MATHEMATICS 503, FALL 2005

INSTRUCTOR: Héctor J. Sussmann

The midterm exam. There will be only one midterm exam, on Thursday November 3.

Postings. I have posted the following items in my Math 503 Web site (https://www.math.rutgers.edu/~sussmann/math503page.html): (1) an elementary proof of the fundamental theorem of algebra, without using analytic function theory, basically along the lines of what we did in class, (2) a purely combinatorial, formal power series proof (without using differentiation of series), sent to me by Doron Zeilberger, that log(exp(X)) = X.

The final take-home exam. In lieu of a final exam in class, I am assigning a set of homework problems. They are due on Thursday, December 1, 2005.

Here are the problems:

- 1. Book, page 93, problem 3.
- 2. Book, page 132, problems 1, 3.
- 3. Book, page 149, problem 3.
- 4. Book, page 158, problems 2, 3, 4, 5, 7, 11.
- 5. Book, pages 164-165, problems 3, 8, 12.
- 6. Book, pages 170-171-172, problems 1, 4, 8, 12.
- 7. Book, pages 204-205-206-207, problems 3, 9, 12, 14, 24.
- 8. Book, page 238, problem 12.
- 9. Book, page 307, problems 1, 2.
- 10. Book, page 311, problem 6.
- 11. Prove: if Ω is open in \mathbb{C} , $\gamma : [a,b] \mapsto \Omega$ is continuous, and $\{f_n\}_{n=1}^{\infty}$ is a sequence of holomorphic functions on Ω that converge uniformly on every compact subset of Ω to a function $f : \Omega \mapsto \mathbb{C}$, then $\int_{\gamma} f_n(z) dz \to \int_{\gamma} f(z) dz$.

In Problems 12, 13 and 14: A curve in Ω is a continuous map $\gamma : [a, b] \mapsto \Omega$ (for some $a, b \in \mathbb{R}$ such that a < b). A curve $\gamma : [a, b] \mapsto \Omega$ is closed if $\gamma(b) = \gamma(a)$. A loop is a closed curve. A loop $\gamma : [a, b] \mapsto \Omega$ is simple if γ is one-to-one on the interval $\{t : a \leq t < b\}$. A homotopy in Ω is a continuous map $H : [a, b] \times [c, d] \mapsto \Omega$ (for some $a, b \in \mathbb{R}$ such that a < b and c < d). If $H : [a, b] \times [c, d] \mapsto \Omega$ is a homotopy, then we define H_s , for each $s \in [c, d]$, to be the curve given by $H_s(t) = H(t, s)$ for $(t, s) \in [a, b] \times [c, d]$. A homotopy $H : [a, b] \times [c, d] \mapsto \Omega$ is a loop-homotopy if all the curves H_s are loops, i.e., if H(b, s) = H(a, s) for every $s \in [c, d]$. A homotopy $H : [a, b] \times [c, d] \mapsto \Omega$ is a fixed-point homotopy if all the curves H_s have the same endpoints, i.e., if H(a, s) = H(a, c) and H(b, s) = H(b, c) for every $s \in [c, d]$. Given two curves $\gamma, \delta : [a, b] \mapsto \Omega$, a homotopy from γ to δ is a homotopy $H : [a, b] \times [c, d] \mapsto \Omega$ such that $H_c = \gamma$ and $H_d = \delta$. The curves $\gamma, \delta : [a, b] \mapsto \Omega$ are homotopic in Ω if there exists a homotopy from γ to δ . The curves $\gamma, \delta : [a, b] \mapsto \Omega$ are fixed-point homotopic in Ω if there exists a fixed-point homotopic in Ω if there exists a loop-homotopic unless they have the same endpoints. Also, γ and δ cannot be loop-homotopic unless they are both loops.)

12. Prove that, if Ω is an open connected subset of \mathbb{C} , then any two curves $\gamma, \delta : [0, 1] \mapsto \Omega$ are homotopic.

Remark: This says that the notion of "homotopy," without any extra requirement such as "fixed point" or "loop," is completely uninteresting.

13. Let $\gamma : [a, b] \mapsto \mathbb{C}$ be a simple loop. Suppose that γ contains a nontrivial straight-line segment. (This means: "there exist α, β such that $a \leq \alpha < \beta < b$ having the property that $\gamma(t) = \gamma(\alpha) + \frac{t-\alpha}{\beta-\alpha}(\gamma(\beta) - \gamma(\alpha))$ for $\alpha \leq t \leq \beta$.") Let $|\gamma|$ be the set of all points $\gamma(t), t \in [a, b]$. **Prove:** $\mathbb{C} \setminus |\gamma|$ is not connected. (Hint: prove that the winding number $W(\gamma, z)$ changes when z crosses the segment. First you will have to prove that for some point p lying on the segment and some small disc D centered at p the set $D \cap |\gamma|$ contains no points of $|\gamma|$ other than those that belong to the intersection of D with the segment.)

Remark: The result of Problem 12 is a very simple special case of a theorem that seems completely obvious but is rather hard to prove, known as the Jordan curve theorem. The theorem says that if γ is a simple loop then $\mathbb{C} \setminus |\gamma|$ has exactly two connected components (that is, " $|\gamma|$ divides $\mathbb C$ into two pieces"). An important part of the proof is to show that $\mathbb{C} \setminus |\gamma|$ cannot be connected. In this problem you are asked to prove that conclusion when the loop γ contains a segment. It turns out that, with just a little bit more work, using the implicit function theorem, one can also prove rather easily that $\mathbb{C} \setminus |\gamma|$ is not connected if γ contains an embedded arc of class C^1 . (This means: "there exist α, β such that $a \leq \alpha < \beta < b$ having the property that γ is continuously differentiable on $[\alpha, \beta]$ and $\gamma'(t) \neq 0$ for all $t \in [\alpha, \beta]$.") The truly hard things are: (a) to prove that $\mathbb{C} \setminus |\gamma|$ is not connected if γ is just a continuous simple loop, without assuming that γ contains a smooth embedded arc, and (b) to show that there cannot be more than two connected components of $\mathbb{C} \setminus |\gamma|$. But, of course, I am not asking you to prove that! All I am asking you to do is to prove that $\mathbb{C} \setminus |\gamma|$ is not connected if γ contains a nontrivial segment.

14. An open subset Ω of \mathbb{C} is simply connected if every closed curve $\gamma : [0,1] \mapsto \Omega$ is loop-homotopic in Ω to a constant curve. Prove that Ω is simply connected if and only if, whenever $\gamma : [0,1] \mapsto \Omega$ and $\delta : [0,1] \mapsto \Omega$ are curves in Ω that have the same endpoints (i.e., are such that $\gamma(0) = \delta(0)$ and $\gamma(1) = \delta(1)$), it follows that γ and δ are fixed-endpoint homotopic in Ω .