MATHEMATICS 311 — FALL 2005

Advanced Calculus H. J. Sussmann

INSTRUCTOR'S NOTES

November 29, 2005

1 Homework assignment due on Thursday, December 1

Book, Exercises 4.3.4, 4.3.6(a), 4.3.7, 4.4.4, 4.5.7

2 Continuous functions

Definition 1. Assume that S is a subset of \mathbb{R} and $f: S \mapsto \mathbb{R}$ is a function. We say that f is *continuous* if

• whenever $(x_n)_{n=1}^{\infty}$ is a sequence of members of S that converges to an $x \in S$ then $\lim_{n \to \infty} f(x_n) = f(x)$.

3 Compact sets and the Extreme Value Theorem

Definition 2. Assume that S is a subset of \mathbb{R} . We say that S is **compact** if every sequence $(x_n)_{n=1}^{\infty}$ of points of S has a subsequence that converges to an $x \in S$.

Example 1. Let a, b be real numbers such that $a \leq b$. Let $S = \{x \in \mathbb{R} : a \leq x \leq b\}$. Then S is compact.

Proof. Let $(x_n)_{n=1}^{\infty}$ be a sequence of members of S. We want to extract a subsequence that converges to an $x \in S$. First of all, the sequence $(x_n)_{n=1}^{\infty}$ is bounded, because S is bounded. So by the Bolzano-Weierstrass theorem $(x_n)_{n=1}^{\infty}$ has a subsequence $(x_{n_k})_{k=1}^{\infty}$ that converges to an $x \in \mathbb{R}$. We want to prove that $x \in S$. Since $x_{n_k} \in S$, we have $a \leq x_{n_k} \leq b$. Then $a \leq \lim_{k \to \infty} x_{n_k} \leq b$. Therefore $a \leq x \leq b$, so $x \in S$.

Theorem 1. Assume that S is a nonempty compact subset of \mathbb{R} , and f: $S \mapsto \mathbb{R}$ is a continuous function. Then f has a maximum and a minimum on S. That is, there exist points $\alpha, \beta \in S$ such that $f(\alpha) \leq f(x) \leq f(\beta)$ for all $x \in S$.

Proof. Let V be the set of values taken on by f, that is, $V = \{f(x) : x \in S\}$. Then V is nonempty, because S is nonempty, so we may pick a $\xi \in S$, and then $f(\xi) \in V$.

Let us prove that V is bounded above. Suppose V is not bounded above. Then for every $n \in \mathbb{N}$ we can pick $x_n \in S$ such that $f(x_n) > n$ (because if x_n did not exist then n would be an upper bound for V). Then $(x_n)_{n=1}^{\infty}$ is a sequence of members of S. Since S is compact there exists a subsequence $(x_{n_k})_{k=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ that converges to an $x \in S$. Since f is continuous, $\lim_{k\to\infty} f(x_{n_k}) = f(x)$. But this is impossible, because $f(x_{n_k}) > n_k \ge k$. So we have arrived at a contradiction, showing that V is bounded above.

Since V is bounded above and nonempty, V has a least upper bound v. Then, if $n \in \mathbb{N}$ is arbitrary, the number $v - \frac{1}{n}$ is not an upper bound of V, so we may pick $x_n \in S$ such that $f(x_n) > v - \frac{1}{n}$. Then $(x_n)_{n=1}^{\infty}$ is a sequence of members of S. Since S is compact there exists a subsequence $(x_{n_k})_{k=1}^{\infty}$ of $(x_n)_{n=1}^{\infty}$ that converges to a point $\beta \in S$. Since f is continuous, $\lim_{k\to\infty} f(x_{n_k}) = f(\beta)$. Since $f(x_{n_k}) > v - \frac{1}{n_k} \ge v - \frac{1}{k}$, we have $f(\beta) \ge v$. But v is an upper bound of V, and $f(\beta) \in V$, so $f(\beta) \leq v$. Then $f(\beta) = v$. Given any $x \in S$, the number f(x) belongs to V, so $f(x) \leq v$. Hence $f(x) \leq f(\beta)$ for every $x \in S$, so f attains its maximum value at β . \diamond

The proof of the existence of a minimum is similar.

4 Connected sets and the Intermediate Value Theorem

Definition 3. Assume that S is a subset of \mathbb{R} . We say that S is **disconnected** if there exist nonempty subsets A, B of S such that $S = A \cup B$, $A \cap B = \emptyset$, and $A \cap B = \emptyset$. \diamond

Definition 4. Assume that S is a subset of \mathbb{R} . We say that S is **connected** if S is not disconnected. \diamond

Theorem 2. Assume that S is a nonempty connected subset of \mathbb{R} , and f: $S \mapsto \mathbb{R}$ is a continuous function. Let α, β, c be real numbers such that $\alpha \in S$, $\beta \in S$, and $f(\alpha) < c < f(\beta)$. Then there exists a $\gamma \in S$ such that $f(\gamma) = c$.

Proof. Suppose γ does no exist. We are going to prove that S is disconnected. contradicting the assumption that S is connected.

Let $A = \{x \in S : f(x) < c\}$, $B = \{x \in S : f(x) > c\}$. Then every $x \in S$ is in A or in B, so $S = A \cup B$. We now show that $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$. The two proofs are similar, so we will just do the first one.

Suppose $\overline{A} \cap B \neq \emptyset$. Pick a $\xi \in \overline{A} \cap B$. Then $\xi \in B$, so $\xi \in S$ and $f(\xi) > c$. On the other hand, $\xi \in \overline{A}$, so either $\xi \in A$ or there exists a sequence $(x_n)_{n=1}^{\infty}$ of points of A that converges to ξ . If $\xi \in \overline{A}$ then $\xi < c$. If there exists a sequence $(x_n)_{n=1}^{\infty}$ of points of A that converges to ξ , then $f(x_n) < c$ for each n, and $f(\xi) = \lim_{n \to \infty} f(x_n)$, so $f(\xi) \leq c$. Hence we have shown that $f(\xi) \leq c$ and $f(\xi) > c$. This is a contradiction, showing that $\overline{A} \cap B = \emptyset$.

Similarly, $A \cap \overline{B} = \emptyset$. Hence S is disconnected, and we have derived a contradiction.

5 Intervals

Definition 5. Assume that S is a subset of \mathbb{R} . We say that S is an *interval* if $(\forall a \in S)(\forall b \in S)(\forall c \in \mathbb{R})(a < c < b \Longrightarrow c \in S)$.

Theorem 3. Every interval is connected.

Proof. Let S be an interval. We will assume that S is disconnected and derive a contradiction.

Suppose S is disconnected. Pick nonempty subsets A, B of S such that $S = A \cup B$, $\overline{A} \cap B = \emptyset$, and $A \cap \overline{B} = \emptyset$.

Pick members a_1 , b_1 of A, B, and let I_1 be the interval $[a_1, b_1]$ if $a_1 < b_1$, and the interval $[b_1, a_1]$ if $b_1 < a_1$. Then I_1 is a closed interval one of whose endpoints is in A while the other one is in B. Let c be the midpoint of I_1 . Then $c \in S$, because S is an interval. So either $c \in A$ or $c \in B$. If $c \in A$, let $a_2 = c$, $b_2 = b_1$. If $c \in B$, let $a_2 = a_1$, $b_2 = c$. Let I_2 be the interval $[a_2, b_2]$ if $a_2 < b_2$, and the interval $[b_2, a_2]$ if $b_2 < a_2$. Then I_2 is a closed interval one of whose endpoints is in A while the other one is in B, and in addition the length of I_2 is half the length of I_1 .

Repeat this procedure, and construct a sequence $(I_n)_{n=1}^{\infty}$ of closed intervals such that $I_{n+1} \subseteq I_n$ for all n, $\operatorname{lenght}(I_n) = 2^{1-n} \operatorname{lenght}(I_1)$, and one of the endpoints of I_n is in A while the other one is in B. Let a_n be the endpoint of I_n that belongs to A, and let b_n be the endpoint of I_n that belongs to B.

Since the intervals I_n are closed, bounded and nonempty, and form a decreasing sequence, there exists a $c \in \bigcap_{n=1}^{\infty} I_n$. Then, for each n, either $a_n \leq c \leq b_n$ or $b_n \leq c \leq a_n$. Therefore $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = c$. If $c \in A$, then the fact that $\lim_{n\to\infty} b_n = c$ shows that $c \in \overline{B}$, contradicting the fact that $A \cap \overline{B} = \emptyset$. If $c \in B$, then the fact that $\lim_{n\to\infty} a_n = c$ shows that $c \in \overline{A}$, contradicting the fact that $\overline{A} \cap B = \emptyset$.

So we have reached a contradiction, proving that S is connected. \diamond