, where

(a) ® is the map F' x [0, N]| 3 (w,t) — (Tiw,t) € S2 x [0, N],
(b) © is the inclusion map from Sy x [0, N] to Q x [0, N],
and
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(c) W is the map Q x [0, N] 3 (w,t) — (T_w,t) € Q x [0, N].
The map P is given by ®(w,t) = (¢(w,t),t). It then follows easily that
(A) If E € B, ® Bory then ®~1(E) € By.
(Indeed, it suffices to prove this if E = E' x E"| E' € By, E” € Bory. But in this case

O HE)={(w,t) e Fx[0,N]: p(w,t) EE',tc E"Y = Y (E'YNF x E",

so ®71(E) € By.) Furthermore,

(B) The inclusion map © is measurable, i.e., if E € B® Bory then EN(S2 x [0, N])
belongs to By ® Bory.

(Again, it suffices to prove this if E = E' x E”, E' € B, E” € Bory, and in this case
EN(S2 x[0,N]) = (E'NS2) x E”, which clearly belongs to By ® Bory, since E' NSy € By,
because Sy € B,,.) Finally, ¥ is continuous, so

(C) ¥~Y(E) € B® Borywhenever E € B® Bory.

Combining (A), (B), and (C), we find that ¢ is measurable, and our claim is proved.

Now, given a positive integer k, we can find a finite partition Wy g, ... , W) 5 of 2x[0, N]
into Borel subsets whose diameter—with respect to the distance function D on Q x [0, N]
given by D((w,t), (W', 1)) = do(w,w’) + |t — t'|—is not greater than 27%. After relabeling,
we may assume that there exists §(k) € {1,...,5(k)} such that Wy, N (F x [0,N]) # 0
for s = 1,...,8(k) and Wy, N (F x [0,N]) = 0 for s = §(k) + 1,...,5(k). If we define
Ve = Wer N (F x [0,N]) for s = 1,...,5(k), then (Vig,...,Vsx)x) is a partition of
F x [0, N] into nonempty sets of diameter not greater than 27%, and the fact that ¢ is
measurable implies that the Vj ;. belong to Bi. Let X, = @(Vix), s0 (X1k,.-. , Xs)x) 18
a partition of Sy for each k. Since ¢ is a Bi-Bz-isomorphism, the sets X, , belong to Bs.
Using the regularity of the measure 712, we can find compact sets K j such that K C X,
and m(X, x\Ks ) < 5(k)~1271=Fc, Let K} = Ui(:kl)Ksk, so K} is a compact subset of S5
such that Mm(S2\K;) < 271 Fe. Let K* = N2 K;. Then K* is a compact subset of So
such that m(S2\K*) < 5. Since m(S52) > 1 — 5, we conclude that m(K*) > 1 —e.

Pick points vs € Vi i, and define ¢y, : K; — Sp by letting ¢(w) = vsp if w € Kgp.
Then 1y, is continuous on K}, and D(¢p~ ! (w), ¥ (w)) < 2'7F for all w € K}. It follows that

all the maps 13, are continuous on K*. Since the 1, converge uniformly to ¢~ on K*,

. . d .
we conclude that ¢~! is continuous on K*. Hence E* éfgofl(K *) is a compact subset of

F x [0, N]. Furthermore, E* € B; (because K* € B and K* C Sy, so K* € By, and then
E* € By, since ¢ is a By-Bs-isomorphism).

Let E be the image of E* under the projection (w,t) +— w. Then E is a compact subset
of F', and E* C E x [0, N]. Furthermore, the set K = o(E x [0, N]) = Tjp,n](E) is compact,
since ¢ is continuous. Therefore K € By, and then E x [0, N] € By. Since K* C K, we have
m(K) =m(K) > m(K*) >1—e. It is clear that the sets T, E, for 0 <t < N, are pairwise
disjoint, since the T; F' are pairwise disjoint and £ C F.
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Finally, we construct the Borel measure m. For this purpose, we first show that the Borel
o-algebra By of E is contained in B#. To see this, observe that if F’ is a compact subset of
E, then E’ x [0, N] is compact, so p(E’ x [0, N]) is compact, and then p(E’ x [0, N]) € B,
from which it follows that E' = E’ x [0, N]) € B;. It follows that for almost every ¢ the
section B} = {w : (w,t) € E' belongs to B#. But E, = F’ for all ¢, and then E’ € B#. It
follows that every compact subset of E is in B#, and then Br C B¥, as stated.

We can now define a finite Borel measure p on E by restricting to Bg the natural extension
m? of m to B#. Then

(K) 1—e¢

u(E) =my(E x [0,N]) =mo(K) = 2(52) > (8) >1—e>0.

It is therefore possible to normalize 1 and define a Borel probability measure mm on E by

letting m(A) = % for A € Bg.

It is clear that ¢ is a homeomorphism from E x [0, N] onto K, since ¢ is a continuous
bijection and E x [0, N] is compact. Furthermore, the Borel o-algebra of E x [0, N] is
the product Bg ® Bor,,. Hence the restriction ¢ of ¢ to E x [0, N] is a Bg ® Bor,-Bk-

isomorphism. To conclude our proof, we have to show that (mh ® bor,)(4) = %

whenever A € Bgp ® Bor,,. Clearly, it suffices to prove this if A = X x Y, where X is a
Borel subset of E and Y is a Borel subset of [0, N]. In that case, X € B, and

V A AV)EEX) | (* @bor (X xY) | ma(A)
(m@bor )W) == u®y = NuE) u(E) =B

On the other hand, m1(A) = ma(1(A)), and pu(E) = m1(E x [0, N]) = ma(K). Therefore

m(¥(A)) .
) _ma(P(A) T m((A)  m(p(A))
(m ® bor, )(A) = oK) :nn((é()) S TE)  mE)
and our proof is complete. O

The set F' in Theorem is 4.1 a “transversal” to the flow and m is a “transversal measure”
induced by m on F. The family of sets {T; F'},c[o, N7 is known as a Rokhlin tower of height N,
and the sets F', Tjp n](F') are, respectively, the base and the strip of the tower. Proposition
4.2 says that in the case of a compact metric space the transversal (i.e., the base of the
tower) can be chosen to be a compact set (in which case of course the strip will be compact
as well), and the transversal measure can be chosen to be a Borel probability measure.

65. Background results on accessibility.

In this section G is a connected Lie group, L is its Lie algebra, S is a nonempty subset of L,
Lie(S; L), Lieg(S; L) are the Lie subalgebras of L defined in §2, and Gr(S; G), Gro(S; G) are
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the corresponding connected Lie subgroups of G. We assume L is endowed with a Euclidean
inner product and its corresponding norm.

Then Gro(S;G) is a normal subgroup of Gr(S;G), and one of the following possibilities
occurs:

(1) Lieg(S;L) = Lie(S;L) and Gro(S; G) = Gr(S;G),

(2) dim Lieg(S; L) = dim Lie(S; L) — 1, and Gry(S; G) has codimension one in Gr(S; G)
and is dense in Gr(S; G),

(3) dim Lieg(S; L) = dim Lie(S; L) — 1, Gro(S; G) has codimension one in Gr(S; G) and
is closed in Gr(S;G), and the quotient Gr(S; G)/Gro(S; G) is isomorphic to St,

(4) dim Lieg(S; L) = dim Lie(S; L) — 1, Gro(S; G) has codimension one in Gr(S; G) and
is closed in Gr(S;G), and the quotient Gr(S; G)/Gro(S; G) is isomorphic to R.

5.1 Definition. Given a,b € R such that b > a, an S-valued control on the interval [a, b]
is a Lebesgue integrable map 7 : [a,b] — S. O

Naturally, then, L*([a, b], S) is the set of all S-valued controls on [a,b], and it is a metric
space endowed with the distance obtained by restricting the distance function of the Banach
space L'([,b],L). Clearly, if S is closed and convex in L, then L!([a, b],.9) is a closed convex
subset of L!([a,b],L).

If n € L'([a, b], 9) is a control, we let =" denote the fundamental solution of the ordinary
differential equation

(5.1) g'(t) =n(t)-g(t).

In other words, [a,b] X [a,b] 3 (t,s) — E"(t,s
that for each s € [a,b] the map [a,b] 5 ¢ — Z"(

(5.2) {%<(t>) = s forae t€lab)

) € G is the map characterized by the fact
t,s) is absolutely continuous and satisfies

G

The existence and uniqueness of =7 follows from standard facts about ordinary differential
equations. (Local existence and global uniqueness of the solutions of (5.2) follow because
the right-hand side is measurable with respect to ¢t and locally Lipschitz with respect to g
with an integrable Lipschitz constant. Global existence is a consequence of the translation
invariance of (5.2), as follows. We can fix a compact neighborhood K of e, and a positive
number « such that the solution &7 of (5.1) with initial condition £(a) = e, can never leave
K as long as ||n||z1 < . This implies that £" exists globally on [a, b] if ||n]/.1 < a. Then,
if n : [a,b] — S is an arbitrary control, we can divide the interval [a,b] into subintervals
[to, tl], [tl, tg], ey [tkz—la tk], with tg = a, tp = b such that the restriction ;i of n to [ti—h ti]
has L! norm not greater than a. If we then define £ : [a,b] — G inductively by letting
E(t) = &M (t)&(t;—1) for t;—1 < t < t;, starting with £(tp) = e, we see that £ is a solution of
(5.3) on [a,b] such that £(a) = e .)
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Given s, 7 € [a, b], both functions [a,b] 5 t — Z"(t,s)E"(s,r) and [a,b] > t — E"(t,r) are
solutions of (5.1) which take the value Z"(s,r) for ¢ = s. Hence these two solutions coincide,
which means that

(5.3) ="(t,r) =E"(t,s)E"(s,7) whenever t s, r € [a,b].
In particular, if we take r = ¢ and use the fact that Z7(t,t) = e, we find
(5.4) =(s,t) = Z"(t,s)”" whenever t,s¢ [a,b].
Also, Z7(t,s) = E"(t,a)="(a,s) = Z"(t,a)="(s,a) "1 = £7(t)¢7(s) 7L, so
(5.5) 2(t,s) = £7(t)€"(s)”'  whenever t,s € [a,b].

Furthermore, since n is S-valued,
(5.6) E"(t,s) € Gr(S;G) whenever t,s € [a,b].

In addition, we can compare points accessible at a given time, and show that

(5.7)  if n1,m2 € L'([a,b],S) then €™ () <§”2 (t)) € Gro(S; G) whenever t € [a,b] .

To see this, we first remark that
(5.8) if g € Gr(S;G) and s € S, then gsg~' — s € Lieg(S;L).
Indeed, et“se™t — s € Lieg(S;L) if u € S, because (a) ef¥se™ ™ — 5 = f(f e u, sle”"dr,
(b) [u, s] = [u,s —u], so [u,s] € Liey(S; L) because s —u € Lieyg(S; L) and Lieyg(S; L) is an
ideal of Lie(S;L), and (c) €""[u, sle™™ € Liey(S; L) for each r, because [u, s] € Lieg(S; L),
Lieg(S;L) is an ideal of Lie(S;L), and e™[u,s]le™™ = e"®u[y, s]. It then follows by
induction that gsg=! — s € Lieg(S; L) if s € G, g = eftuiet2uz ... glmUum 4y s, ... Uy, €8
and t1,%t2,... ,t,, € R, because

gsg~t — s =€ (hsh™! — s)e U pelitigem v 5 where h = e'2¥2...¢lmum

Since every g € Lie(S; L) can be expressed as a product e/1%1el2uz ... glmtm a5 above, (5.8)
follows.
Now fix s € [a, b], and let (s(t) = 2" (¢, 8)2"2(t,s)" 1. Then EM(t,5) = (,(t)="(t, s), so
M ()G (=" (t, s) = m)=" (L, s)

oEm

= b9

= C;%( t)E™ (L, 5) + Cs(t) (;72 (t, s)

_ C;is (E™ (¢, 5) + Cs(H)n2(H)E™ (L, 5)

- i.lzg ()E™(t, ) + s (Em2()Cs (D)7 G (DE™ (8, 5)
dds

= (="(t,s) + G (Om2(6)Cs (8) T G (E™ (¢, 5)
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from which it follows that

dGs

28 (1) = 0,(0)C, (1), where 0,(6) = mi (1) — G (D)o (0)L

(5.9)

Since 0, (t) = 1 (t) — 72 (t) — (gs (D2 ()¢ (1) —772(15)), (5.8) implies that 8,(t) € Lieo(S: G)
for every t. It then follows from (5.9) that (s(t) € Gro(S;G) for every t, since (s(s) = e,
and (5.7) is proved.

A trivial consequence of (5.7) is the fact that e**e " € Gro(S; G) whenever s, s’ € S and
t € R. Hence Gro(S; G)ete™t" = Gro(S;G), so Gro(S;G)e!s = Gro(S; G)e's'. Further-
more, Gro(S;G)e!® = e*Gro(S;G) because Gro(S;G) is a normal subgroup of Gr(S;G).
Hence the left translate e'*Gro(S;G) coincides with the right translate Gro(S;G)e' and
does not depend on s. We will use Gr(S; G) to denote the translate Gro(S; G)e's for s € S.
It then follows from (5.7) (taking 71 = 7, and letting 12 be a constant control) that

(5.10) if € L'([a,b],S) then  &7(t) € Gri_q(S; G) whenever t € [a,b].
Finally, we will need the fact that
(5.11)  the map L'([a,b],S) x [a,b] x [a,b] > (n,t,5) — E"(t,s) € G is continuous.

(To prove this, it suffices to show that if {n*}2°, is a sequence of controls on [a,b] that
converges in L' to a control n°°, then the trajectories é”k converge uniformly to €7, since
once this is proved the uniform convergence of 27" to £7~ on [a, b] follows from the formula
=n" (t,s) = ' (t)é*"k (s)71. Using right invariance as before, it suffices to consider the case
when the L' norms of all the n* are bounded by a constant a such that all the trajectories
f”k are contained in a compact neighborhood K of e, which is a subset of the domain U
of a cubic coordinate chart. If X;,...,X,, is a basis of L, then the vector fields X; can be
regarded, on U, as smooth R™-valued functions of g € [—1,1]". Then n*(t) = >_I" | nf ()X,
where the functions n¥ are integrable, and each trajectory f”k has a time derivative bounded

by C||n*(t)||, for some constant C. To prove that §”k — €77 uniformly, it suffices to take an

k()
} that converges

W(j))} such that

arbitrary subsequence {£”k(e)} and prove that it has a subsequence {£"

uniformly to €7 . Given the sequence {f”km}, pick a subsequence {£"
[nk¢G)) — poo|| < 277, Then the function

[a,8] 3 t = (O )| + 3 I O (1) — > (8))]

J=1

R 00

is integrable, and ||n*(“0))(¢)|| < ¢ (t) for all t and all j. Therefore the sequence {£” 22
is bounded and equicontinuous, so we can extract a uniformly convergent subsequence, and



ERGODIC COCYCLES 17

then it follows by standard arguments that the limit £ of this subsequence must be a solution
of (5.1) for n = n°°. Hence & = ¢, completing the proof.)
We now study perturbations of continuous controls, If n € C%([a,b], S)—i.e., if n is a

continuous control—and & > 0, we use Ng(n,d) to denote the open J-neighborhood of 7 in
C°([a,b], S), that is,

Ns(n,6) = {1 € C°([a, ], 5) = sup [[(t) —n(t)|] <},

t€(a,b]

so the sets Ng(n,d), as § varies over all positive numbers, form a fundamental system of
neighborhoods of the control n in C%([a,b],S). We use N2(n,d) to denote the set of all 7 in
Ng(n, d) such that 77 — n vanishes on [a,a + €] U [b — €, b] for some positive ¢.

5.2 Definition. Given a set N of controls defined on a fixed interval of the form [0, 7],
and a g € G, the N -reachable set from g is the subset R(N,g) of G defined by

(5.12) RN, 9) & {¢"(T)g :n e N} o

Clearly, the family {R(N, g) }4eq of N-reachable sets satisfies the following right-invariance
property:

(5.13) R(N,99") = R(N,g)g’ whenever g¢g,¢' € G.

In particular, the AV -reachable set from a given g € G is the right translate by g of the
N-reachable set from e,,.
Furthermore, (5.10) implies that

(5.14) R(N,e.) € Gr,.(S;G) whenever N C L*([0,T],5).

The following assertion is then the first of the two main results of this section.

Proposition 5.3. Let G be a Lie group with Lie algebra L, and let S be a nonempty closed
convex subset of L. Let T > 0, and let F be a compact subset of C°([0,T],S). Then given
§ > 0 there exist a neighbourhood W in Gro(S;G) of the identity e, of G, depending on
S but independent of n € F, such that for every n € F the reachable set R(N2(n,d),e.)
contains some right translate of W by a member of Gr(S;G).

Proof. For each k € N, define a function vy, : R* + R by letting vy (t1,... ,tx) = t1+-- -+ t.
For each t € R¥ let Ai(t) = {t € R : v (t) = v (t)}. Then A (t) is an affine subspace of
R* of dimension k — 1. For each k-tuple s = (s1,... ,s;) of members of S, let tx,s be the
map from R¥ to Gr(S; Q) given by

(5.15) prs(ts, ... tg) =etorel2o2 . elthsh
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For each k € N, s € S¥, t € R¥, we let p(k,s,t), po(k,s,t) be, respectively, the rank at
t of the differential duyj s, and the rank at t of the differential duy s+ of the restriction
Hk.s,0t Of i s to Ag(t). Let p (resp. po) be the maximum of all the numbers p(k, s, t) (resp.
po(k,s,t)) for all possible (k,s,t). We will show that

(5.16) p =dimGr(S;G) and po = dim Gry(S; G) .

To prove that p = dim Gr(S; G), we pick (k,8,t) such that p(k,s,t) = p. Then in particular
the map R* 3 t — puz 4(t) € Gr(S;G) has constant rank p near t, so uz 5(f) maps some
open neighborhood NN of t submersively onto a p-dimensional embedded submanifold M of
Gr(S;G). It follows that every member of Lie(S;L)—regarded as a right-invariant vector
field on Gr(S; G)—is tangent to M at every point of M. (Indeed, the set of vector fields
X on Gr(S;G) that are tangent to M is a Lie algebra, and the Lie subalgebra of Lie(S;L)
generated by S is Lie(S;L). So it suffices to prove that every member of S is tangent to
M. If s € S is not tangent to M, we may pick t € N such that the vector s(uz 5(t)) is not

tangent to M at u,*c’g(f). But then, if § = (5y,...,5z), and t = (£1,... , ;) the map
RFH1 5 (t1,...  th,t) > ef151ef252 ... glhsk gls

has rank p+ 1 at (f1,...,%5,0), contradicting the maximality of p.) It follows that M is
open in Gr(S;G), and p = dim Gr(S; G).

In order to prove that py = dim Gry(S;G), we first observe that py < dim Gry(S;G),
because for every k, t, s, the map jux s,0,¢ takes values in Gry, 1)(S; G), since

eU1tet2t2 L etk ¢ Grg (S5 G)e" %t e"2%2 . ek = GIry fugt. 4w (S5 G)

Let n = dim Gro(5;G). Then either dimGr(S;G) = n+ 1 or dimGr(S;G) = n. If
dim Gr(S;G) = n+ 1 then p = n + 1, and this easily implies that py = n, since we know
that pop < n, and the rank of the differential duy 5 o ¢ (t) cannot possibly be smaller than n.

We now consider the case when dim Gr(S; G) = n, i.e., when Liey(S; G) = Lie(S;G). In
that case, we augment our system, by writing G = Gr(S;G) x R and £ = Lie(S;L) x R,
so G is a connected Lie group with Lie algebra £, and the Lie bracket in £ is given by
[(X,7),(Y,s)] = ([X,Y],0) whenever (X, r) and (Y, s) belong to L. Let S={(X,1) : X € S},
and let L(S), L(S) be, respectively, the Lie subalgebra of £ generated by S, and the smallest
ideal of £(S) that contains S —S. Then S is a closed convex subset of L.

Furthermore, the fact that Lieg(S;L) = Lie(S;L) implies that £(S) = £. (Indeed, let
U be the set of those X € Lie(S;L) such that (X,0) € £(S). Then U is a Lie subalgebra
of Lie(S;L), and X —Y € U whenever X,Y € S. Let V be the set of all X € Lie(S;L)
such that adx(U) C U. Then V is a Lie subalgebra of Lie(S;L), and S C V, because if
X e Sand Y € U then (X,1) € L(S) and (Y,0) € L(S), so ([X,Y],0) € L(S), and then
[X,Y] € U. So Lie(S;L) C V, and then V = Lie(S; L), because Lie(S;L) C V. But then U
is an ideal of Lie(S;L). Since S —S C U, U = Lieg(S; L), and then U = Lie(S; L) because
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we are assuming that Lieg(S; L) = Lie(S;L). Hence (X,0) € £L(S) for all X € Lie(S;L), so
Lie(S;L) x {0} C L(S). Furthermore, if we fix an X € S, then (X, 1) € S, s0 (X, 1) € L(S).
On the other hand, (X,0) € L(S) because X € U. Hence (0,1) € L(S). Therefore
Lie(S;L) x {0} C L(S) and {0} x R C L(S). So L(S) =L.)

The set Lie(S;L) x {0} is clearly an ideal of £(S) and contains & — S. Therefore
Lo(S) C Lie(S;L) x {0}, and then Ly(S) = L(S) x {0}, because L(S) = L = Lie(S;L) xR,
and the codimension of L£y(S) in £(S) is 0 or 1. It follows that if we replace G by G and S
by S then we are in the situation considered earlier, i.e., dim £(S) = 1+ dim Ly(S). Hence,
if for each positive integer k and each k-tuple s = (s1,...,s;) of members of S we let fix s
be the map from R* to G given by

I~ _ _t101 tao tLok
fres(tl, ... ty) = €171e292 ... "k

where o; = (s;,1) for i = 1,... ,k, and L > u +— e" € G is the exponential map of G, we
can conclude that the maximum rank of the differentials of the maps fi;, s is the dimension
of dim £(S), i.e., n + 1. On the other hand, it is easy to see that

ﬂk,s(t17~-- k) = (et1$1€t282...etksk’t1+t2+...+tk) = (,uk,s(tla--- )t +ta -+t .

Therefore, if we pick (k, 8, t) such that djfij s(t) has rank n+ 1, then dfi; 5 0 () has rank n,
completing the proof of (5.16).

If we now fix s* € S, pick (k, 8, t) such that py(k,s,t) = n, and write 8 = (51, 52, ... , 55),
we can let

s(h) = ((1 — h)s* + h5y, (1 — h)s* + hsa, ..., (1 — h)s* + h&;).

It is clear that the map R x RF 5 (h,t) — [4k,5(n)(t) is real-analytic. Hence the fact that
for h =1 the map Ag(t) >t — pg505(t) has rank n at t implies that for arbitrarily small
positive ¢ there exist points t. = (tic,...,t;.) €]0,e[F and h. €]0,¢[ such that the map
Ag(te) 2t = pg 505 (t) has rank n at t.. Since the convexity of S implies that the
points (1 — h)s* 4+ h3; belong to S if 0 < h <1, we can conclude that

(#) for every positive ¢ there exist 8. = (51,¢, 52,¢,. .- ,55.) € S¥, te €]0,[F, such that
155, — s*|| < & and the map Ag(t:) >t — pg s o (t) has rank n at t..

Now let ¢ = whatever. Using the fact that F is compact and hence equicontinuous,
choose a positive a such that ||n(t) — n(t')|| < e whenever ¢,t" € [0,T], |t —t'| < «, and
nerF.

Now fix an n, € F, and a T such that 0 < T, < T, and then choose T, T, such that

0<T_<Ty<Ty <T and OdéfTJr —T_ < «. Then, using (#) with 7,(7p) in the role
of s*, choose k € N, t = (#1,... ,t;) such that £; > 0 for all j and #; + ... +{; < 0, and
s = (81,...,5;) € S¥ such that ||3; — n.(Tp)|| < ¢ for all j, having the property that the
map

Ap(t) D (1, ... ,tg) — el151el252 ... glhsh
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has rank n at t. -
Now fix a compact subinterval I = [T,T + 6] of the open interval |T_,T,[, and a
neighborhood N of t relative to Az(t) all whose members (¢1,...,t;) have positive

coordinates. For each (t1,...,tz) € N and each n € F, let n't:% be the control defined
by
) t) if t<T or t>T+0
5.17 ool (1) = ! . — — - . -
( ) () {Sj if THt1+ .. At <t<T+t1+...+t;, j=1... k.

Then the controls n't ¢ satisfy
(5.18) [In‘ "% (t) =n()|| < 3¢ if t € [0,T],n € F,[[n—nullsup < €, and (t1,... ,t;) € N,

since n'to k(1) = n(t) ift < T ort > T+0, and nttt5(t) = 3; for some jif T <t < T+,
while [|n(t) — n(To)[| <e, [In(To) — n(To)|| <&, and [[s; — n.(To)| <e.
Clearly, if (t1,...,t;) € N and n € F, we have

£, tE

(1) = 2T +0,T)e* 5k - .. el252151 7 ()

from which it follows that for each n € F the map N > (t1,... ,t;) — gttt (1) € G has
rank n at t.

We now regularize the controls n't~ ' using a positive real regularization parameter
p. First, we extend each 1 and its corresponding controls nt::%&—all of which agree
with 7 near T—to maps 7, 7%,  defined on the whole half-line [0,00[, by letting
n(t) =nttt(t) =n(T) if t > T, n € F. Then the inequality of (5.18) is true for all
t € [0,4+00]. We then define

N L[ i
(5.20) i TR () = —/ it (s)ds  for t€[0,T], p>0.
t

It is clear that the functions n't-'%* take values in S, because the 71> >'% take values in S,
and S is closed and convex. It is also clear that the nft: % are continuous. Furthermore,
if |7 — Nullsup < €, then [|g'-t%(t) — n(t)|| < 3e for each t, and ||n(t) — n(t')| < e if
t < s <t+ . Hence, if we define n't> ’tﬁ;odéfntl"“ % the inequalities

(5.21) I %50 () — ()] < 4e

hold for all (¢1,... ,t;) € N, all t € [0,7], and all n € F such that ||n — n«||lsup < €, as long
as 0 <p<a.

Next, we pick a smooth function ¢ : [0, 7] — R such that 0 < ¢(¢) < 1 for all ¢, p(t) =0
for 0 <t < T2—‘ and for % <t<T,and ¢(t) =1 for T_ <t <T,. We then define

(5_22) n#,tl,... ,t,;;p(t) — (1 _ @(t))n(t) + @(t)ntl"“ ,t,;;p(t)
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forn € F,t €1[0,T)], (t1,... ,t5) € N, p € [0,a]. Then the functions n#:'1: ' are also
S-valued (because their value at each t is a convex combination of n(t) and n't:t%3(¢).
both of which belong to S). Also, the n# ‘' are continuous if p > 0. Furthermore,
(5.21) implies

(523) Hn#,tl,---,tg;l) - 77Hsup S 45 lf 77 € F? ”77 - 77*”sup < 57(t17 s atlz) € N7 p S [0,0é],

and it follows from our construction of the n#:t1:'%P that, if we let 4 = min (T—‘ =Ty ),

2 2
then
(5.24) ptetie )y = t) if te[0,8]U[T —B,T]

whenever n € F, || — Ni|lsup < &, (t1,...,t5) € N, and p € [0, a].
We will also need the fact that

(5.25) the map FxNx[0,a]3(n, (t1,... ,tz),p) — ntotwrc L1([0,T], S) is continuous.

(Indeed, let C' = max(||51],[|52]],-- -, [I55ll) + sup{lInllsup : 7 € F}. Then the bounds
It ot — ot | o < [l =l + C 25 [t —t4] hold for n, ¢ € F, and this implies that

k

o < =Cllr + 1m = Cllsup + C Y It — ]
j=1

||,r]#7t17~~~ N7 C#vtllv"' 7t/E;;p

k
< (1 +T)||77_ C||sup+CZ|ti _t“

=1

for n,( € F, p > 0. Hence, if we define maps ¥, : F x N — L([0,7],5) by letting
U,(n;t1,...,t5) = ntie i the U, are continuous for each p € [0,a], and the family
{¥,}o<p<a is uniformly bounded and equicontinuous on N. Let {p;}32; be a sequence
in [0,a] that converges to a limit p. Then for each fixed n € F, (t1,...,t;) € N, the
functions 't for 0 < p < «, are bounded by a fixed constant. In addition, it is
clear that as j — oo the functions n# ' !%fi converge uniformly to 5P if p > 0,
and pointwise at every point of continuity t of n#!:t&0 if p = 0. Since 't t&i0 ig
piecewise continuous, the n#t1:t&Pi converge to n*f1 % in L' (even if p = 0). Hence
the maps ¥, converge pointwise to ¥, as as j — 0o, and the equicontinuity of {¥,, }o<,<a
implies that the convergence is uniform of compact subsets of F x N. Since this is true for
every convergent sequence {p;}32; in [0, a], (5.25) follows immediately.)
Let M be the map from F x N x[0,a] to G given by

(526) M(na (tla R 7tE>7 p) = 577
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Then M takes values in Gr,(S;G), and (5.11) and (5.25) imply that M is continuous.
Furthermore, (5.19) implies that

FHotlsstgip — _

M, (1, .- 5 15),0) = ™ (T) = ENT + 0, T)elxr ... el2s2ehi516n(T) |

(1]

from which it follows that the map
N 3>t +— M(n,t,0) € Gr.(S;G)

has rank n at t. Hence (if we write B, (r) = {z € R" : ||z|| < r}), the implicit function
theorem implies that there exist (a) a neighborhood By of M(ny,t,0) in Gr,.(S;G) which
is diffeomorphic by means of a map ® to the closed unit ball B, (1), (b) an r such that
0 <r <1, (c)asmooth map © : B, (r) — N such that

®(M(n.,0(2),0) == for all x € By(r).

The continuity of M then implies that there exists a positive number ~ such that
(5.27) M(@.0(x).p) € By and  [[2(M(n.0().p)) — 2] <
whenever z € B, (r), n € F, ||n — ns«||lsup <7, and 0 < p < ~. It follows that

lfilZ'EBn(g), nEf, |‘ﬁ—n*||sup§7> :06[077]7 then (EItGN)(Q)(M(n,t,p)):$>

(Indeed, suppose that x € R", [|z|| < 5, n € F, ||[n—n|lsup <7, and p € [0,7]. Define
H(y) =z +y— ®(M(n,0(y),p)), for y € B,(r). Then ((5.27)) implies that ||H(y)| < r
whenever |ly|| < r, so H is a continuous map from B,,(r) to B, (r). By Brouwer’s fixed point

theorem, there exists y € B, (r) such that H(y) = y. If we let t = ®(y), then t € N and
q)(/\/l(n,t,p)) =z.)

Therefore, if we write M”’p(t)d;f/\/l(n,t,p), and let W = >~ 1({z € R" : |jz|| < %}),
then W is a nonempty relatively open subset of Gr,.(S;G), and W C M™P(N) whenever
n € F, In—nlsup <7, and p € [0,7]. In particular, suppose we fix n € F such that
1M — N |lsup < min(y,e), and p such that 0 < p < min(y, ). Now, if t € N, then the control
n? %P satisfies ||n# % — 1| sup < 4e = J, and in addition n# 't is continuous and n#%° = n
on the set [0,3] U [T — 3,T]. Therefore n#%# € N2(n,d). Hence the set R(N2(n,9),es)
contains the set {f”#’t;p(T) : t € N}, which is equal to M"?(N). So R(N2(n,d),e.)
contains W. If we fix a member ¢ of W, and let W = Wg~!, then W is a neighborhood of
e, in Gro(S;G), and

Wg C R(Ng(n,g),ec) whenever n € F and ||n— nlsup < min(y,e).
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So we have found, for each n, € F, a neighborhood W, of e, in Gr¢(S;G), a member
gn. of Gr,.(S;G), and a positive number 7, , such that

W gn. € R(NJ(n,0),e,) whenever n€F and ||n—nusup < . -

Now find a finite subset {n},... ,n™} of F such that the sets

Fl = {77€~7::H77_77>jkusup§%71}7

for y = 1,...,m, cover F. Let W = ﬂ;nzl Wni' Then W is a neighborhood of e, in
Gro(S; G). Furthermore, if n € F then we can find j € {1,... ,m} such that n € F7. Then
17 =0kl sup < 5 }s 50 W59, € R(NG(n,9),e). Therefore

Wg??i - R(Ng(na 5)7 eG) )

since W C W, ;. Hence the set R(NZ(n,6),e,) contains a right translate of W, and our
proof is complete. %

The second main result of the section is a simple corollary of the first one. In order to
state it, we need to introduce some notations.

If n;, for ¢ = 1,2, are continuous functions on intervals [0, 7;] with values in a topological
space X, such that 71 (71) = 172(0), then the concatenation ns#m; of n; and 75 is the function
no#m : (0,71 + Ts] — X defined by

() if te(0,TY]
(ne#tm)(t) = {Zz(t -Ty) if te [T1,%1 + 1) .

If T > 0, X is a topological space, F is a subset of C%([0,7], X), and N is a positive
integer, we use F(N) to denote the set of all n € C°([0, NT], X) that are concatenations
Mm#Ne# - - #nn of N members of F.

Proposition 5.4. Let G be a compact Lie group with Lie algebra L, and let S be a nonempty
closed convex subset of L. Let T > 0, and let F be a compact subset of C°([0,T],S). Let K
b e a compact subset of Gro(S; G). Then given § > 0 there exists a positive integer N such
that for every n € FWN) the reachable set R(N2(n,0),e,) contains some right translate of
K by a member of Gr(S;G).

Proof. Using the fact that G is compact, we endow G with a bi-invariant Riemannian
metric I'g. Then T'¢ induces bi-invariant Riemannian metrics U'g,(s.q), T'aro(s;q), on
the Lie subgroups Gr(S;G), Gro(S;G) of G. Tt is then clear that the automorphisms
Gro(S;G) > g — hgh™! € Gro(S;G), for h € Gr(S;G), are isometric maps relative to the
metric FGTQ(S;G)‘
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We then apply Proposition 5.4 and find an open neighborhood W of e, in Gry(S;G)
such that R(N2(n,d),e,) contains some right translate of W by a member of Gr(S;G)
whenever n € F. By making W smaller, if necessary, we assume that W is the open ball
{9 € Gro(S;G) : distrg, 5.6 (7, €5) <7}, for some positive . Then hW = Wh whenever
h € Gr(S;G), because hWWh™1 = W.

The sets W* = {g1g2---gx : g1 € W,g0 € W,... ,gx € W} cover Gry(S;@G), since
Gro(S;G) is connected. Hence we can find N € N such that K € W, Now, if n € F(N),
and we write 17 as a concatenation 11 #n2# - - - #nn of N members of F, it follows that the
set R(N2(n,6),e,) contains the product

P = R(Ng’(nNaS)vec) ’ R<Ng(n1\f—1ag>7ec) o R<Ng(ﬂ275)»€c) ) R(Ng(nhg)’ec)'

For each of the factors R(NJ(1;,0), ) we can choose a member g; of Gr(S;G) such that
Wg; € R(N3(13,9), ). Then

R(Ng(n,6),ec) 2 P2 Wyn - Won-y- - - Wga-Wgr =W"g 2 Ky,
where g = gy - gn_1- -+ g2+ g1- So R(NZ(n,6),e.) contains a right-translate of K by a
member of Gr(S;G), as stated. &

§6. Background results: discrete approximations of Haar measures.

The third background result is about approximating the integral of a function over a compact
group by the average of its translates. This result basically restates, in a way that will be
particularly convenient for us to use, the evident facts that (a) the Haar measure v, is a
weak*-limit—in the space of finite Borel measures on G, regarded as the dual C°(G, C)* of
C°(G, C)—of measures v; that are averages of finitely many Delta functions, and (b) since
the v; weak™-converge to v, they are uniformly bounded in norm, so on any bounded subset
K of C°(G,C) the sequence {v; }324 is uniformly bounded, equicontinuous, and pointwise
convergent to v, from which it follows that the convergence has to be uniform on K if
is compact. For completeness, we include a direct proof.

Recall that C°(G, C) denotes the Banach space of all continuous complex-valued functions
on G with the supremum metric. If h € C°(G,C) and g € G, we define functions 7,h €
C%(@G, C) by setting

(6.1) (t4h) (%) = h(g™'x), for z € G.

Clearly, each 7, is an isometric linear map from C°(G,C) onto C°(G,C). Furthermore,
Te,, is the identity map of C%(@G,C), and 1, 0 7y = T,, whenever g,¢' € G, so the map

g — T, is a homomorphism from G to the group of isometric linear maps from C°(G,C)
onto C°(G,C).
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Proposition 6.1. Let G be a compact metric group. If K C C°(G,C) is compact and

B > 0, then there exist a positive integer P, and members g,,... ,q, of G, such that
1 E
(6.2) H<h>—F;Tgplh Supgﬂ for all h € K.

Proof. Since K is a compact subset of CY(G, C), it is bounded and equicontinuous. Hence
there exist (a) a constant C' such that er|h(z)| < C whenever x € G and h € K, and
(b) a neighborhood W of e, such that |h(x) — h(y)| < g whenever zy~1 € W and h € K.
Partition G into measurable subsets G|, ... ,G,, such that each G is contained in a left
translate £ W of W. Let p, = v, (G,).

If h € K and x € G, then

(hy = /G h(gz) dvg(g) =3 / h(gz) du, (g)

R
_ Z/G (h(ga) = (&) dvg (9) + S Br(r i) ()

r=1 r=1

If g € Gy, then (gz)(&2z) ™t = g6t € W, so |h(gz) — h(érz)| < g Therefore
- E
)<h> . Zﬁﬂg;lh(x)‘ <

r=1

for all h € K, z € G. Now, let M be a positive integer, and write

~ Pr

pr= 57 tDr,
where 0 < p, < ﬁ Let P =p1+...+pr. Then 1—% < % < 1. Therefore 0 < 1—% < %.
Moreover,
‘iﬁrTgT—lh(x)‘ < %
r=1
So
‘(h) - 3 p—TTST—lh(fL‘)‘ < §+ %
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Therefore
& b & b b b
’(h> > —Tgr_lh(x)‘ < ‘(h) - ; M%lh(:ﬁ)] n ) g (M P)Tgr_lh(x)‘
g CR P ‘ Pr ‘

< — _— —_ — —T,—1
=gt tU M) L p'e h(z)
B, CR CR{Np,
- 2 M M — P
B 2R
=9 M

Now choose M such that 4CR < M (3. Then

H(h)— P,

— T < g forall he K.
P &r sup ﬁ
r=1
If we now define
9, = 9, :"':gpl :glu
Ior+1 = o142 = " T Gty — €2,
Ip1+pa+-+pr_1+1 — Ipitpo+trr_q+2 — = 9p = R,

then

< B forall h € IC,

sup

1 P
[y = 5> 7y
r=1

and our proof is complete.

§7. Introduction to the proof of Theorem A.

It is clear that condition (3) of Theorem A implies condition (2). The implication (2)=-(1) is
trivial, because (a) every right coset Gr(S; G)g is invariant under the flow of the differential
equation (1.1), from which it follows that if F is any union of cosets then E x € is invariant
under T#; therefore T4 cannot be ergodic unless Gr(S;G) = G; (b) if Gr(S;G) = G, then

the map G x Q 3 (g,w) — W(g,w)d;f([g],w) € Tgs.c x Q—where [g] is the class of g modulo

Gro(S; G)—satisfies

T, (n(g.w)) = 7(T{"(9.w)) whenever g€ G, we Q, tER
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and
(ve @m)(r~H(E)) = (v

Ts.a

®@m)(E) whenever E € By ;xq;

therefore, if F is a T7s:¢ %2 invariant Borel subset of Ts.c x € for which the inequalities
0< (Vg , ®m)(E) < 1hold, then 7~ (E) is a T4-invariant Borel subset of G x Q 3 (g,w),

and 0 < (v, @ m)(7~(E)) < 1; hence TTs:¢*® must be ergodic if T4 is ergodic.

The remainder of the paper is devoted to the proof of the implication (1)=(3). The first
step will be to introduce some notational conventions.

To begin with, we will work from now with a fixed Lie group G, that we assume to be
compact and connected, a fixed compact metric Borel probability space (€2,m), and a flow
T = {T}}ter on 2, that we assume to be m-preserving and aperiodic. In addition, we assume
that a nonempty, closed, convex subset S of the Lie algebra of G is fixed as well, and that
the pair (G, S) has the dense accessibility property, i.e., Gr(S;G) = G. We use F to denote
the subgroup Gro(S;G) of G, and T to denote the quotient group Ts.c = G/F. Then F is
a closed normal subgroup of G, and T is a compact connected Abelian group, i.e., T a torus.
We let m be the dimension of T. We identify T with the product (R/Z)™ =R/Zx---xR/Z

of m copies of the circle R/Z, and we use coordinates 71, ... , Ty, (which are real numbers
modulo Z) for T, so the symbol 7 will denote a typical point of T, regarded as a member
of (R/Z)™.

We use [g] to denote the equivalence class modulo F of a member g of G, so [g] is the
right translate Fg, which coincides with the left translate gF, since gFg~! = F, because
F is a normal subgroup. Then [g] is a member of T, and we use 7;(g), ¢ = 1,... ,m to
denote its 7 coordinates, and 7(g) to denote the coordinate vector of [g], which is a member
of (R/Z)™. With these conventions and identifications, if g € G then [g], Fg, and gF, are
really three different names of the same object, and the three notations for it will be used
interchangeably.

We use L(G), L(F), L(T) to denote, respectively, the Lie algebras of the Lie groups G,
T, F, regarded as the tangent spaces TEGG, T. F, T, T to G, T, F at the identity element
e, of G, and identified in the standard way with the spaces of right-invariant vector fields
on G, T, F. Then L(F) is an ideal of L(G), L(T) is the quotient L(G)/L(F), and L(T)
is naturally identified with R™ using the coordinates 7y,... , 7, introduced above. The
identity element e of T then just becomes the m-tuple 0™ = (0,...,0) € (R/Z)™.

We fix an inner product (:, ), on the Lie algebra L(G) which is invariant under the
inner automorphisms dA, of L(G) induced, for each g € G, by the inner autmorphism A,
of G. We let || - || be the corresponding norm.

We define an inner product (-, -), at each tangent space TyG by right-translating (-, )e
via the differential dR,. Then the family I'¢ = {(-,-)4}4ec is a bi-invariant Riemannian

metric on G. We let d, be the distance function associated to this metric. Then the right

translations G 3 h — Rg(h)défhg € G and the left translations G 3 h — Lg(h)défgh €cG

are isometries.
We view G as a fiber bundle B over the base space T with fiber F. (Actually, B is a
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principal bundle, but we will not use this fact.) The fibers of B are then the cosets Fg, for
geaq.

More precisely, given any 7 € T, the fiber F, over 7 is the coset Fg, where g is any
member of G such that 7(g) = 7. With these notations, Fz = Fg = gF = [g] for every
g € G. Clearly, Fgm = F.

The bi-invariant Riemannian metric I'g induces, by restriction, Euclidean inner products
(-, )7, : Tylg] x T4[g] — R on the tangent spaces Ty[g] of the fibers. These tangent spaces
are of course mapped to one another by the differentials dR,, dL, of the right translations
and of the left translations of GG, and these maps are isometries, so the family of inner
products (-, )r 4, g € G, is bi-invariant.

In particular, the inner products (-, -)r 4 for g € F define a Riemannian metric I'r on F
which is F-bi-invariant, i.e., invariant under right and left translations of F by members of
F. More generally, for each 7 € T the fiber F, has a Riemannian metric I'r_—consisting
of the inner products (-, ), for ¢ € F,—which is invariant under right and left translations
of F.. by members of F.

The Riemannian metrics I', I'r. on the compact manifolds G, F,, give rise to volume
forms which, normalized so that the total volume is 1, define probability measures v, vy _,
on G and the fibers F.. We write v, = v m. Then v,, v, are the normalized Haar
measures on G, F. For each fiber F, = Fg, the measure v, is the image of v, under the
translations Ry, L.

The normalized Haar measure on T ~ (R/Z)™ is v, the product of m copies of the stan-
dard Borel measure on R/Z. We will write [ ...dr—rather than [ ...dv.(7)- to indicate
integration with respect to this measure.

The measures v, vy, v, are related by the formula

/Gf(g) dv,(g) :/T(/F flg)dvy, (g))dT

for every bounded Borel measurable function f on G.

If s € S, then we know that the one-parameter subgroup {[e**]};cr of T does not depend
on the choice of s and is dense in T. Let s be the infinitesimal generator of this subgroup.
Then s € L(T) = R™, so s = (s1,... ,Sm), where the real numbers sy, ... ,sy are linearly
independent over Q. Clearly,

7(e') = (ts1,... ,tsm) € (R/Z)™ for each t € R.

We write T'T rather than TTs:¢ to denote the flow on T determined by the one-parameter
group {[e**]}ser introduced above, and use TT*, rather than T7s:¢*% for the torus lift
of T determined by (G, S). Then TT*% is jointly continuous and v, ® m-preserving. The
assumption that T is aperiodic implies that TT*% is aperiodic as well.

If f e L?G,v,), we use {f) to denote the average of f over G with respect to v, and

(f)F, to denote the average of f over the fiber F. with respect to v, , so

(f) = /G f(@)dvy(g) and (e, = /F £(9) dvy_(9).
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If f belongs to L2(GxQ,v,®@m), 7 € T, and w € Q, we use f¥, f7* to denote, respectively,
the functions

Gogm ()Y fgweC, F,ogm % fgw ecC.

Then f* € L*(G,v,) for m-almost all w € Q, f7* € L*(F,;C) for v, ® m-almost all
(r,w) € T x Q, and

171122 :/ 1£<122dm(w) :/ 1F7 22 d(ve @ m)(T,w).
Q TxQ
For f € L?(G x Q,v, ®m), set

flg,w) = <fF(g),w>Ffdéf/F fg;w)dvy_(g) -
7(9)

Then f is in fact the orthogonal projection of f on the space of square-integrable functions
on G x Q that are functions of (7,w) only, i.e., constant on each fiber F. x {w}.
We use

H=L*GxQ,v,@m),
Ho={feH: flg,w)d(v, @m)(g,w) =0},
GxQ
HO,av:{fEH:fEO}'
Given A € C°(Q,L) and t € R, define a unitary operator U/* on ‘H by setting

(7.1) UAf = foTA

Next, given a positive real number M, define the time-averaging operator Wy; 4 on H by
setting y

1 M
(7.2) Waaf =57 /0 UA fdt.

We will then prove the following.

Theorem 7.1. Under the hypotheses of Theorem A, if S has the dense accessibility property
i G, then the set

Cerg,av(§2,8) ={A € C’O(Q, S): Mlim Wharaf =0 forall fe€Hoant,
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is a residual subset of C°(Q,9).

PROOF THAT THEOREM 7.1 IMPLIES THAT (1)=(3) IN THEOREM A. Assume that
the hypotheses of Theorem A hold, and condition (1) of that theorem holds as well. Then
S has the dense accessibilit property in GG, so we can apply Theorem 4.1 and conclude that
Cerg.av(£2,5) is a residual subset of C°((2, S). Furthemore, the torus lift TT*? is ergodic.

Let A € Cerg,av(2,5). If f € Ho, then f déff — f € Ho,aquv, SO WMyAf — 0as M — oo.
Moreover, since TT*% is ergodic on (T x Q, v, ® m), the time averages

def 1 M
Wash =fM - (hoTar

converge to 0, if we let h(T,w)d§f<f“’>FT, because

/I‘XQ h(T,w) d(vy @ m)(T,w) = /szz (/FT flg,w)dvy (g)> d(vy ©m)(w)

_ / f(g,w) (v, & m)(g,w)
GxQ
=0.

Observe that )
Warh =Wharaf.

Therefore Wy af = WM,Af + WMiAf — 0 as M — oo. Since this is true for all f € H,
we have shown that T4 is ergodic on (G x Q, v, ® m). Therefore A € Ce4(Q, S).

Hence Cerg,au(€2,5) C Cerg(2,5). Since Cerg av(§2,5) is residual, the set Cepg(€2,.5) is
residual as well. &

For f € Ho.av, € > 0 and n € N, define a set £(f,¢,n) as follows:

(7.3)  E(f,e,n) ={A € C%Q,S) : ||[WyhafllL: <e for some n € N such that n > n}.

Lemma 7.2. Let A € C°(Q,S), and let F be a dense subset of Ho.av. If A € E(f, L,7) for
al feF,neN,neN, then A € Cerg,av(€2,9).

Proof. Fix an f € F. By the L? ergodic theorem, the sequence W,, 4 f converges in H as
n — oo to some f* € H. Since A € E(f, %,ﬁ) for all n,m € N, f* must be the zero function.
So Wy af — 0 for every f € F. Since F is dense in Ho 40, and ||W,, a|r2 < 1 for all n, it
follows that Wy, af — 0 as n — oo for all f € Ho v, 50 A € Cergan(2,5). O

In view of Lemma 7.2, Theorem 7.1 will follow from the Baire category theorem—together
with the facts that (a) C°(€Q,S) is a complete metric space, (b) C%(G x Q;C) N Ho a4y is
dense in Hg. 4y, and (c) CO(G x ©;C) is separable— if we prove
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Lemma 7.3. Let f € C°(G xQ;C)N'Ho,qv. Then E(f, L, M) is open and dense in C°(Q, S).

The openness of the sets £(f,e,n) is easily checked. We shall establish their density in
the next section.

68. Density of E(f,e,n).

We now turn to the proof of the density of E(f,e,n). For this purpose, we fix the following
objects:
(1) a function f € C°(G x Q;C) N Ho,au;
(2) amap Ay € C°(Q, S);
(3) a positive number ¢;
(4) a positive number § and
(5) a positive integer n.
To prove the density of E(f,e,7) we shall construct a map A € C°(Q, S) such that
(1) || Ao — Allsup < 9§ and
(2) A€ E(f,e,n).

The construction of the desired map A will be carried out in several steps..

Step 1 : Recall that if g € G then 7, is the map from C°(G;C) to C°(G;C) given by
(t4h)(z) = h(g~'x) for z € G. Tt is clear that 7, o 75 = 7,5 whenever g, g € G.

Similarly, we define A\, : C°(G;C) — CY(G;C) by letting A\ h(z) = h(zg) for z € G.
Then Ay 0 A\j = A\g5 whenever g, g € G. It is clear that if g, g € G, then the maps 7, and \;
commute.

The map G x G x Q 3 (g, 9,w) — A\37,(f*) € C°(G;C) is continuous. Therefore the set

(8.1) Ke={07(f*):we€Q, g,5€G}CCG;0)

is compact. If restp denotes the restriction map from C°(G;C) to CY(F;C) that sends
each continuous function f € C°(G;C) to its restriction to the subgroup F, then restg is
continuous, so the set

(8.2) KE = restr(K.) = {restr(\g7,(f“)) :w € Q, g,§ € G} C C°(F;C)

is compact as well. Furthermore, K, is invariant under 7, and ), for all g € G, and KF is
invariant under 7, and A, for all g € F. (The invariance of K, under the \,’s is obvious,
and the invariance under the 7,’s follows from the fact that 7, and A\j commute. The
invariance of KF under )\, for g € F follows because, if h € KF and h = restp (37, (%)),
then A\jh = restp(AA57,(f¥)) = restp(N\g57,(f¥)) € K¥. The invariance under 7, for
g € F follows because, if h € KF and h = restg(A57,(f“)), then 7,h = restp(1,A57,(f¥)) =
veste (As7,- (/) € KE.)

We let K be the closed convex hull of K, , so K is a compact convex subset of C°(G;C)
such that 7,h € K and A\;h € K whenever h € K and g € G. Similarly, we let K¥ be the
closed convex hull of KF | so KF is a compact convex subset of C°(F; C) such that T4h € K¥
and A\jh € K¥ whenever h € K¥ and g € F.
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Step 2 : The equality (h)g = 0 holds for every h € K¥. Indeed, it clearly suffices to prove
the equality for h € KF. But in that case h = restgp(A\j7,(f)) for some w € Q, ¢g,§ € G, so

(e = | hlw)d (w)

F
= fw(g_1u§)dVF(u)
F

:/9—1F 2 (g)dv,-1p(v)
:/g_ng fe(w)dvg—1pg(w)

— [ ey
Fg=1g

= (f“)rg-15

—0,

where we have used the change of variables v = ¢~ 'u and the fact that the left translation
Ly maps v, to vg-1g to go from the integration over F to that over ¢~ 'F, and then the
change of variables w = vg and the fact that the right translation Rz maps v4-1g to vy-1g;
to go from the integration over ¢~ 'F to that over g 'Fg.

Step 3 : We fix a finite subset Iy of K such that every h € K satisfies the inequality

g
) h — hol|su —

for some hg € K.

Step 4 : We let & be the number of members of Ky, and define

(8.4) g = 8(++/<) .

Step 5 : We pick 0; such that §; > 0 and

(8.5) |h(g1) — h(g2)] < B whenever g1,g9o € F, h € K, and d(g1,92) < 1.

Step 6 : We apply Proposition 6.1 to the set IF and the number 5. We get a positive
integer R and members g°,...,g"% ! of F such that

R—-1
1 F
(8.6) | ;:O: rgrrh|, <8 forallhe KT
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It follows from (8.6) that

< g forallhe K.

sup

1 R—1
r=0

Indeed, if h € K and g € G, then, if we let h = restg(Agh), we have

R—1 R—1 R—1 R—1
(ZT(Q) 1h> h Z()\gh)(gr)zz Z T(gr)- 1h
r=0 r=0 r= r=0

Since the function A\jh belongs to K, its restriction h belongs to KF . We can then apply (8.6)
S < f. In particular, ’ Zr o (T(gr)- h)(en)| < 8,

and conclude that Hl r—0 T(g")~ h
SO %‘ <ZR_0 T(57)~ 1h>( )‘ < (. Since g is an arbitrary member of G, we have shown that

sup

H% Zf;o T(gr)fth < 3, concluding the proof of (8.7).
sup

Step 7: We pick a compact subset G of Go(.S) which is §;-dense in F (relative to the distance
d, restricted to F).

G

Step 8 : Each point w of ) gives rise, for each positive number a, to a continuous control
n*® . [0,a] — S, defined by

(8.8) n*e(t) = Ap(Tiw) for t € [0,a].

In particular, if we take @ = 1, the map Q > w — n*%! € C°([0,1],9) is continuous.
Therefore, if we let

(8.9) F={n"1:weq},

then F is a compact subset of C’O([O 1],.5). Hence Proposition 5.4 enables us to pick, for
this F, and with 7 = 1, § = <, a positive integer x and a §* € G for each w € Q, such that
(8.10) Gy~ C R(Ns(n*’”’“,fF/?),eG) :

Step 9 : For every g € G the set Gg is d1-dense in Fg. (Indeed, Gg C Fg because G C F. If
g € Fg then ¢’g~! € F, and the fact that G is d;-dense in F implies that there exists h € G
such that d, (h,g'g~") < d1. Then hg € Gg, and d, (hg,g') < 1, because R, is an isometry
of G.)

Step 10 : We choose p € N such that

W 16
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and let

B Te?
128 f112,,

sup

(812) C1

We then choose N = (1 4 p)kA where A is a large positive integer. The precise choice of A
will be made later, in Step 22.

Step 11 : Using Proposition 4.2, we pick a compact subset E of Q and a Borel probability
measure M on E with the following properties:

(1) Ts(E)NTy(E) = 0 for all t,s € [0, N] such that ¢ # s;

(2) m(To,)(E) > 1—ci.

(3) the map ¢ : E x [0,N] — Tjo n(E) defined by ¢(z,t) = T,z (which is clearly
a homeomorphism in view of property (1)—because the set FE is compact and
@ is continuous—and is therefore an isomorphism of measurable spaces from the

product (£ x [0, N], Bz ® Bory) to (T[O,N](EV'), Br, N](E))) is in fact an isomorphism
of probability spaces from the product (E x [0, N], Bz ® Bory,m & bory) to the
space (Tjo n1(E), Bz, N](E)>m[nm7[0,N] (E)), where m [, Tjo v (E) is the normalized

restriction of m to the set 7y n)(#), and bory is the usual Lebesgue measure on
[0, N, restricted to the Borel subsets of [0, N|, and normalized in such a way that
born ([0, N]) = 1.

Step 12 : Using the uniform continuity of f on G x §2, we choose a positive number ¢ such
that

(8.13) |f(g,w1) — flg,w2)| < whenever g€ G, wy,wy € Q, and do(wi,ws) < ¢y

oo M

Step 13 : Using the uniform continuity of the map [0, N] x 2 > (t,w) — A¢(Tiw) € S, we
choose a positive constant cg such that

(8.14) | Ag(Tyw) — Ag(Tyw")|| < g whenever dg(w,w’) < ¢g and ¢ € [0, N].

Step 14 : Using the uniform continuity of the maps [0, N] x Q > (t,w) — Tiw €  and
[0,N] x T > (t,7) — T;XT € T, we choose a positive constant c4 such that

(1) do(Tiw, Tiw') < co whenever dg(w,w’) < ¢4 and t € [0, N,

(2) dr(Trr, T,X7") < co whenever dr(7,7) < ¢y and t € [0, N],

(3) cy < C3.
Step 15 : We partition E into finitely many Borel-measurable sets F, ..., E 7 of diameter
less than c¢y. Write I = {1,... ,I}. Using the fact that 1 is regular, we pick for each i € T a

compact set F; such that E; C E; and m(E;\E;) < . After making a permutation of the
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set I, if neccessary, we assume that {z cl:mE)=0}={icl:i>1I}foranlcI We
thenlet I={1,... ,I}, E=E;U---UE], and write

E" = Ty, (E) <i.e., E = oEx0r])= TtE> for 0<r<N.

0<t<r

Then m(E") = % - (E) = (1 - N]\_,’")m(E), and
I I I I
m(E) =S m(E) =Y mE)>Y" (m(EZ) - %) - (Zm(E)) —a=1-q
i=1 i=1 i=1 i=1
Therefore
(8.15) m(E") > (1— N]\_fr>(1—c1) >1— ¢ — N]\;T
Step 16 : Let jdef{O, 1, ..., (I1+u)A—1}, so J is an integer interval with (1+x)A members

whose leftmost point is 0. We pick points w; € E; for each ¢ € I, and then set
(816) (Di,j = Tjn(@i) for 1€ I, JE J.

We associate to each index j € J the real interval Z(;y = [jr, (1 + j)x], so the Z(;
constitute a partition of the interval [0, N| into (1 + u)A intervals of length .

Step 17 : We divide the integer interval J into A blocks Jy, J1,...,Ja—1 of length 1 + p,
given by
={jeN:l1+p) <j<A+0)(1+pu) —1} for L€ L,

where £ ={0,1,... ,A —1}.
In addition, we also associate to each ¢ € £ the pu+ 1 real intervals of length x given by

(8.17) Toy =[le(l+p) + ke, be(14+p)+ (1 +k)k] for kE=0,1,...,p,

and the real interval
(8.18) To = [br(1 + p), (1 + O)r(1 + p)] UIM

Clearly,

(8.19) Zg}k :I(j) if j :€(1+,UJ)+]€.
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(The reader should think of the members of J as (1 + p)A integer indices whose values
j range from 0 to (1 + pu)A — 1. Each j gives rise to a real interval Z(;) = [jk, (j + 1)x].
As the index j grows from 0 to (1 + pu)A — 1, it goes successively through the intervals
Jo,J1,...,Ja—1 . The index k is like the index j, except that at the beginning of each J,
we reset k to 0, so that in fact k is j modulo 1+ p. On Jy, we have j = (1 + ) + k, and k
varies from 0 to pu. For each ¢, each index k gives rise to a real interval of length x, namely,
the interval Zy ;, defined by (8.17). Since, for a given ¢, k corresponds to j = (1 + pu) + k,
the interval Zy ;, can also be labelled by j, as Z(;, as indicated in (8.19).)

Step 18 : In a way to be described later, in Steps 23.x and 23.xi, we select, for each

S {17 s 7I}7 .] € \.7, a point g#’wi’j belonging to gg@i»j and a control n#zwi,ja“ such that
(8-20) s e NY(nt@eat §5/2) and €7 (k) = gFa
We then let

*7i7(j)7/€ J— *7‘;}4,'7‘%
n =n"

Y

#,4,(3) 5

#7(‘_}1',]'3”
)

n ="

g#:i’(j) — 9#7511',3' — gn#’i,(j),n

(k).

We also use the indices /, k as labels, as an alternative to using j, and write

(821) n*vi;ezk;ﬁ — 77*7¢7(j)7’<’ , /’7#721£7k7"‘: — n#viv(j)7’<’ , and g#ﬂv£7k — 9#727(])
if j=01+p)+k,el, ke{0,...,u}.

Step 19 : For each w € E = Ul_, E;, we define n#**™ : [0, N] — S by setting
(8.22) N (@) = g0 — k) if weE;, jeJ, and teIy.
Clearly, the controls n7 %N satisfy

(8.23) n?* N € C°([0,N],S) foreach weE=U/_E;,

(8.24) |n#< N () — = N(#t)|| <§ whenever w e E andt € [0,N],

(8.25) nto N = e N- for we By, ie{l,...,I}.
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(Indeed, (8.25) follows trivially from (8.22). To prove (8.24), we observe that if w € Ej;,
jeJ,and t € [jk, (1 + j)r|, then

[n# <N () — N (@) = (|95 (¢ — jr) — Ag(Tiw)|
< |ln#H00R(t — jr) — Ao(Tow;)|| + || Ao(Tiw;) — Ao(Tyw))|

o _ ) 5

< B — k) — Ag(Thas)| + 5

o ) B )
= [l (= jr) = Ao(Ti s Tini) || + 5

o ) 5
= |ln# B0t — jr) = Ag(Ty—juioig) || + 3

i (G . i . d
= It i) — o (= )|+

@i ik : *, @i gk . 0
= e m(t = jr) == (= jR)] + 5
<3,

where the second inequality follows from the fact that ||Ag(Tiw;) — Ao(Tw)|| < g, which
is true in view of (8.14), because both w; and w belong to F; and diameter(F;) < c3, and
the last inequality follows from (8.20). Furthermore, (8.20) also implies that the functions
n#0)% are continuous on [0, &, from which it follows that 7%V is continuous on [0, N],
except possibly at the points jk, j = 0,1, ... ,(1+ p)A. On the other hand, if w € E;, then
the function n#“" coincides with n*“*" near jx for every j € {0,...(1 4+ u)A}, because

/)7#7“}7N(t) #77:7(.7')5’{(-[:

— jK)

I
3

if t — jk is nonnegative and sufficiently small, whereas

PFN d) = O (G 1))
#5001 (1~ (j — 1))
O ()
o(Ti—(j—1)sWi,j—1)
o(Tiw;)

@0 (1)

I
S 303

I
S

I
3
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if t — jk is negative and sufficiently small. Hence n# Y is also continuous near jx, because
n*@:N is. So n#wN is continuous on [0, N], as stated, and (8.23) is proved.)

Step 20 : We let fl# be the map

E % [0,N] 3 (w,t) — Ay(w, )& n#eN@p) e s,
It is clear that /1# is continuous. Using the bijection

E x [0,N] 3 (w,t) = ¢(w, )& Tw € T x(B),

we associate to fl# the continuous map A#déffl# op~l: Tio,n1(E) — S.

Step 21 : Using the Tietze extension theorem, we extend Ay to a continuous map A : 2 — §
such that

(8.26) |A(w) — Ap(w)|| < forall weQ.

In principle, Tietze’s theorem yields an extension A; of A4 to a continuous map from €2 to
L(G). To get an S-valued extension that satisfies (8.26), we modify A; as follows. First, we
define Ay = mo Ay, where 7 is a continuous projection from L(G) to S. (Precisely, using the
distance function dy,(g) : L(G) x L(G) — R arising from a Euclidean inner product on L(G),
we let 7(x) be, for x € L(G), the point of S closest to . Since S is closed and convex, it is
well known that 7 is well defined—i.e., that the point of S closest to = exists and is unique
for every € L(G)— and continuous.) Since m(z) = x whenz € S, and 4 (w) = Ay (w) € S
when w € 7)o n)(E), we see that Ay agrees with Ay on Ty nj(£), while in addition Ay is
S-valued. We then define § = max{||A4(w) — Ap(w)| : w € Tio,n)(E)}, so 0 < 8, and we let
A(w) be, for each w € ©, the point of the closed ball B, = {z € L : dy,(z, Ag(w)) < &} that is
closest to Az(w). Then A is continuous, because A(w) = Ag(w)+11(Az(w)— Ap(w)), where IT
is the projection on the closed ball {z € L(G) : ||z]| < é}. In addition, A agrees with A4 on
Tjo,n1(E), because if w belongs to 7)o nj(E) then As(w) € B, so A(w) = Az(w) = Ag(w).
Furthermore, A takes values in S, because S is convex, and for every w € Q the point A(w)
is a convex combination of Ap(w) and As(w), both of which belong to S. Finally, the fact
that A(w) € B, for each w implies that the bound (8.26) holds.

Step 22 : We choose A € N such that

[/ 1|sup <5 and RE| f | sup <&

2 1 n
(5.27) A >a, o S Howw 2
and then define n = kA\(1 + ). Then
(8.28) Mﬂfﬂ <&
. ” sup < g
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Next, we choose A so that

A 5 _TE
. — <—.
(8 29) (Cl + A)Hf”sup— 39

Step 23 : We are now going to estimate the norm [|[W,, af||z,-

Step 23.i : We estimate the contribution to ||W,, af||r, of the points w that do not belong
to the set EN—" = Usejo,n—n) T(E)-
In view of (8.15), EN =" satisfies
n

—n n —Nn
m(EN )21—01—N, m(Q\EN )§01+N.

Outside G x EN =" the function W), 4 f is bounded pointwise by || | sup, 50

g0 Waaflee)dive e m)e.w) < (eI

Step 23.4 : In order to estimate W, 4 f(g,w) for a point (g,w) € G x EN ™" we first reduce
that task to that of estimating a time average of f along a lift of a trajectory t — T};.

Assume that (g,w) belongs to G x EN=".  Then there exist unique i € {1,...,1},
t € [0,N —n], © € E;, such that w = Tyw. The time ¢ belongs to Z; for a j € J,
which is unique, except if ¢ is an integer multiple of x. Equivalently, t € Z,; for an
te{0,... , A—1}andak € {0,...,u}. Clearly, j,¢, and k are related by j = ¢(1+ u) + k,
and t = jk +t' = lk(1 + p) + kk + ¢/, where 0 < ¢’ < k. The fact that ¢t < N — n implies
that

0e{0,...,A—X—1} and jeJ',

where

T 0, (A= N1 +p) 1)

~ . . . . 2
Furthermore, w = T}, 4@, from which it follows, if we write “a ~ b” to mean “|a —b| < &,”
that

Woaflg.w) = 5 [ 10 w00 Tuo)ds

1 /M -
- / F(XA(w,8)g, Toy jure@)ds
0

Qoo

1 n
(8.31) E/o F(XA(w,8)g, Toy jure@i)ds,

where, in the last step, we use the facts that
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(a) do(@,w;) < ¢4, since both @ and @; belong to E;,
(b) do(Ts+jrtt:@, Tsyjrrrw;) < c2 by (1) of Step 17, because s + jk +t' € [0, N], and
do(@,w;) < c3 by (2) of Step 17,
and
(©) 1£ (XA (@, )9, Ty sesv) — (XA, 8)g, Ty esn)] < & by Step 15

.- _ d _
Thus, writing w; ; ;ij,.@wi as before, we get

Qo

1 n 1 n+t' B
Woaflg.0) 25 [ FOO w80, Teprng)ds = o [ F(XA w0, — )9, T )ds'
0 t

n ’
Then (8.28) yields 2| fllsup < 22| f||sup < & and hence

1 ’I’l+t = 1 n
— XA w, s —t' g, Tow; ;)ds x - XAw, s —t' g, Tew; ;)ds .
) J n Jo J

n ’

We then obtain

£ 1 n
Woaflgow) ~ / FXA(w, 8 — )9, Tyn ;)ds'
n Jo
1 n
(8.32) — ;/0 FXA(Ty0, 8) XA Ty, t') g, Towi ;)ds

because the cocycle identity X4 (w, s1 + s2) = XA(Ts,w, s2) X (w, 51) implies, if we use —¢’
in the role of 51 and s’ in that of s, the identity X4 (w, s’ —t') = XA(T_y (w), s ) XA (w, —t'),
while on the other hand X4 (w, —t')~t = XA (T_y (w),¥') 7}, and T_y (w) = Tj.0.
Next, we claim that
(8.33) XANTje,8) = XA (@iy,8) if s€(0,n], ' €F;, jeJ.
To prove (8.33), we first observe that
A(Tr') = it () = it () = A(Te)

for all 7 € [0, N]. Thus, X4(w',7) = X*(w;, 7) for all 7 € [0, N]. Now the claim follows by
using the cocycle identity X4 (w', s + jr) = XA(Tjw', 8) XA (w', jk) to conclude that

@;,jr) "t (since s+ jk € [0, N])
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It follows from (8.32) and (8.33) that

nAf g,w é / f w’b]? ) A(‘Di,jvt/)_lgvTS@iJ)d‘g’

i.e., that
g1
(8.34) Wi, af(g,w) & =W asi e £(9)
where
de _ _ _
(8.35) Wns s f(0)< / FXA @iy 8) XA @1y, ) g, Tuto ) ds

Step 23.13i : We break up the integral over [0, n] that occurs in (8.35) into A(1 + p) integrals
over [0, k] (recall that n = Ax(1 + p)) by writing

AQ+p) =1 (g+1)k
Wi, a0 f(9) = Z / FXA (@i 5, )X (@i 5,1) g, Towi j)ds'
q=0 ar
A(14+p)—1
(8.36) = Z / F(XA (@i, 5+ qr) XM @i 4, 1) g, Tewi jrq)ds,

where we have used the fact that if s’ = s + g« then

Ts®i,j+q = TST(j+q)n@i = Ts+j/£—|—q/@u_)i = s—l—qujm‘Di = Ts—|—q/~cu_)i,j - Ts’(Di,j .

Step 23.1v : As q varies from 0 to A\(1 + p) — 1, the index j + ¢ that occurs in the integrals
of (8.36) takes values in the integer interval

which is a subset of J because j < (A — A)(1+ p) — 1. We group the A(1 + p) indices j + ¢
into the blocks J; (of length 1 + ) for those ¢ such that J, C Q,(j), and separate out the
remaining values of j + q.

For this purpose, we write Q,,(j) = Q¢(j) U Qb (5), where the “central part” Q¢(j) is a
disjoint union of intervals .J; and the “boundary part” QP (j) has at most 2(1+ u) members.
Let A, (j) be the set of indices ¢ such that J;, C Q,(j). Then

(8.37) Wn,A;i,j,t’f(g) = Ti,A;i,j,t’f(g) + WrIZ,A;i,j,t’f(g) )
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where W&Amj’t,f(g), W;;A;i’j’t,f(g) are respectively the contributions to the right-hand side

of (8.36) of the terms for which j + ¢ € Q¢(j) and those for which j + ¢ € Q% (j). Thus, in
particular,

A f(9) = 2: ‘/(HXA@%mS+QMXA@%ﬁfrﬂ%ﬂ@m+O%
j+aeQs () 0

(8.38) = > Wi gt (9),
LeNL ()
where
c def " _ _ — _
(8.39) g @)= ) FXA (@358 + qr) XN @i, t) g, Tewi j4q)ds |
Jj+q€Jy
and

(840) W) aivfl@)= > /f @i 4,8+ qr) X M@, 1) g, Tewi jiq)ds.
J+q€Qb ()

Step 23.v : We estimate the contribution of the terms in the “boundary part.”
Since QF (4) has at most 2(1 + p) indices, (8.40) implies the bound

1 26(1 4+ ) fllsup _ 2[1f[lsu
8.41 2w, )] < 2 = ok
( ) n ’Il,A,’L,],t f(g) - n )\

Step 23.vi : In order to estimate WﬁVA;i’j’t,f(g), we get a bound for each of the terms
Wy a.i e (g) of the summation in (8.38).

Let a; be the smallest member of Jy, so ay = £(1 + p), and Jy={ag,ar+1,... ,ar+u}.
Then in (8.39) we can rewrite the summation with j + ¢ = ay + v, and get

(8.42) WE 4w (9) Z/ FXA @i, 54 (ap—7+0)R) XA (@i, 1) 7L g, Toi a0 )ds.

Using the cocycle identity we get

XA(cDi,j, s+ (ap+v—7j)k) = x4 (Tay—j)r@i,j, VK + s)XA(cDZ-j, (ag — j)K)
= x4 (T(ae —j)eljrWi, VK + 5)X (Wua (ae —j)k)
- XA( agnwzv VK + S)XA(QJZ’J, (Clg .])H)
:XA( al,vh:—i-s)XA(wU,(ag JIK).
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Therefore

Wg,A;i,j,t’;éf(g) =
(8.43)

H K
Z/o FXA (@100, v+ ) XA (@34, (ag — 5)R) XA (@35, 1) g, Teli ap 40)ds .

Step 23.vii : We split the sum of (8.43) by separating out the first term from the y remaining
ones. We get

(844) W?S,,A;i,j;t’;éf(g) = Wn VA9, Ef( ) A,z,j t’; éf( )

where

Wn Asigot ef / f w’L ,a0 ) A(wi,ja (a,g - j)H)XA((DZ,jv t,)_lg7 Tswi,ae)dsa

(845) Wn JAE Gt Ef Z / 73 —’A_,ngts,é,v ds ’
and
(846) Wﬁ:j:zf,’]g,;j,ﬁ,v - f(XA((Di,aga U’{/—i_s)XA(‘Di,jy (CW _j>'%)XA(‘Di,j7 t,)ilga Ts@i,ag—l—v) .

Step 23.viii : We estimate the contribution of W, A bl f by observing that each function

o A juef 18 pointwise bounded by & f|sup. Since the number of members of A,,(j) is at

most A\, we have the estimate

)‘”Hstup Hstup
(847) _‘ nAth éf( ) = .
tenti) n 14 pu

Step 23.1x : We now do some preliminary work towards the key step of our construction,
namely, getting bounds for W7 "aiijw0f(9), This will be done by estimating we j; f e

and using (8.45), and our first step is to rewrite W' Z { jg tf 0. 18 @ convenient way.

We use the cocycle identity to compute the factor by which g is left-multiplied in the first
of the two arguments of f in (8.46).

XA(J)Z- ae,vm—i—s)XA(wz’j,(ag JK )XA

(@i5,t
= X @iart1, (0 = 1)k + 8) XN (@40, ) ( 0= 5)R) XA (@i5,1) 7
= XM @iapi1, (0 — Dk + 8) XA (©i 0,y #) X @i, a0r) X (@5, 55) T XA (@45, 8) 7"
= XM Diapi1, (0= Dk + 8) XX Qg0 5) X (@i, agm)( (Jzi,J,t’)XA(wz,jm))
= X (@iapr1, (0 — 1)k + 8) XHNDiap, 10) X (@4, ark) XA (05, jr + 1)1
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Therefore,

576+ f,9;8
n,Asi,5,t" €50

= f(XA (@001, (0 = D)k + 8) XA (@0, £) X (@, 008) XA (@3, G5 + )7 g, Toiap o) -

Step 23.2 : We still have to choose the points g#“#i € G and the controls n#®#i* as
indicated in Step 18. We begin by making the choice

R — s g — T ()i ¢ {1+ p) L€ LY
It then follows from (8.22) that

A(Tiw;) = Ay (wi, t)
="l ()
=P Ul — i)
=t (1 i)
="t — k)
= Ao(Ty—jxwi,5)
= Ao(Ti—jxTjrw;)
= Ao(Ti ;)

whenever i €I, j € J,j ¢ {l(1+pu): €€ L}, and t € [jk, (1 + j)k|. Therefore

A1
(8.48) A(Tiw;) = Ao(Tyw;) whenever t € U lack + K, aps1K].
=0

For each i, /¢, we let F; ; be the function on G defined by
1 I K
(8.49) Fii(g) = o Z/ FXA(@iapr1, (0= 1)k + 8)g, Ts@i.aps0)ds -
v=170

Notice that X4(@; 4,41,7), for 7 € [0, xpu], is obtained by solving the differential equation
¢(1) = A(Tr®;,4,,,)&(T) with initial condition £(0) = e, whereas X4(@; q,41,7) is ob-
tained by solving the same initial value problem, with A replaced by Ag. On the other hand,
(8.48) tells us that A(Tr1a,kt+xwi) = Ao(Trtamstrwi) whenever 0 < 7 < api1k — (ar + 1)k,
i.e., whenever 0 < 7 < kpu. In other words, A(T,w;q,41) = Ao(T7Wiq,+1) Whenever
0 <7 < kp. Tt follows that XA(w;4,41,7) = XA(0j.4,41,7) when 7 € [0, k). Hence
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XA @iape1, (v —1r+8) = XA(©; 4,41, (v — 1)k +5) whenever v =1,... ,u, s € [0,x]. So
we can rewrite (8.49) as

1 I K
(8.50) Fio(g) = — Z/ FXAD; api1, (0 — 1)k + 8)g, Ts@iap10)ds .
ki = Jo

We observe that
(8.51) Win;i,j,t/;gf(g) = kpFy (XM @iap, £) X @30, a0r) X @i,k + ) 7 g).

Step 23.xi : We have already chosen the g7®#i and the controls n®#i* when j is not one

of the a,. We will now choose g7 “i:ac and n#“ie* for each index i € I = {1,...,I} and
each £ € L ={0,1,... ,A—1}.

For each v € {1,... ,u} and each s € [0, k], the function
(852) g— f(XAO (‘Di,ag-l-l? (’U - 1)/{ + S)g7Ts(Di,a5+v)

is equal to 7, (<), if h = (X2 (@j.0,11, (v — 1)k +5)) " and w’ = Ts@;,q,4. Therefore this
function belongs to the set IC, defined in Step 2. It clearly follows from (8.50) that F; , is
an average of functions of the type (8.52). Hence Fj; belongs to the closed convex hull K of
K. Consequently, each F; , also belongs to K. Thus, for each 7, ¢ we can choose H; ¢ € Ky
such that

g
HFi,E - Hi,ﬂ”sup <=

For each i € I, H € Ky, let A(i, H) be the set of those indices ¢ € L such that H; y = H,
and let a(i, H) be the number of members of A(i, H). Enumerate the members of A(i, H),
from left to right, so that

A, H) ={aima, . QG aai )t and  aigy <oime <... < Ha@H) -

Then for each i € I, £ € L, there exists a unique 6 = 0(i,¢) € {1,... ,a(i, H; ¢)} such that
¢ = o m, 9. We then define o(i,£), p(i,£) to be, respectively, the quotient and remainder
of 6(i,¢) modulo R, so that

0(i,0) = o(i, OR + p(i,0), o(i,0) €Z, p(i,0) €Z, o(i,0) >0, and 0 < p(i,0) < R.

We are now ready to define the ¢ *®#ac and the n# ®ie® for i € I, £ € £. We will do
this by induction with respect to £.

Fix an ¢, and assume that the g and the 77#’“_“*“2”“ have already been chosen
for all #' such that # < £. Then the point X“(@;, asx) is determined, because the curve
[0, a¢k] > 7 — XA(@4,a¢k) € G is the unique solution € of the initial value problem

{5'(7) = A(Tr@i)é(r),
5(0) = €5

#"Di,az/
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so £ is determined by the function [0,ask] > 7 — A(T,@;) € S which, by construction, is
the restriction to [0, ayx| of the control n#:<i:N,
On the other hand, X“(;,,, ) is not determined before we choose g#*®ia , and the

n#@iact | because the curve [0,5] 3 7 — XA(@;4,,7) € G is the solution £ of the initial

value problem
{ 6/(7_) = A(TT@i,az)f(T) ,
5(0) = g

and, if we let j = (1 + p) = ay, then

A(T;@;.0,) = A(T: Ty, ;i)
= A(Tr4a,x0i)
= %o N (1 4 auk)

= PO ((7 + agm) — i)

— (),

and .
XA @10 1) =€) = €77 (5) = gh s = ghiee
so the function [0,x] > 7 +— A(T,@;,,) € D and the point X4(@;,,,x) € G depend very
much on the choice of g#@ier and 5 @it
If we apply the result of Step 9 with g% X“(w;, agk) in the role og g, we can conclude
that that the set G§“i e X4(@;,apr) is 61-dense in Fg®uae X4 (w;, agk). We can therefore
choose a member -y; ¢ of this set such that

(8.53) de(Vie, 3" Y) < 6.
We then let )
g#awi,az — ’YZ’EXA(J)Z, a/eﬁ_/)—l .

It follows that
g#aa’i,ag c gg@i,az .

Then (8.10) implies that we can pick a control n# @it € N9 (n*@iee® §/2) such that

gn#,@i,ala"(ﬁ/) _ g#,@i,ae .

It follows from our choice of g7 ®#ee and n#“iac* that
(8.54) XA (@iyap, £)X (@i, a0k) = vie .-
Therefore,

(8.55) Wi kil (9) = kpFoe(vie XA (@i, jr + 1) 71g).
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Then (8.55) implies that
(8.56) da(viu XA @4, jr + ) 1g, 57O XA (@, jk + 1)) Lg) < 6, forall geG.
Let
(8.57) Wk vl (9) = kpFi g (g7 X M@, ji + 1) g).

Then (8.5), (8.55), and the fact that F; , € K, imply that

(8.58) Wik soad (9) = Wik s o f(9) < kpB forall geG.

For any 1, 7,

Z WnA”t, ) = K Z Fi(g PEO XA (@, 4+ 1)~ 'g)
e, () teAn(j)
Y Y el XAdn ) ),
HeKo LcA(i,H)NAL(F)

Let
(859) Wn,A;m(g) = RU Z Z T(gp(i,@))le(g).

HeKo LeA(i,H)NAL())

Since ||H — Fj ¢||sup < § whenever ¢ € A(i, H), we have the bound

. _ KUAE
(8.60)  Waaig (XM wingr+ )79 = > Wkl 9)] < 7555
LeENL(H)
using the fact that A, (j) has at most A members. Then (8.58) implies
c €
(861) ‘WH,A%J'( (WHJH +t Z Wn Z 38,7,t" 34 (g)‘ S /{/“LA(ﬂ + Z) :
LeAL ()
Observing that %’\ <1, we get
1 ot €
(8.62) ﬁ‘wn,A;i,j(X (wi, jr + 1) E AZ( )Wn pm ef(g)‘ <B+7
€ J

We now turn to the task of estimating W, a.; ;. We write

Wi, 41,5(9) = ki Z Wi, 5i,5;1(9),

HekKy
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where

(8.63) Wn,A;i,j;H(g) = Z T(gp(i,e))ﬂH(g).
LeA(i, H)NAL(F)

Now suppose that A(7, H) N A, (j) has ¢; j a R+ r; j 7 members, where ¢; j g and r; ; g are
integers such that ¢; ; g > 0 and 0 <7r;;m < R. Then the sum of the first ¢; ; g P terms of

(8.63) is equal to qm,H Z 0 T(goti-0)-1 H(g), whose absolute value is bounded by R3¢; j u,
because H € K (cf. (8.7)).
The sum of the remaining p; ; g terms is bounded by p; ; g|| f|lsup. Thus

‘Wn,A;i,j;H(g)’ < RBGi, i + piju || fllsup -
Each number ¢; ; g is bounded by %7 and p; ;g < R. So
‘Wn,A;i,j;H(g)’ S )\ﬁ + RHfHSup .

Therefore

(8.64) ||Wn,A;i7j||sup < Kuk(AB + RHstup) .

If we combine (8.62) and (8.64), we find

1 € /i,u/%)\ﬂ /@/mR
(8.65) =l Y Wikl @) SO 1£ | sup
e, (H)
We now use (8.44) and (8.47) and get

1 c c ||f||su ’f,u’f)\ﬁ ’f,u’fR
_‘Wn,A;i,j,t’ = _’ Z WnAzgt’ =1 P +6+_ HfHSUP
n sup p —|— 4

LeAnL(J)
Then (8.37) and (8.41) imply

2||f||sup [l sup € “U"%)\ﬂ KJH"’?R

8.66 Wi At < - su
8.6 Wosswlo) < 25 o e gy 2 1w

Finally, we use (8.34) and get the pointwise estimate

2| fllsup | Iflsup £
T s +68+ 5

/ﬁ/ﬂ%)\ﬁ /{/MLR

(8.67) [Wh,af(g,w)| < 1/ lsup

valid whenever g € G and w € EN—",
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Since n = Ak(1 + u), (8.67) implies

20 sup [ llsup

€ AR
. < _ P -
(8.68) Wh,af(g,w)| < 3 T+ + 6+ 5 + /6 + 3 I fllsup »
that is,
15 2 1 AR
. < — L - - i
(8.69) (Wh,af(g,w)| < 5+ (1+4)8+ (A + T a + 5 )||f||sup,

In view of (8.4), (1+ #)B = ¢. Clearly, (8.11) and (8.27) imply that the last of the three
terms of the right-hand side of (8.69) is bounded by §. Therefore

7
(8.70) (Wh,af(g,w)| < g whenever g € G and w € EVN 7",

This, together with (8.30), gives

49¢2 n 49¢? A
| WP < S (e 3 )1 = T + (e 1) 11
GxQ N A

64 P64
because & = 2. Since (¢1 + %)||f||§up < %2 in view of (8.29), we can conclude that
[Wh,afllLe <e.

Since n > n, we have proved that A € E(f,e,n). By construction, ||A — Agllsup < 0.
This concludes the proof of Lemma 7.3, and then the proof of Theorem 7.1 is complete. <
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