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1 A correction to the handout on Z11

In the handout on Z11, where I define “field”, I forgot to include the axiom
that 0 6= 1. This axiom is not needed for IR, because it follows from the
axioms of Part II. (Precisely: assume that 0 = 1; NZ3 implies that 1 ∈ IN.
Then NZ1 implies that 1 > 0. Then Or1 implies that 0 < 1. Furthermore,
Or5 implies that ∼ (0 < 1 ∧ 0 ≥ 1). Since 0 < 1, it follows that ∼ 0 ≥ 1.
Since 0 = 1, we find that 1 = 0—using SEE—so 1 < 0∨ 1 = 0, and then Or2
implies 1 ≤ 0. But then Or3 implies 0 ≥ 1. So we have proved, assuming
that 0 = 1, that 0 ≥ 1 ∧ (∼ 0 ≥ 1), which is a contradiction. Hence 0 6= 1.)

2 Homework assignment no. 10, due on Thurs-

day November 30

1. We would like to define the ordered pair (x, y) of two objects x, y to
be a set, having the property that

(∀x)(∀y)(∀u)(∀v)
(

(x, y) = (u, v)⇔ (x = u ∧ y = v)
)
. (2.0.1)

It does not matter how the ordered pair is defined, as long as (2.0.1)
holds. Here are five possible ways of defining (x, y), of which some work
and some do not. (“Works” means “it is such that (2.0.1) holds.”)

(i) (∀x)(∀y)
(

(x, y) = {x, y}
)

,

(ii) (∀x)(∀y)((x, y) = {{x}, {x, y}}) ,

(iii) (∀x)(∀y)((x, y) = {x, {x, y}}) ,

(iv) (∀x)(∀y)((x, y) = {x, {y}}) .

(v) (∀x)(∀y)((x, y) = {x, {y, ∅}}) .

Prove that (i) does not work, and (ii) works. Determine whether (iii),
(iv) and (v) work. (In each of the three cases, prove that the definition
works, or prove that it does not.)

2. A field is a system F of objects on which there are defined (a) mem-
bers of F called 0 (“zero”) and 1 (“one”), and (b) operations of addition
(sending x, y to x + y), subtraction (sending x, y to x − y), multipli-
cation (sending x, y to x × y, also written as x · y, or just xy), and
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division (sending x, y to x
y

), in such a way that all the thirteen “ax-

ioms of arithmetic, Part I,” hold (with F instead of IR), as well as the

“fourtheenth axiom” 0 6= 1 .

If n is a natural number, then Q(
√
n) is the set of all real numbers of

the form a+ b
√
n, a, b ∈ Q. (In other words, the set Q(

√
n) is defined

by Q(
√
n) = {x : x ∈ IR ∧ (∃a ∈ Q)(∃b ∈ Q)(x = a+ b

√
n)} .)

(i) Prove that Q(
√

2) is a field. (NOTE: The operations of addition,
subtraction, multiplication, and division are defined as in IR, be-
cause after all the members of Q(

√
2) are real numbers, so you can

add, subtract and multiply any two members x, y of Q(
√

2), and
you can divide x by y if y 6= 0. Then most of the axioms are triv-
ially true, and you do not need to waste time proving them. The
only ones that require proof are Add1, Sub1, Mul1, and Div1, so
all you have to do is prove these four axioms, with Q(

√
2) instead

of IR, of course.)

(ii) Prove that every member α of Q(
√

2) has a unique expression of
the form α = a+ b

√
2. That is, prove that

(∀α)
(
α ∈ Q(

√
2)⇒ (∃!a)(∃!b)((a ∈ Q∧ b ∈ Q)∧α = a+ b

√
2))
)
.

Recall that “(∃!x)P (x)” is read as “there exists a unique x such
that P (x)”, and it means

(∃x)
(
P (x) ∧ (∀y)(P (y)⇒ x = y)

)
.

(iii) Is it true that Q(
√
n) is a field for every n ∈ IN? (Prove that the

answer is “yes” or that the answer is “no”.)

(iv) Is it true for every n ∈ IN that every member α of Q(
√
n) has

a unique expression of the form α = a + b
√
n? (Prove that the

answer is “yes” or that the answer is “no”.)

3. Is Z a field, with the usual operations of addition, subtraction and
multiplication, and the same 0 and 1 as in IR? (Prove that the answer
is “yes” or that the answer is “no”. The key question here is whether
it is possible to define an operation of division in Z such that Axioms
Div1 and Div2 hold.)
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3 The Axioms of Arithmetic

THE AXIOMS OF ARITHMETIC, PART I

ADDITION AXIOMS

Add1. (∀x ∈ IR)(∀y ∈ IR)x+ y ∈ IR.

Add2. (∀x ∈ IR)(∀y ∈ IR)x+ y = y + x.

Add3. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)(x+ y) + z = x+ (y + z).

SUBTRACTION AXIOMS

Sub1. (∀x ∈ IR)(∀y ∈ IR)x− y ∈ IR.

Sub2. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)(x− y = z ⇔ x = y + z)

MULTIPLICATION AXIOMS

Mul1. (∀x ∈ IR)(∀y ∈ IR)x · y ∈ IR.

Mul2. (∀x ∈ IR)(∀y ∈ IR)x · y = y · x.

Mul3. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)(x · y) · z = x · (y · z).

DIVISION AXIOMS

Div1. (∀x ∈ IR)(∀y ∈ IR)((∼ y = 0)⇒ x
y
∈ IR).

Div2. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)((∼ y = 0)⇒ (xy = z ⇔ x = y · z)).

DISTRIBUTIVE LAW

DIS. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)x · (y + z) = x · y + x · z

ZERO AND ONE AXIOMS

ZO1. (∀x ∈ IR)x+ 0 = x

ZO2. (∀x ∈ IR)x · 1 = x
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THE AXIOMS OF ARITHMETIC, PART II

ORDER AXIOMS

Or1. (∀x ∈ IR)(∀y ∈ IR)(x > y ⇔ y < x)

Or2. (∀x ∈ IR)(∀y ∈ IR)(x ≤ y ⇔ (x < y ∨ x = y))

Or3. (∀x ∈ IR)(∀y ∈ IR)(x ≥ y ⇔ y ≤ x)

Or4. (∀x ∈ IR)(∀y ∈ IR)((x < y ∨ x > y) ∨ x = y)

Or5. (∀x ∈ IR)(∀y ∈ IR) ∼ (x < y ∧ x ≥ y)

Or6. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)((x < y ∧ y < z)⇒ x < z)

Or7. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)(x < y ⇒ x+ z < y + z)

Or8. (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)((x < y ∧ z > 0)⇒ x · z < y · z)

AXIOMS ABOUT INTEGERS AND NATURAL
NUMBERS

NZ1. (∀x)(x ∈ IN⇔ (x ∈ Z ∧ x > 0))

NZ2. (∀x ∈ Z)x ∈ IR

NZ3. 0 ∈ Z
NZ4. 1 ∈ IN

NZ5. (∀x ∈ Z)(∀y ∈ Z)x+ y ∈ Z
NZ6. (∀x ∈ Z)(∀y ∈ Z)x− y ∈ Z
NZ7. (∀x ∈ Z)(∀y ∈ Z)x · y ∈ Z
NZ8. (∀x ∈ Z)(∀y ∈ Z)(y ≤ x ∨ y ≥ x+ 1)

NZ9. Let n be a variable, and let P (n) be a formula that contains
no n-quantifiers. Then(

P (1) ∧ (∀n ∈ IN)(P (n)⇒ P (n+ 1))
)
⇒ (∀n ∈ IN)P (n) .

NZ9’. ALTERNATIVE VERSION OF AXIOM NZ9: Let S be a
subset of IN. Assume that 1 ∈ S∧ (∀n)(n ∈ S ⇒ n+1 ∈ S).
Then S = IN.


