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1 Homework assignment due on Thursday,

December 1

Book, Exercises 4.3.4, 4.3.6(a), 4.3.7, 4.4.4, 4.5.7

2 Continuous functions

Definition 1. Assume that S is a subset of IR and f : S 7→ IR is a function.
We say that f is continuous if

• whenever (xn)∞n=1 is a sequence of members of S that converges to an
x ∈ S then limn→∞ f(xn) = f(x). ♦

3 Compact sets and the Extreme Value The-

orem

Definition 2. Assume that S is a subset of IR. We say that S is compact
if every sequence (xn)∞n=1 of points of S has a subsequence that converges to
an x ∈ S.

Example 1. Let a, b be real numbers such that a ≤ b. Let S = {x ∈ IR : a ≤
x ≤ b}. Then S is compact.

Proof. Let (xn)∞n=1 be a sequence of members of S. We want to extract a
subsequence that converges to an x ∈ S. First of all, the sequence (xn)∞n=1
is bounded, because S is bounded. So by the Bolzano-Weierstrass theorem
(xn)∞n=1 has a subsequence (xnk

)∞k=1 that converges to an x ∈ IR. We want
to prove that x ∈ S. Since xnk

∈ S, we have a ≤ xnk
≤ b. Then a ≤

limk→∞ xnk
≤ b. Therefore a ≤ x ≤ b, so x ∈ S. ♦



Theorem 1. Assume that S is a nonempty compact subset of IR, and f :
S 7→ IR is a continuous function. Then f has a maximum and a minimum
on S. That is, there exist points α, β ∈ S such that f(α) ≤ f(x) ≤ f(β) for
all x ∈ S.

Proof. Let V be the set of values taken on by f , that is, V = {f(x) : x ∈ S}.
Then V is nonempty, because S is nonempty, so we may pick a ξ ∈ S, and
then f(ξ) ∈ V .

Let us prove that V is bounded above. Suppose V is not bounded above.
Then for every n ∈ IN we can pick xn ∈ S such that f(xn) > n (because if
xn did not exist then n would be an upper bound for V ). Then (xn)∞n=1 is
a sequence of members of S. Since S is compact there exists a subsequence
(xnk

)∞k=1 of (xn)∞n=1 that converges to an x ∈ S. Since f is continuous,
limk→∞ f(xnk

) = f(x). But this is impossible, because f(xnk
) > nk ≥ k. So

we have arrived at a contradiction, showing that V is bounded above.
Since V is bounded above and nonempty, V has a least upper bound v.

Then, if n ∈ IN is arbitrary, the number v − 1
n

is not an upper bound of

V , so we may pick xn ∈ S such that f(xn) > v − 1
n
. Then (xn)∞n=1 is a

sequence of members of S. Since S is compact there exists a subsequence
(xnk

)∞k=1 of (xn)∞n=1 that converges to a point β ∈ S. Since f is continuous,
limk→∞ f(xnk

) = f(β). Since f(xnk
) > v− 1

nk
≥ v− 1

k
, we have f(β) ≥ v. But

v is an upper bound of V , and f(β) ∈ V , so f(β) ≤ v. Then f(β) = v. Given
any x ∈ S, the number f(x) belongs to V , so f(x) ≤ v. Hence f(x) ≤ f(β)
for every x ∈ S, so f attains its maximum value at β.

The proof of the existence of a minimum is similar. ♦

4 Connected sets and the Intermediate Value

Theorem

Definition 3. Assume that S is a subset of IR. We say that S is discon-
nected if there exist nonempty subsets A, B of S such that S = A ∪ B,
Ā ∩B = ∅, and A ∩ B̄ = ∅. ♦

Definition 4. Assume that S is a subset of IR. We say that S is connected
if S is not disconnected. ♦

Theorem 2. Assume that S is a nonempty connected subset of IR, and f :
S 7→ IR is a continuous function. Let α, β, c be real numbers such that α ∈ S,
β ∈ S, and f(α) < c < f(β). Then there exists a γ ∈ S such that f(γ) = c.

Proof. Suppose γ does no exist. We are going to prove that S is disconnected,
contradicting the assumption that S is connected.



Let A = {x ∈ S : f(x) < c}, B = {x ∈ S : f(x) > c}. Then every x ∈ S
is in A or in B, so S = A∪B. We now show that Ā∩B = ∅ and A∩ B̄ = ∅.
The two proofs are similar, so we will just do the first one.

Suppose Ā∩B 6= ∅. Pick a ξ ∈ Ā∩B. Then ξ ∈ B, so ξ ∈ S and f(ξ) > c.
On the other hand, ξ ∈ Ā, so either ξ ∈ A or there exists a sequence (xn)∞n=1

of points of A that converges to ξ. If ξ ∈ Ā then ξ < c. If there exists
a sequence (xn)∞n=1 of points of A that converges to ξ, then f(xn) < c for
each n, and f(ξ) = limn→∞ f(xn), so f(ξ) ≤ c. Hence we have shown that
f(ξ) ≤ c and f(ξ) > c. This is a contradiction, showing that Ā ∩B = ∅.

Similarly, A ∩ B̄ = ∅. Hence S is disconnected, and we have derived a
contradiction. ♦

5 Intervals

Definition 5. Assume that S is a subset of IR. We say that S is an interval
if (∀a ∈ S)(∀b ∈ S)(∀c ∈ IR)(a < c < b =⇒ c ∈ S). ♦

Theorem 3. Every interval is connected.

Proof. Let S be an interval. We will assume that S is disconnected and
derive a contradiction.

Suppose S is disconnected. Pick nonempty subsets A, B of S such that
S = A ∪B, Ā ∩B = ∅, and A ∩ B̄ = ∅.

Pick members a1, b1 of A, B, and let I1 be the interval [a1, b1] if a1 < b1,
and the interval [b1, a1] if b1 < a1. Then I1 is a closed interval one of whose
endpoints is in A while the other one is in B. Let c be the midpoint of I1.
Then c ∈ S, because S is an interval. So either c ∈ A or c ∈ B. If c ∈ A, let
a2 = c, b2 = b1. If c ∈ B, let a2 = a1, b2 = c. Let I2 be the interval [a2, b2] if
a2 < b2, and the interval [b2, a2] if b2 < a2. Then I2 is a closed interval one
of whose endpoints is in A while the other one is in B, and in addition the
length of I2 is half the length of I1.

Repeat this procedure, and construct a sequence (In)∞n=1 of closed inter-
vals such that In+1 ⊆ In for all n, lenght(In) = 21−nlenght(I1), and one of the
endpoints of In is in A while the other one is in B. Let an be the endpoint
of In that belongs to A, and let bn be the endpoint of In that belongs to B.

Since the intervals In are closed, bounded and nonempty, and form a
decreasing sequence, there exists a c ∈

⋂∞
n=1 In. Then, for each n, either

an ≤ c ≤ bn or bn ≤ c ≤ an. Therefore limn→∞ an = limn→∞ bn = c. If c ∈ A,
then the fact that limn→∞ bn = c shows that c ∈ B̄, contradicting the fact
that A∩B̄ = ∅. If c ∈ B, then the fact that limn→∞ an = c shows that c ∈ Ā,
contradicting the fact that Ā ∩B = ∅.

So we have reached a contradiction, proving that S is connected. ♦


