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Forced harmonic oscillators. A forced hamrmonic oscillator is a system governed by a second-
order inhomogeneous linear differential equation

A
d2y

dt
(t) +B

dy

dt
(t) + Cy(t) = u(t) . (1)

Here, A, B, C are real constants such that A > 0, B ≥ 0 and C > 0, and u(t) is a function.
The function u is called the forcing term, or the input. For any given input u, any function y(t)
which is a solution of (1) is called a response, or output, for u.

Equation (1) can also be written as

A
d2y

dt
+B

dy

dt
+ Cy = u . (2)

The superposition principle (also called the “linearity principle”.

THEOREM: If y1 is a response of the system (1) for an input u1,
and y2 is a response for an input u2, then the sum y1 + y2 is a
response for the input u1 + u2.

PROOF. Let y = y1 + y2, u = u1 + u2, We just verify that (2) is true. We have

A
d2y1

dt
+B

dy1

dt
+ Cy1 = u1 ,

and

A
d2y2

dt
+B

dy2

dt
+ Cy2 = u2 .

So, adding these two equalities, we get(
A
d2y1

dt
+B

dy1

dt
+ Cy1

)
+
(
A
d2y2

dt
+B

dy2

dt
+ Cy2

)
= u1 + u2 ,

and then

A
(d2y1

dt
+
d2y2

dt

)
+B

(dy1

dt
+
dy2

dt

)
+ +C(y1 + y2) = u1 + u2 ,

so

A
d2(y1 + y2)

dt
+B

d(y1 + y2)
dt

+ C(y1 + y2 = u1 + u2 ,

that is,

A
d2y

dt
+B

dy

dt
+ Cy = u .

END OF PROOF
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The general solution. Suppose we are given an input function u, and we want to find all the
solutions of (2). Let us fix one solution ypart of (2). Let yhom be a solution of the homogeneous
equation

A
d2y

dt
+B

dy

dt
+ Cy = 0 . (3)

Then

• yhom is a response for the input 0,

• ypart is a response for the input u,

so the superposition principle tells us that yhom + ypart is a response for the input u.
If we now look at all possible solutions yhom of (3)—that is, we consider the general solution

yhom,gen of (3), which involves two arbitrary constants that are to be selected when an initial
condition is given—and fix a particular solution ypart of (2), then yhom,gen + ypart gives us all
the solutions of (2), so yhom,gen + ypart is the general solution of (2).

EXAMPLE. Find the general solution of the forced harmonic oscillator equation

d2y

dt
(t) + 4

dy

dt
(t) + 8y(t) = cos t . (4)

SOLUTION. Let us first find the general solution of the homogeneous equation

d2y

dt
(t) + 4

dy

dt
(t) + 8y(t) = 0 . (5)

The characteristic equation is
λ2 + 4λ+ 8 = 0 ,

whose solutions are given by

λ =
1
2

(
− 4±

√
42 − 4× 8

)
=

1
2

(
− 4±

√
−16

)
=

1
2

(
− 4± 4i

)
= −2± 2i .

Hence the general solution of (5) is

y(t) = e−2t
(
k1 cos 2t+ k2 sin 2t

)
,

where k1, k2 are arbitrary real constants. If we write the vector (k1, k2) in polar coordinates,
k1 = r cos θ, k2 = r sin θ, we get

y(t) = r e−2t
(

cos θ cos 2t+ sin θ sin 2t
)

= r e−2t cos(2t− θ) .

If we write θ = 2ϕ, so 2t− θ = 2(t− ϕ), we see that the general solution of (5) is

y(t) = r e−2t cos 2(t− ϕ) , r ∈ R , ϕ ∈ R , r ≥ 0 .

Now let us find a particular solution ypart of the inhomogeneous equation (4). We make the
educated guess

ypart(t) = c1 cos t+ c2 sin t , (6)

and seek to find c1, c2 such that ypart satisfies (4).
Differentiation of both sides of (6) yields

y′part(t) = c2 cos t− c1 sin t , (7)

and then a second differentiation produces the result

y′′part(t) = −c1 cos t− c2 sin t . (8)
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Then

y′′part(t) + 4y′part(t) + 8ypart(t)

=
(
− c1 cos t− c2 sin t

)
+ 4
(
c2 cos t− c1 sin t

)
+ 8
(
c1 cos t+ c2 sin t

)
= (−c1 + 4c2 + 8c1) cos t+ (−c2 − 4c1 + 8c2) sin t

= (7c1 + 4c2) cos t+ (7c2 − 4c1) sin t .

Since we want y′′part(t) + 4y′part(t) + 8ypart(t) = cos t, we have to choose c1 and c2 such that

7c1 + 4c2 = 1 and 7c2 − 4c1 = 0 .

This means that c2 = 4c1
7 , and then

1 = 7c1 + 4c2 = 7c1 + 4× 4c1
7

=
(

7 +
16
7

)
c1 =

65
7
c1 ,

so c1 = 7
65 , and then c2 = 4c1

7 = 4
65 . Therefore our particular solution is

ypart(t) =
7
65

cos t+
4
65

sin t .

Finally, the general solution of (5) is

y(t) = r e−2t cos 2(t− ϕ) +
7
65

cos t+
4
65

sin t , r ∈ R , ϕ ∈ R , r ≥ 0 .

An alternative form is obtained by writing the vector
(

7
65 ,

4
65

)
in polar coordinates: if

7
65

= R cos ψ ,
4
65

= R sin ψ ,

then R = 1√
65

(because 72 + 42 = 65), and ψ = arc tan 4
7 . So the general solution of (5) is

y(t) = r e−2t cos 2(t− ϕ) +
1√
65

cos
(
t− arc tan

4
7

)
, r ∈ R , ϕ ∈ R , r ≥ 0 .

Sinusoids. A sinusoid is a function f(t) of the form

f(t) = α cos ω(t− ϕ) ,

where α is ≥ 0, ω is > 0, and ϕ is a real number. The number α is the amplitude of the sinusoid,
the number ω is the frequency, and the number ϕ is the phase.

THEOREM: If ω is any positive number, then every function f(t) of
the form f(t) = a cos ωt+b sin ωt, with a, b real numbers, is a sinu-

soid α cos ω(t−ϕ) of frequency ω, with amplitude α =
√
a2 + b2 .

PROOF. We write the vector (a, b) in polar coordinates: if a = α cos ψ, and b = α sin ψ, then
α =
√
a2 + b2, and ψ is the angle from the x axis to the vector from (0, 0) to (a, b). Then

f(t) = a cos ωt+ b sin ωt = α(cos ψ cos ωt+ sin ψ sin ωt = α cos (ωt− ψ) .

If we define ϕ by ωϕ = ψ, then
f(t) = α cos ω(t− ϕ) ,

and our proof is complete.
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REMARK. How is the phase ϕ determined? To answer this question, it suffices to show how ψ
is determined, because once we know ψ we can find ϕ using ϕ = ψ

ω .
Since a = α cos ψ and b = α sin ψ, we can conclude that

cos ψ =
a

α
and sin ψ =

b

α
, (9)

provided that α 6= 0. Therefore

tan ψ =
b

a
if a 6= 0 and cot ψ =

a

b
if b 6= 0 . (10)

Now, if α 6= 0, then .one of the numbers a, b is 6= 0, and then we can use one of the formulas
of (10). This, however, is not enough, because if you take an angle ψ for which (10), and let
ψ̃ = ψ + π, then ψ̃ also satisfies (10). Which is one is right? The answer is: the one that gives
the correct values, including the sign, of a and b, using (9).

Let us look at two examples. First suppose a = 1 and b =
√

3. Then a2 + b2 = 4, so α = 2.
Then tan ψ =

√
3, so ψ could be π

3 (that is, 60 degrees). However, ψ could also be 4π
3 (that is,

240 degrees), because tan 4π
3 is also equal to

√
3. Which one is the correct ψ? The answer is π

3 ,
because cos π

3 = 1
2 and sin π

3 =
√

3
2 , so α cos π

3 = 1 = a and α sin π
3 =
√

3 = b.
Now suppose, instead, that a = −1 and b = −

√
3. Then a2 + b2 = 4, so α = 2. Again, we get

tan ψ =
√

3, so ψ could be π
3 or 4π

3 , as before. Which one is the correct ψ? The answer this time
is 4π

3 , because cos 4π
3 = − 1

2 and sin 4π
3 = −

√
3

2 , so α cos 4π
3 = −1 = a and α sin 4π

3 = −
√

3 = b.
Summarizing,

The phase ϕ of the sinusoid a cos ωt + b sin ωt is determined by
the formula ϕ = ψ

ω
, where ψ is determined by (10), together with

the specification that, of the two values of ψ that satisfy (10), we
choose the one for which (9) holds as well.

The system responses to a sinusoidal input. Consider a forced harmonic oscillator with a
sinusoidal input, obeying the equation

A
d2y

dt
(t) +B

dy

dt
(t) + Cy(t) = α cos ω(t− ϕ) . (11)

Let us find the general solution of (11).
First, let us find a particular solution ypart. We make the educated guess

ypart(t) = c1 cos ω(t− ϕ) + c2 sin ω(t− ϕ) , (12)

and seek to find c1, c2 such that ypart satisfies (11). To simplify matters, let us write τ = t− ϕ,
so our educated guess is

ypart = c1 cos ωτ + c2 sin ωτ , (13)

Differentiation of both sides of (13) yields

y′part = ωc2 cos ωτ − ωc1 sin ωτ , (14)

and then a second differentiation gives

y′′part = −ω2c1 cos ωτ − ω2c2 sin ωτ . (15)

Then

Ay′′part +By′part + Cypart

= A
(
− ω2c1 cos ωτ − ω2c2 sin ωτ

)
+B

(
ωc2 cos ωτ − ωc1 sin ωτ

)
+ C

(
c1 cos ωτ + c2 sin ωτ

)
= (−Aω2c1 +Bωc2 + Cc1) cos ωτ + (−Aω2c2 −Bωc1 + Cc2) sin ωτ

=
(

(C −Aω2)c1 +Bωc2

)
cos ωτ +

(
(C −Aω2)c2 −Bωc1

)
sin ωτ .
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Since we want Ay′′part +By′part + Cypart = α cos ωτ , we have to choose c1 and c2 such that

(C −Aω2)c1 +Bωc2 = α and (C −Aω2)c2 −Bωc1 = 0 .

This means that
c2 =

Bω

C −Aω2
c1 ,

and then
α = (C −Aω2)c1 +Bωc2 = (C −Aω2)c1 +Bω

Bω

C −Aω2
c1 ,

so

α =

(
(C −Aω2)2

C −Aω2
+

B2ω2

C −Aω2

)
c1 =

(C −Aω2)2 +B2ω2

C −Aω2
c1

and then

c1 =
C −Aω2

(C −Aω2)2 +B2ω2
α

and
c2 =

Bω

C −Aω2
c1 =

Bω

(C −Aω2)2 +B2ω2
α .

Therefore our particular solution is

ypart(t) =
α

(C −Aω2)2 +B2ω2

(
(C −Aω2) cos ωτ +Bω sin ωτ

)
.

An even nicer way to write ypart is by writing the vector (c1, c2) in polar coordinates: if c1 =
R cos ψ, and c2 = R sin ψ, then R =

√
c21 + c22, and ψ is the angle from the x axis to the vector

from (0, 0) to (c1, c2).
We can compute R quite explicitly:

R =
√
c21 + c22

=

√√√√ (C −Aω2)2(
(C −Aω2)2 +B2ω2

)2α
2 +

B2ω2(
(C −Aω2)2 +B2ω2

)2α
2

= α

√√√√ (C −Aω2)2 +B2ω2(
(C −Aω2)2 +B2ω2

)2

=
α√

(C −Aω2)2 +B2ω2

If we define θ by ωθ = ψ, then

ypart(t) = R cos (ωτ − ψ) = R cos ω(τ − θ) = R cos ω(t− ϕ− θ) ,

so

ypart(t) =
α√

(C −Aω2)2 +B2ω2
cos ω(t− ϕ− θ) .

Finally,

5



The general solution of (11) is

y(t) = ygen,hom(t)+
α√

(C − Aω2)2 +B2ω2
cos ω(t−ϕ−θ) ,

where ygen,hom(t) is the general solution of the homogeneous
equation

A
d2y

dt
(t) +B

dy

dt
(t) + Cy(t) = 0 . (16)

Analysis of the solutions in the damped case. Suppose our oscilator is damped, that is,
B > 0. Then all the solutions of the homogeneous equation (16) go to zero as t→ +∞.

Suppose we specify initial conditions y(t0) = y0, y′(t0) = ȳ0, and solve (11). Then the
solution y(t) will be a sum ỹ(t) + α√

(C−Aω2)2+B2ω2
cos ω(t−ϕ− θ), where the function ỹ will be

determined by the initial condition. (Recall that ygen,hom(t) contains two arbitrary constants.
Using the initial condition, we find the constants, and obtain a function y(t) with no constants
at all.)

So our solution y(t) is the sum of two parts:

• a function ỹ(t) that depends on the initial condition, and goes to zero as t→ +∞,

• the function α√
(C−Aω2)2+B2ω2

cos ω(t − ϕ − θ), which does not depend on the initial con-

dition, and does not go to zero as t→ +∞.

The first part is called a transient, because it “goes away” as time passes. The second part is
called a steady-state solution, and represents what one actually sees after a long time, when the
transient part has practically disappeared, and all the effect of the initial condition is forgotten.

Furthermore, the steady-state solution is exactly a sinusoid of the same frequency as the
input, and with an amplitude obtained by multiplying the input amplitude α by a number γ(ω)
that depends on ω, and is given by

γ(ω) =
1√

(C −Aω2)2 +B2ω2
. (17)

The number γ(ω) is called the frequency response, or gain, of our oscillator.
Summarizing,

Every solution of (11), for every initial condition, is the
sum of a “transient part” that goes to zero as t→ +∞ and
a “steady-state part”. The steady-state part is a sinusoid
of the same frequency as the input, and has an amplitude
equal to the amplitude of the input multiplied by the gain
γ(ω) given by (17). The steady-state part does not depend
on the initial condition at all. All the dependence on the
initial condition is contained in the transient part, whose
effect fades away as time passes. (In other words: the
oscillator “forgets the initial condition.”)
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A tuning example.

PROBLEM: Find the general solution and the steady-state solution of the forced harmonic oscil-
lator equation

d2y

dt
(t) + 4

dy

dt
(t) + 8y(t) = cos t+ cos 5t . (18)

SOLUTION. earlier, we found the general solution of the homogeneous equation (5). The result
was

yhom,gen(t) = r e−2t cos 2(t− ϕ) , r ∈ R , ϕ ∈ R , r ≥ 0 .

To find the general solution of (18) we use the superposition principle, according to which the
general solution of (18) is the sum of yhom,gen(t) plus a particular solution of the inhomogeneous
equation with forcing term cos t, plus a particular solution of the inhomogeneous equation with
forcing term 5 cos 2t.

To find the particular solutions with forcing terms cos t and 5 cos 2t, we first compute the
gain function γ. Clearly, γ is given by

γ(ω) =
1√

(8− ω2)2 + 42ω2
.

Then
γ(1) =

1√
(8− 1)2 + 42

=
1√

72 + 42
=

1√
49 + 16

=
1√
65
∼ 1

8.07
∼ 0.124 .

Also,

γ(5) =
1√

(8− 52)2 + 42 × 52
=

1√
132 + 16× 25

=
1√

169 + 400
=

1√
569
∼ 1

23.8
∼ 0.042 .

So

• The steady-state response to the input cos t is 1√
65

cos (t−ϕ1), for some angle ϕ1. (This is
exactly what we had found before.)

• The steady-state response to the input cos 5t is 1√
569

cos 5(t− ϕ2), for some angle ϕ2.

• The steady-state response to the input cos t+ cos 5t is 1√
65

cos (t−ϕ1) + 1√
569

cos 5(t−ϕ2),
that is, approximately,

0.124 cos (t− ϕ1) + 0.042 cos 5(t− ϕ2) .

Notice that

• The input is cos t+ cos 5t, that is, a sum of two sinusoids with frequencies 1 and 5. In this
input, both sinusoids have the same amplitude, so “both frequencies are represented with
about the same strength.”

• The steady-state response to the input is 0.124 cos (t − ϕ1) + 0.042 cos 5(t − ϕ2). This
is also a sum of two sinusoids with frequencies 1 and 5. However, in this response the
sinusoid with frequency 1 has an amplitude about three times larger than the sinusoid with
frequency 5.

Now let us see what happens if we change one of the oscillator parameters, and take C = 36
instead of C = 8. That is, we will now look at the forced harmonic oscillator with equation

d2y

dt
(t) + 4

dy

dt
(t) + 36y(t) = cos t+ cos 5t . (19)
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In this case, the gain function γ is given by

γ(ω) =
1√

(36− ω2)2 + 42ω2
.

Then

γ(1) =
1√

(36− 1)2 + 42
=

1√
352 + 42

=
1√

1225 + 16
=

1√
1241

∼ 1
35.2

∼ 0.028 .

On the other hand,

γ(5) =
1√

(36− 52)2 + 42 × 52
=

1√
112 + 16× 25

=
1√

121 + 400
=

1√
521
∼ 1

22.8
∼ 0.044 .

Then

• The steady-state response to the input cos t+cos 5t is 0.028 cos (t−ϕ1)+0.044 cos 5(t−ϕ2).
This is also a sum of two sinusoids with frequencies 1 and 5. However, in this response
the sinusoid with frequency 5 has an amplitude about twice as large as that of the sinusoid
with frequency 1.

In other words,

Our oscillator acts as a filter, or detector. If the in-
put is a superposition of signals of different frequencies,
the resulting output is also a superposition of signals of
the same frequencies, but the actual proportions of the fre-
quencies are changed, in such a way that some of them
become relatively stronger.
By changing the values of the oscillator parameters (that
is, by “tuning” our receptor) we can change which frequen-
cies are enhanced.

Improving the filtering effect. If we want to use a forced harmonic oscillator such as the one
of our example to separate out a signal we want from another one in which we are not interested,
then the actual example we just gave does what we want, but very poorly.

If we use the oscillator with C = 8 to filter out the signal with frequency 5, then we get the
desired sinusoid with frequency 1 with about 3 times the strength of the undesired sinusoid of
frequency 5. This means that about 25% of the resulting response will still be in the unwanted
frequency.

Similarly, if we use the oscillator with C = 36 to filter out the signal with frequency 1, then we
get the desired sinusoid with frequency 5 with about twice the strength of the undesired sinusoid
of frequency 1. This means that about 35% of the resulting response will still be in the unwanted
frequency.

How can be improve the filtering effect? One obvious way is to design a more sophisticated
system, by combining several oscillators. We take our forced oscillator, use its response as the
input of another oscillator of the same time, then use the response as the input of a third oscillator
of the same time, and so on. For example, if we do this three times, with C = 8, we get a system

d2y1

dt
(t) + 4

dy1

dt
(t) + 8y1(t) = cos t+ cos 5t ,

d2y2

dt
(t) + 4

dy2

dt
(t) + 8y2(t) = y1(t) ,

d2y3

dt
(t) + 4

dy3

dt
(t) + 8y3(t) = y2(t) .
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(All this can be realized with electric circuits.) Now, in the steady-state response y1 the frequency-
1 part will be about three times larger than the frequency-5 part. And then in y2 the frequency-1
part will be about nine times larger than the frequency-5 part. And, finally, y3 the frequency-1
part will be about 27 times larger than the frequency-5 part.

A similar argument works with C = 36, and gives us a filter in which the frequency-5 part is
about 16 times larger than the frequency-1 part.

Analysis of the gain function. The gain function γ is given by

γ(ω) =
1√

(C −Aω2)2 +B2ω2
. (20)

How does this function behave? What does its graph look like? For what frequency ω is the gain
largest?

To understand the answers to these questions, we use the methods of Freshman Calculus.
You might think that we have to compute the derivative dγ

dω , which looks awfully complicated.
However, things are in fact much easier.

First of all, if we want to understand when γ(ω) is, for example, an increasing function of ω,
it suffices to study the function

η(ω) = (C −Aω2)2 +B2ω2 ,

because γ increases when η decreases, γ decreases when η increases, and γ has a maximum when
η has a minimum,

Again, you may think that studying η is hard, because it is a complicated plynomial in ω.
However, if we use the variable ξ = ω2, then η(ω) is just (C −Aξ)2 +B2ξ, which is very easy to
study.

Completing the square, we get

(C −Aξ)2 +B2ξ = C2 +A2ξ2 − 2ACξ +B2ξ

= C2 +A2ξ2 + (B2 − 2AC)ξ

= C2 +A2ξ2 + 2Aξ
(B2 − 2AC

2A

)
= C2 +A2ξ2 + 2Aξ

(B2

2A
− C

)
= C2 +

(
Aξ +

B2

2A
− C

)2

−
(B2

2A
− C

)2

= C2 +
(
Aξ +

B2

2A
− C

)2

− B4

4A2
− C2 +

CB2

A

=
CB2

A
− B4

4A2
+
(
Aξ +

B2

2A
− C

)2

=
CB2

A

(
1− B2

4AC

)
+
(
Aξ +

B2

2A
− C

)2

.

Now suppose that our oscillator is underdamped, so B2 < 4AC. Then the number CB2

A

(
1− B2

4AC

)
is positive. Furthermore, the smallest possible value of η(ω) is obtained when

Aξ +
B2

2A
− C = 0 ,

that is, when

ξ =
1
A
C − B2

2A
,

or

ξ =
C

A
− B2

2A2
,
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which is equivalent to

ξ =
2AC −B2

2A2
.

Now suppose that B2 < 2AC. Then the number ξ given by the previous equation is positive,
and we can define

ωmax =
1√
2A

√
2AC −B2 .

This value of ω is the one for which η(ω) is as small as possible, so γ(ω) is as large as possible.
We have thus shown that

If B2 < 2AC, then the frequency ω for which the γ(ω) has
its maximum value is ωmax = 1√

2A

√
2AC −B2 .

We can now understand tuning better: if we want to tune our oscillator so that a particularly
desired frequency ω̄ is selected, it suffices to change one of the parameters—for example C— so
that ωmax will become ω̄. This can be done, for example, by choosing

C = Aω̄2 +
B2

2A
.

The graph of the gain function. Here is the graph of the gain function for B2 < 2AC.

Two questiona for you to think about. What happens if 2AC < B2 < 4AC? What happens
if B2 > 4AC?
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