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In a series of nonsmooth versions of the Pontryagin Maximum Principle, we

used generalized differentials of set-valued maps, flows, and abstract variations.
Bianchini and Stefani have introduced a notion of possibly high-order

variational vector that has the summability property. We consider a slightly
more general class of variational vectors than that defined by Bianchini and

Stefani, and prove that the convex combinations of these vectors arise as

“differentials” of variations that are differentiable in the sense of one of our
generalized differentiation theories, namely, that of “approximate generalized

differential quotients” (AGDQs).

1. Introduction

In a series of papers (cf. Refs. 5–7,9,10), we showed how to derive general,
nonsmooth versions of the Pontryagin Maximum Principle using generalized
differentials of set-valued maps, flows, and abstract point variations. The
use of general variations rather than the nedle variations used to prove the
ordinary maximum principle makes it possible to obtain high-order versions
of the maximum principle. The main technical difficulty with these general
abstract variations is that they need not have the summability property,
which is absolutely essential in order to derive the necessary conditions for
optimality.

R. M. Bianchini and G. Stefani (cf. Refs. 1–4) proposed a concept
of high-order point variation that has good summability properties. The
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goal of this note is to relate this concept to a theory of generalized
differentials, by describing a slightly more general version of the Bianchini-
Stefani variations, and showing that they are differentiable in the precise
sense of the theory of “Approximate Generalized Differential Quotients”
(AGDQs). This makes it possible to use these variations in order to get
additional necessary conditions for an optimum in situations such as the
very general one described in Ref. 9, where the differentials involved are
generalized differential quotients, and a fortiori AGDQs.

1.1. Preliminary remarks on notation

We will use the notations and abbreviations of Ref. 9. In particular,
“FDRLS” stands for “finite-dimensional real linear space,” “FDNRLS” for
“normed FDRLS,” and “SVM” for “set-valued map.” If f is a SVM, then
So(f), Ta(f), Gr(f), Do(f), Im(f) are, respectively, the source, target,
graph, domain and image of a SVM f . (We recall that a SVM is a triple
(A,B,G) such that A, B are sets andG is a subset of A×B, in which case we
say that f is a SVM from A to B, and define G−1def= {(x, y) : (y, x) ∈ G},
f−1def= = (B,A,G−1), So(f)def=A, Ta(f)def=B = So(f−1), Gr(f) = G,
f(x) = {y : (x, y) ∈ Gr(f)}, Do(f) = {x : f(x) 6= ∅}, Im(f) = Do(f−1).)
We use SVM(A,B) to denote the set of all set-valued maps from A to
B. The notation “f : A 7→→ B” means “f is a set-valued map from A to
B.” If f ∈ SVM(A,B) then f is (i) single-valued if the set f(x) consists
of a single member for every x ∈ Do(f), (ii) one-to-one if f−1 is single-
valued, (iii) surjective if Im(f) = Ta(f), (iv) everywhere defined if
Do(f) = So(f), i.e., if f−1 is surjective, (v) a ppd map (where “ppd”
stands for “possibly partially defined”) if it is single-valued, and (vi) an

ordinary map if it is an everywhere defined ppd map. The notation
“f : A ↪→ B” means “f is a ppd map from A to B.”

If S is a set, then IS is the identity map of S, i.e., the triple (S, S,∆S),
where ∆S = {(x, x) : x ∈ S}.

The abbreviation “CCA” stands for for “Cellina continuously
approximable.” (We recall that a CCA map from a metric space X to
a metric space Y is a set-valued map F : X 7→→ Y such that, for every
compact subset K of X, (i) the set (K × Y ) ∩ Gr(F ) is compact, and
(ii) there exists a sequence {Fj}∞j=1 of single-valued continuous maps from
K to Y such that the graphs Gr(Fj) converge to Gr(F ), in the sense that

lim
j→∞

sup{distX×Y (q,Gr(F )) : q ∈ Gr(Fj)} = 0 .
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(A detailed study of CCA maps appears in Ref. 9.) We use CCA(X,Y ) to
denote the set of all CCA maps from X to Y .

If I is a totally ordered set, then we use ≤I to denote the order
relation on I, and simply write ≤ when the context makes I unambiguous.
Also, “a <I b”—or, simply, “a < b”—means “a ≤I b and a 6= b.” A
subinterval of I is a subset J of I such that c ∈ J whenever a ∈ J ,
b ∈ J , c ∈ I, and a ≤ c ≤ b. We use square bracket notation for subin-
tervals of I that have an infimum and a supremum in I. (That is, if
a, b ∈ I and a ≤ b, we write ]a, b[I

def= {t ∈ I : a < t < b}, [a, b[I
def= {a}∪]a, b[I ,

]a, b]I
def= ]a, b[I∪{b}, and [a, b]I

def= {a, b}∪]a, b[I , and we omit the subscript
when I is uniquely determined by the context.). Then every subinterval
of I that has an infimum and a supremum in I is of one of the forms
]a, b[, [a, b], [a, b[, ]a, b]). When the totally ordered set is not specified, it
is understood that it is the extended real line R̄def=R ∪ {−∞,+∞}. We
define R+

def= {x ∈ R : x ≥ 0} and R+,>
def= {x ∈ R : x > 0}, and let

R̄+
def=R+ ∪ {+∞}.
We use ΘΘΘ to denote the class of all functions θ : R+,> 7→ R̄+ such that

• θ is monotonically nondecreasing (that is, θ(s) ≤ θ(t) whenever
s, t ∈ R are such that 0 ≤ s ≤ t < +∞);
• lims↓0 θ(s) = 0.

If X is a FDNRLS, x∗ ∈ X, r > 0, then BX(x∗, r), B̄X(x∗, r)
are, respectively, the open ball {x ∈ X : ‖x− x∗‖ < r} and the closed
ball {x ∈ X : ‖x− x∗‖ ≤ r}. If X,Y are FDRLSs, then Lin(X,Y ),
Aff(X,Y ) will denote, respectively, the set of all linear maps and
the set of all affine maps from X to Y . By definition, the members
of Aff(X,Y ) are the maps affmL,h, for L∈Lin(X,Y ), h∈Y , where
affmL,h denotes the affine map with linear part L and constant

part h, defined by affmL,h(x)def=L · x+h . We identify Aff(X,Y ) with
Lin(X,Y )× Y by identifying each map affmL,h ∈ Aff(X,Y ) with the pair
(L, h) ∈ Lin(X,Y )× Y .

If X and Y are FDNRLSs, then we endow Lin(X,Y ) with the operator
norm ‖ · ‖op given by ‖L‖op = sup{‖Lx‖ : x ∈ X, ‖x‖ ≤ 1}, so Lin(X,Y )
is a FDNRLS as well. Also, we endow the linear space Aff(X,Y ) with the
norm given by ‖affmL,h‖ = ‖L‖+ ‖h‖.

If Λ is subset of Lin(X,Y ), and δ ∈ R+,>, we define

Λδ = {L ∈ Lin(X,Y ) : dist(L,Λ) ≤ δ} ,
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where dist(L,Λ) = inf{‖L − L′‖op : L′ ∈ Λ}. Also, if δ, ε ∈ R+,>, and we
still assume that Λ ⊆ Lin(X,Y ), we let

Λ(δ,ε) = {affmL,h : L ∈ Lin(X,Y ), dist(L,Λ) ≤ δ, h ∈ Y, ‖h‖ ≤ δε} ,

Notice that if L ∈ Lin(X,Y ), then dist(L, ∅) = +∞. In particular, if Λ = ∅
then Λδ = ∅. and Λ(δ,ε) = ∅. Notice also that if Λ is compact (resp. convex)
then Λδ and Λ(δ,ε) are compact (resp. convex).

If X is a FDRLSs, then we use X† to denote the dual space of X, i.e.,
the space Lin(X,R).

The word “manifold” will mean “finite-dimensional paracompact
differentiable manifold without boundary.” If M is a manifold of class
C1, and x ∈ M , then TxM , T ∗xM denote, respectively, the tangent and
cotangent space of M at x.

1.2. Approximate Generalized Differential Quotients

Definition 1.1. Assume that X,Y are FDNRLSs, F : X 7→→ Y is a
set-valued map, Λ is a compact subset of Lin(X,Y ), x̄∗ ∈ X,
ȳ∗ ∈ Y , and S ⊆ X. We say that Λ is an approximate generalized

differential quotient of F at (x̄∗, ȳ∗) in the direction of S—and
write Λ∈AGDQ(F, x̄∗, ȳ∗, S)—if there exists a function θ ∈ ΘΘΘ—called an
AGDQ modulus for (Λ, F, x̄∗, ȳ∗, S)—having the property that

(*) for every ε ∈ R+,> such that θ(ε) < ∞ there exists a set-valued map
Aε ∈ CCA(B̄X(x̄∗, ε)∩S,Aff(X,Y )), with values in Λ(θ(ε),ε), such that
ȳ∗+A(x−x̄∗)∈F (x) whenever x∈ B̄X(x̄∗, ε)∩S and A∈Aε(x). �

1.2.1. Properties of AGDQs

If A, B, C are sets, and Ξ, Z are sets of maps from A to B and from B to
C, respectively, then the composite Z ◦ Ξ is the set of maps from A to C
given by Z ◦ Ξ = {ζ ◦ ξ : ζ ∈ Z, ξ ∈ Ξ}.

The following statement, proved in Ref. 9, is the chain rule for AGDQs.

Theorem 1.1. For i = 1, 2, 3, let Xi be a FDNRLS, and let x̄∗,i be a point
of Xi. Assume that, for i = 1, 2, (i) Fi : Xi 7→→ Xi+1 is a set-valued map,
(ii) Si is a subset of Xi, and (iii) Λi ∈ AGDQ(Fi, x̄∗,i, x̄∗,i+1, Si). Assume,
in addition, that (iv) F1(S1) ⊆ S2, and either (v) S2 is a local quasiretract
(cf. Remark 1.1) of X2 at x̄∗,2 or (v’) there exists a neighborhood U of x̄∗,1
in X1 such that the restriction F1 d (U ∩S1) of F1 to U ∩S1 is single-valued.
Then Λ2 ◦ Λ1 ∈ AGDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1). �
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Remark 1.1. The notion of a “local quasiretract” is defined in Ref. 9. The
precise definition is as follows. First, if T is a topological space and S ⊆ T ,
we say that S is a quasiretract of T if for every compact subset K of S
there exist a neighborhood U of K and a continuous map ρ : U 7→ S such
that ρ(s) = s for every s ∈ K. Then, if S ⊆ T and s̄ ∈ S, we say that S is
a local quasiretract of T at s̄ if there exists a neighborhood U of s̄ such
that S ∩ U is a quasiretract of U .

An important example of a local quasiretract of a manifold M at a point
s ∈ M is a subset S of M such that, for some open neighborhood U of s,
the set S ∩ U is the image of a convex subset of an open neighborhood V

of 0 in RdimM under a diffeomorphism Φ of class C1 from V onto U such
that Φ(0) = s. In particular, any set whose germ at s is, relative to some
coordinate chart near s, the germ at s of a convex subset of RdimM , is a
local quasiretract of M at s. �

If M and N are manifolds of class C1, x̄∗∈M , ȳ∗∈N , S⊆M , and
F : M 7→→ N , then it is possible to define a set AGDQ(F, x̄∗, ȳ∗, S) of
compact subsets of the space Lin(Tx̄∗M,Tȳ∗N) of linear maps from
Tx̄∗M to Tȳ∗N as follows. We let m = dimM , n = dimN , and pick
coordinate charts ξ : M ↪→ R

m, η : N ↪→ R
n, defined near x̄∗, ȳ∗ and

such that ξ(x̄∗) = 0 and η(ȳ∗) = 0, and declare that a subset Λ of
Lin(Tx̄∗M,Tȳ∗N) belongs to AGDQ(F, x̄∗, ȳ∗, S) if the composite set of
maps Dη(ȳ∗) ◦ Λ ◦Dξ(x̄∗)−1 is in AGDQ(η ◦ F ◦ ξ−1, 0, 0, ξ(S))). It then
follows easily from the chain rule that, with this definition, the set

AGDQ(F, x̄∗, ȳ∗, S) does not depend on the choice of the charts

ξ, η. In other words, the notion of an AGDQ is invariant under

C1 diffeomorphisms and therefore makes sense intrinsically on

manifolds of class C1.

Then the chain rule also holds on manifolds, as pointed out in Ref. 9.

Proposition 1.1. Assume that

(I) for i = 1, 2, 3, Mi is a manifold of class C1 and x̄∗,i ∈Mi,
(II) Si ⊆ Mi, Fi : Mi 7→→ Mi+1, and Λi ∈ AGDQ(Fi, x̄∗,i, x̄∗,i+1, Si)

for i = 1, 2,
(III) either S2 is a local quasiretract of M2 or F1 is single-valued on

U ∩ S1 for some neighborhood U of x̄∗,1.

Then the composite Λ2 ◦ Λ1 belongs to AGDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1). �

Furthermore, AGDQs have several natural properties. First, the following
statement, proved in Ref. 9, says that classical differentials at one point of
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continuous maps and Clarke generalized Jacobians of Lipschitz maps are
AGDQs.

Proposition 1.2. If M , N are manifolds of class C1, S ⊆M , x̄∗ ∈ M ,
ȳ∗ ∈ N , F : M 7→→ N , U is an open neighborhood of x̄∗ in M , and
F (x̄∗) = {ȳ∗}, then

(1) If (i) the restriction F d (U ∩ S) is a continuous everywhere defined
map, (ii) L is a differential of F at x̄∗ in the direction of S (that is,
L ∈ Lin(Tx̄∗M,Tȳ∗N) and ‖F (x)−F (x̄∗)−L · (x− x̄∗)‖ = o(‖x− x̄∗‖)
as x→ x̄∗ via values in S, relative to some choice of coordinate charts
about x̄∗ and ȳ∗), then {L} belongs to AGDQ(F, x̄∗, ȳ∗, S).

(2) If (i) the restriction F dU is a locally Lipschitz everywhere defined map,
and (ii) Λ is the Clarke generalized Jacobian of F at x̄∗, then Λ belongs
to AGDQ(F, x̄∗, ȳ∗,M). �

The following two propositions, also proved in Ref. 9, are the Cartesian
product rule and the assertion that AGDQs are local, in the sense that
the set AGDQ(F, x̄∗, ȳ∗, S) is completely determined by the germ of the
set S at x̄∗ and the germ of the graph of F at (x̄∗, ȳ∗). In Proposition 1.3,
if A, B, C, D are sets and µ : A 7→→ C, ν : B 7→→ D, then µ × ν is the
set-valued map from A×B to C ×D that sends each point (a, b) ∈ A×B
to the subset µ(a)× ν(b) of C ×D. (In particular, if µ and ν are ordinary
single-valued maps, then µ× ν is an ordinary single-valued map, given by
(µ×ν)(a, b) = (µ(a), ν(b)) for a ∈ A, b ∈ B.) IfM,N are sets of SVMs from
A to C and from B to D, respectively, then M×N is the set of all SVMs
µ× ν, µ ∈M, ν ∈ N . The spaces Tx̄∗,1M1×Tx̄∗,2M2 Tȳ∗,1N1×Tȳ∗,2N2 are
identified with T(x̄∗,1,x̄∗,2)(M1×M2) and T(ȳ∗,1,ȳ∗,2)(N1×N2), respectively.

Proposition 1.3. (The product rule.) Assume that
(1) for i = 1, 2, Mi and Ni are manifolds of class C1, Si ⊆Mi, x̄∗,i ∈Mi,

ȳ∗,i ∈ Ni, Fi : Mi 7→→ Ni, and Λi ∈ AGDQ(Fi, x̄∗,i, ȳ∗,i, Si);
(2) x̄∗ = (x̄∗,1, x̄∗,2), ȳ∗ = (ȳ∗,1, ȳ∗,2), S = S1 × S2, and F = F1 × F2.
Then Λ1 × Λ2 ∈ AGDQ(F, x̄∗, ȳ∗, S). �

Proposition 1.4. (Locality.) Assume that (1) M , N , are manifolds of
class C1, (2) x̄∗ ∈ M , (3) ȳ∗ ∈ N , (4) Si ⊆ M and Fi : M 7→→ N

for i = 1, 2, and (5) the sets S1 and S2 have the same germ at x̄∗,
and the graphs Gr(F1), Gr(F2), have the same germ at (x̄∗, ȳ∗) (that is,
there exist neighborhoods U , V of x̄∗, ȳ∗, in M , N , respectively, such
that U ∩ S1 = U ∩ S2 and (U × V ) ∩Gr(F1) = (U × V ) ∩Gr(F2)). Then
AGDQ(F1, x̄∗, ȳ∗, S1) = AGDQ(F2, x̄∗, ȳ∗, S2). �
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1.2.2. Uniform AGDQs

Assume that X and Y are FDNRLSs, and we are given a family
{(Fα, xα, yα, Sα)}α∈A of 4-tuples, such that each Fα is a set-valued map
from X to Y , each xα is a point of X, each yα is a point of Y , and each
Sα is a subset of X. We say that a family {Λα}α∈A of compact subsets of
Lin(X,Y ) is a uniform AGDQ of the maps Fα at the points (xα, yα)
in the direction of the Sα if there exists a function θ ∈ ΘΘΘ which is an
AGDQ modulus for (Λα, Fα, xα, yα, Sα) for each α ∈ A.

The concept of a uniform AGDQ makes sense as well, in an
intrinsic way, when X and Y are manifolds, provided that the family
{(Fα, xα, yα, Sα)}α∈A is such that the set Q = {(xα, yα) : α ∈ A}
is precompact in X × Y . Indeed, let dX , dY be the dimensions of X
and Y . If Q is precompact in X × Y , then we can find a finite family
Σ = {(ξj , Uj , ηj , Vj ,Kj , Lj)}1≤j≤m such that

(1) for each j, (i) ξj is a coordinate chart of X with domain Uj , (ii) ηj is
a coordinate chart of Y with domain Vj , (iii) Kj is a compact subset
of Uj , and (iv) Lj is a compact subset of Vj ;

(2) Q ⊆
⋃m
j=1(Kj × Lj).

Then, if we let Aj = {α ∈ A : (xα, yα) ∈ Kj × Lj}, it is
clear that A =

⋃m
j=1Aj , and we can consider, for each j, the family

Φj = {(F̃j,α, xα, yα, S̃j,α)}α∈Aj , where F̃j,α is the set-valued map from Uj
to Vj whose graph is Gr(Fα)∩ (Uj ×Vj), and S̃j,α = Sα ∩Uj . If we identify
Uj , Vj with open subsets Ũj , Ṽj of RdX , RdY , then {F̃j,α}α∈Aj is a family
of set-valued maps from R

dX to RdY , the xα belong to RdX , the yα belong
to RdY , and S̃α is a subset of RdX , so we are in the situation of the previous
paragraph, and it makes sense to talk about a “uniform AGDQ” {Λα}α∈Aj
of the family Φj . We then say that a family {Λα}α∈A is a uniform AGDQ

of the family {(Fα, xα, yα, Sα)}α∈A if, for some choice of m and the family
Σ = {(ξj , Uj , ηj , Vj ,Kj , Lj)}1≤j≤m as above, it turns out that {Λα}α∈Aj is
a uniform AGDQ of Φj for each j. (It is easily seen that if this condition
holds for one choice of m and Σ, then it holds for all such choices.)

1.2.3. AGDQ approximating multicones.

A cone in a FDRLS X is a nonempty set C which is closed under
multiplication by nonnegative real numbers, i.e., such that rc ∈ C whenever
c ∈ C and r ≥ 0. The polar of a cone C in X is the subset C† of X†

defined by C† = {µ ∈ X† : µ(c) ≤ 0 whenever c ∈ C}. Clearly, C† is
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always a closed convex cone. If we identify X†† with X in the usual way,
then C ⊆ C††, and C = C†† if and only if C is closed and convex.

A multicone is a nonempty set of cones. A multicone M is convex if
all the members of M are convex cones. The polar M† of a multicone M
is the closure of the union of the polars M†, M ∈ M. Therefore M† is a
always a closed cone in X†. Naturally, M† need not be convex in general.

Definition 1.2. Assume that M is a manifold of class C1, S is a subset of
M , and x̄∗ ∈ S. An AGDQ approximating multicone to S at x̄∗ is a
convex multicone C in Tx̄∗M such that there exist a nonnegative integer
m, a set-valued map F : Rm 7→→ M , a convex cone D in R

m, and a
Λ∈AGDQ(F, 0, x̄∗, D), such that F (D)⊆S and C={LD :L∈Λ}. �

1.3. Transversality of cones and multicones.

If S1, S2 are subsets of a linear space X, we define the sum S1 + S2 and
the difference S1 − S2 by letting S1 + S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2} ,
S1 − S2 = {s1 − s2 : s1 ∈ S1, s2 ∈ S2} .

Recall that if S1, S2 are linear subspaces of a FDRLS X, then S1 and
S2 are transversal if S1 + S2 = X, or, equivalently, if S1 − S2 = X. If
two submanifolds M1, M2 of class C1 intersect at a point x∗, and S1, S2

are their tangent spaces at x∗, then it is well known that if S1 and S2

are transversal then M1 ∩M2 looks, near x∗, like S1 ∩ S2. In particular, if
S1 ∩S2 6= {0} (i.e., if dimS1 ∩S2 ≥ 1), then M1 ∩M2 contains a nontrivial
curve going through x∗. The following definitions generalize the concept of
transversality and that of “transversality with a nontrivial intersection,”
first to cones and then to multicones.

Definition 1.3. Let X be a FDRLS, and let C1, C2 be two convex cones

in X. We say that C1 and C2 are transversal, and write C1∩|
−
C2, if

C1 − C2 = X. We say that C1 and C2 are strongly transversal, and write

C1∩||
−
C2, if C1∩|

−
C2 and in addition C1 ∩ C2 6= {0}. �

In order to extend Definition 1.3 to multicones, it is convenient to start
by reformulating the concept of strong transversality of cones, by making

the trivial observation that C1∩||
−
C2 if and only if the following two conditions

hold: (i) C1∩|
−
C2 and (ii) there exists a linear functional µ ∈ X† such that

µ(v) > 0 for some v ∈ C1 ∩ C2.
In view of the above reformulation, we define a linear functional

µ : X 7→ R to be intersection-positive on a pair (C1, C2) of multicones, if
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the set {c ∈ C1 ∩ C2 : µ(c) > 0} is nonempty for every C1 ∈ C1 and every
C2 ∈ C2. Using this concept, the definitions of “transversality” and “strong
transversality” of convex multicones are nearly identical to the definitions
for cones.

Definition 1.4. Let X be a FDRLS. We say that two convex multicones

C1 and C2 in X are transversal, and write C1∩|
−
C2, if C1∩|

−
C2 for all C1 ∈ C1,

C2 ∈ C2. We say that C1 and C2 are strongly transversal, and write

C1∩||
−
C2, if (i) C1∩|

−
C2, and (ii) there exists a linear functional µ ∈ X† which

is intersection-positive on (C1, C2). �

Two convex cones C1, C2 in a FDRLS X are linearly separated if there
exists a nontrivial linear functional λ ∈ X† such that λ(c) ≤ 0 whenever
c ∈ C1, and λ(c) ≥ 0 whenever c ∈ C2. (Equivalently, C1 and C2 are linearly
separated if and only if C†1 ∩ (−C2)† 6= {0}.) It is easy to see that C1 and
C2 are linearly separated if and only if they are not transversal. In view of
this, we will call two convex multicones C1, C2, linearly separated if they
are not transversal. Since strong transversality is a stronger property than
transversality, its negation is weaker than the negation of transversality,
i.e., than linear separation. So we will say that two convex multicones C1,
C2, are weakly linearly separated if they are not strongly transversal.

The following characterization of weak linear separation is proved in
Ref. 10.

Proposition 1.5. Let C1, C2 be convex multicones in a FDRLS X. Then
the following conditions are equivalent:

1. C1 and C2 are weakly linearly separated;
2. for every µ ∈ X†\{0} there exist π0, π1, π2, C1, C2 such that

i. π0 ∈ R and π0 ≥ 0,
ii. C1 ∈ C1 and C2 ∈ C2,

iii. π1 ∈ C†1 and π2 ∈ C†2,
iv. π0µ = π1 + π2,
v. (π0, π1, π2) 6= (0, 0, 0). �

1.4. The nonseparation theorem.

The crucial fact about AGDQs that leads to the maximum principle is
the transversal intersection property, that we now state (cf. Ref. 9 for the
proof).
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Theorem 1.2. Let M be a manifold of class C1, let S1, S2 be subsets of
M , and let s̄∗ ∈ S1 ∩ S2. Let C1, C2 be AGDQ-approximating multicones to

S1, S2 at s̄∗ such that C1∩||
−
C2. Then S1 and S2 are not locally separated at

s̄∗. (That is, the set S1 ∩ S2 contains a sequence of points sj converging to
s̄∗ but not equal to s̄∗.) �

Theorem 1.2 and Proposition 1.5 trivially imply the following result.

Corollary 1.1. Let M be a manifold of class C1, let S1, S2 be subsets of
M , and let s̄∗ ∈ S1 ∩ S2. Let C1, C2 be AGDQ-approximating multicones to
S1, S2 at s̄∗. Assume that S1 and S2 are locally separated at s̄∗. (That is,
there exists a neighborhood U of s̄∗ such that S1 ∩ S2 ∩ U = {s̄∗}). Then
Condition 2 of the statement of Proposition 1.5 holds. �

The more familiar forms of the maximum principle for optimal control
follow by applying Corollary 1.1 to suitable choices of M , S1, S2, C1,
C2, s̄∗, and using the conclusion of the corollary with a suitable µ. For
example, consider a fixed time interval optimal control problem P whose
data 9-tuple D = (M0, U, a, b,U , f, L, x̄∗, S) satisfies (D1) the state space
M0 is a smooth manifold, (D2) U is a set, (D3) a, b ∈ R and a < b, (D4) U
(the class of “admissible controls”) is a set of U -valued functions on [a, b],
(D5) (L(x, u, t, ), f(x, u, t)) ∈ R× TxM0 for each (x, u, t) ∈M0 ×U × [a, b],
(D6) x̄∗ ∈ M0, and (D7) S ⊆ M0. Suppose that the objective of P
is to minimize the integral

∫ b
a
L(ξ(t), η(t), t) dt, subject to the following

conditions: (C1) ξ : [a, b] 7→ M0 is absolutely continuous, (C2) η ∈ U ,
(C3) ξ̇(t) = f(ξ(t), η(t), t) for almost all t ∈ [a, b], (C4) ξ(a) = x̄∗, and
(C5) ξ(b) ∈ S. We then take M = R × M0. If a trajectory-control pair
(ξ∗, η∗) is a solution of P, we take S1 to be the set of all points (r, x) ∈M
such that x is reachable from x̄∗ over [a, b] with cost r, and we take S2 to
be the set ( ]−∞, r∗[×S)∪{q∗}, where q∗ = (r∗, ξ∗(b)), and r∗ is the cost of
(ξ∗, η∗). Then the optimality of (ξ∗, η∗) implies that S1 and S2 are locally
separated at q∗. We then take C1 to be an AGDQ-approximating multicone
to S1 at q∗ obtained by constructing variations and propagating their ef-
fects to the terminal point of ξ∗, and take C2 = { ] −∞, 0] × C : C ∈ C},
where C is an AGDQ-approximating multicone to S at ξ∗(b). We choose µ
to be the linear functional on Tq∗M ∼ R× Tξ∗(b)M0 given by µ(r, v) = −r,
so −µ ∈ C†2 for every C2 ∈ C2. Corollary 1.1 then yields a decomposition
π0µ = π1 + π2, where π1 ∈ C†1 , π2 ∈ C†2 , π0 ≥ 0, (π0, π1, π2) 6= (0, 0, 0),
C1 ∈ C1, and C2 ∈ C2. Then −π1 = π2 − π0µ. Since π2 ∈ C†2 , π0 ≥ 0, and
−µ ∈ C†2 , it follows that −π1 ∈ C†2 . If we write C2 = ]−∞, 0]× C, C ∈ C,
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and let π1 = (−ρ, π̄), then the fact that −π1 ∈ C†2 . implies that ρ ≥ 0 and
−π̄ ∈ C†. Then π̄ and ρ are, respectively, the terminal adjoint vector (often
called ψ(b) or λ(b) in the literature) and the additional multiplier (often
called ψ0 or λ0) conjugate to the cost r, and the familiar conclusions of the
maximum principle follow.

2. Flows, trajectories, and generalized differentials of flows.

2.1. State space bundles and their sections

A time set is a nonempty totally ordered set. If I is a time set, we define
I2,≥ = {(t, s) ∈ I × I : t ≥ s}, and I3,≥ = {(t, s, r) ∈ I × I × I : t ≥ s ≥ r}.
A state-space bundle (abbr. SSB) over I is an indexed family
X = {Xt}t∈I of sets. A state-space bundle is a pair X = (X, I) such that
I is a nonempty totally ordered set and X is an SSB over I. The set I is
the time set of the SSB X .

Remark 2.1. There are several reasons for using general totally ordered
sets, rather than real intervals, as time sets for control systems. For a simple
example, cf. Ref. 8, where an example is given of a problem for which the
natural time set consists of a compact interval minus one interior point. �

If C is a category whose objects are sets with some additional structure
(for example, topological spaces, metric spaces, manifolds of class Ck, linear
spaces, FDRLSs), then an SSB (X, I) = ({Xt}t∈I , I) is a bundle of C-
objects if each Xt is a member of C. In particular, if k is a nonnegative
integer, a Ck SSB is an SSB of manifolds of class Ck. Also, an FDRLS

SSB is an SSB of finite-dimensional real linear spaces.

Definition 2.1. Assume that X = (X, I) = ({Xt}t∈I , I) is an SSB. A
section of X is a single-valued everywhere defined map ξ on I such that
ξ(t) ∈ Xt for every t ∈ I. We use Sec(X ) to denote the set of all sections
of X . �

Definition 2.2. Let X = (X, I) = ({Xt}t∈I , I) be a C1 state-space
bundle, and assume that ξ ∈ Sec(X ). The family TξX = {Tξ(t)Xt}t∈I is
the tangent bundle of X along ξ. �

Clearly, the tangent bundle TξX of a C1 SSB X along a section ξ ∈ Sec(X )
is an FDRLS SSB.
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2.2. Flows and trajectories

Definition 2.3. Assume that C is a category whose objects are sets with
some additional structure, and X = (X, I) = ({Xt}t∈I , I) is an SSB of C-
objects. A C-flow on X is an indexed family f = {ft,s}(t,s)∈I2,≥ such that

(1) ft,s is a C-morphism from Xs to Xt whenever (t, s) ∈ I2,≥;
(2) ft,t is the identity morphism of Xt whenever t ∈ I;
(3) ft,s ◦ fs,r = ft,r whenever (t, s, r) ∈ I3,≥.

A C-flow is a pair F = (X , f) such that X is an SSB of C-objects and
f is a C-flow on X . �

Example 2.1. If C is the category whose objects are all the sets, and whose
morphisms are the set-valued maps, then a C-flow on an SSB X will just
be called a flow on X . �

Example 2.2. If C is the category whose objects are all FDRLSs, and
whose morphisms are the linear maps, then a C-flow on an FDRLS SSB X
will be called a linear FD flow. �

Example 2.3. We use FDCLin to denote the category whose objects
are all FDRLSs, and whose morphisms are defined as follows: if X, Y are
FDRLSs, then the set of morphisms from X to Y is the set CLin(X,Y ) of
all nonempty compact subsets of Lin(X,Y ). (Composition of morphisms
is defined in the obvious way: if Λ1 ∈ CLin(X,Y ) and Λ2 ∈ CLin(Y, Z),
then Λ2 ◦ Λ1

def= {L2 ◦ L1 : L2 ∈ Λ2, L1 ∈ Λ1}.)
An FDCLin-flow is a linear FD multiflow. �

Remark 2.2. It is well known that every time set I can be regarded as
a category cat(I), by taking the objects of cat(I) to be the members of
I, and the set Homcat(I)(a, b) of morphisms from a ∈ I to b ∈ I to consist
of a single object if a ≤I b, and to be empty if b <I a. In terms of this
identification, a C-flow with time set I is exactly the same as a functor from
cat(I) to C. �

2.2.1. Comparison of maps and flows

If f, f ′ are SVMs, we write f � f ′ if So(f) = So(f ′), Ta(f) = Ta(f ′), and
Gr(f) ⊆ Gr(f ′). If, for i = 1, 2, F i = (X , f i) are flows on the same SSB
X , and f i = {f it,s}(t,s)∈I2,≥ , we say that F1 is a subflow of F2, or F2 is a
superflow of F1, and write F1 � F2, if f1

t,s � f2
t,s for all (t, s) ∈ I2,≥ .
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2.2.2. Trajectories

Definition 2.4. Assume that X = (X, I) is a state-space bun-
dle, F = (X , f) is a flow, X = ({Xt}t∈I , I), and f = {ft,s}(t,s)∈I2,≥ .
A trajectory of F is a section ξ of X such that ξ(t) belongs to
ft,s(ξ(s)) whenever (t, s) ∈ I2,≥ .

We use Traj(F) to denote the set of all trajectories of the flow F . �

2.3. AGDQs of flows along trajectories

Definition 2.5. Assume that X = (X, I) = ({Xt}t∈I , I) is a C1 SSB,
F = (X , f) is a flow, f = {ft,s}(t,s)∈I2,≥ , and ξ ∈ Traj(F). An AGDQ of
F along ξ is a linear FD multiflow g = {gt,s}(t,s)∈I2,≥ on the tangent bundle
TξX such that gt,s ∈ AGDQ(ft,s; ξ(s), ξ(t);Xs) whenever (t, s) ∈ I2,≥.

Remark 2.3. In view of our definitions, the condition that g is a linear
FD multiflow on TξX means that

(1) if (t, s) ∈ I2,≥, then gt,s is a nonempty compact set of linear maps from
Tξ(s)Xs to Tξ(t)Xt;

(2) gt,t = {ITξ(t)Xt} whenever t ∈ I;
(3) gt,s ◦ gs,r = gt,r whenever (r, s, t) ∈ I3,≥. �

2.3.1. Compatible selections

Definition 2.6. Assume that g = {gt,s}(t,s)∈I2,≥ is a linear FD multiflow
on an FDRLS SSB (Y, I). A compatible selection of g is a linear FD flow
γ = {γt,s}(t,s)∈I2,≥ such that γt,s ∈ gt,s whenever (t, s) ∈ I2,≥. �

We write CSel(g) to denote the set of all compatible selections of g. Then
CSel(g) is a subset of the product space Pg

def=
∏

(t,s)∈I2,≥ gt,s. Since Pg is
a compact space, by Tichonov’s theorem, and CSel(g) is a closed subset
of Pg—because CSel(g) is the set of all γ ∈ Pg that satisfy a collection
of equalities involving continuous functions on Pg—we can conclude that
CSel(g) is compact.

Remark 2.4. In view of our previous definitions, the condition that γ is a
linear FD flow means that γt,t = ITξ(t)X for each t ∈ I, and γt,sγs,r = γt,r
whenever (t, s, r) ∈ I3,≥. �
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2.3.2. Fields of variational vectors and adjoint covectors

Definition 2.7. Assume that g = {gt,s}(t,s)∈I2,≥ is a linear FD multiflow
on an FDRLS SSB (Y, I) = ({Yt}t∈I , I). A field of variational vectors

of g is a selection I 3 t 7→ v(t) ∈ Yt such that vt ∈ gt,svs whenever
(t, s) ∈ I2,≥.

A field of adjoint covectors (also called, simply, an adjoint

covector, or even an adjoint vector) of g is a selection I 3 t 7→ ω(t) ∈ Y †t
of the dual bundle Y† = {Y †t }t∈I . such that ωs ∈ g†t,sωt whenever
(t, s) ∈ I2,≥, where g†t,s = {γ† : γ ∈ gt,s}. �

The following result is an easy consequence of the compactness of CSel(g).

Proposition 2.1. Assume that g = {gt,s}(t,s)∈I2,≥ is a linear FD multiflow
on an FDRLS SSB (Y, I) = ({Yt}t∈I , I). Assume that I 3 t 7→ v(t) ∈ Yt
(resp. I 3 t 7→ ω(t) ∈ Y †t ) is a selection of Y (resp. Y†). Then v is a field
of variational vectors (resp. ω is a field of adjoint covectors) of g if and
only if there exists a compatible selection γ = {γt,s}(t,s)∈I2,≥ of g such that
vt = γt,svs (resp. ωs = γ†t,sωt) whenever (t, s) ∈ I2,≥. �

3. Variations, impulse variations, summability

3.1. Variations of set-valued maps

Definition 3.1. Assume that F is a set-valued map and P is a FDRLS.
A variation of F with ambient parameter space P is a family
V = {Vp}p∈C such that

(1) C is a closed convex cone in P with nonempty interior;
(2) each Vp is a SVM such that So(Vp) = So(F ) and Ta(Vp) = Ta(F );
(3) Gr(V0) ⊆ Gr(F ).

If F ′ is another set-valued map such that So(F ′) = So(F ), Ta(F ′) = Ta(F ),
and Gr(F ) ⊆ Gr(F ′), we say that V is a variation in F ′ if the inclusion
Gr(Vp) ⊆ Gr(F ′) holds for every p ∈ C, i.e., if Vp(x) ⊆ F ′(x) whenever
p ∈ C and x ∈ So(F ′). �

If F , P , V are as in Definition 3.1, then the cone C is the parameter cone

of V , and the dimension of C (or of P ) is the number of parameters

of V . We will use Ṽ to denote the SVM with source P × So(F ) and target
Ta(F ) such that Ṽ (p, x) = Vp(x) for all p ∈ P , x ∈ So(V0). (In particular,
Ṽ (p, x) = ∅ if p ∈ P\C.)
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3.2. Infinitesimal impulse variations

Definition 3.2. Assume that X = (X, I) = ({Xt}t∈I , I) is a C1 state-
space bundle, F = (X , f) is a flow, and ξ ∈ Traj(F). An infinitesimal

impulse variation (abbr, IIV) for (F , ξ) is a triple (v, t, σ) such that
t ∈ I, v ∈ Tξ(t)Xt, and σ is one of the symbols +, −. �

Remark 3.1. The purpose of including σ in the above definition is
to distinguish between “left” impulse variations, which will be labelled
(v, t,−), and “right” impulse variations, labelled (v, t,+). Left and right
impulse variations will differ in the way the concept of “carrier” of an IIV
(v, t, σ) is defined, which will depend strongly on σ. �

3.3. Summability

Definition 3.3. Assume that X = (X, I) = ({Xt}t∈I , I) is a C1 state-
space bundle, F = (X , f) is a flow, and ξ ∈ Traj(F). If (v, t, σ) is an IIV
for (F , ξ), we say that (v, t, σ) is carried by a subinterval J of I if t ∈ J
and one of the following two conditions holds: (i) σ = + and there exists
a t∗ ∈ J such that t < t∗, (ii) σ = − and there exists a t∗ ∈ J such that
t∗ < t.

If V is a set of IIVs for (F , ξ), we say that V is carried by J if every
member of V is carried by J . �

If V is a finite set of IIVs for (F , ξ), we let RV, RV
+ denote, respectively,

the set of all families ~p = {pV }V ∈V of real numbers, and the set of all
~p = {pV }V ∈V ∈ RV such that pV ≥ 0 for all V ∈ V. (Hence, if m is the
cardinality of V, and V = {(v1, t1, σ1), . . . , (vm, tm, σm)}, the spaces RV,
R

V
+ , can be identified with Rm, Rm+ , by identifying each family ~p = {pV }ε∈V

with the m-tuple (p̃1, . . . , p̃m), where p̃j = p(vj ,tj ,σj) for j = 1, . . . ,m.)
If g = {gt,s}(t,s)∈I2,≥ is an AGDQ of F along ξ, γ = {γt,s}(t,s)∈I2,≥ is

a compatible selection of g, a, b ∈ I, a ≤ b, and V is carried by [a, b], we
define a linear map LV,γ,a,b : RV × Tξ(a)Xa 7→ Tξ(b)Xb by letting

LV,γ,a,b(~p, w) = γb,a(w)+
∑

(v,t,σ)∈V

p(v,t,σ)γb,t(v) for ~p∈RV, w∈Tξ(a)Xa.

We let ΛV,g,a,b be the set of all the maps LV,γ,a,b, for all γ ∈ CSel(g).
Then ΛV,g,a,b is the image of CSel(g) under the continuous map
CSel(g) 3 γ 7→ LV,γ,a,b ∈ Lin(RV × Tξ(a)Xa, Tξ(b)Xb), so ΛV,g,a,b is a
compact subset of Lin(RV × Tξ(a)Xa, Tξ(b)Xb).
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Definition 3.4. Assume that X = (X, I) = ({Xt}t∈I , I) is a C1 state-
space bundle, F = (X , f) is a flow, ξ ∈ Traj(F), g = {gt,s}(t,s)∈I2,≥ is an
AGDQ of F along ξ, and F ′ = (X , f ′) = (X , {f ′t,s}(t,s)∈I2,≥) is a superflow
of F . Let V be a set of IIVs for (F , ξ). We say that V is g-AGDQ-

summable within F ′ if the following is true:

• for every finite subset V of V, and every pair (a, b) ∈ I × I such that
a < b and V is carried by the closed interval [a, b], there exists a
variation W = {W~p}~p∈RV

+
of fb,a in f ′b,a such that the set ΛV,g,a,b is

an AGDQ of the map W̃ at ((0, ξ(a)), ξ(b)) along RV
+ ×Xa. �

4. The AGDQ maximum principle

We now state and prove a general maximum principle in the setting of
AGDQ theory. Instead of working with a control system ẋ = f(x, u, t) and
a reference trajectory-control pair (ξ∗, η∗), we consider the more general
situation of a pair (F ,F ′) of flows such that F is a subflow of F ′. We
assume that F and F ′ are defined on a common state space bundle
X = (X, I) = ({Xt}t∈I , I), which is of class C1, in the sense that the Xt

are manifolds of class C1.
In the control system case, (i) the time set I is a compact subinterval of

R, (ii) all the state spaces Xt coincide, so there is a manifold X of class C1

such that Xt = X for all t ∈ I, (iii) the domain of the reference control η∗
is I, (iv) F = (X , f) is the reference flow, i.e., the flow determined by the
reference control η∗, so that, if f = {ft,s}(t,s)∈I2,≥ , then ft,s(x), for x ∈ X,
(t, s) ∈ I2,≥, is the set given by

ft,s(x) = {ξ(t) : ξ ∈ Traj(η∗, f, s, t) , ξ(s) = x} ,

where, if U is the class of admissible controls, then for any η ∈ U we
use Traj(η, f, s, t) to denote the set of all ξ ∈W 1,1([s, t], X) such that
ξ̇(τ) = f(ξ(τ), η(τ), τ) for a. e. τ ∈ [s, t], and W 1,1([s, t], X) is the set
of all absolutely continuous maps from [s, t] to X, (v) F ′ = (X , f ′) is the
flow of the full control system, so that, if f ′ = {f ′t,s}(t,s)∈I2,≥ , then f ′t,s(x),
for x ∈ X and (t, s) ∈ I2,≥, is the reachable set from x over the interval
[s, t], so f ′t,s(x) is given by

f ′t,s(x) = {ξ(t) : (∃η ∈ U)(ξ ∈ Traj(η, f, s, t)) , ξ(s) = x} .

(Notice that the maps ft,s are single-valued—that is, each set ft,s(x) is
either empty or consists of a single member—if the ordinary differential
equation ẋ = f(x, η∗(t), t) has uniqueness of trajectories, but for more
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general reference vector fields (x, t) 7→ f(x, η∗(t), t) the ft,s can be set-
valued. On the other hand, the f ′t,s are never single-valued, except in trivial
cases.)

The flow formulation, together with the use of general totally ordered
sets rather than real intervals (cf. also Remark 2.1), includes situations
other than that of control systems, such as, for example, “hybrid systems”
in which the state is allowed to jump at some time t from a state space
X− to a state space X+. (This is achieved by treating t− and t+ as
different times, with t− < t+, and having a family {Jα}α∈A of—possibly
set-valued—jump maps from X− to X+, one of which is the reference jump
map Jα∗ . In that case, ft+,t− is the map Jα∗ , and f ′t+,t− is the map such
that f ′t+,t−(x) = ∪α∈AJα(x).)

Theorem 4.1. Assume that X = (X, I) = ({Xt}t∈I , I) is a C1

state-space bundle, F = (X , f) is a flow, F ′ = (X , f ′) is a
superflow of F , f = {ft,s}(t,s)∈I2,≥ , f ′ = {f ′t,s}(t,s)∈I2,≥ , ξ ∈ Traj(F), and
g = {gt,s}(t,s)∈I2,≥ is an AGDQ of F along ξ. Let V be a set of infinitesimal
impulse variations for (F , ξ) which is g-AGDQ-summable within F ′. Let
a, b ∈ I be such that a < b, and let S be a subset of Xb such that
ξ(b) ∈ S. Let C be an AGDQ-approximating multicone of S at ξ(b). Assume
that f ′b,a(ξ(a)) ∩ S = {ξ(b)}. Then for every nonzero linear functional µ
on Tξ(b)Xb there exist (i) a compatible selection γ = {γt,s}a≤s≤t≤b of g,
(ii) covectors π̄, π̃ ∈ T ∗ξ(b)Xb, and (iii) a nonnegative real number π0, such
that π0µ = π̄ + π̃, (π0, π̄, π̃) 6= (0, 0, 0, ), π̃ ∈ C†, and π(t) · v ≤ 0 for every
(v, t, σ) ∈ V which is carried by [a, b], where π(t) = π̄ ◦ γb,t for a ≤ t ≤ b.

Proof. Fix a µ ∈ T ∗ξ(b)Xb\{0}. Let V0 be a finite subset of V. Using
the summability of V, pick a variation {W~p}~p∈RV0

+
of fb,a in f ′b,a such

that the set ΛV0,g,a,b is an AGDQ of the map W̃ at ((0, ξ(a)), ξ(b)) along
R

V0
+ × Xa. For each compatible selection γ of g, let L̂γ be the linear

map RV0 3 ~p 7→ LV0,γ,a,b(~p, 0), so that L̂(~p) =
∑

(v,t,σ)∈V0
p(v,t,σ)γb,t(v).

Let Λ̂ = {L̂γ : γ ∈ CSel(g)}. Then Λ̂ is an AGDQ of the set-valued
map R

V0 3 ~p 7→ W̃ (~p, ξ(a)) ⊆ Xb at (0, ξ(b)) in the direction of
R

V0
+ . Since W̃ (~p, ξ(a)) ⊆ f ′b,a(ξ(a)), the set M = {L̂γ · RV0

+ : γ ∈ CSel(g)}
is an AGDQ-approximating multicone of the set f ′b,a(ξ(a)) at ξ(b).
Since f ′b,a(ξ(a)) ∩ S = {ξ(b)}, Corollary 1.1 implies that there exists a
decomposition π0µ = π̄ + π̃, where π̄ ∈ M† for some M ∈ M, π̃ ∈ C†

for some C ∈ C, π0 ≥ 0, and (π0, π̄, π̃) 6= (0, 0, 0). Since M ∈ M, we
can pick a γ ∈ CSel(g) such that M = L̂γ · RV0

+ . Then the condition
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that π̄ ∈ M† implies that 〈π̄, L̂γ(~p)〉 ≤ 0 for every ~p ∈ RV0
+ . Therefore〈

π̄,
∑

(v,t,σ)∈V0
p(v,t,σ)γb,t(v)

〉
≤ 0 for every ~p ∈ RV0

+ . This implies that
〈π̄, γb,t(v)〉 ≤ 0—i.e., that 〈π̄ ◦ γb,t, v〉 ≤ 0—for every (v, t, σ) ∈ V0.
Furthermore, the fact that π̃ ∈ C† implies that π̃ ∈ C†.

It follows that the 4-tuple (π̄, π̃, π0, γ) satisfies all our conditions, except
only for the fact that the inequality 〈π̄ ◦ γb,t, v〉 ≤ 0 has only been shown
to hold for (v, t, σ) in a finite subset V0 of V. To prove the existence of
a 4-tuple (π̄, π̃, π0, γ) that satisfies 〈π̄ ◦ γb,t, v〉 ≤ 0 for all (v, t, σ) ∈ V,
we use a familiar compactness argument. Fix a norm ‖ · ‖ on T ∗ξ∗(b)Xb.
Let Q be the set of all 4-tuples (π̄, π̃, π0, γ) such that π̄ ∈ T ∗ξ∗(b)Xb,
π̃ ∈ T ∗ξ∗(b)Xb, π0 ∈ R, π0 ≥ 0, π0 + ‖π̄‖ + ‖π̃‖ = 1, and γ ∈ CSel(g).
Then Q is a compact topological space, using on CSel(g) the topology
induced by the product topology of

∏
(t,s)∈I2,≥ gt,s. For each subset U of

V, let QU be the set of those (π̄, π̃, π0, γ) ∈ Q such that π̃ ∈ C† and
〈π̄ ◦ γb,t, v〉 ≤ 0 for all (v, t, σ) ∈ U. Then every QU is compact, and
we have shown that QU is nonempty if U is finite. Furthermore, it is
clear that, if {Uj}j∈{1,...,m} is a finite family of finite subsets of V, then
QU1∩· · ·∩QUm = QU1∪···∪Um , soQU1 ∩ · · · ∩ QUm 6= ∅. If U is the set of all
finite subsets of V, we have shown that every finite intersection of members
of the family {QU}U∈U is nonempty. Therefore the set

⋂
{QU : U ∈ U}

is nonempty. But
⋂
{QU : U ∈ U} = QV. So QV is nonempty, concluding

our proof.

5. Generalized Bianchini-Stefani IIVs and the summability
theorem

We now present a class of IIVs that are infinitesimal generators of high-order
variations in a sense that generalizes the definition proposed by Bianchini
and Stefani.

We assume that we are given

(D1) a pair (F ′,F) of flows, where

(D1. i) F = (X , f) and F ′ = (X , f ′),
(D1. ii) X = (X, I)] = ({Xt}t∈I , I) is a C1 state-space bundle,
(D1.iii) f = {ft,s}(t,s)∈I2,≥ and f ′ = {f ′t,s}(t,s)∈I2,≥ are flows on

the state=space bundle X ,
(D1.iv) F is a subflow of F ′,

(D2) a “reference trajectory” ξ∗ ∈ Traj(F),
(D3) an AGDQ g = {gt,s}(t,s)∈I2,≥ of F along ξ∗.
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5.1. Times of right and left regularity

Definition 5.1. Given F ′, F , ξ∗, g as above, a time of right (resp. left)
regularity of (F ′,F , ξ∗,g) is a time t̄ ∈ I such that there exists a pair
(t∗, X) for which

(1) t∗ ∈ I and t̄ <I t∗ (resp. t∗ <I t̄),
(2) X is a manifold of class C1,
(3) if we let Jdef= [min(t̄, t∗),max(t̄, t∗)]I , then

(3.a) Xt = X for all t ∈ J ,
(3.b) J isa a compact subinterval of R,
(3.c) the map J 3 t 7→ ξ∗(t) ∈ X is continuous,
(3.d) the family {gt,s}s,t∈J,s≤t is a uniform AGDQ of the reference

flow maps ft,s, for s, t ∈ J , s ≤ t, at (ξ∗(s), ξ∗(t)), in the
direction of X,

(3.e) limt↓t̄ sup{‖γ − IT
ξ∗(t̄)

X‖ : γ ∈ gt,s, s ∈ [t̄, t]} = 0
(resp. lims↑t̄ sup{‖γ − IT

ξ∗(t̄)
X‖ : γ ∈ gt,s, t ∈ [s, t̄]} = 0 (cf.

Remark 5.1 below). �

Remark 5.1. Condition (3.e) of the above definition is interpreted as
follows: let κ be a coordinate chart of X such that, for some t̃∗ ∈ J\{t̄},
the interval J̃ = [min(t̄, t̃∗),max(t̄, t̃∗)]I is such that ξ∗(t) ∈ Do(κ) for every
t ∈ J̃ (such a chart exists because of Condition (3.c)); we can then identify
all the tangent spaces TxX. for x ∈ Do(κ), with RdimX ; then, if s, t ∈ J̃
and s ≤ t, all the members γ of gt,s are linear maps from R

dimX to RdimX ,
and so is ITξ∗(t̄)X , so the difference γ − ITξ∗(t̄)X and its norm ‖γ − ITξ∗(t̄)X‖
make sense. �

5.2. GBS IIVs

Definition 5.2. Given F ′, F , ξ∗, g as above, and a positive real number λ,
a triple (v, t̄,+) such that t̄ ∈ I and v ∈ Tξ∗(t̄)Xt̄ is a generalized Bianchini-
Stefani (abbr. GBS) right infinitesimal impulse variation of order 1

λ of
(F ′,F , ξ∗,g) at time t̄ if

(i) t̄ is a time of right regularity of (F ′,F , ξ∗,g)

aWe literally mean “is,” rather than just “can be identified with.” The reason is that,
when we consider several impulse variations with the same time t̄, we will not want the

map identifying a right or left neighborhood of t̄ with a real interval to depend on the
variation.
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(ii) if t∗, X, J are as in Definition 5.1, then there exists a 6-tuple
(α, β, c̄, ε̄, ϕϕϕ,N ) (called a generator of (v, t̄,+)) such that

(ii.1) 0 < α < β, c̄ > 0, and ε̄ > 0,
(ii.2) ϕϕϕ = {ϕc,ε}(c,ε)∈[0,c̄]×]0,ε̄] is a two-parameter family of set-

valued maps from X to X,
(ii.3) N is an open neighborhood of ξ∗(t̄) in X,
(ii.4) the set-valued map

N × [0, c̄] 3 (x, c) 7→ ϕε(c, x) def= ϕc,ε(x) ⊆ X

is Cellina continuosuly approximable for each ε ∈]0, ε̄],
(ii.5) the maps ϕε satisfy

ϕε(0, x) ⊆ ft̄+βελ,t̄+αελ(x) for x ∈ N , (1)

ϕε(c, x) ⊆ f ′t̄+βελ,t̄+αελ(x) for (c, x) ∈ [0, c̄]×N , (2)

as well as the asymptotic conditions

lim
ε↓0,x→ξ(t̄)

ϕε(c, x) = ξ∗(t̄) u.w.r.t. c ∈ [0, c̄] , (3)

ϕε(c, ξ∗(t̄+ αελ) + h) = ξ∗(t̄+ βελ) + h+ ε c v + o(ε+ ‖h‖)
as ε ↓ 0, h→ 0 , (4)

(cf. Remarks 5.2, 5.3), where “u.w.r.t.” stands for ”uniformly
with respect to.” �

The definition of what it means for a triple (v, t̄,−) to be a GBS left IIV
of order λ of (F ′,F , ξ∗,g) at time t̄ is similar, with obvious modifications.

Remark 5.2. Equation (3) is interpreted as follows: given any
neighborhood U of ξ∗(t̄) in X, there exist a positive number ε∗ and a
neighborhood U ′ of ξ∗(t̄) in X such that ϕε(c, x) ⊆ U whenever 0 < ε ≤ ε∗,
x ∈ U , and c ∈ [0, c̄]. �

Remark 5.3. In order to interpret Equation (4) precisely, we first agree,
for each coordinate chart κ of X near ξ∗(t̄) such that Do(κ) ⊆ N , to write
xκ for the coordinate representation κ(x) of a point x ∈ Do(κ), and wκ

for the coordinate representation of a tangent vector w ∈ TxX (so that
wκ = κ∗(w) = Dκ(x) · v ∈ RdimX). Then (3) implies—using Remark 5.2,
with U = Do(κ)—that there exists a positive number ε∗ = ε∗(κ,ϕϕϕ) having
the following properties:

P1. 0 < ε∗ ≤ ε̄,
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P2. ξ(t) ∈ Do(κ) and B̄(ξ∗(t)κ, ε∗) ⊆ Im(κ) whenever t̄ ≤ t ≤ t̄+ βελ∗ ,
P3. ϕε(c, x) ⊆ Do(κ) whenever t̄ ≤ t ≤ t̄+ βελ∗ , 0 < ε ≤ ε∗, c ∈ [0, c̄],

and x ∈ κ−1(B̄(ξ∗(t)κ, ε∗)).

We then let ϕκε be, for ε ∈]0, ε∗], the set-valued map from
[0, c̄]× B̄(ξ∗(t̄)κ, ε∗) to Im(κ) such that ϕκε (c, y) = (ϕε(c, x))κ—i.e.,
ϕκε (c, y) = {zκ : z ∈ ϕε(c, x)}—whenever ε ∈ ]0, ε∗], c ∈ [0, c̄], x ∈ Do(κ),
y ∈ B̄(ξ∗(t̄)κ, ε∗) are such that y = xκ and ϕε(c, x) ⊆ Do(κ). We then define
the error Eκ by

Eκ(c, ε, h, y) = y − ξ∗(t̄+ βελ)κ − h− εcvκ ,

for y ∈ Im(κ), ε ∈]0, ε∗], c ∈ [0, c̄], and h ∈ RdimX , and observe that
Eκ(c, ε, h, y) belongs to RdimX .

Then (4) is interpreted as asserting that

lim
ε↓0,h→0

sup

{
‖Eκ(c, ε, h, y)‖ : c ∈ [0, c̄], y ∈ ϕκε

(
c, ξ∗(t̄+ αελ)κ + h

)}
ε+ ‖h‖

= 0 .

It is easy to see that if this condition holds for some chart κ such that
Do(κ) ⊆ N , then it holds for every such chart. �

5.3. The summability theorem for GBS IIVs

The following result is then our summability theorem.

Theorem 5.1. Let F ′,F , ξ∗,g be data as in (D1-2-3) above. Let V be the
set of all generalized Bianchini-Stefani infinitesimal impulse variations of
(F ′,F , ξ∗,g). Then V is g-AGDQ-summable within F ′.

6. Proof of Theorem 5.1

We have to prove that, if V is a finite set of GBS IIVs of (F ′,F , ξ∗,g),
and a, b are such that V is carried by [a, b], then there exists a variation
W = {W~p}~p∈RV

+
of fb,a in f ′b,a such that the set ΛV,g,a,b is an AGDQ of W̃

at ((0, ξ∗(a)), ξ∗(b)) along RV
+ ×Xa. It clearly suffices to consider the case

when V is a nonempty finite set of GBS right IIVs at a point t̄ ∈ I, and to
take a = t̄.

Since V is nonempty, t̄ is a time of right regularity for (F ′,F , ξ∗,g), so
we may pick t∗, X such that the conditions of Definition 5.1 hold. Clearly,
we may restrict t∗ further, and assume that t∗ ≤ b. Furthermore, we may
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assume that all the points ξ∗(t), for t̄ ≤ t ≤ t∗, belong to the domain Ω of
a coordinate chart κ of X.

Let the members of V be listed as (v1, t̄,+), . . . , (vm, t̄,+), in such a
way that the inverse orders λ1, . . . , λm satisfy λ1 ≥ λ2 ≥ . . . ≥ λm−1 ≥ λm.
Then pick for each j a 6-tuple (αj , βj , ε̄j , c̄j , ϕϕϕj ,N j) which is a generator
of (vj , t̄,+) in the sense of Definition 5.2. It is then easy to see that

(*) without loss of generality, we may assume that

A1. all the ε̄j are equal to a positive number ε̄ such that ε̄ ≤ 1,
A2. all the c̄j are equal to a positive number c̄,
A3. the inequalities

βjε
λj ≤ αj+1ε

λj+1 for all j ∈ {1, . . . ,m− 1}, ε ∈]0, ε̄] . (5)

are satisfied,
A4. the sets N j all coincide;
A5. t̄+ βmε̄

λm ≤ t∗.

To see this, first replace each ε̄j by min(ε̄j , 1), so all the ε̄j are ≤ 1. Next,
pick a particular j. Then if ρ is small enough,

βjρ
λjελj ≤ αj+1ε

λj+1 for all ε ∈]0, ε̄j ] , (6)

because (i) βjρλj ≤ αj+1 for small enough ρ (since λj , αj+1 and βj are
positive), and then (ii) the inequalities βjρ

λjελj ≤ αj+1ε
λj ≤ αj+1ε

λj+1

hold for 0 < ε ≤ ε̄j , because λj ≥ λj+1 and ε̄j ≤ 1. Then we may
pick a ρ such that (6) holds, and replace the numbers αj , βj , and the
family ϕϕϕj = {ϕjc,ε}c∈[0,c̄j ], ε∈]0,ε̄j ] by the numbers αnewj , βnewj and the family
ϕϕϕj,new = {ϕj,newc,ε }c∈[0,c̄newj ],ε∈]0,ε̄newj ], where βnewj = βjρ

λj , αnewj = αjρ
λj ,

c̄newj = ρc̄j , ε̄newj = min(1, ρ−1ε̄j), and ϕj,newc,ε = ϕjρ−1c,ρε whenever
c ∈ [0, c̄newj ] and ε ∈]0, ε̄newj ]. Then, if we let ϕj,newε (c, x) = ϕj,newc,ε (x), it
follows that

ϕj,newε (c, ξ∗(t̄+αnewj ελj )+h) = ξ∗(t̄+βnewj ελj )+h+(ρε)(ρ−1c)v+o(ε+ ‖h‖) ,

so that

ϕj,newε (c, ξ∗(t̄+ αnewj ελj ) + h) = ξ∗(t̄+ βnewj ελj ) + h+ εcv + o(ε+ ‖h‖) .

This means that the 6-tuple (αnewj , βnewj , c̄newj , ε̄newj , ϕϕϕj,new,N j) is also
a generator of (vj , t̄,+) and, after (αj , βj , c̄j , ε̄j , ϕϕϕj ,N j) is replaced by
(αnewj , βnewj , c̄newj , ε̄newj , ϕϕϕj,new,N j), the desired inequality (5) holds for
our particular j. To get the inequality to hold for all j, we just carry
out the replacements recursively, starting with j = m − 1 and moving
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backwards up to j = 1. Finally, when this is finished, we replace all
the ε̄j by their minimum, and do the same for the c̄j , thus obtaining a
new family {(αj , βj , ε̄j , c̄j , ϕϕϕj ,N j)}j=1,...,m of generators of the (vj , t̄,+)
that satisfy (A1,2,3). To get (A4) and (A5) to hold as well, we let
Nnew = Ω ∩ (∩mj=1N j), and replace each N j by Nnew and each family ϕϕϕj

by the family ϕ̂̂ϕ̂ϕj of the restrictions of the ϕjε to [0, c̄] × Nnew. We then
observe that the 6-tuples (αj , βj , ε̄j , c̄j , ϕ̂̂ϕ̂ϕ

j ,Nnew) are also generators of the
(vj , t̄,+) that satisfy (A1,2,3,4). Finally, we make t∗ smaller, if necessary,
to guarantee that the set {ξ∗(t) : t̄ ≤ t ≤ t∗} is contained in Nnew, and
then make ε̄ smaller, if necessary, to satisfy (A5).

We then use κ to identify Ω with an open subset of Rn—where
n = dimX. Then all the tangent spaces TxX, for all x ∈ Ω, are identified
with Rn. Since

lim
t↓t̄

sup
{
‖γ − IRn‖ : γ ∈ gt,s, s ∈ [t̄, t]

}
= 0 , (7)

we may assume, after making t∗ and ε̄ even smaller, that

‖γ‖ ≤ 2 whenever γ ∈ gt,s and t̄ ≤ s ≤ t ≤ t∗ . (8)

We now use the fact that {gt,s}t̄≤s≤t≤t∗ is a uniform AGDQ of the maps
ft,s at the points (ξ∗(s), ξ∗(t)) in the direction of X to choose a function
θ ∈ ΘΘΘ which is an AGDQ modulus for all the 4-tuples (ft,s, ξ∗(s), ξ∗(t), X),
for all s, t such that t̄ ≤ s ≤ t ≤ t∗. We then fix a real number ε̃ such that
(i) 0 < ε̃ ≤ ε̄, (ii) θ(ε̃) ≤ 1, and (iii) the closed ball B̄n(ξ∗(s), ε̃) is contained
in Ω for all s ∈ [t̄, t∗]. We then choose, for each ε ∈]0, ε̃] and each pair (s, t)
such that t̄ ≤ s ≤ t ≤ t∗, a CCA map Aεt,s : B̄n(ξ∗(s), ε) 7→→ Aff(Rn,Rn),

taking values in g
(θ(ε),ε)
t,s , such that ξ∗(t) + A(h) ∈ ft,s(ξ∗(s) + h). when-

ever h ∈ B̄
n(0, ε) and A ∈ Aεt,s(ξ∗(s) + h). We define set-valued maps

Âεt,s : B̄n(ξ∗(s), ε) 7→→ R
n, for ε ∈]0, ε̃], t̄ ≤ s ≤ t ≤ t∗, by letting

Âεt,s(ξ∗(s) + h) = ξ(t) +Aεt,s(h)(h) (9)

(that is, Âεt,s(ξ∗(s) + h) = {ξ(t) + A(h) : A ∈ Aεt,s(ξ∗(s) + h)}) for
h ∈ B̄n(0, ε). It is then clear that Âεt,s ∈ CCA(B̄n(ξ∗(s), ε),Rn), and the
estimate

‖y − ξ∗(t)‖ ≤ 4‖x− ξ∗(s)‖ whenever x ∈ B̄n(ξ∗(s), ε) , y ∈ Âεt,s(x) (10)

holds. In particular,

Âεt,s

(
B̄
n(ξ∗(s), ρ)

)
⊆ B̄n(ξ∗(t), 4ρ) ⊆ Ω if 0 < ρ ≤ ε ≤ ε̃

4
. (11)
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In addition, it is clear that

Âεt,s(x) ⊆ ft,s(x) whenever x ∈ B̄n(ξ∗(s), ε) and 4ε ≤ ε̃ . (12)

Next, we pick positive numbers ε∗,j = ε∗,j(κ,ϕϕϕj) that satisfy the
properties of Remark 5.3 for the ϕϕϕj , and are such that ε∗,j ≤ ε̃. We let
ε∗ = min{ε∗,j : j = 1, . . . ,m}. It then follows that

ϕjε(c, x) ⊆ Ω if ε ≤ ε∗, 0 ≤ c ≤ c̄, t̄ ≤ t ≤ t̄+βjε
λj
∗ , x ∈ B̄(ξ∗(t), ε∗) . (13)

We then define the errors Ej by

Ej(c, ε, h, y) = y − ξ∗(t̄+ βελ)− h− εcvj .

for y ∈ Rn, ε ∈]0, ε∗,j(κ,ϕϕϕj)], c ∈ [0, c̄], and h ∈ Rn, so Ej(c, ε, h, y) ∈ Rn.
We then let ζ∗(ε), for 0 < ε ≤ ε∗, be the supremum of the numbers
‖Ej(c, ρ, h, y)‖ taken over all c ∈ [0, c̄], j ∈ {1, . . . ,m}, h ∈ R

n,
ρ ∈]0, ε], such that ‖h‖ ≤ ε, and y ∈ ϕj(c, ξ∗(t̄ + αjε

λj ) + h). We define
θ∗(ε) = sup{ρ−1ζ∗(ρ) : 0 < ρ ≤ ε} for 0 < ε ≤ ε∗, and θ∗(ε) = +∞ for
ε > ε∗. We then observe that the function θ∗ belongs to ΘΘΘ.

Now, if ε ∈]0, ε∗], c ∈ [0, c̄], 0 < ρ ≤ ε, x ∈ B̄(ξ∗(t̄ + αjε
λj ), ρ), and

y ∈ ϕjε(c, x), we have ‖y− ξ∗(t̄+βjε
λj )−h− εcvj‖ ≤ ζ∗(ε) ≤ εθ∗(ε), where

h = x− ξ∗(t̄+ αjε
λj ). Since ‖h‖ ≤ ρ, we conclude that

‖y − ξ∗(t̄+ βjε
λj )‖ ≤ ρ+ ε(c̄‖vj‖+ θ∗(ε)) .

We fix ε# such that 0 < ε# ≤ ε∗ and θ∗(ε#) ≤ 1, and let
C = c̄max(‖v1‖, . . . , ‖vm‖) + θ∗(ε#). Then(

ε ∈]0, ε#] ∧ c ∈ [0, c̄] ∧ x ∈ B̄(ξ∗(t̄+ αjε
λj ), ρ) ∧ y ∈ ϕjε(c, x)

)
⇒

‖y − ξ∗(t̄+ βjε
λj )‖ ≤ ρ+ Cε

so (
ε ∈]0, ε#] ∧ c ∈ [0, c̄] ∧ x ∈ B̄(ξ∗(t̄+ αjε

λj ), ρ)
)
⇒

ϕjε(c, x) ⊆ B̄(ξ∗(t̄+ βjε
λj ), ρ+ Cε) . (14)

In order to construct our variation W , we first define, for 0 < ε ≤ ε#,

Ξ0
ε(x) = Âεt̄+α1ελ1 ,t̄(x) , Ψ1

ε(c1, x) = ϕ1
ε(c1,Ξ

0
ε(x))

(that is, Ψ1
ε(c1, x) =

⋃
{ϕ1

ε(c1, y) : y ∈ Ξ0
ε(x)}) and then define, recursively,

Ξjε = Âε
t̄+αj+1ε

λj+1 ,t̄+βjε
λj
,

Ψj+1
ε (c1, . . . , cj+1, x) = ϕj+1

ε

(
cj+1,Ξjε

(
Ψj
ε(c1, . . . , cj , x)

))
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(that is, Ψj+1
ε (c1, . . . , cj+1, x) is the union of the sets ϕj+1

ε (c1, . . . , cj , y) for
all y ∈ Ξjε(Ψ

j
ε(c1, . . . , cj , x))) for j = 1, . . . ,m− 1.

Next, we define

Υε(c1, . . . , cm, x) = Âεt∗,t̄+βmελm

(
Ψm
ε (c1, . . . , cm, x)

)
.

Successive applications of (11) and (14) show that

• if 0 < ρ and 4ρ ≤ ε, then Ξ0
ε

(
B̄(ξ∗(t̄), ρ)

)
⊆ B̄(ξ∗(t̄+ α1ε

λ1), 4ρ) ,
• if 0 < ρ and 4ρ+ Cε ≤ ε, then

Ψ1
ε

(
[0, c̄]× B̄(ξ∗(t̄), ρ)

)
⊆ B̄

(
ξ∗(t̄+ β1ε

λ1), 4ρ+ Cε
)
,

• if 0 < ρ and 16ρ+ 4Cε ≤ ε, then

Ξ1
ε

(
B̄(ξ∗(t̄+ β1ε

λ1), 4ρ+ Cε)
)
⊆ B̄(ξ∗(t̄+ α2ε

λ2 , 16ρ+ 4Cε) ,

• if 0 < ρ and 16ρ+ 5Cε ≤ ε, then

Ψ2
ε

(
[0, c̄]2 × B̄(ξ∗(t̄), ρ)

)
⊆ B̄(ξ∗(t̄+ β1ε

λ1), 16ρ+ 5Cε) ,

• if 0 < ρ and 16ρ+ 4Cε ≤ ε, then

Ξ2
ε

(
B̄(ξ∗(t̄+ β2ε

λ2), 4ρ+ Cε)
)
⊆ B̄(ξ∗(t̄+ α3ε

λ3), 64ρ+ 20Cε) ,

and so on, so that, for every j ∈ {1, . . . ,m}, if we let Gj = 3−1(4j − 1),
then

• if 0 < ρ and 4jρ+GjCε ≤ ε, then

Ψj
ε

(
[0, c̄]j × B̄(ξ∗(t̄), ρ)

)
⊆ B̄(ξ∗(t̄+ βjε

λj ), 4jρ+GjCε) .

In particular,

• if 0 < ρ and 4mρ+GmCε ≤ ε, then

Ψm
ε

(
[0, c̄]j × B̄(ξ∗(t̄), ρ)

)
⊆ B̄(ξ∗(t̄+ βmε

λm), 4mρ+GmCε) .

We now choose ε# and c̄ so that C ≤ 1
2Gm

, and conclude that

• if 0 < 4mρ ≤ ε
2 and ε ≤ ε#, then

Ψj
ε

(
[0, c̄]j × B̄(ξ∗(t̄), ρ)

)
⊆ B̄(ξ∗(t̄+ βjε

λj ), ε) .
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From now on, for each ε ∈]0, ε#] we fix ρ = ρ(ε) = 2−1−2mε, so
0 < 4mρ ≤ ε

2 , define Qjε = [0, c̄]j × B̄(ξ∗(t̄), ρ), and let Ψ̂m
ε , Υ̂m

ε , be the
restrictions of Ψm

ε , Υε, to Qmε . Then Ψ̂m
ε and Υ̂ε are set-valued maps

from Qε to B̄(ξ∗(t̄ + βmε
λm), ε) and B̄(ξ∗(t̄ + βmε

λm), 4ε), respectively.
Furthermore, Ψ̂m

ε and Υ̂ε are composites of CCA maps, so

Ψ̂m
ε ∈ CCA

(
Qε, B̄(ξ∗(t̄+ βmε

λm), ε)
)
,

Υ̂ε ∈ CCA
(
Qε, B̄(ξ∗(t∗), 4ε)

)
.

In addition, it is easy to see that

Υ̂ε(c1, . . . , cm, x) ⊆ f ′t∗,t̄(x) whenever 0 < ε ≤ ε# , (c1, . . . , cm, x) ∈ Qε ,

Υ̂ε(0, x) ⊆ ft∗,t̄(x) whenever 0 < ε ≤ ε# , x ∈ B̄(ξ∗(t̄), ρ) .

We now define Q0
ε = B̄(ξ∗(t̄), ρ(ε)), σ0 = t̄. For j = 1, . . . ,m, we write

τj= t̄+αjελj , σj= t̄+αjελj , ~cj=(c1, . . . , cj) , ~cj · v=c1v1+ · · ·+cjvj .

Lemma 6.1. There exists a family ΓΓΓ = {Γjε}j=0,1,...,m of CCA maps
Γjε : Qjε 7→→ Aff(Rn,Rn) such that if (~cj , x) ∈ Qjε then

Ψj
ε(~cj , x) = ξ∗(σj) + Γjε(~cj , x)(x− ξ∗(t̄) + ε(~cj · v)) . (15)

Furthermore, ΓΓΓ can be chosen so that

(#) there exists a family {θj}j=0,1,...,m of members of ΘΘΘ such that, for
each j, Γjε(~cj , x) ⊆ g(θj(ε),ε)

σj ,t̄
for all (~cj , x) ∈ Qjε.

Proof of Lemma 6.1. We define the set-valued maps Γjε and the functions
θj , for j = 0, 1, . . . ,m, recursively. We first let Γ0

ε : Q0
ε 7→ Aff(Rn,Rn) be

the map such that Γ0
ε(x) = IRn for each x, and take θ0 to be any member

of ΘΘΘ (for example, θ0(ε) ≡ ε).
Next, we carry out the inductive step. We pick a j ∈ {1, . . . ,m} and

assume that Γj−1
ε has been defined. To construct Γjε, we begin by letting

P = Aff(Rn,Rn)×Aff(Rn,Rn)×Aff(Rn,Rn)× Rn × Rn ,

and definingMj
ε be the set-valued map from Qjε to P that sends each point

(~cj , x) ∈ Qjε to the subset Mj
ε(~cj , x) of P that consists of all the 5-tuples
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(A0, A1, A2, u, w) for which

A0 ∈ Γj−1
ε (~cj−1, x) , (16)

u = ξ∗(σj−1) +A0(x− ξ∗(t̄) + ε(~cj−1 · v)) (17)

A1 ∈ Aετj ,σj−1
(u) , (18)

w = ξ∗(τj) +A1(u− ξ∗(σj−1)) , (19)

A2 ∈ Aεσj ,τj (w − ξ∗(τj)) . (20)

We then define Γjε(~cj , x) to be the set of all A ∈ Aff(Rn,Rn) such that

A = A2 ◦A1 ◦A0 + affm0,z

for some z ∈ ϕjε(cj , w)− ξ∗(σj)− (A2 ◦A1 ◦A0)(x− ξ∗(t̄) + ε(~cj · v)) and
some (A0, A1, A2, u, w) ∈Mj

ε(~cj , x). (Recall that if L ∈ Lin(Rp,Rq) and
z ∈ Rq then affmL,z is the affine map Rp 3 x 7→ L · x+ z ∈ Rq.)

If A ∈ Γjε(~cj , x), then there exist A0, A1, A2, u, w, z, y, w,
such that (A0, A1, A2, u, w) ∈Mj

ε(~cj , x), w = ξ∗(τj) +A1(u− ξ∗(σj−1)),
z = y − ξ∗(σj)− (A2 ◦A1 ◦A0)(x− ξ∗(t̄) + ε(~cj · v)), y ∈ ϕjε(cj , w), and
A = A2 ◦A1 ◦A0 + affm0,z. It follows that

A(x− ξ∗(t̄) + ε~cj · v) = A2(A1(A0(x− ξ∗(t̄) + ε(~cj · v)))) + z

= (A2 ◦A1 ◦A0)(x− ξ∗(t̄) + ε(~cj · v)) + y

−ξ∗(σj)− (A2 ◦A1 ◦A0)(x− ξ∗(t̄) + ε(~cj · v))

= y − ξ∗(σj) ,

so that A(x − ξ∗(t̄) + ε(~cj · v)) ∈ ϕjε(c1, w) − ξ∗(σj). Furthermore,
since w = ξ∗(τj) +A1(u− ξ∗(σj−1)) and A1 ∈ Aετj ,σj−1

(u), we see that
w ∈ Ξjε(u). So A(x− ξ∗(t̄) + ε(~cj · v)) ∈ ϕjε(cj ,Ξjε(u))− ξ∗(σj). Since
A0 ∈ Γj−1

ε (~cj−1, x), and (15) holds for j − 1, so that

ξ∗(σj−1) + Γj−1
ε (~cj−1, x)(x− ξ∗(t̄) + ε(~cj−1 · v)) = Ψj−1

ε (~cj−1, x) ,

it follows from (17) that u ∈ Ψj−1
ε (~cj−1, x). Therefore

A(x− ξ∗(t̄) + ε(~cj · v)) ∈ ϕjε
(
cj ,Ξjε(Ψ

j−1
ε (~cj−1, x))

)
− ξ∗(σj), so

A(x− ξ∗(t̄) + ε(~cj · v)) ∈ Ψj
ε(~cj , x)− ξ∗(σj) ,

and then ξ∗(σj)+A(x−ξ∗(t̄)+ε(~cj ·v)) ∈ Ψj
ε(~cj , x). Since A is an arbitrary

member of Γjε(~cj , x), we conclude that

ξ∗(σj) + Γjε(~cj , x)(x− ξ∗(t̄) + ε(~cj · v)) ⊆ Ψj
ε(~cj , x) . (21)
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To prove the opposite inclusion, we pick y ∈ Ψj
ε(~cj , x), and find

u ∈ Ψj−1
ε (~cj−1, x) and w ∈ Ξjε(u) such that y ∈ ϕjε(cj , w). Since

Ξjε(u) = Âτj ,σj−1(u) = ξ∗(τj) +Aτj ,σj−1(u)(u− ξ∗(σj−1)) ,

we can find A1 ∈ Aτj ,σj−1(u) such that w = ξ∗(τj) +A1(u− ξ∗(σj−1)).
Since u ∈ Ψj−1

ε (~cj−1, x), the inductive hypothesis (i.e., that (15) holds
for j − 1) implies that we can pick A0 ∈ Γj−1

ε (~cj−1, x) such that
u = ξ∗(σj−1) +A0(x− ξ∗(t̄) + ε(~cj−1 · v)). Pick an arbitrary member A2 of
Aσj ,τj (w−ξ∗(τj)). Then the 5-tuple (A0, A1, A2, u, w) belongs toMj

ε(~cj , x).
Let z = y − ξ∗(σj)− (A2 ◦A1 ◦A0)(x− ξ∗(t̄) + ε(~cj · v)), and define an
affine map A by letting A = A2 ◦A1 ◦A0 + affm0,z. Then A belongs to
Γjε(~cj , x), and y = ξ∗(σj) +A(x− ξ∗(t̄) + ε(~cj · v)), so y is a member of
ξ∗(σj) + Γjε(~cj , x)(x− ξ∗(t̄) + ε(~cj · v)).

Since y was an arbitrary member of Ψj
ε(~cj , x), we have shown

that Ψj
ε(c1, x) ⊆ ξ∗(σj) + Γjε(~cj , x)(x− ξ∗(t̄) + ε(~cj · v)). This fact, together

with (21), implies that

Ψj
ε(c1, x) = ξ∗(σj) + Γjε(~cj , x)(x− ξ∗(t̄) + ε(~cj · v)) . (22)

This completes the inductive construction of the Γjε, and the proof that
(15) holds.

We now prove (#), also by induction. We assume that θj−1 has been
defined in such a way that θj−1 ∈ ΘΘΘ and (#j−1) holds.

Let A ∈ Γjε(~cj , x). Write A = A2 ◦A1 ◦A0 +A0,z as before, and let
A0 = affmL0,z0 , A1 = affmL1,z1 , A2 = affmL2,z2 . Then A = affmL,ẑ, where
L = L2L1L0, ẑ = L2L1z0 + L2z1 + z2 + z. On the other hand, we know
from the inductive hypothesis that L0 ∈ g

θj−1(ε)

σj−1,t̄
and ‖z0‖ ≤ θj−1(ε)ε,

and we also know that L1 ∈ g
θ(ε)
τj ,σj−1 , L2 ∈ g

θ(ε)
σj ,τj−1 , ‖z1‖ ≤ θ(ε)ε, and

‖z2‖ ≤ θ(ε)ε. Then (8) implies that ‖L0‖ ≤ 2 + θj−1(ε), ‖L1‖ ≤ 2 + θ(ε),
and ‖L2‖ ≤ 2 + θ(ε), so

L2L1L0 ∈ g
θ̃j(ε)

σj ,t̄
,

where θ̃j ∈ ΘΘΘ. (Precisely, θ̃j = 8θ + 4θj−1 + 4θ2 + 8θθj−1 + 3θ2θj−1.)
Also, ‖L2L1z0 + L2z1 + z2‖ ≤ θ̂j(ε)ε, where θ̂j belongs to ΘΘΘ. (Precisely,

θ̂j = 3θ + 4θj−1 + θ2 + 4θθj−1 + θ2θj−1.) As for z, we can estimate it as
follows: we have

z = y − ξ∗(σj)− (A2 ◦A1 ◦A0)(x− ξ∗(t̄) + ε(~cj · v))

and also y = Ej(cj , ε, h, y) + ξ∗(σj) + h+ εcjvj , where

h = w − ξ∗(τj) = (A1 ◦A0)(x− ξ∗(t̄) + ε(~cj−1v)) . (23)



November 21, 2007 12:16 WSPC - Proceedings Trim Size: 9in x 6in paper-final-version-corrected

29

Then y − ξ∗(σj) = Ej(cj , ε, h, y) + h+ εcjvj , so

z = Ej(cj , ε, h, y) + h+ εjvj − (A2 ◦A1 ◦A0)(x− ξ∗(t̄) + ε(~cj · v))

= Ej(cj , ε, h, y) + h+ εjvj

−A2

(
(A1 ◦A0)(x− ξ∗(t̄) + ε(~cj−1 · v)) + (A1 ◦A0)(εcjvj)

)
= Ej(cj , ε, h, y) + h+ εjvj −A2

(
h+ (A1 ◦A0)(εcjvj)

)
= Ej(cj , ε, h, y) + (IRn −A2)h+ (IRn − (A2 ◦A1 ◦A0))(εcjvj) .

Let ω(ε) = sup{‖IRn − L‖ : L ∈ gt,s, t̄ ≤ s ≤ t ≤ t̄ + βmε
λm}. Then

limε↓0 ω(ε) = 0, because of (7). We then have

‖(IRn −A2)h‖ = ‖(IRn − L2)h− z2‖ ≤ (ω(ε) + θ(ε))‖h‖+ θ(ε)ε .

Also,

‖(IRn − (A2 ◦A1 ◦A0))(εcjvj)‖
= ‖(IRn − (L2 ◦ L1 ◦ L0))(εcjvj)− L2L1z0 − L2z1 − z2‖ .

Furthermore,

‖IRn − L2L1L0‖ = ‖IRn − L2 + L2 − L2L1 + L2L1 − L2L1L0‖
≤ ‖IRn − L2‖+ ‖L2‖ ‖IRn − L1‖+ ‖L2‖‖L1‖‖IRn − L0‖
≤ θ̌j(ε) ,

where we may take θ̌j(ε)=(2ω(ε)+θ(ε))+θj−1(ε))(1+(1+ω(ε)+θ(ε))2

(because ‖IRn − L2‖ ≤ ω(ε) + θ(ε), ‖IRn − L1‖ ≤ ω(ε) + θ(ε), and
‖IRn − L0‖ ≤ ω(ε) + θj−1(ε)). Therefore

|(IRn − (L2 ◦ L1 ◦ L0))(εcjvj)‖ ≤ θ̌j(ε)c̄‖v‖jε .

Since ‖L2L1z0 + L2z1 + z2‖ ≤ θ̂j(ε)ε, we have

‖(IRn − (A2 ◦A1 ◦A0))(εcjvj)‖ ≤ (θ̌j(ε)c̄‖v‖j + θ̂j(ε))ε .

Finally, ‖Ej(cj , ε, h, y)‖ is bounded by θ∗(max(ε, ‖h‖))(ε + ‖h‖) so we get
the bound

‖z‖ ≤ θ&
j (ε, ‖h‖)(ε+ ‖h‖) (24)

where θ&
j (ε, δ) = ω(ε) + 2θ(ε) + θ̌j(ε)c̄‖v‖j + θ̂j(ε) + θ∗(max(ε, δ)). It then

follows that

‖ẑ‖ = ‖L2L1z0 + L2z1 + z2 + z‖ ≤ θ̂j(ε)ε+ θ&
j (ε, ‖h|)(ε+ ‖h‖) . (25)

To conclude, we obtain an estimate for ‖h‖. We use the identity (23), from
which it follows that h = (L1L0)(x− ξ∗(t̄) + ε(~cj−1v)) + L1z0 + z1. Since



November 21, 2007 12:16 WSPC - Proceedings Trim Size: 9in x 6in paper-final-version-corrected

30

‖L0‖ ≤ 1 + ω(ε) + θj−1(ε), ‖L1‖ ≤ 1 + ω(ε) + θ(ε), ‖x − ξ∗(t̄)‖ ≤ ε,
‖z0‖ ≤ θj−1(ε)ε, and ‖z1‖ ≤ θ(ε)ε, we find that ‖h‖ ≤ ηj(ε)ε, where

ηj(ε)=(1+ω(ε)+θ(ε))
(

(1+mC)(1+ω(ε)+θj−1(ε))+θ(ε) + θj−1(ε)
)
.

Therefore ‖ẑ‖ ≤ θ$
j (ε)ε, where

θ$
j (ε) = θ̂j(ε) + θ&

j (ε, ηj(ε)ε)(1 + ηj(ε)) . (26)

Hence, if we define θj(ε) = max(θ̃j(ε), θ&
j (ε)), it is clear that θj ∈ ΘΘΘ, and

we have shown that (#j) holds, completing the proof of Lemma 6.1.
We now define, for ~p = (p1, . . . , pm) ∈ Rm+ , x ∈ B̄(ξ∗(t̄), ρ(ε))

W~p(x) = W̃ (~p, x) = {Υ̂ε(ε−1p1, . . . , ε
−1pm, x) : ε ≥ c̄−1 max(p1, . . . , pm)} ,

so each W~p is a set-valued map, Gr(W0) ⊆ Gr(ft∗,t̄), and
Gr(Wp) ⊆ Gr(f ′t∗,t̄). Then W = {W~p}~p∈Rm+ is a variation of fτ,t̄ in f ′τ,t̄.
Also, given any positive ε, the map

[0, c̄ε]m × B̄(ξ∗(t̄), ρ(ε)) 3 (~p, x) 7→ Zε(~p, x)def= Υ̂ε(ε−1~p, x)

is a CCA map whose graph is contained in that of W̃ . In
addition, if we let Z̃ε be the set-valued map that sends each point
(~p, x) ∈ [0, c̄ε]m × B̄(ξ∗(t̄), ρ(ε)) to the set

{(A,B) : B ∈ Γε(ε−1~p, x) , A ∈ At∗,σm(ξ∗(σm) +B(x− ξ∗(t̄) + ~pm · v))} ,

(where σm = t̄ + βmε
λm , as before), and use µ to denote the map

Aff(Rn,Rn) × Aff(Rn,Rn) 3 (A,B) 7→ A ◦ B ∈ Aff(Rn,Rn), then the
composite map Zε = µ ◦ Z̃ε is a CCA map such that

Zε(~p, x) = {ξ∗(t∗) +M(x− ξ∗(t̄) + ~p · v) : M ∈ Zε(~p, x)} .

Let us now recall that, if γ is a compatible selection of g, and
V = {(v1, t̄,+), . . . , (vm, t̄,+)}, then LV,γ,t̄,t∗ is the linear map γt∗,t̄ ◦ L̂,
where L̂ is the map (~p, h) 7→ h+ ~p · v.

We also recall that ΛV,g,t̄,t∗ is the set of all maps LV,γ,t̄,t∗ , for all
γ ∈ CSel(g). The definition of Zε can be rewritten as

Zε(~p, x) = {ξ∗(t∗) +M(L̂(x− ξ∗(t̄), ~p)) : M ∈ Zε(~p, x)} .

If M ∈ Zε(~p, x), then M is the composite of a member
B of Γmε (ε−1~p, x) followed by a member A of At∗,σm(y), where
y = ξ∗(σm) +B(x− ξ∗(t̄) + ~pm · v). If we write B = affmB1,b1 , we know
that B1 ∈ g

θm(ε)
σm,t̄

and ‖b1‖ ≤ θm(ε)ε. Also, if A = affmA1,a1 , we know

that A1 ∈ g
θ(ε)
t∗,σm and ‖a1‖ ≤ θ(ε)ε. It follows that, if ML̂ = affmK,k,
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then K = A1B1L̂ and k = a1 + A1b1. Therefore K ∈ (gt∗,t̄ ◦ L̂)θ
$(ε) and

‖k‖ ≤ θ$(ε), where θ$(ε) is an easily computable member of ΘΘΘ. (Precisely,

we may take θ$ = 2(1 + ‖L̂‖)(θ + θm + θθm).) So ML̂ ∈ g(θ$(ε),ε)
t,s .

Now, the set gt∗,t̄ ◦ L̂ is precisely ΛV,g,t̄,t∗ . This shows that ΛV,g,t̄,t∗

is an AGDQ of the map W̃ at ((0, ξ∗(t̄)), ξ∗(t∗)) in the direction of
R
m
+ × X. If, for b ≥ t∗, we define W b = {W b

~p}~p∈Rm+ , by letting
W b
~p (x) = W̃ b(~p, x) = (fb,t∗ ◦W~p)(x)), then it is clear that W b is a variation

of fb,t̄ in f ′b,t̄, and ΛV,g,t̄,b is an AGDQ of W̃ b at ((0, ξ∗(t̄)), ξ∗(b)) in the
direction of Rm+ ×X. This completes our proof. �
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