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Abstract: In nonlinear control, it is helpful to choose a formalism

well suited to computations involving solutions of controlled di�erential

equations, exponentials of vector �elds, and Lie brackets. We show by

means of an example |the computation of control variations that give

rise to the Legendre-Clebsch condition| how a good choice of formal-

ism, based on expanding di�eomorphisms as products of exponentials,

can simplify the calculations. We then describe the algebraic struc-

ture underlying the formal part of these calculations, showing that it is

based on the theory of formal power series, Lie series, the Chen series

|introduced in control theory by M. Fliess| and the formula for the

dual basis of a Poincar�e-Birkho�-Witt basis arising from a generalized

Hall basis of a free Lie algebra.

1 Introduction

In the theory of nonlinear control systems, A. Agrachev and R. Gamkrelidze in-

troduced a formalism for computing the ow maps arising from various controls,

based on \chronological exponentials." It turns out that, underlying this formal-

ism, there is a rich and interesting algebraic structure, involving algebras of formal

power series (whose use in control theory was advocated by M. Fliess, cf., e.g, [7]),

exponential Lie series, and the Chen-Fliess series. Since controls give rise to di�eo-

morphisms, it is natural to seek asymptotic expansions of ow maps as products

of exponentials.
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We will outline how such an expansion can be obtained, show how it can be

applied to the derivation of high-order necessary conditions for optimality, and then

describe the basic algebraic fact underlying such an expansion, namely, the formula

for the dual basis of a Poincar�e-Birkho�-Witt basis of the universal enveloping

algebra of a free Lie algebra.

2 Manifolds, Vector Fields, and Control Systems

Throughout this paper, \smooth" means \of class C

1

," and \manifold" means

\�nite-dimensional, second-countable smooth manifold without boundary." We

use TM , T

�

M , T

p

M , T

�

p

M , to denote, respectively, the tangent and cotangent

bundles of a manifoldM , and the tangent and cotangent spaces at a point p 2M .

IfM is a manifold, we use E(M) to denote the commutative algebra |over IR| of

smooth real-valued functions onM , topologized in the usual way. (A sequence f'

j

g

converges to a limit ' in E(M) i� for every k � 0 and every k-tuple (X

1

; : : : ; X

k

) of

smooth vector �elds on M the functions X

1

X

2

: : :X

k

'

j

converge to X

1

X

2

: : :X

k

'

uniformly on compact sets.) We let E

0

(M) denote the dual space of E(M), i.e. the

space of compactly supported Schwartz distributions on M .

It is well known that M is completely determined by E(M), in the following

sense. A point p ofM gives rise to a linear functional �

p

2 E

0

(M) |the Dirac delta

function at p| de�ned by �

p

(') = '(p). This linear functional is multiplicative,

i.e. is a homomorphism of IR-algebras. For any commutative algebra A over a �eld

k, let us use �(A) to denote the spectrum of A, i.e. the set of all maps � : A! k

that are algebra homomorphisms and do not vanish identically. Then the map

p ! �

p

is a bijection from M to �(E(M)). So a manifold can be canonically

identi�ed with the spectrum of its algebra of smooth functions.

Via the map p ! �

p

, we regard M as embedded in E

0

(M). Moreover, many

other objects related to M can also be naturally regarded as members of E

0

(M).

For example, TM is embedded in E

0

(M) as follows: a tangent vector v at a point

is a linear functional on E(M), which maps ' 2 E(M) to v'. Since this functional

is clearly continuous, v belongs to E

0

(M).

If X and Y are smooth vector �elds, then the product XY , evaluated at p, is a

well de�ned member of E

0

(M), namely, the map ' ! (XY ')(p). So the product

XY |i.e. the map p ! XY (p)| is a well de�ned map from M to E

0

(M). The

di�erence [X; Y ] = XY � Y X |the Lie bracket of X and Y| is also a map from

M to E

0

(M), that happens to take values in TM , and is in fact a vector �eld.

On the other hand, E

0

(M) is a topological linear space, so linear operations and

limiting processes that in principle appear not to make intrinsic sense on M can

be meaningful in E

0

(M). For example, if  : [0; "] ! M is a curve, and (0) = p,

then we would like to de�ne the tangent vector _(0) by just letting

_(0)

def

= lim

h!0

h

�1

((h)� p) : (1)



This may look unacceptable, since M is not a linear space, and (h)� p does not

make sense. However, Formula (1) is perfectly meaningful, and gives the right

answer, if we regard it as an identity in E

0

(M), since lim

h!0

h

�1

((h) � p) is the

distribution that maps ' 2 E(M) to the number lim

h!0

h

�1

('((h))� '(p)), i.e.

directional di�erentiation at p in the direction of _(0).

To make the formalism work well, it is convenient to write �' |rather than

�(')| for the value of the linear functional � 2 E

0

(M) at the function ' 2 E(M).

With this notation, when p 2 M and ' 2 E(M) the value '(p) is now written

p'. If f is a smooth vector �eld and ' 2 E(M), then f' is in E(M), and the

number usually written as (f')(p) now becomes p(f'). On the other hand, if we

also write pf rather than the more common f(p), the number p(f') is also equal

to (pf)', so we can just write pf' without parentheses.

More generally, maps � from M to any manifold N should act on points of M

on the right, so we will write p� rather than �(p). A smooth map � : M ! N

gives rise to a map

~

� : E

0

(M) ! E

0

(N), de�ned by letting

~

�(D), for D 2 E

0

(M),

be the distribution on N given by

~

�(D)( ) = D( o�), i.e., in our formalism,

(D

~

�) 

def

= D(� ), where, of course, � is the function usually referred to as the

\pullback" �

�

( ) of  to M via �. (Naturally, since maps act on the right, � is

the composite map obtained by applying � �rst, and then  .) When D is actually

a point p 2 M , then (D

~

�) is what is normally written as  (�(p)), so p

~

� = p�.

So

~

� is an extension to E

0

(M) of the map �, originally de�ned on the subset M

of E

0

(M). It is convenient to just use � for this extension. With this notation, if

p 2 M and v is a tangent vector at p, then v� is the tangent vector at p� usually

written as �

�

(v), or D�(p):v .

In particular, we will use e

tf

to denote the time t ow map arising from a vector

�eld f , and will write it as acting on the right. So t ! pe

tf

is the integral curve

�

f;p

of f that goes through p at time 0. This curve satis�es the equation

(d=dt)(pe

tf

) = pe

tf

f ; (2)

which is a much more elegant way of writing the formula (d=dt)(�

f;p

(t))=f(�

f;p

(t)),

and amply justi�es the use of the exponential notation.

With this formalism, several important formulas involving Lie brackets become

completely trivial formally, and the formal calculations can be rigorously justi�ed

by working in E

0

(M). For example, let f; g be vector �elds, and let p 2M . Then

(d=dt)(pe

tf

e

tg

e

�tf

e

�tg

)

= pe

tf

fe

tg

e

�tf

e

�tg

+ pe

tf

e

tg

ge

�tf

e

�tg

� pe

tf

e

tg

e

�tf

fe

�tg

� pe

tf

e

tg

e

�tf

e

�tg

g ;

whose value for t = 0 is pf + pg � pf � pg, i.e. 0.

The second derivative

d

2

dt

2

(pe

tf

e

tg

e

�tf

e

�tg

) is then equal to

pe

tf

f

2

e

tg

e

�tf

e

�tg

+pe

tf

fe

tg

ge

�tf

e

�tg

�pe

tf

fe

tg

e

�tf

fe

�tg

�pe

tf

fe

tg

e

�tf

e

�tg

g

+pe

tf

fe

tg

ge

�tf

e

�tg

+pe

tf

e

tg

g

2

e

�tf

e

�tg

�pe

tf

e

tg

ge

�tf

fe

�tg

�pe

tf

e

tg

ge

�tf

e

�tg

g

�pe

tf

fe

tg

e

�tf

fe

�tg

�pe

tf

e

tg

ge

�tf

fe

�tg

+pe

tf

e

tg

e

�tf

f

2

e

�tg

+pe

tf

e

tg

e

�tf

fe

�tg

g

�pe

tf

fe

tg

e

�tf

e

�tg

g�pe

tf

e

tg

ge

�tf

e

�tg

g+pe

tf

e

tg

e

�tf

fe

�tg

g+pe

tf

e

tg

e

�tf

e

�tg

g

2

;



whose value for t = 0 is 2pfg � 2pgf , i.e. 2p[f; g]. So we have shown that

pe

tf

e

tg

e

�tf

e

�tg

= p+ t

2

p[f; g] +O(t

2

) as t! 0 ; (3)

which is the familiar formula describing how the Lie bracket measures the failure

to close of the \square" described by the left-hand side of (3).

As a second example, we write another familiar formula, namely,

(d=dt)(pe

tf

ge

�tf

) = pe

tf

fge

�tf

� pe

tf

gfe

�tf

= pe

tf

[f; g]e

�tf

; (4)

which says that, if we de�ne a vector �eld v

g

along an integral curve of f by

letting v

g

(t) = pe

tf

g, and then move v

g

(t) back to T

p

M via the di�erential of the

di�emorphism e

�tf

|which sends pe

tf

to p| then the result is the derivative of

the pullback of v

[f;g]

(t) via the di�erential of e

�tf

.

Now consider a control system of the form

_x = x(f + ug) ; juj � 1 ; (5)

where f and g are smooth vector �elds on M , and we are using the previously

described formalism in which vector �elds act on the right.

For a control � : [a; b] ! [�1; 1], let us use the expression xe

!

R

t

a

(f+�(s)g)ds

to

denote the point �(t), if � is the trajectory of (5) corresponding to � and the initial

condition �(a) = x. (This \chronological exponential" formalism was introduced

by Agrachev and Gamkrelidze. Notice that xe

!

R

t

a

(f+�(s)g)ds

= xe

R

t

a

(f+�(s)g)ds

if � is

constant, and that the derivative of xe

!

R

t

a

(f+�(s)g)ds

is xe

!

R

t

a

(f+�(s)g)ds

(f+�(t)g) for a.

e. t, justifying the use of an exponential notation.)

Given a measurable control � : [a; b]! [�1; 1], a point variation of � at a time

t

0

2 [a; b] is a family ��
�
= f�

"

g

0�"��"

of controls �

"

: [a; b]! [�1; 1] such that �

0

= �,

having the property that for every � > 0 there exists ~"(�) 2]0; �"] for which the set

ft : �

"

(t) 6= �(t)g \ [t

0

� �; t

0

+ �] is empty whenever " 2]0; ~"(�)].

For a point variation ��
�
and an x2M we de�ne the endpoint curve 

��
�
;x

by



��
�
;x

(") = xe

!

R

b

a

(f+�

"

(s)g)ds

: (6)

If 

��
�
;x

(") is continuous near " = 0 and di�erentiable at " = 0, then the vector

~v

��
�
;x

def

= (d=d")

�

�

�

"=0

�

xe

!

R

b

a

(f+�

"

(s)g)ds

�

(7)

is the terminal variational vector corresponding to the variation ��
�
. The pullback

of this vector to the point xe

!

R

t

a

(f+�(s)g)ds

via the di�eomorphism

�

e

!

R

b

t

(f+�(s)g)ds

�

�1

is the variational vector v

��
�
;x;t

generated at time t by ��
�
and the initial condition x.

So, if �(") � 0 is chosen for every " 2]0; �"] in arbitrary fashion, subject only to the

condition that ft : �

"

(t) 6= �(t)g � [a; t

0

+ �(")], then

v

��
�
;x;t

0

= (d=d")

�

�

�

"=0

�

xe

!

R

t

0

+�(")

a

(f+�

"

(s)g)ds

�

e

!

R

t

0

+�(")

t

0

(f+�(s)g)ds

�

�1

�

: (8)

Point variations and their corresponding variational vectors occur in the Pon-

tryagin Maximum Principle and its \high-order" generalizations. For example, a

necessary condition for a trajectory � of (5) and corresponding control � to have



the property that the reachable set from �(a) is not a neighborhood of �(b) is that

there exist a nontrivial \adjoint vector" |i.e. an absolutely continuous �eld of

covectors [a; b] 3 t ! p(t) 2 T

�

�(t)

M along � that satis�es the adjoint equation

_p(t) = �p(t):(@=@x)(f + �(t)g)(�(t)) for a.e. t| for which

hp(t); (f + �(t)g)(�(t))i = maxfhp(t); (f + ug)(�(t))i : �1 � u � 1g (9)

for almost every t. Condition (9) is equivalent to the statement that, for almost

all t, hp(t); vi � 0 whenever v is a tangent vector at �(t) such that v is of the form

�(t)((u��(t))g) for some u 2 [�1; 1]. These vectors v are precisely the variational

vectors arising from \needle variations" ��
�

u;t

at time t.

In various \high-order" versions of the Maximum Principle, Condition (9) is

replaced by the much stronger requirement that hp(t); vi � 0 whenever v is a

tangent vector at �(t) which is of the form v

��

�

;�(a);t

for some point variation of � at

t. (The precise statement of the high-order maximum principle requires that the

variational vectors satisfy an extra \compatibility" condition. We will ignore this

complication, and point out that the compatibility condition is always satis�ed

when all the pairs (t; v) under considerations satisfy Knobloch's condition (cf.

Knobloch [10]): v = lim

j!1

v

j

, where the v

j

are variational vectors arising from

point variations ��
�

j

at time t

j

and t

j

! t, t

j

6= t.)

Theorem 2.1 Let � : [a; b] ! M be a trajectory of (5) corresponding to a mea-

surable control � : [a; b] ! [�1; 1]. Let

�

t 2 [a; b[ be such that j�(

�

t)j < 1 and

�

t is a

Lebesgue point of �. Then there exists a point variation ��
�
of � at

�

t that gives rise

to a variational vector v = v

��
�
;�(a);

�

t

= �[g; [f; g]](�(

�

t)).

The vector v given by the above theorem clearly satis�es Knobloch's condition,

since the set of Lebesgue points of � has full measure, and every interval [

�

t;

�

t+ "]

must contain, for small enough ", a subset of positive measure where j�j < 1, since

otherwise the integral

R

�

t+"

�

t

j�(t) � �(

�

t)jdt would be bounded below by a positive

constant times ", contradicting the hypothesis that

�

t is a Lebesgue point of �.

Theorem 2.1 says that at almost all times t such that j�(t)j < 1 the adjoint

vector p may be required to satisfy the inequality hp(t); [g; [f; g]](�(t))i � 0, in

addition to the condition that hp(t); g(�(t))i = 0, which follows from (9). Since

the Hamiltonian H is given by H(x; p; u) = hp; (f + ug)(x)i, we see that the new

inequality says that (@=@u)(d

2

=dt

2

)(@H=@u) � 0, along our trajectory, which is

the usual Legendre-Clebsch condition.

Proof of Theorem 1. Without loss of generality, we assume that

�

t = 0. We are

going to construct our variation ��
�
by letting �

"

be, for su�ciently small ", a control

of the form �

"

= � + �

�

, with � = k"

1=3

, k a constant to be chosen later, and �

�

a function that vanishes outside the interval [0; �]. Once we have explained how

to choose �

�

, we will want to study the e�ect of the resulting control � + �

�

on

the interval [0; �], and for this purpose we will �rst look at an arbitrary control



u : [0; �]! [�1; 1] and study the map e

!

R

�

0

(f+u(t)g)dt

. In particular, we will want to

compute a product asymptotic expression for his map that will be exact modulo

errors of order o(�

3

). Once this is done, we will try to choose �

�

so as to match all

the factors of this expansion except one, and the one factor that is not matched

will become the leading term of the variation we want.

So, let u : [0; �]! [�1; 1] be measurable, and write x

1

(t) = x e

!

R

t

0

(f+u(s)g)ds

, for a

�xed x2M . Let x

1

(t)=x

2

(t)e

tf

. Then _x

1

(t)= _x

2

(t)e

tf

+x

2

(t)e

tf

f= _x

2

(t)e

tf

+x

1

(t)f .

Comparing this with _x

1

(t) = x

1

(t)(f + u(t)g), we �nd _x

2

(t)e

tf

= x

1

(t)u(t)g, so

_x

2

(t)=x

2

(t)e

tf

u(t)ge

�tf

.

Now, if X, Y are vector �elds, then (d=dt)e

tY

Xe

�tY

= e

tY

[Y;X]e

�tY

(cf. (4)),

so e

tY

Xe

�tY

= X +R

1

(X; Y; t), where R

1

(X; Y; t) =

R

t

0

e

sY

[Y;X]e

�sY

ds.

Iterating this we get

e

tY

Xe

�tY

= X + t[Y;X] +R

2

(X; Y; t) ; (10)

where

R

2

(X; Y; t) =

Z

t

0

Z

s

1

0

e

s

2

Y

[Y; [Y;X]]e

�s

2

Y

ds

2

ds

1

: (11)

Then

e

tY

Xe

�tY

= X + t[Y;X] +

t

2

2

[Y; [Y;X]] +R

3

(X; Y; t) ; (12)

where

R

3

(X; Y; t) =

Z

t

0

Z

s

1

0

Z

s

2

0

e

s

3

Y

[Y; [Y; [Y;X]]]e

�s

3

Y

ds

3

ds

2

ds

1

: (13)

Then

e

tf

ge

�tf

= g + t[f; g] +

t

2

2

[f; [f; g]] +R

3

(g; f; t) ; (14)

so _x

2

(t)=x

2

(t)(u(t)g+X

t

), with X

t

= tu(t)[f; g]+

t

2

u(t)

2

[f; [f; g]]+u(t)R

3

(g; f; t).

Now let U

1

(t) =

R

t

0

u(s)ds , and write x

2

(t) = x

3

(t)e

U

1

(t)g

. Then

_x

2

(t) = _x

3

(t)e

U

1

(t)g

+ x

3

(t)e

U

1

(t)g

u(t)g = _x

3

(t)e

U

1

(t)g

+ x

2

(t)u(t)g : (15)

So

_x

3

(t) = x

3

(t)e

U

1

(t)g

X

t

e

�U

1

(t)g

: (16)

We now use (10) and write e

U

1

(t)g

X

t

e

�U

1

(t)g

=X

t

+ U

1

(t)[g;X

t

]+R

2

(X

t

; g; U

1

(t)),

so

_x

3

(t) = x

3

(t)

�

X

t

+ U

1

(t)[g;X

t

] +R

2

(X

t

; g; U

1

(t)

�

= x

3

(t)

�

tu(t)[f; g] +

t

2

u(t)

2

[f; [f; g]] + tu(t)U

1

(t)[g; [f; g]] + S

1

(t)

�

,

where S

1

(t) is a complicated expression which is O(t

3

). Now de�ne U

2

by letting

U

2

(t) =

R

t

0

su(s)ds . Then write x

3

(t) = x

4

(t)e

U

2

(t)[f;g]

. We then get

_x

4

(t) = x

4

(t)

�

t

2

u(t)

2

[f; [f; g]] + tu(t)U

1

(t)[g; [f; g]] + S

2

(t)

�

; (17)

where S

2

(t) is also O(t

3

). Next, de�ne U

3

(t) =

1

2

R

t

0

s

2

u(s)ds , and then write

x

4

(t) = x

5

(t)e

U

3

(t)[f;[f;g]]

. Then

_x

5

(t) = x

5

(t)

�

tu(t)U

1

(t)[g; [f; g]] + S

3

(t)

�

; (18)

where S

3

(t) is also O(t

3

). Finally, if we let U

4

(t) =

R

t

0

su(s)U

1

(s)ds , we can write

x

5

(t) = x

6

(t)e

U

4

(t)[g;[f;g]]

, and conclude that _x

6

(t) = x

6

(t)S

4

(t), where S

4

(t) is O(t

3

).

Since x

6

(0) = x, we have x

6

(t) = x +O(t

4

). Then

x

1

(t) = xe

U

4

(t)[g;[f;g]]

e

U

3

(t)[f;[f;g]]

e

U

2

(t)[f;g]

e

U

1

(t)g

e

tf

+O(t

4

) ; (19)



i.e.

e

!

R

t

0

(f+u(s)g)ds

= e

U

4

(t)[g;[f;g]]

e

U

3

(t)[f;[f;g]]

e

U

2

(t)[f;g]

e

U

1

(t)g

e

tf

+O(t

4

) : (20)

In Formulas (19), (20), the product of �ve exponentials that appears in the right-

hand side is the initial part |up to terms of degree 3| of the general product

expansion of the Chen series, a purely formal Lie-algebraic result that gives, on

a formal level, an expansion of a the di�eomorphism e

!

R

t

0

(f+u(s)g)ds

as a product of

di�eomorphisms. The formulas themselves are special cases of the general propo-

sition that the Chen series associated to an expression such as e

!

R

t

0

(f+u(s)g)ds

gives

an asymptotic expansion for this expression.

We now use these asymptotic formulas to construct our variation. In our

computations, we will use U

�

i

to denote, for i = 1; 2; 3; 4, the functions U

i

arising

from a particular control �.

Fix once and for all a c > 0 such that �1 � �(0)�2c and �(0)+2c � 1. De�ne

the \good set" G

�

and the \bad set" B

�

by

G

�

def

=

n

t 2 [0; �] : j�(t)� �(0)j � c

o

; B

�

= [0; �]nG

�

: (21)

Use jEj to denote the Lebesgue measure of a measurable subset E of IR. Then

cjB

�

j �

R

�

0

j�(t)� �(0)jdt = o(�), so jB

�

j = o(�), and then jG

�

j = �� o(�).

Let P

�

(t) = p

�

0

+ p

�

1

t+ p

�

2

t

2

+ p

�

3

t

3

be the unique cubic polynomial such that

Z

G

�

t

i

P

�

(t) dt = �

4

�

i3

for i = 0; 1; 2; 3 ; (22)

where \�" is Kronecker's delta. (Clearly, P

�

exists and is unique for small �.)

If

^

G

�

=fs2[0; 1] : �s2G

�

g, then j

^

G

�

j!1 as �!0. De�ne

^

G

0

= [0; 1]. For � � 0,

let Q

�

(s)=

P

3

i=0

q

�

i

t

i

be such that

R

^

G

�

Q

�

(s)s

i

ds=�

i3

for i = 0; 1; 2; 3. Then

P

�

(t)=Q

�

(�

�1

t)=

3

X

i=0

q

�

i

�

�i

t

i

if � > 0 : (23)

As �!0, the q

�

i

converge to q

0

i

. (Explicitly, Q

0

(t)=2800t

3

�4200t

2

+1680t�140.)

Let �=1+maxfjQ

0

(s)j : 0�s�1g. Then jQ

�

(t)j�� for all t2 [0; 1], if � is small.

Take

�

�

(t) =

c

�

P

�

(t) for t 2 G

�

; �

�

(t) = 0 for t =2 G

�

: (24)

Let �

"

=�+�

�

. Then �

"

is admissible if " is small, and U

�

"

i

(�)=U

�

i

(�) for i=1; 2; 3.

We now compute U

�

"

4

(�)� U

�

4

(�). For a general control �, we have

U

�

4

(t) =

Z

t

0

s�(s)U

�

1

(s)ds =

1

2

Z

t

0

s

d

ds

(U

�

1

(s))

2

ds : (25)

Integration by parts then yields U

�

4

(�) =

�

2

(U

�

1

(�))

2

�

1

2

R

�

0

(U

�

1

(s))

2

ds. Since U

�

"

1

(�)

is equal to U

�

1

(�), we have U

�

"

4

(�)� U

�

4

(�) =

1

2

R

t

0

�

U

�

1

(s)

2

� U

�

"

1

(s)

2

�

ds.

If we let �

�

(t) =

R

t

0

�

�

(s)ds, then U

�

"

1

(t) = U

�

1

(t) +�

�

(t), from which it follows

that U

�

"

1

(t)

2

= U

�

1

(t)

2

+�

�

(t)

2

+ 2U

�

1

(t)�

�

(t), and then

U

�

"

4

(�)� U

�

4

(�) = �

1

2

Z

�

0

�

�

(s)

2

ds�

Z

�

0

U

�

1

(s)�

�

(s)ds : (26)



Now, if 0 � s � 1, we have

�

�

(�s)=

Z

�s

0

�

�

(w)dw=

c

�

Z

�s

0

P

�

(w)dw=

c�

�

Z

s

0

P

�

(�t)dt=

c�

�

Z

s

0

Q

�

(t)dt : (27)

Then

Z

�

0

�

�

(t)

2

dt = �

Z

1

0

�

�

(�s)

2

ds =

c

2

�

3

�

2

Z

1

0

 

Z

s

0

Q

�

(t)dt

!

2

ds =

�c

2

�

3

�

2

+ o(�

3

) ; (28)

where � =

R

1

0

�

R

s

0

Q

0

(t)dt

�

2

ds.

On the other hand, the integral I =

R

�

0

U

�

1

(s)�

�

(s)ds can also be computed by

parts, and is equal to V

�

(�)�

�

(�) �

R

�

0

V

�

(s)�

�

(s)ds, where V

�

(t) =

R

t

0

U

�

1

(s)ds.

Since �

�

(�) =

R

�

0

�

�

(t)dt = 0, I is in fact equal to �

R

�

0

V

�

(s)�

�

(s)ds. Since

U

�

1

(t) =

R

t

0

�(s)ds, we have U

�

1

(t) = t�(0) + o(t). Then V

�

(t) =

t

2

2

�(0) + o(t

2

).

Since

R

�

0

t

2

�

�

(t)dt = 0, we have I = o(�

3

).

Therefore

U

�

"

4

(�)� U

�

4

(�) = �

�c

2

�

3

2�

2

+ o(�

3

) = �

�c

2

k

3

"

2�

2

+ o(").

Choosing k such that �c

2

k

3

= 2�

2

, we have U

�

"

4

(�) � U

�

4

(�) = �" + o(�

3

). Then,

if x 2M , we have

xe

!

R

�

0

(f+�

"

(s)g)ds

�

e

!

R

�

0

(f+�(s)g)ds

�

�1

= �" x [g; [f; g]] + o(") ;

and our proof is complete.

3 Basic algebraic structures

In this and the following sections, we work with a �xed �eld k of scalars, assumed

to be of characteristic zero. We use LS, AA, LA, CA, CP as abbreviations for

\linear space," \associative algebra," \Lie algebra," \chronological algebra," and

\chronological product," respectively. All LS's, AA's, LA's, and CA's assumed to

be over k. Every AA A is automatically regarded as a LA, with the Lie bracket

[x; y] of x; y 2 A de�ned by [x; y] = xy � yx.

The calculations of the preceding sections were carried out for vector �elds, but

it is clear that a large part of what was done was purely formal. The purpose of

this section is to exhibit the basic algebraic structures underlying the formal part

of our arguments, to review some of their properties, and to �x terminology and

notation. For a detailed description the reader is referred to [16].

We recall that, if L is a LA, then a universal enveloping algebra (abbr. UAE)

of L is a pair (�; U) such that U is an AA and � : L! U is a LA-homomorphism,

having the property that, if �

0

: L ! U

0

is any other LA-homomorphism from L

to an AA U

0

, then there exists a unique AA-homomorphism � : U ! U

0

such

that �� = �

0

. The existence of (�; U) is trivial, since one can let U be the

quotient of the tensor algebra T (L) over L by the two-sided ideal generated by the



elements x
y�y
x�[x; y], for x; y 2 L. The Poincar�e-Birkho�-Witt Theorem

(abbr. PBWT) says that, if (�; U) is a UEA of L, B is any basis of L, endowed

with a total ordering �, and we use PWB(B;�) to denote the set of all products

�(B

1

) � �(B

2

) � : : : � �(B

m

), for all �nite sequences (B

1

; B

2

; : : : ; B

m

) of members of

B such that B

1

�B

2

� : : :�B

m

, then PWB(B;�) is a basis of U . It follows from

the PBWT that � is necessarily injective. In view of this, we will only consider

from now on UEA's (�; U) such that L � U and � : L! U is the inclusion map.

Let X be a set (also called an alphabet) of noncommuting indeterminates (or

letters). Use W (X) to denote the set [

1

n=0

X

n

, i.e. the union of the Cartesian

products X

n

of n copies of X. We refer to W (X) as the free monoid generated by

X. The members ofW (X) |calledmonomials, or words| are the �nite sequences

w = (x

1

; x

2

; : : : ; x

n

) of letters, for which we will use the notation w = x

1

x

2

: : : x

n

.

If w 2 X

n

then w is a word of length n, or a monomial of degree n, and we

write n = jwj. The product ww

0

of w = x

1

x

2

: : : x

n

, w

0

= x

0

1

x

0

2

: : : x

0

�

is just the

concatenation x

1

x

2

: : : x

n

x

0

1

x

0

2

: : : x

0

�

. Clearly, jww

0

j = jwj + jw

0

j. Also, we write

lett(w) to denote the set of all letters x 2 X that occur in w. We write 1 |or ;|

to denote the only word of length zero, i.e. the empty word. Clearly, 1w = w1 = w

for all w 2 W (X). We use W

+

(X) to denote the set fw 2 W (X) : w 6= 1g.

We let A

k

(X) denote the free AA generated by X with coe�cients in k. Then

A

k

(X) is the set of all formal linear combinations p =

P

w2W (X)

p

w

w of monomi-

als with coe�cients p

w

2 k such that the set fw : p

w

6= 0g is �nite. The mem-

bers of A

k

(X) are the noncommuting polynomials in the letters of X. We let

A

+

k

(X)

def

= fP =

P

w

p

w

w2A

k

(X) : p

1

=0g, so A

+

k

(X) is a two-sided ideal of A

k

(X).

We use

^

A

k

(X) to denote the completion of A

k

(X) with respect to the uni-

form structure in which a basis of \entourages" of the diagonal is given by the

sets U

F

=f(P;Q)2A

k

(X)�A

k

(X) : P�Q 2 U

F

g, for all �nite subsets F ofW (X),

where U

F

= fP =

P

w

p

w

w 2 A

k

(X) : p

w

=0 whenever w2Fg. Then A

k

(X) is the

set of all sums S =

P

w

s

w

w, with fs

w

g

w2W (X)

an arbitrary family of members of

k (so in particular fw : s

w

6= 0g is not required to be �nite). The members of

^

A

k

(X) are then the formal power series in the letters of X with coe�cients in k.

The multiplication map (P;Q)! PQ from A

k

(X)�A

k

(X) to A

k

(X) is uniformly

continuous, so it extends to a continuous map |also denoted by (S; T ) ! ST|

from

^

A

k

(X)�

^

A

k

(X) to

^

A

k

(X), with respect to which

^

A

k

(X) is an AA.

Associated to the basisW (X) of A

k

(X) is a pairing < �; �>:

^

A

k

(X)�A

k

(X)!k,

that sends (S; T ) 2

^

A

k

(X) � A

k

(X) to < S; T >=

P

w

S

w

T

w

, if S =

P

w

S

w

w

and T =

P

w

T

w

w. Then S =

P

w

< S;w > w if S 2

^

A

k

(X), so < S; T >=

P

w

< S;w >< T;w > . With the pairing < �; � > ,

^

A

k

(X) is the algebraic dual

of A

k

(X). Moreover, the continuous linear functionals on

^

A

k

(X) are exactly the

maps S !<S; T > , for T 2 A

k

(X), so A

k

(X) is the topological dual of

^

A

k

(X).

We use L

k

(X) to denote the Lie subalgebra generated by X of the LA A

k

(X).

It is well known |and follows easily from the PBWT| that L

k

(X) is a realization

of the free LA over X. (That is, if � is any LA over k and � : X! � is a mapping,

then � can be extended in a unique way to a LA-homomorphism ~� : L

k

(X)! �.)



It is also easy to show that A

k

(X) is a UAE of L

k

(X).

A formal series S 2

^

A

k

(X) is called a Lie series if for every n the homogeneous

component S

hom;n

def

=

P

jwj=n

<S;w>w is in L

k

(X). We use

^

L

k

(X) to denote the

set of all Lie series. It is easy to see that

^

L

k

(X) is a Lie subalgebra of

^

A

k

(X).

The family fv
wg

v;w2W (X)

is a basis of the tensor product A

k

(X)
A

k

(X), so

every P 2A

k

(X)
A

k

(X) is expressible in a unique way as a sum P =

P

v;w

p

v;w

v
w

such that f(v; w) : p

v;w

6= 0g is �nite. We use A

k

(X)

^


A

k

(X) to denote the

completion of A

k

(X)
A

k

(X) with respect to the uniform structure in which a

basis of \entourages" of the diagonal is given by the sets

U

2

F

=f(P;Q)2(A

k

(X)
A

k

(X))�(A

k

(X)
A

k

(X)) : P�Q 2 U

2

F

g,

for all �nite subsets F of W (X)�W (X), where

U

2

F

= fP =

P

v;w

p

v;w

v 
 w 2 A

k

(X)
A

k

(X) : p

v;w

=0 whenever (v; w)2Fg.

Then A

k

(X)

^


A

k

(X) can be thought of as the set of all sums S =

P

v;w

s

v;w

v
 w,

with fs

v;w

g

v;w2W (X)

a completely arbitrary family of members of k (so in particular

f(v; w) : s

v;w

6= 0g is not required to be �nite). The members of A

k

(X)

^


A

k

(X)

are exactly the formal sums S =

P

v2W (X)

v 
 S

v

, with all the S

v

in

^

A

k

(X),

so A

k

(X)

^


A

k

(X) is the space

^

A

^

A

k

(X)

(X) of formal power series in X with co-

e�cients in

^

A

k

(X). There is a natural pairing (S; P ) !< S; P > that sends

S 2 A

k

(X)

^


A

k

(X), P 2 A

k

(X) 
 A

k

(X) to < S; P >=

P

v;w

s

v;w

p

v;w

2 k, if

S =

P

v;w

s

v;w

v
w 2 A

k

(X)

^


A

k

(X), P =

P

v;w

p

v;w

v
w 2 A

k

(X)
A

k

(X). With

respect to this pairing, A

k

(X)

^


A

k

(X) is the algebraic dual of A

k

(X) 
 A

k

(X),

and A

k

(X)
 A

k

(X) is the topological dual of A

k

(X)

^


A

k

(X).

An important subspace of A

k

(X)

^


A

k

(X) is A

k

(X)

~


A

k

(X), the set of all sums

S =

P

v;w

s

v;w

v 
 w such that for each v the set fw : s

v;w

6= 0g is �nite. The

members of A

k

(X)

~


A

k

(X) are the sums S =

P

v2W (X)

v 
 S

v

with all the S

v

in A

k

(X), so A

k

(X)

~


A

k

(X) is the space

^

A

A

k

(X)

(X) of formal power series in

X with coe�cients in A

k

(X). Finally, the tensor product

^

A

k

(X) 


^

A

k

(X) is

naturally identi�ed with the set of all sums S =

P

v;w

s

v;w

v 
 w such that the

matrix (s

v;w

)

v;w2W (X)

has �nite rank.

Clearly, A

k

(X)

^


A

k

(X) is an AA, in which the product PQ is given by PQ =

P

v;w

(PQ)

v;w

v 
 w, where

(PQ)

v;w

=

P

v

0

;v

00

;w

0

;w

00

2W (X) ; v

0

v

00

=v ;w

0

w

00

=w

<v

0


 w

0

; P > <v

00


 w

00

;W > .

(The summations de�ning the (PQ)

v;w

are clearly �nite.) Then A

k

(X)
A

k

(X),

A

k

(X)

~


A

k

(X), and

^

A

k

(X)


^

A

k

(X) are subalgebras of A

k

(X)

^


A

k

(X).

The diagonal map � : A

k

(X) ! A

k

(X) 
 A

k

(X) is the k-algebra homomor-

phism de�ned on generators x 2 X by �(x) = x 
 1 + 1 
 x. It is easy to

see that � is uniformly continuous. So � extends uniquely to a continuous al-

gebra homomorphism |also called �| from

^

A

k

(X) to A

k

(X)

^


A

k

(X). Clearly,

�(S) =

P

n

�(S

hom;n

) for S 2

^

A

k

(X).



The well known Friedrichs' criterion|which is a fairly easy consequence of the

PBWT| says that, if S 2

^

A

k

(X), then S 2

^

L

k

(X) i� �(S) = S 
 1 + 1
 S .

The shu�e product is the bilinear map x :A

k

(X)�A

k

(X)!A

k

(X) such that

<S; v xw>=<�(S); v 
 w> for S 2

^

A

k

(X) ; v; w 2 A

k

(X) : (29)

So x , regarded as a linear map A

k

(X)
A

k

(X)! A

k

(X), is the transpose of �.

It is also possible to characterize the shu�e product recursively, by �rst letting

w x 1 = 1xw = w, and then de�ning (xv)x (yw) = x(v x (yw)) + y((xv)xw) for

x; y 2 X, v; w 2 W (X). It is easy to show that A

k

(X), endowed with x , is an

associative and commutative algebra.

Friedrichs' criterion is equivalent to the statement that an element S 2

^

A

k

(X)

is a Lie series if and only if (i) < S; 1 >= 0, and (ii) S is orthogonal to all

nontrivial shu�es, i.e. <S; v xw>= 0 for all v; w 2 W

+

(X).

Next, we let

^

G

k

(X) �

^

A

k

(X) denote the set of all exponential Lie series, that

is the set of all formal power series S 2

^

A

k

(X) such that there is a Z 2

^

L

k

(X)

for which S = exp(Z)

def

=

P

1

k=0

1

k!

Z

k

. Friedrichs' criterion easily implies that a

series S 2

^

A

k

(X) is in

^

G

k

(X) if and only if S 6= 0 and �(S) = S 
 S. From

this it follows in particular that if S 2

^

G

k

(X) then < S; 1 >= 1, so S

�1

=

P

1

k=0

(1 � S)

k

exists. It also follows that

^

G

k

(X) is a group under multiplication.

(The fact that S

1

; S

2

2

^

G

k

(X) implies S

1

S

2

2

^

G

k

(X) is the well known Campbell-

Hausdor� formula. If S

i

= exp(Z

i

) for i = 1; 2, then S

1

S

2

= exp(P(Z

1

; Z

2

)), where

P(x; y) = x + y +

1

2

[x; y] +

1

12

[x; [x; y]] +

1

12

[y; [x; y]] + : : : .)

Since < �(S); v 
 w >=< S; v xw > , the condition that �(S) = S 
 S is

equivalent to the property that < S; v xw >=< S; v >< S;w > for all words

v; w. i.e. that \the coe�cients <S;w> of S satisfy the shu�e relations." This

observation, known as Ree's theorem, says that S 2

^

G

k

(X) if and only if the linear

map T !<S; T > , from A

k

(X) to k, is nonzero and multiplicative (with respect

to x ), i.e. is an algebra homomorphism from (A

k

(X);x) to k that sends 1 to 1.

There is a clear analogy between the facts of the previous paragraphs and our

discussion in x2. The commutative algebra A

k

(X) can be realized as an algebra

of functions on

^

G

k

(X), by mapping each P 2 A

k

(X) to the function

~

P given by

~

P (S) =< S; P > for S 2

^

G

k

(X). Since < S; P

1

>< S; P

2

>=< S; P

1

xP

2

>

for S 2

^

G

k

(X), we see that under the map P !

~

P the shu�e product in A

k

(X)

corresponds to ordinary pointwise multiplication of functions on

^

G

k

(X). Moreover,

^

G

k

(X) is embedded in

^

A

k

(X), the dual of A

k

(X), and Ree's theorem tells us that

^

G

k

(X) is exactly the spectrum of A

k

(X), i.e. that the nonzero linear functionals

S 2

^

A

k

(X) that are multiplicative are exactly those that belong to

^

G

k

(X).

So

^

G

k

(X) may be regarded as a formal analogue of the manifoldM of x2, with

A

k

(X) playing the role of E(M) and

^

A

k

(X) that of E

0

(M). So it is natural to

call the elements of

^

G

k

(X) formal points. Clearly,

^

G

k

(X) is a \formal Lie group,"

and

^

L

k

(X) is its \Lie algebra." Pursuing our analogy, we de�ne a formal tangent

vector to

^

G

k

(X) at a point S 2

^

G

k

(X) to be a linear functional V :A

k

(X)!k such



that V (P xQ) = V (P )Q(S) + V (Q)P (S) for all P;Q 2 A

k

(X). Using the identi-

�cation of

^

A

k

(X) with the dual of A

k

(X), the linear functional V is of the form

P !<W;P > for some W 2

^

A

k

(X), and we can write W = SZ, for Z 2

^

A

k

(X),

since S is invertible. Then the functional P !<SZ; P > is a formal tangent vector

at S if and only if <SZ; P xQ>=<SZ; P > <S;Q> + <S; P > <SZ;Q> for

P;Q 2 A

k

(X), i.e. i� <�(SZ); P
Q>=<SZ
S; P
Q> + <S
SZ; P
Q>

for all P;Q 2 A

k

(X). This happens i� �(SZ) = SZ 
 S + S 
 SZ, i.e. |since

�(SZ) = �(S)�(Z) = (S
S)�(Z), and SZ
S+S
SZ = (S
S)(Z
1+1
Z)|

i� �(Z) = Z
 1+1
Z. So the formal tangent vectors to

^

G

k

(X) at S are exactly

the functionals A

k

(X) 3 P !<SZ; P >2 k, for Z 2

^

L

k

(X). In particular, the

members Z of

^

L

k

(X) must be thought of as tangent vectors to

^

G

k

(X) at 1. If

Z 2

^

L

k

(X) then the map S ! SZ is a formal left-invariant vector �eld on

^

G

k

(X).

In agreement with the notation pV ' introduced in x2, for a point p, a vector

�eld V and a function ', the expression <SZ; P > can be thought of as the result

of applying SZ |regarded as a tangent vector at S| to the function P 2 A

k

(X).

Naturally, then, we de�ne L

Z

|the operator of \formal Lie di�erentiation in the

direction of Z"| to be the map that assigns to every P 2 A

k

(X) the function

Q = L

Z

P 2 A

k

(X) such that < SZ; P >=< S;Q > for all S 2

^

G

k

(X). Then

< SZ; P >=< S;Q > for all S 2

^

A

k

(X), so L

Z

: A

k

(X) ! A

k

(X) is just the

transpose of the map

^

A

k

(X) 3 S ! SZ 2

^

A

k

(X).

For S 2

^

A

k

(X), P;Q 2 A

k

(X), we have

<S;L

Z

(P xQ)>=<SZ; P xQ>=<SZ; P ><S;Q> + <S; P ><SZ;Q>

=<S;L

Z

P ><S;Q> + <S; P ><S; L

Z

Q>=<S
S; L

Z

P 
Q+P
L

Z

Q>

=<�(S); L

Z

P 
Q+ P 
 L

Z

Q>=<S; (L

Z

P )xQ+ P x (L

Z

Q)> .

So L

Z

(P xQ) = (L

Z

P )xQ + P x (L

Z

Q) for P;Q 2 A

k

(X), showing that L

Z

is a

derivation on the algebra A

k

(X) equipped with the shu�e product.

If Z = x 2 X, then L

x

is easily seen to be the map characterized by L

x

(wy) = 0

if y 6= x, w 2 W (X), L

x

(wx) = w if w 2 W (X), and L

x

(1) = 0.

This characterization implies, in particular, that for every family fP

x

g

x2X

of members of A

k

(X) indexed by X there exists a unique Q 2 A

k

(X) such that

L

x

Q = P

x

for all x 2 X and < 1; Q>= 0. (Indeed, letting P

x

=

P

w2W (X)

p

x

w

w,

Q =

P

w2W (X)

q

w

w, we have L

x

Q =

P

w2W (X)

q

wx

w, so Q satis�es our conditions

i� q

1

= 0 and q

wx

= p

x

w

for all w 2 W (X), x 2 X, from which the existence and

uniqueness of Q follows trivially.)

4 Chronologicalalgebras, iterated integrals, andChenseries

Chronological algebras play a fundamental role in control (cf. [2, 3, 18, 9]), simplify

formulas in combinatorics (cf. [8]), and are closely related to the Leibniz algebras

that have recently been investigated in the algebraic literature (cf. [11, 12]).

A (right) chronological algebra is a linear space A over a �eld k endowed with

a bilinear operation � : A� A! A that satis�es the right chronological identity:



x � (y � z) = (x � y) � z + (y � x) � z for all x; y; z 2 A : (30)

(One can also de�ne left CA's, in which the identity (x � y) � z = x � (y � z) +

x � (z � y) holds. In this note only right CA's will be used, so we will omit the

word \right." The notion of CA introduced here is similar to that of Agrachev and

Gamkrelidze [3], which also has been studied under the name of Leibniz algebra by

Loday [11, 12] and others. The key identity for that other notion is the formula

(x]y)]z � (y]x)]z = x](y]z)� y](x]z), which says that L

x]y�y]x

= [L

x

; L

y

], where

L

u

is the map z ! u]z. A typical example of a CA in this other sense is obtained

by tensoring a Lie algebra with a CA in our sense.)

If (A; �) is a CA, and we de�ne P xQ

def

= P � Q + Q � P for P;Q 2 A, then it

is easy to see that x is commutative and associative.

As a �rst example of a CP, we de�ne P � Q, for P;Q 2 A

k

(X), by letting

P � Q be the unique R 2 A

k

(X) such that L

x

(R) = P xL

x

Q for all x 2 X and

<1; R>= 0. (The existence and uniqueness of R follows from the last remark of

the previous section.) The CP then satis�es L

x

(P �Q) = P xL

x

Q for all x 2 X.

It then follows easily that P �Q+Q �P = P xQ whenever <1; P > <1; Q>= 0,

since L

x

(P �Q+Q�P ) = L

x

(P �Q)+L

x

(Q�P ) = P xL

x

Q+QxL

x

P = L

x

(P xQ),

<1; P �Q+Q �P >= 0, and <1; P xQ>=<1; P > <1; Q> . This implies that,

on the algebra A

+

k

(X), the map � is a CP, since

L

x

(P � (Q �R)) = P xL

x

(Q �R) = P x (QxL

x

R) = (P xQ)xL

x

R

= L

x

((P xQ) �R) = L

x

((P �Q +Q � P ) �R) = L

x

((P �Q) �R + (Q � P ) �R) ,

so P � (Q �R) = (P �Q) �R + (Q � P ) �R.

We refer to (A

+

k

(X); �) as the free CA over k in the indeterminates X, because

(A

+

k

(X); �) is a \free CA" in the usual sense: if B is any CA over k and � : X! B

is a map, then � can be extended to a unique CA-homomorphism ~� from A

+

k

(X)

to B. (We construct ~� recursively by letting ~�(x) = �(x) for x 2 X, and ~�(wx) =

~�(w) � �(x) for x 2 X, w 2 W (X). It is then not hard to verify that ~� has the

desired property, using the fact that wx = w � x. Uniqueness is trivial.)

There are numerous other examples of CA's. For example, if k= IR, and AC

is the space of locally absolutely continuous functions f : [0;+1[! IR such that

f(0)= 0, then we can de�ne f � g, for f; g in AC, by (f � g)(t) =

R

t

0

f(s)g

0

(s) ds,

where g

0

is the derivative of g. Then f � g + g � f = fg, and the CP identity says

that

R

f(

R

gh

0

)

0

=

R

(fg)h

0

, which is trivially true. So (AC; �) is a CA over IR, and

the commutative product associated to � is just ordinary multiplication.

There are several natural chronological subalgebras of (AC; �). For example,

the set of f 2 AC such that f 2 C

1

, or the set f 2 AC that are polynomial

functions. In the latter example, a basis of the algebra is given by the monomials

x

m

, m = 1; 2; : : :, and x

n

� x

m

=

1

n

x

n+m

.

Finally, if k is any �eld of characteristic zero, then in the algebra k

+

[X] of

polynomials of a single variable over k with zero constant terms, we can de�ne

x

n

� x

m

=

m

m+n

x

n+m

. Then (k

+

[X]; �) is a chronological algebra. Naturally, if



P;Q 2 k

+

[X], then P � Q =

R

(PQ

0

) where, for S 2 k

+

[X],

R

S is the unique

polynomial T 2 k

+

[X] such that T

0

= S.

The k-algebra k[X

1

; : : :X

m

] of polynomials in m variables with coe�cients

in k can be represented as an algebra of functions on k

m

, namely, the algebra

k[x

1

; : : : x

n

] of polynomial functions in m k-valued variables, i.e. the subalgebra of

Map(k

m

;k) generated by the projection maps k

m

3 (p

1

; : : : ; p

m

)! x

i

(p)

def

= p

i

2 k,

where Map(k

m

;k) is the set of all maps from k

m

to k, regarded as an algebra with

pointwise multiplication.

Similarly, we will represent the free CA (A

k

(X); �) as an algebra of \dynamic

functionals" U

X

k

! U

k

, where U

k

is a CA of \time-varying scalars," i.e. of k-

valued functions t ! f(t) of \time." One has substantial freedom in choosing

the basic CA U

k

. Here, for the sake of clarity, we specialize to a familiar setting.

We work with k = IR, and choose U

k

= AC. Then U

X

k

is the set of all families

fU

x

: x 2 Xg of locally absolutely continuous real-valued functions on [0;1[

that vanish at 0. We use �

y

to denote, for each y 2 X, the canonical projection

U

X

k

3 fU

x

: x 2 Xg ! U

y

2 U

k

.

We use Map(U

X

k

;U

k

) to denote the set of all maps from U

X

k

to U

k

. Then

Map(U

X

k

;U

k

) is a CA under pointwise chronological multiplication: for �;	 in

Map(U

X

k

;U

k

) and U 2 U

X

k

, we de�ne (� �	)(U) = �(U) �	(U).

The CA IIF

k

(X) of iterated integral functionals on U

X

k

is the chronological

subalgebra of Map(U

X

k

;U

k

) generated by the set f�

x

:x2Xg. So, if we use I

X

k

to

denote the unique CA-homomorphism fromA

k

(X)! Map(U

X

k

;U

k

) that sends x to

�

x

for each x2X, then IIF

k

(X)=I

X

k

�

A

k

(X)

�

. Clearly, I

X

k

:A

k

(X)!IIF

k

(X)

is a surjective CA-homomorphism. We will see later that I

X

k

is also injective.

We now de�ne the Chen-Fliess series S

U

of an input U 2 U

X

k

. For this purpose,

we �rst extend the CP notation and de�ne (F �G)(t) =

R

t

0

F (s)G

0

(s)ds for functions

F , G on [0;1[ with values in any, not necessarily commutative, IR-algebra. The

universal control system with inputs in U

X

k

is the system

�(X) : (d=dt)S(t) = S(t)

 

X

x2X

x

_

U

x

(t)

!

; S(0) = 1 ; (31)

evolving in

^

A

k

(X). For any family U = fU

x

g

x2X

of locally integrable functions on

[0;1[, (31) has a unique solution [0;1[3 t! S

U

(t) 2

^

A

k

(X), known as the Chen-

Fliess series for the input U . Moreover, the Friedrichs criterion easily implies that

(31) actually evolves in

^

G

k

(X), i.e. that S

U

(t) 2

^

G

k

(X) for all U; t.

If we let Z

U

(t) =

P

x2X

xU

x

(t), we see that (31) says that

_

S

U

= S

U

_

Z

U

and

S

U

(0) = 1, i.e. that S

U

(t) = 1+

R

t

0

S

U

(s)

_

Z

U

(s)ds or, equivalently, S

U

= 1+S

U

�Z

U

.

Using 1 � V = V , this implies that S

U

= 1 + Z

U

+ (S � Z

U

) � Z

U

. It is then easy

to show, by successive iterations, that

S

U

= 1 + Z

U

+ Z

U

� Z

U

+ ((S

U

� Z

U

) � Z

U

) � Z

U

,

S

U

= 1 + Z

U

+ Z

U

� Z

U

+ (Z

U

� Z

U

) � Z

U

+ (((S

U

� Z

U

) � Z

U

) � Z

U

) � Z

U

,



and so on, so that, �nally, S

U

=

P

1

k=0

Z

(�k)

U

, where Z

(�k)

U

is de�ned recursively by

Z

(�0)

U

= 1, Z

(�(k+1))

U

= Z

(�k)

U

� Z

U

.

Clearly, Z

(�k)

U

=

P

w2W (X):jwj=k

wU

w

, where U

w

is de�ned recursively by U

;

=1,

U

wx

=U

w

� U

x

for w2W (X), x2X. So S

U

(t)=

P

w2W (X)

wU

w

(t) . If w2W (X),

then I

X

k

(w) is the functional that assigns to U 2U

X

k

the function U

w

. Therefore

S

U

(t) =

P

w2W (X)

w I

X

k

(w)(U)(t) . We now de�ne CH

X

to be the series

CH

X

def

=

X

w2W (X)

w 
 I

X

k

(w) ; (32)

so CH

X

2

^

A

IIF

k

(X)

(X). The natural evaluation pairing from the Cartesian prod-

uct IIF

k

(X)�U

X

k

to U

k

that sends (�; U) to �(U) induces an \evaluation map"

E

X

:

^

A

IIF

k

(X)

(X) � U

X

k

!

^

A

U

k

(X). It is then clear that, if U 2 U

X

k

, then

E

X

(CH

X

; U) = S

U

. If we let

CH

X

def

=

X

w2W (X)

w 
 w ; (33)

then CH

X

2

^

A

k

(X)

~


A

k

(X), and CH

X

=

�

id
 I

X

k

�

(CH

X

).

If P 2

^

A

k

(X), then I

X

k

(P ) is an iterated integral functional, which can be

evaluated at any input U 2 U

X

k

, yielding a function '

P;U

: [0;1[! IR given by

'

P;U

(t) = I

X

k

(P )(U)(t). If P is a word v 2 W (X), then

<S

U

(t); P >=<

P

w

wI

X

k

(w)(U)(t); P >= I

X

k

(P )(U)(t) = '

P;U

(t) .

It follows by linearity that '

P;U

(t) =< S

U

(t); P > for all P; U . If I

X

k

(P ) = 0

as a member of IIF

k

(X), then '

P;U

(t) = 0 for all U; t, so <S

U

(t); P >= 0 for

all U; t. It follows in particular that <S; P >= 0 for every member S 2

^

G

k

(X)

which is of the form Q = e

t

1

x

1

e

t

2

x

2

: : : e

t

k

x

k

for some x

1

; : : : ; x

k

in X, t

1

; : : : ; t

k

in

IR. Successive di�erentiations of these identities with respect to t

1

; : : : ; t

k

yield

< x

1

x

2

: : : x

k

; P >= 0. So <w; P >= 0 for every w 2 W (X), and then P = 0.

This proves that the map I

X

k

is an isomorphism from

^

A

k

(X) onto IIF

k

(X).

Now that we know that the map I

X

k

is an isomorphism, we can conclude that

id 
 I

X

k

is an isomorphism as well, so we can identify the spaces

^

A

k

(X)

~


A

k

(X)

and

^

A

k

(X)

~


IIF

k

(X). In particular, any expansion we obtain for CH

X

will yield

a similar expansion for CH

X

.

We remark that the space

^

A

k

(X)

~


A

k

(X) is naturally identi�ed with the space

Hom

k

(A

k

(X); A

k

(X)) of linear endomorphisms of A

k

(X), by assigning to each map

� 2 Hom

k

(A

k

(X); A

k

(X)) the series

P

w2W (X)

w
�(w). Under this identi�cation,

CH

X

corresponds to the identity map of A

k

(X). So the Chen series is none other

than the identity map of A

k

(X), modulo several natural identi�cations, showing

that CH

X

is a natural object.



5 Exponential product expansions and dual PBW-bases

In x2 we showed how to compute the �rst few factors of an expansion as a product

of exponentials of ow maps e

!

R

t

0

(

P

m

i=1

u

i

(s)f

i

)ds

determined by m smooth vector

�elds f and g, by means of successive applications of the method of variations of

constants. In the situation discussed in x2 we had m = 2, and u

1

(t) � 1, and

we just computed the �rst �ve factors. It turns out that the formal calculation

can be pursued for any number of factors, for a general m, and for general inputs

u =

_

U 2 AC

m

.

Remarkably, the algebra works out in such a way that one obtains a formula

expressing the Chen series CH

X

as an in�nite product of exponentials

CH

X

=

 �

Y

B2B

e

B
�

B

; (34)

where B is any \generalized Hall basis" (abbr. GHB) of

^

A

k

(X), the coe�cients

�

B

2 IIF

k

(X) are iterated integral functionals given by simple formulas, as ex-

plained below, and the symbol

 �

Q

indicates that the factors are ordered from right

to left, following the ordering of B.

GHB's arise when one seeks to spell out explicit combinatorial rules to write

bases of L

k

(X). Several such schemes have been proposed, but all were shown

by Viennot [19] (see also [14] for a modern discussion) to arise from the same

underlying principle, resulting in what is now known as GHB's, which is a special

type of basis B of L

k

(X), endowed with a total ordering �. (We refer the reader

to [19, 14] for the precise de�nition of a GHB.)

Applying the method of variation of constants, Formula (34) was derived in

Sussmann [18] in 1986, together with an explicit recursive formula for the func-

tionals �

B

. If B = x 2 X, then �

x

= �

x

. If B 2 B but B =2 X, then

write B = ad

m

1

B

1

ad

m

2

B

2

: : : ad

m

k

B

k

(B

k+1

), with the B

i

in B, B

1

� B

2

� : : : � B

k

,

B

k

� B

k+1

, and m

1

; : : : ; m

k

positive integers |it is a fact that every B 2 B can

be so expressed| and then �

B

is given by

�

B

=

�

k

Y

i=1

1

m

i

!

�

m

i

B

i

) � �

B

k+1

: (35)

(The derivation given in [18] was for classical P. Hall bases, but the proof applies

without change to any generalized Hall basis.)

Expanding the exponentials of (34), one gets the formula

CH

X

=

1

X

k=0

X

B

1

�B

2

�:::�B

k

X

�

1

;�

2

;:::;�

k

B

�

1

1

B

�

2

2

: : : B

�

k

k




�

�

1

B

1

�

�

2

B

2

: : :�

�

k

B

k

�

1

!�

2

! : : : �

k

!

: (36)

Via the inverse of the isomorphism id
I

X

k

, and recalling that I

X

k

is an isomorphism

from A

k

(X) with the shu�e product to IIF

k

(X) with ordinary multiplication,

we can transform (36) into an expansion

CH

X

=

1

X

k=0

X

B

1

�B

2

�:::�B

k

X

�

1

;�

2

;:::;�

k

B

�

1

1

B

�

2

2

: : : B

�

k

k




	

x ;�

1

B

1

x	

x ;�

2

B

2

x : : :x	

x ;�

k

B

k

�

1

!�

2

! : : : �

k

!

; (37)



where 	

x

= x for x 2 X and, if B 2 BnX, then

	

B

=

 

	

x ;m

1

B

1

m

1

!

x

	

x ;m

2

B

2

m

2

!

x : : : x

	

x ;m

k

B

k

m

k

!

!

�	

B

k+1

; (38)

if B = ad

m

1

B

1

ad

m

2

B

2

: : : ad

m

k

B

k

(B

k+1

), with the B

i

in B, B

1

� B

2

� : : : � B

k

,

B

k

� B

k+1

, and m

1

; : : : ; m

k

positive integers. (The x symbols accompanying

the exponents are there as a reminder that all the powers are taken in the sense

of the shu�e product.)

Formulas (37) and (38) give the expansion of CH

X

|i.e. the identity element

of Hom

k

(A

k

(X); A

k

(X)), regarded as a member of

^

A

k

(X)

~


A

k

(X)| in terms of

the Poincar�e-Birkho�-Witt basis of A

k

(X) associated to B. (Recall that A

k

(X)

is a UEA of L

k

(X).) So the coe�cients

	

x ;�

1

B

1

x	

x ;�

2

B

2

x:::x	

x ;�

k

B

k

�

1

!�

2

!:::�

k

!

appearing in (37)

are the members of the dual basis of the PBW basis arising from B.

The derivation outlined here was given for k = IR, but one can easily see in

various ways that the formula is valid for any �eld k of characteristic zero. (For

example, (37) and (38) are identities between formal power series with rational

coe�cients, so they are valid over any �eld of characteristic zero.)

A similar formula was derived by Melan�con and Reutenauer in 1989 in [13] by

combinatorial means using rewriting systems. Using di�erent notations, one can

also �nd this formula in Sch�utzenberger's 1958 notes [17].
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