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1 Information on the course

1.1 Course schedule

Our class meets on Tuesdays and Thursdays, 7th period (6:10pm to
7:30pm), and Thursdays, 8th period (7:40pm to 9:00pm), in Harden-
bergh Hall A4.

1.2 About the instructor

My name is H.J. Sussmann. My office is Hill 538.
My Rutgers phone extension is 5-5407.
My e-mail address is sussmann@math.rutgers.edu.

1.3 Web page

I will set up a Web page for our Math 311 section:

http://www.math.rutgers.edu/̃ sussmann/math311page.html

All the instructor’s notes will be available there.

1.4 Office hours

My office hours will be:

• Tuesday and Thursday, 1:00 pm to 3:00 pm in my office, Hill 538;

• any other time, by appointment, in my office, Hill 538.

1.5 Homework and midterms

Homework will count for about one third of your grade. There will be two
midterms, which will count—together—for another third of your grade. The
final exam will count for the remaining third.

Midterm dates: Thursday, October 13 and Thursday, December 1.
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1.6 The textbook

We will be following the book Understanding Analysis, by Stephen Abbott
(Springer).

2 Writing mathematics & submitting homework

2.1 Write clearly in complete meaningful sentences

You should write so that you can be easily understood by a properly trained
English-speaking individual. In particular, this means that you must

• Use complete English sentences, that make clearly identifiable statements
with a clear meaning that can can be understood by anyone reading what
you wrote. For example:

– If you tell me that “she is very smart,” but you haven’t told me who
“she” is, then I don’t know who you are talking about, so you haven’t
made a statement with a clear meaning.

– If you write “x > 0,” but you haven’t told me who “x” is, then I don’t
know what you are talking about, so you haven’t made a statement.

– If I ask you to state Pythagoras’ theorem and your answer only says
“a2 + b2 = c2,” then you are not specifying what you are talking
about, because you have not said what “a,” “b,” and “c” are supposed
to be.1

• Avoid exaggerated or incorrect use of cryptic mathematical notation.

• Explain what you are doing.

• Make sure that letter “variables” are only used if either: (i) it has been
said before what these letters stand for, or (ii) they are “closed variables”
(or “dummy variables,” or “bound variables”) in the sense that will be
discussed in great detail in class, and will also be explained later in these
notes.

NOTE: Letter2 variables function in mathematical writing very much like
pronouns (he, she, they) in ordinary English. For example, the pronouns
“he” and “she” stand for a person, but exactly which person this is we

1Here is a correct statement of Pyhtagoras’ theorem: Let T be a right triangle, let a, b be
the lengths of the legs of T , and let c be the lenght of the hypothenuse. Then a2 + b2 = c2.

2By “letter” I mean any of the usual letters of the English alphabet, lower case or capital.
(NOTE: Capitals and lower case letters are different symbols. So if in a text we use both x
and X as variables, then they are not the same thing. In addition, mathematicians often use
as variables Greek letters and other special symbols such as IN, IR, Z. In principle, you could
use any symbol (for example, ♦, �, ♣) as a variable.)
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don’t know unless it is somehow announced in advance or clear from the
context. Furthermore, the person that the pronoun stands for can vary
from paragraph to paragraph or even within a single paragraph. (For
example, “Senator Collins said she would vote in favor, but Senator Boxer
said she would vote against.”) So pronouns are variables, in the sense
that they stand for a thing or person that can vary. Letter variables work
the same way: we can say things like “if x = 5 then x2 + x + 3 is equal
to 33, but if x = 6 then x2 + x + 3 = 45.” Notice that each time we
make an assertion about x (for example, “x2 + x + 3 is equal to 33,” or
“x2 +x+ 3 = 45”) a value for x is declared before the assertion is made.
A declaration can be overruled by declaring a different value for x. (In
our example, x is declared to be 5, so “x” stands for “5” until we make a
new declaration by letting x equal 6.) A particular declaration can have
a very long scope (i.e., it can be valid for a long text following it). And,
as long as a particular declaration holds, the letter x stands for a name of
a particular thing, which is fixed, i.e., constant, so x is a constant. In
other words, when we use a variable, and declare a particular value for it,
then we “treat the variable as a constant.” Some symbols such as 0, 1, 2,
are assigned a fixed value once and for all for ever, and this can happen
even to letter variables. (For example,π, e.) We will have a lot more to
say about variables and constants later on.

• Provide proper connectives between equations as well as between ideas.

• Make sure that all the rules of English grammar (including those of spelling
and punctuation) are strictly obeyed.

• Try to say things correctly but in your own words. Please no rote learning.

• Please proofread carefully what you hand in. Ideally, you should read
and reread and revise almost any formal communication. Neatness and
clarity count, as you well know if you’ve tried to read any complicated
document.

• Do not assume that the people reading your paper can
read your mind. Do assume that they are intelligent,
but also assume that they are busy, and cannot and
will not spend an excessive amount of time puzzling
out your meaning. Communication is difficult, and
written technical communication is close to an art.

Effective written exposition will be worth at
least 40% of your grade. Conversely, bad or
unclear exposition may be penalized as much
as 40% of the grade or even more.
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• The best reference known to me on effective writing is The Elements of
Style by Strunk and White, a very thin paperback published by Macmillan.
It isn’t expensive, and it is easy to read. I recommend it.

2.2 Your written work

You should pay attention to presentation, especially for the
homework:

• A nicely typed homework (e.g., using a word processor) is preferable to
handwritten work. Handwritten work is acceptable too, but in that case:

– If you have to cross out lots of words, then you should rewrite the
whole thing anew, cleanly and neatly.

– You should use a pen. Never use a pencil.
– Use any color other than red (for example, black, blue, or green),

but DO NOT USE RED. (Reason: The use of red is reserved for the
instructor’s and grader’s comments.)

• Make sure that your name appears in every sheet of paper you
hand in, and that if you are handing in more than one sheet then the
sheets are stapled and the pages are numbered.
• If you tear off the sheets from a spiral notebook, please make sure before

you hand them in that there are none of those ugly hanging shreds of
paper at the margins. (Use scissors or a cutter, if necessary.)

3 What we know about the real number system

The following statement tells us all we know about the real number system.
Everything else has to be proved.

The real number system IR is a complete ordered field.

Let us explain what this means.

Fields. A field is a set F of objects (often called “numbers”) endowed with the
following structure:

(1) a binary operation3 + on F , called “addition,”

(2) a binary operation4 · on F , called “multipication,”

(3) two members of F , called 0 (“zero”) and 1 (“one”),

such that
3A binary operation on a set S is a rule (or, if you prefer, function) B that for every pair

x, y of members of S produces a member xRy of S.
4We often write “xy” rather than “x · y”, and sometimes we write “x× y”.
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(f1) (commutativity) (∀x, y ∈ F )(x+ y = y+x), and (∀x, y ∈ F )(x · y = y ·x);

(f2) (associativity) (∀x, y, z ∈ F )((x+ y) + z = x+ (y + z)), and
(∀x, y, z ∈ F )((x · y) · z = x · (y · z));

(f3) (existence of identities) (∀x ∈ F )(x+ 0 = x), and (∀x ∈ F )(x · 1 = x);

(f4) (existence of inverses):

(f4.1) 0 6= 1,

(f4.2) (∀x ∈ F )(∃y ∈ F )(x+ y = 0),

(f4.3) (∀x ∈ F )
(
x 6= 0 =⇒ (∃y ∈ F )(x · y = y

)
;

(f5) (distributivity): (∀x, y, z ∈ F )(x · (y + z) = x · y + x · z).

Ordered fields. An ordered field is a field F , which in addition to the field
structure (+, ·, 0, 1), is also endowed with a binary relation5 ≤ such that

(o1) (∀x, y ∈ F )(x ≤ y ∨ y ≤ x);

(o2) (∀x, y ∈ F )((x ≤ y ∧ y ≤ x) =⇒ x = y);

(o3) (∀x, y, z ∈ F )((x ≤ y ∧ y ≤ z) =⇒ x ≤ z);

(o4) (∀x, y, z ∈ F )((y ≤ z =⇒ x+ y ≤ x+ z);

(o5) (∀x, y ∈ F )((0 ≤ x ∧ 0 ≤ y) =⇒ 0 ≤ x · y).

Completeness. Let F be an ordered field. Suppose S is a subset of F . An
upper bound for S is a member b of F such that

(UB) (∀s ∈ S)(s ≤ b).

A subset S of an ordered field F is bounded above it if has an upper bound.

A least upper bound for S is an upper bound b for S such that b ≤ b′ for all
upper bounds b′ of S.

An ordered field F is complete if every nonempty subset S
of F which is bounded above has a least upper bound.

How do we work with all this? We now know all the basic facts about IR,
because we know that IR is a complete ordered field, and that’s all there is to
know.

Everything else must be proved. And every concept that does not
already appear in the properties listed above has to be defined, for the

5A binary relation on a set S is a set of ordered pairs of members of S. If R is a binary
relation on S, we write “xRy” instead of “(x, y) ∈ R,” and read “xRy” as “x is R-related to
y,” or something similar. For example, if P is the set of all people, then the relation “father
of” is the set F of all ordered pairs (x, y) such that x ∈ P , y ∈ P , and x is y’s father. We
write “xFy” instead of “(x, y) ∈ F ,” and read “xFy” and “x is y’s father.”
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very simple reason that if we do not give a definition we do not know what it
means, and if we do not know what it means then we cannot prove anything
about it.

For example, the properties we have listed do not say anything about −, 2,
3, 4, <, >, ≥, or | · · · | (absolute value). So all these things have to be defined.

Definition 1. 2 = 1 + 1.

Definition 2. 3 = 2 + 1.

Definition 3. 4 = 3 + 1.

Definition 4. Let x, y ∈ IR. Then

(i) “x < y” means “x ≤ y and x 6= y,”

(ii) “x ≥ y” means “y ≤ x,”

(iii) “x > y” means “x ≥ y and x 6= y.”

Definition 5. Let x ∈ IR. Then −x is the unique y ∈ IR such that x + y = 0.
Important remark: To be able to define “−x” this way, we need to know that
the y such that x+ y = 0 exists and is unique. The fact that it exists is part of
Axiom (f4). The fact that it is unique needs proof, and the book cheats6 by
not proving it. Here is the proof: suppose x+ y = 0 and x+ z = 0. We have
to prove that y = z. But y = y + 0 = y + (x+ z) = (y + x) + z = (x+ y) + z =
0 + z = z + 0 = z. So y = z, and we are done.

Definition 6. Let x ∈ IR be such that x 6= 0. Then x−1 is the unique y ∈ IR
such that x · y = 1. Important remark: Once again, to be able to define
“x−1” this way, we need to know that the y such that x · y = 1 exists and is
unique. The fact that it exists is part of Axiom (f4). The fact that it is unique
needs proof, and the book cheats by not proving it. Here is the proof: suppose
x · y = 1 and x · z = 1. We have to prove that y = z. But y = y · 1 = y · (x · z) =
(y · x) · z = (x · y) · z = 1 · z = z · 1 = z. So y = z, and we are done.

Definition 7. Let x ∈ IR. Then

|x| =
{

x if 0 ≤ x
−x if x < 0 .

Definition 8. Let x, y ∈ IR. Then “x− y” stands for “x+ (−y).”

Definition 9. Let x, y ∈ IR be such that y 6= 0. Then “xy ” stands for “x · y−1.”

Problem 1. Prove that if x, y ∈ IR then one and only one of the following three
statements is true: x < y, x = y, x > y.

Problem 2. Prove that if x, y ∈ IR then |x · y| = |x| · |y|.
6not much, really, just a little biit, but this is a zero-tolerance course, and cheating is

cheating!
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Problem 3. (The triangle inequality.) Prove that if x, y ∈ IR then |x + y| ≤
|x|+ |y|.

Problem 4. Prove that 2 + 2 = 4.

Problem 5. Prove that 2 · 2 = 4.

Solved problem 1. Prove that (∀x ∈ IR)(x · 0 = 0). Proof. Let x ∈ IR be
arbitrary. Then

x · 0 = x · 0 + 0
= x · 0 + (x · 0 + (−x · 0))
= (x · 0 + x · 0) + (−x · 0)
= x · (0 + 0) + (−x · 0)
= x · 0 + (−x · 0)
= 0 .

Solved problem 2. Prove that 1 > 0. Proof. We know from (o1) that 0 ≤ 1
or 1 ≤ 0. So we consider separately the two cases, namely, 0 ≤ 1 and 1 ≤ 0.

Case I: Suppose 0 ≤ 1. Then 1 > 0, because (f4) tells us that 0 6= 1. (Recall
that the definition of “>” says that “x > y” means “x ≥ y and x 6= y,” so to
conclude that 1 > 0 we need to show that 1 ≥ 0 and 1 6= 0. But 1 ≥ 0 because
we are assuming that 0 ≤ 1, and the definition of ≥ tells us that “1 ≥ 0” means
precisely “0 ≤ 1.” And 1 6= 0 because (f4) says that 0 6= 1.)

Case II: Suppose 1 ≤ 0. Then (−1) + 1 ≤ (−1) + 0 by (o4). But (−1) + 1 =
1 + (−1) = 0 by (f1) and the definition of −. And (−1) + 0 = 0 + (−1) = −1 by
(f1) and (f3). So 0 ≤ −1. But then (o5) tells us that 0 ≤ (−1) · (−1). Now we
claim that (−1) · (−1) = 1. Here is a proof:

(−1) · (−1) = (−1) · (−1) + 0
= (−1) · (−1) + (1 + (−1))
= (−1) · (−1) + ((−1) + 1)
= ((−1) · (−1) + (−1)) + 1
= ((−1) · (−1) + (−1) · 1) + 1
= (−1) · ((−1) + 1) + 1
= (−1) · (1 + (−1)) + 1
= (−1) · 0 + 1
= 0 + 1
= 1 .

Since we know that 0 ≤ (−1) · (−1), we conclude that 0 ≤ 1. Then we are
back in Case I, and we have shown that in that case 1 > 0.

So 1 > 0 in both cases.



8 Sussmann – Math 311 – Fall 2005

Problem 6. For the strings of equalities in Solved Problems 1 and 2, provide
the justifications of all the steps.

Problem 7. Prove that 2 6= 0.

Problem 8. Prove that if x ∈ IR then −|x| ≤ x ≤ |x|.

Problem 9. Prove that if x, y ∈ IR then |x− y| ≥ ||x| − |y||.

Problem 10. Prove that if a, b ∈ IR then a = b⇐⇒ (∀ε > 0)(|a− b| ≤ ε).

Problem 11. book, Exercise 1.2.2, page 11.

Problem 12. book, Exercise 1.2.6, pages 11, 12.

Problem 13. book, Exercise 1.2.7, page 12.

4 What we know about the natural numbers,
the integers, and the rational numbers

Our axioms do no say anything about IN, the set of natural numbers. So we
have to define what IN means, that is, we have to define what it means for a
real number x to be a “natural number.” Here is the definition.

First, we define the notion of inductive set: A subset S of IR is inductive if

• 1 ∈ S,

• (∀x ∈ IR)(x ∈ S =⇒ x+ 1 ∈ S).

Definition 10. A natural number is a real number x that belongs to every
inductive subset of IR. We use IN to denote the set of all natural numbers.

Solved problem 3. Prove that 1 is a natural number. Proof. We have to prove
that 1 belongs to every inductive subset of IR. So let S ⊆ IR be inductive. Then
the definition of “inductive set” tells us that 1 ∈ S, which is what we needed to
prove. END.

Solved problem 4. Prove that if n is a natural number then n+ 1 is a natural
number. Proof. Fix an n ∈ IN. We have to prove that n + 1 belongs to every
inductive subset of IR. So let S ⊆ IR be inductive. Then the definition of
“inductive set” tells us that (∀x ∈ IR)(x ∈ S =⇒ x + 1 ∈ S). So in particular
n ∈ S =⇒ n + 1 ∈ S. But n is a natural number and S is inductive, so inS,
and then n+ 1 ∈ S. END.

Solved problem 5. Prove that 0 is not a natural number. Proof. We have to
find an inductive set S such that 0 /∈ S. Let us take S = {x ∈ IR : x > 0}. Then
1 ∈ S because we have already proved that 1 > 0. Furthermore, if x ∈ S then
x+ 1 ∈ S. (Proof: if x ∈ S then x > 0. So x+ 1 > 1 and 1 > 0, so x+ 1 > 0.
Hence x + 1 ∈ S.) So S is inductive. But it is not true that 0 > 0, so 0 /∈ S.
END.
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Theorem 1. (The principle of mathematical induction, PMI.) Let S be a subset
of IN such that S is inductive. Then S = IN. Proof: To prove that S = IN we
have to prove that S ⊆ IN and IN ⊆ S. The statement that S ⊆ IN is true
because we are assuming that S is a subset of IN. Now let us prove that IN ⊆ S.
We have to prove that (∀n ∈ IN)(n ∈ S). So let n ∈ IN be arbitrary. Then
n belongs to every inductive set, because n is a natural number. So n ∈ S,
because S is inductive. END.

Solved problem 6. Prove that the sum of two natural numbers is a natural
number. Proof: We have to show that, if n ∈ IN and m ∈ IN are arbitrary, then
n + m ∈ IN. Let us fix an arbitrary n ∈ IN. We will prove that n + m ∈ IN for
every m ∈ IN using the PMI. Let S = {m ∈ IN : n + m ∈ IN}. Then S ⊆ IN.
Let us show that S is inductive. To prove this, we have to show, first of all,
that 1 ∈ S. That is, we have to show that n + 1 ∈ IN, but this is true because
n ∈ IN, in view of Solved Problem 4. Next we have to prove that if m ∈ S then
m+1 ∈ S. So suppose m ∈ S. This means that n+m ∈ IN. By Solved Problem
4, (n+m) + 1 ∈ IN. But (n+m) + 1 = n+ (m+ 1). So n+ (m+ 1) ∈ IN. This
tells us that m + 1 ∈ S. So we have shown that S is inductive. By the PMI,
S = IN. This says that n+m ∈ IN for every m ∈ IN. END.

Problem 14. Prove that the product of two natural numbers is a natural
number.

Problem 15. book, Exercise 1.2.10, page 12.

Definition 11. An integer is a real number x such that x = n −m for some
natural numbers n,m. We use Z to denote the set of all integers, so

Z = {x ∈ IR : (∃n,m ∈ IN)(x = n−m) .

Solved problem 7. Prove that every natural number is an integer. Proof: Let
n ∈ IN. Then n = (n+ 1)− 1, and both n+ 1 and 1 are natural numbers. So n
is an integer. END.

Solved problem 8. Prove that 0 is an integer. Proof: 0 = 1− 1. END.

Solved problem 9. Prove that if n is an integer then −n is an integer. Proof:
Let n be an integer. Then we can pick natural numbers p, q such that n = p−q.
But then −n = q − p, so −n is also an integer. END.

Solved problem 10. Prove that the sum of two integers is an integer. Proof:
Let m,n be integers. Pick natural numbers p, q, r, s such that n = p − q and
m = r− s. Then n+m = (p− q) + (r− s), so n+m = (p+ r)− (q + s). Since
p+ r and q + s are natural numbers, this proves that n+m is an integer.

Problem 16. Prove that the product of two integers is an integer.

Definition 12. A rational number is a real number x such that x = n
m for

some integers n,m such that m 6= 0. We use Q to denote the set of all rational
numbers, so

Q = {x ∈ IR : (∃n,m ∈ Z)(m 6= 0 ∧mx = n) .

Problem 17. Prove that the sum of two rational numbers is a rational number.
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Problem 18. Prove that the product of two rational numbers is a rational
number.

Problem 19. Prove that 0 < 1
2 and 1

2 < 1.

Problem 20. Prove that 1
2 is not an integer.

5 Some problems on completeness

Solved problem 11. Prove that if S is a nonempty subset of IR which is
bounded above, then the least upper bound of S (whose existence is guaranteed
by the fact that IR is complete) is unique. Proof: To prove that the least upper
bound is unique, we have to show that if u, v are least upper bounds of S then
u = v. So let u, v be least upper bounds of S. Then, since u is an upper bound
of S, and v is a least upper bound of S, it follows that v ≤ u. Similarly, v is an
upper bound of S, and u is a least upper bound of S, it follows that u ≤ v. So
u = v.

Problem 21. Is the empty set bounded above in IR? Does the empty set
have a least upper bound in IR? (Additional question for those who are curious
enough: Why do you think that, all of a sudden, in this particular problem I am
talking about “least upper bound in IR” rather than just “least upper bound”?)

Problem 22. Book, Exercise 1.3.9, page 18.

Solved problem 12. Prove that (∃x ∈ IR)(x2 = 2). (The definition of “x2” is
“x · x for every x ∈ IR.”)

Proof: Let T = {t ∈ IR : t2 < 2}. We want to use the completeness of IR
to conclude that T has a least upper bound. For this purpose we need to show
(a) that T is not empty, and (b) that T is bounded above. T is not empty
because 1 ∈ T , since 12 = 1 < 2. Also, T is bounded above because 2 is an
upper bound for T . (Proof: We have to show that if t ∈ T then t ≤ 2. Let
t ∈ T . Then t2 < 2. If t ≤ 0, then t ≤ 2 as well, since 0 < 2. Next suppose that
t > 0. Assume “t ≤ 2” was not true. Then t > 2. Since t > 0, it follows that
t2 = t · t > 2 · t, and also—since 2 > 0—that 2 · t > 2 · 2 = 4 > 2. So t2 > 2,
contradicting the fact that t2 < 2.)

Since T 6= ∅ and T is bounded above, it follows from the completeness
property that T has a least upper bound. Call it L. We are going to prove
that L2 = 2. We know that either L2 = 2 or L2 < 2 or L2 > 2. So to prove
that L2 = 2 it suffices to exclude the other two possibilities, i.e., to show that
“L2 < 2” and “L2 > 2” are both false.

Suppose that L2 < 2. We are going to get a contradiction by finding a real
number M such that M > L and M2 < 2. If we do this, then it will follow that
M ∈ T , so M ≤ L (because L is an upper bound for T ) and this will contradict
the fact that M > L. This contradiction will prove that “L2 < 2” is false. To
find M , we try M = L + ε, where ε is a positive number that we will have to
choose judiciously. We have

M2 = (L+ ε)2 = L2 + 2Lε+ ε2 ,
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and we want M2 < 2. Since L2 < 2, the number 2− L2 is positive. Let us try
to find ε such that 2Lε+ ε2 < 2−L2. For this purpose, first observe that L > 0
(because 1 ∈ T and L is an upper bound for T , so 1 ≤ L, and then 0 < L). Let
us pick

ε = min
(
L ,

2− L2

4L

)
.

Then ε2 ≤ Lε, because ε ≤ L, so

2Lε+ ε2 ≤ 3Lε < 4Lε ≤ 4L · 2− L2

4L
= 2− L2 .

Hence M2 < 2 and we have excluded the possibility that L2 < 2.
Now suppose that L2 > 2. We are going to get a contradiction by finding

a real number M such that 0 < M < L and M2 > 2. If we do this, then it
will follow that M is an upper bound for T . (Proof: If t ∈ T , let us prove that
t ≤ M . Suppose t > M . Then t2 > M2 > 2 so t2 > 2, contradicting the fact
that t ∈ T .) But this will contradict the fact that L is the least upper bound of
T , and this contradiction will prove that “L2 > 2” is false. To find M , we try
M = L− ε, where ε is a positive number that we will have to figure out how to
choose. We have

M2 = (L− ε)2 = L2 − 2Lε+ ε2 ,

and we want M2 > 2. Since L2 > 2, the number L2 − 2 is positive. Let us try
to find ε such that 2Lε− ε2 < L2−2. (Why? Because if 2Lε− ε2 < L2−2 then
−2Lε+ ε2 > 2− L2, so L2 − 2Lε+ ε2 > 2, i.e., M2 > 2.) Clearly, it suffices to
find ε such that 2Lε < L2 − 2. (Why? Because if 2Lε < L2 − 2 then a fortiori
2Lε− ε2 < L2 − 2.) Let us pick

ε =
L2 − 2

3L
.

Then

2Lε < 3Lε = 3L · L
2 − 2
3L

= L2 − 2 .

Hence M2 > 2 and we have excluded the possibility that L2 < 2. END

Problem 23. Prove that for every real number x such that x ≥ 0 there exists
a real number y such that y2 = x.

Problem 24. Prove that for every real number x there exists a real number
y such that y3 = x. (Note: the definition of “y3” is “y3 = y · y · y for every
y ∈ IR.”)

Homework assignment No. 1, due on Thursday September 8: Problems
3, 10 and 18.

Homework assignment No. 2, due on Thursday September 15: Prob-
lems 22, 23, and 24.
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Homework assignment No. 3, due on Thursday September 22: Book,
Exercises 1.4.4, 1.4.11, 1.5.4. (NOTE: An earlier version of this handout listed
the following problems: 1.4.4, 1.4.13, 1.5.4. This was a mistake. I did not intend
to assign Problem 1.4.13, on the Cantor-Schröder-Berstein Theorem. On the
other hand, those students who wish to do Problem 1.4.13 instead of 1.4.11 are
welcome to do so, and if they do this problem well they will get extra bonus
credit.

Homework assignment No. 4, due on Thursday September 29: Book,
Exercises 2.2.1, 2.2.2, 2.2.4.

Optional problem, for extra credit; also due on Thursday September
29: Prove that for every natural number n and every nonnegative real number
x, there exists a real number y such that yn = x. (The precise definition of un,
for u ∈ IR, is as follows7: if u ∈ IR, then u1 = u and, for n ∈ IN, un+1 = u · un.)

Here are some hints for your proof. We have already done this for n = 2
and n = 3. What you have to do in the general case is very much the same,
except that you need to make a few changes in the argument. The beginning of
the proof, where you define the set T , and prove that T is nonempty (if x > 0)
and bounded above, is easy, and essentially the same as what you did for n = 2
and n = 3. Then you get the least upper bound L of the set T , and the part
of the proof that needs some work is to prove that Ln = x. To do this, you
must show that the two other possibilities, namely, Ln < x and Ln > x, cannot
occur. And this is done very much as in the case of n = 2 or n = 3: to exclude
Ln < x, you find a real number ε such that ε > 0 and (L + ε)n < x, and then
proceed as in the n = 2 and n = 3 proofs; to exclude Ln > x, you find a real
number ε such that 0 < ε < L and (L − ε)n > x, and then proceed as in the
n = 2 and n = 3 proofs. The only problem is, how do you choose ε? I will give
you a helpful hint for the first of the two εs, and I will then leave it up to you
to figure out how to choose the other one.

So suppose that Ln < x, and let us find a real number ε such that ε > 0 and
(L+ ε)n < x. To do this, it is convenient to start by proving a lemma:

LEMMA: if n ∈ IN, α ∈ IR, and 0 < α ≤ 1
2n , then (1 + α)n < 1 + 2nα.

You should prove this by induction.
Now that you have proved the lemma, you can use it. You want the

inequality (L + ε)n < x. Let θ = x
Ln , so θ > 1, because we are working

under the assumption that Ln < x. Let α = min
(

1
2n ,

θ−1
2n

)
. Then the lemma

tells us that (1 + α)n < 1 + 2nα, since α ≤ 1
2n . But

1 + 2nα ≤ 1 + 2n · θ − 1
2n

= 1 + θ − 1 = θ ,

because α ≤ θ−1
2n . So (1 + α)n < θ. Now multiply this by Ln, and get the

inequality Ln(1 + α)n < θLn. But Ln(1+α)n =
(
L(1+α)

)n
= (L+Lα)n, and

θLn = x So (L+ Lα)n < x. Then we may choose ε = Lα, and we are done.
7This is an example of a recursive definition.


