A Combinatorial Proof of log(e*) = z

Doron ZEILBERGER !

As he was rushing to his Complex Analysis graduate class, my colleague, Hector Sussmann, asked
me whether I can find a formal-power-series-proof of log(e?) = z, where
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Of course, Hector was aware that one way is to use ‘calculus’, of the formal kind (of course, he
knows that I don’t believe in any other versions!), as outlined, for example, in my classroom note

http://www.math.rutgers.edu/"zeilberg/mamarim/mamarimPDF/lag.pdf .

Indeed (log(e?))’ = (e*)'/e* = e*/e* =1 and ‘integrating’ gives the desired result, but he asked for
a direct calculus-free proof, even of the good (i.e. formal) kind.

Here goes
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where S(n, k), the Stirling numbers of the second kind, are the number of set partitions of {1,2,...,n}

into k sets. It is well-known and trivial to see that

S(n,k) =S(n—1,k—1)+kS(n—1,k) ,
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(element n may be either a loner, in which case the rest are partitioned into k — 1 sets or it joins

one of the k existing sets). Continuing, we get, by changing order of summation,
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The coefficient of 2" /n! is
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if n > 1. Of course, when n =1 it is 1.



