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1 Homework assignment due on Thursday,

November 17

Do the proofs of Examples 6, 7, 8, 9, 10, 11, 12 , 13 and 14 below. (Note:
this may seem like a lot of work, but it isn’t, really, because for each of the
proofs, you are allowed to use, without having to reprove them, all the results
of the previous examples. For example, to do the proof of Example 9 you can
use the results of Examples 1 through 8.)

2 Continuous functions

Definition 1. Assume that S is a subset of IR and f : S 7→ IR is a function.
We say that f is continuous if

• whenever (xn)∞n=1 is a sequence of members of S that converges to an
x ∈ S then limn→∞ f(xn) = f(x). ♦

Example 1. Assume that S ⊆ IR, and c ∈ IR. Let f : S 7→ IR be defined by

f(x) = c for x ∈ S .

Then f is continuous. (In other words: a constant function is continuous.)

Proof. Let (xn)∞n=1 be a sequence of members of S that converges to an x ∈ S.
We want to prove that limn→∞ f(xn) = f(x). But f(xn) = c for all n, and
f(x) = c. So limn→∞ f(xn) = f(x), as desired. ♦

Example 2. Assume that S ⊆ IR. Let f : S 7→ IR be defined by

f(x) = x for x ∈ S .

Then f is continuous. (In other words: the identity function idS of any set
S is continuous.)



Proof. Let (xn)∞n=1 be a sequence of members of S that converges to an x ∈ S.
We want to prove that limn→∞ f(xn) = f(x). But f(xn) = xn for all n, and
f(x) = x. So limn→∞ f(xn) = f(x), as desired, because limn→∞ xn = x. ♦

Example 3. Assume that S ⊆ IR. Let f : S 7→ IR, g : S 7→ IR, be continuous
functions. Let h : S 7→ IR be defined by

h(x) = f(x) + g(x) for x ∈ S .

Then h is continuous. (In other words: the sum of two continuous functions
is continuous.)

Proof. Let (xn)∞n=1 be a sequence of members of S that converges to an x ∈ S.
We want to prove that limn→∞ h(xn) = h(x). But h(xn) = f(xn) + g(xn)
for all n, and h(x) = f(x) + g(x). Since f is continuous, limn→∞ f(xn) =
f(x). Since g is continuous, limn→∞ g(xn) = g(x). It then follows from the

Algebraic Limit Theorem that limn→∞

(
f(xn) + g(xn)

)
= f(x) + g(x), i.e.,

that limn→∞ h(xn) = h(x), as desired. ♦

Example 4. Assume that S ⊆ IR. Let f : S 7→ IR, g : S 7→ IR, be continuous
functions. Let h : S 7→ IR be defined by

h(x) = f(x) · g(x) for x ∈ S .

Then h is continuous. (In other words: the product of two continuous func-
tions is continuous.)

Proof. Let (xn)∞n=1 be a sequence of members of S that converges to an x ∈ S.
We want to prove that limn→∞ h(xn) = h(x). But h(xn) = f(xn) · g(xn)
for all n, and h(x) = f(x) · g(x). Since f is continuous, limn→∞ f(xn) =
f(x). Since g is continuous, limn→∞ g(xn) = g(x). It then follows from the

Algebraic Limit Theorem that limn→∞

(
f(xn) ·g(xn)

)
= f(x) ·g(x), i.e., that

limn→∞ h(xn) = h(x), as desired. ♦

Example 5. Assume that S ⊆ IR. Let f : S 7→ IR, g : S 7→ IR, be continuous
functions. Assume in addition that g(x) 6= 0 for all x ∈ S. Let h : S 7→ IR
be defined by

h(x) =
f(x)

g(x)
for x ∈ S .

Then h is continuous. (In other words: the quotient of a continuous function
by a nowhere vanishing continuous function is continuous.)



Proof. Let (xn)∞n=1 be a sequence of members of S that converges to an x ∈ S.

We want to prove that limn→∞ h(xn) = h(x). But h(xn) = f(xn)
g(xn)

for all n,

and h(x) = f(x)
g(x)

. Since f is continuous, limn→∞ f(xn) = f(x). Since g is

continuous, limn→∞ g(xn) = g(x). It then follows from the Algebraic Limit

Theorem (using the fact that g(x) 6= 0) that limn→∞
f(xn)
g(xn)

= f(x)
g(x)

, i.e., that

limn→∞ h(xn) = h(x), as desired. ♦

Example 6. Assume that S ⊆ IR. Let f : S 7→ IR, g : S 7→ IR, be continuous
functions. Assume in addition that g(x) 6= 0 for all x ∈ S. Let h : S 7→ IR
be defined by

h(x) = max
(
f(x) , g(x)

)
for x ∈ S .

Then h is continuous. (In other words: the maximum of two continuous
functions is continuous.)

Proof. Homework problem. ♦

Example 7. Assume that S ⊆ IR and T ⊆ IR. Let f : S 7→ IR, g : T 7→ IR,
be continuous functions. Assume in addition that f(x) ∈ T for all x ∈ S.
Let h : S 7→ IR be defined by

h(x) = g
(
f(x)

)
for x ∈ S .

Then h is continuous. (In other words: the composite of two continuous
functions is continuous.)

Proof. Homework problem. ♦

Example 8. Assume that S ⊆ IR. Let f : S 7→ IR be given by

f(x) = |x| for x ∈ S .
Then f is continuous. (In other words: the “absolute value function” is
continuous.)

Proof. Homework problem. (It would be nice if you could do this by apply-
ing the results of previous examples, without having to write sequences and
limits.) ♦

Example 9. Assume that S ⊆ IR. Let f : S 7→ IR be a continuous function.
Let g : S 7→ IR be given by

g(x) = |f(x)| for x ∈ S .
Then g is continuous. (In other words: the absolute value of a continuous
function is continuous.)



Proof. Homework problem. ♦

Example 10. Let S = {x ∈ IR : x ≥ 0}. Let f : S 7→ IR be given by

f(x) =
√
x for x ∈ S .

Then f is continuous. (In other words: the “square root function” is contin-
uous.)

Proof. Homework problem. ♦

Example 11. Assume that S ⊆ IR. Let f : S 7→ IR be a continuous function.
Assume that f(x) ≥ 0 whenever x ∈ S. Define a function g : S 7→ IR by
letting

g(x) =
√
f(x) for x ∈ S .

Then g is continuous. (In other words: the square root of a continuous
function is continuous.)

Proof. Homework problem. ♦

Example 12. Let f : IR 7→ IR be given by

f(x) =
1 + 3x− 7x2 + 23x3 + 6x4

1 + x2 + x4
for x ∈ IR .

Then f is continuous.

Proof. Homework problem. ♦

Example 13. Let f : IR 7→ IR be given by

f(x) =
√

1 + 3x2 + x4 for x ∈ IR .

Then f is continuous.

Proof. Homework problem. ♦

Example 14. Let f : IR 7→ IR be given by

f(x) =

{
1 if x ≥ 0 ,
0 if x < 0 ,

for x ∈ IR. Then f is not continuous.

Proof. Homework problem. ♦


