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Summary. We present the technical background material for a version of the
Pontryagin Maximum Principle with state space constraints and very weak technical
hypotheses, based on a primal approach that uses generalized differentials and
packets of needle variations. In particular, we give a detailed account of two
theories of generalized differentials, the “generalized differential quotients” (GDQs)
and the “approximate generalized differential quotients” (AGDQs), and prove
the corresponding open mapping and separation theorems. We state—but do not
prove—the resulting version of the Maximum Principle. The result does not require
the time-varying vector fields corresponding to the various control values to be
continuously differentiable, Lipschitz, or even continuous with respect to the state,
since all that is needed is that they be “co-integrably bounded integrally continuous.”
This includes the case of vector fields that are continuous with respect to the state,
as well as large classes of discontinuous vector fields, containing, for example, rich
sets of single-valued selections for almost semicontinuous differential inclusions.
Uniqueness of trajectories is not required, since our methods deal directly with
multivalued maps. The dynamical reference vector field and reference Lagrangian
are only required to be “differentiable” along the reference trajectory in a very weak
sense, namely, that of possessing suitable “variational generators.” This includes—
but is much more general than—the conditions of the classical cases when the
reference vector field and Lagrangian are differentiable with respect to the state and
the variational generator can be taken to be the singleton of the classical differential,
as well as the case when they are Lipschitz and the variational generator can be
chosen to be the Clarke generalized Jacobian. In addition, for the Lagrangian one
can chose the variational generator to be the Michel-Penot subdifferential. For the
functions defining the state space constraints, all that is needed is the existence of
a variational generator in a slightly different technical sense, which includes as a
special case the object often referred to as ∂>x g in the literature, as well as many
non-Lipschitz cases. The conclusion yields finitely additive measures, as in earlier
work by other authors, and a Hamiltonian maximization inequality valid also at the
jump times of the adjoint covector.
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1 Introduction

In a series of previous papers (cf. [20, 21, 22, 23]), we have developed a
“primal” approach to the non-smooth Pontryagin Maximum Principle, based
on generalized differentials, flows, and general variations. The method used is
essentially the one of classical proofs of the Maximum Principle such as that of
Pontryagin and his coauthors (cf. Pontryagin et al. [15], Berkovitz [1]), based
on the construction of packets of needle variations, but with a refinement of
the “topological argument,” and with concepts of differential more general
than the classical one, and usually set-valued.

In this article we apply this approach to optimal control problems with
state space constraints, and at the same time we state the result in a more
concrete form, dealing with a specific class of generalized derivatives (the
“generalized differential quotients”), rather than in the abstract form used in
some of the previous work.

The paper is organized as follows. In §2 we introduce some of our notations,
and review some background material, especially the basic concepts about
finitely additive vector-valued measures on an interval. In §3 we review the
theory of “Cellina continuously approximable” (CCA) set-valued maps, and
prove the CCA version—due to A. Cellina—of some classical fixed point
theorems due to Leray-Schauder, Kakutani, Glicksberg and Fan. In §4 we
define the notions of generalized differential quotient (GDQ), and approximate
generalized differential quotient (AGDQ), and prove their basic properties,
especially the chain rule, the directional open mapping theorem, and the
transversal intersection property. In §5 we define the two types of variational
generators that will occur in the maximum principle, and state and prove
theorems asserting that various classical generalized derivatives—such as
classical differentials, Clarke generalized Jacobians, subdifferentials in the
sense of Michel-Penot, and (for functions defining state space constraints)
the object often referred to as ∂>x g in the literature—are special cases of our
variational generators. In §6 we discuss the classes of discontinuous vector
fields studied in detail in [24]. In §7 we state the main theorem. The rather
lengthy proof will be given in a subsequence paper.

2 Preliminaries and background

2.1 Review of some notational conventions and definitions

Integers and real numbers. We use Z, R to denote, respectively, the set
of all integers and the set of all real numbers, and write Ndef= {n ∈ Z : n > 0},
Z+

def=N ∪ {0}. Also, R̄, R+, R̄+, denote, respectively, the extended real line
R∪{−∞,+∞}, the half-line [0,+∞ [ , and the extended half-line [0,+∞] (i.e.,
[0,+∞ [∪{+∞}).
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Intervals. An interval is an arbitrary connected subset of R. If a, b ∈ R
and a ≤ b, then INT([a, b]) is the set of all intervals J such that J ⊆ [a, b].
Hence INT([a, b]) consists of the intervals [α, β], [α, β [ , ]α, β] and ]α, β [ , with
a ≤ α < β ≤ b, as well as the singletons {α}, for a ≤ α ≤ b), and the empty
set. A nontrivial interval is one whose length is strictly positive, that is, one
that contains at least two distinct points.

Euclidean spaces and matrices. The expressions Rn, Rn will be used to
denote, respectively, the set of all real column vectors x = (x1, . . . , xn)† (where
“†” stands for “transpose”) and the set of all real row vectors p = (p1, . . . , pn).
We refer to the members of Rn as covectors. Also, Rm×n is the space of all
real matrices with m rows and n columns.

If n ∈ Z+, x ∈ Rn, r ∈ R, and r > 0, we use B̄n(x, r), Bn(x, r) to
denote, respectively, the closed and open balls in R

n with center x and
radius r. We write B̄n(r), Bn(r) for B̄n(0, r), Bn0, (r), and B̄n, Bn for B̄n(1),
B
n(1). Also, we will use Sn to denote the n-dimensional unit sphere, so
S
n = {(x1, . . . , xn+1)† ∈ Rn+1 :

∑n+1
j=1 x

2
j = 1}.

Topological spaces, metric spaces, metric balls. We will use throughout
the standard terminology of point-set topology: a neighborhood of a point x
in a topological space X is any subset S of X that contains an open set U
such that x ∈ U . In the special case of a metric space X, we use BX(x, r),
B̄X(x, r), to denote, respectively, the open ball and the closed ball with center
x and radius r.

Quasidistance and Hausdorff distance. If X is a topological space,
then Comp0(X) will denote the set of all compact subsets of X (including
the empty set), and Comp(X) will be the set of all nonempty members of
Comp0(X).

If X is a metric space, with distance function dX , then we can define
the “quasidistance” ∆qua

X (A,B) from a set A ∈ Comp0(X) to another set
B ∈ Comp0(X) by letting

∆qua
X (A,B)=sup

{
inf{dX(x, x′) : x′∈B} : x∈A

}
. (1)

(This function is not a distance because, for example, it is not symmetric,
since ∆qua

X (A,B) = 0 but ∆qua
X (B,A) 6= 0 if A ⊆ B and A 6= B. Furthermore,

∆qua
X can take the value +∞, since ∆qua

X (A,B) = +∞ if A 6= ∅ but B = ∅.)

Definition 2.1 Suppose that X is a metric space. The Hausdorff distance
∆X(K,L) between two nonempty subsets K, L of X is the number

∆X(K,L) = max
(
∆qua
X (K,L),∆qua

X (L,K)
)
. ut

It is then clear that the function ∆X , restricted to Comp(X)× Comp(X), is
a metric.
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Linear spaces and linear maps. The abbreviations “FDRLS” and
“FDNRLS” will stand for the expressions “finite-dimensional real linear
space,” and “finite-dimensional normed real linear space,” respectively. If X
and Y are real linear spaces, then Lin(X,Y ) will denote the set of all linear
maps from X to Y . We use X† to denote Lin(X,R), i.e., the dual space of
X. If X is a FDNRLS, then X†† is identified with X in the usual way.

If X and Y are FDNRLSs, then Lin(X,Y ) is a FDNRLS, endowed with
the operator norm ‖ · ‖op given by

‖L‖op = sup{‖L · x‖ : x ∈ X, ‖x‖ ≤ 1} . (2)

Also, we write L(X) for Lin(X,X), the space of all linear maps L : X 7→ X.
We identify Lin(Rn,Rm) with Rm×n in the usual way, by assigning to each

matrix M ∈ Rm×n the linear map Rn 3 x 7→M ·x ∈ Rm. In particular, L(X)
is identified with Rn×n.) Also, we identify Rn with the dual (Rn)† of Rn, by
assigning to a y ∈ Rn the linear functional Rn 3 x 7→ y · x ∈ R.

If X,Y are FDRLSs, and L ∈ Lin(X,Y ), then the adjoint of L is the map
L† : Y † 7→ X† such that L†(y) = y ◦ L for y ∈ Y †. In the special case when
X = R

n and Y = R
m, so L ∈ Rm×n, the map L† goes from Rm to Rn, and is

given by L†(y) = y · L for y ∈ Rm.

Manifolds, tangent spaces, differentials. If M is a manifold of class C1,
and x ∈ M , then TxM will denote the tangent space of M at x. It follows
that if M , N are manifolds of class C1, x ∈M , F is an N -valued map defined
on a neighborhood U of x in M , and F is classically differentiable at x, then
the differential DF (x) belongs to Lin(TxM,TF (x)N).

Single- and set-valued maps. Throughout this paper, the word “map”
always stands for “set-valued map.” The expression “ppd map” refers to
a “possibly partially defined (that is, not necessarily everywhere defined)
ordinary (that is, single-valued) map.” The precise definitions are as follows.
A set-valued map is a triple F = (A,B,G) such that A and B are sets and
G is a subset of A × B. If F = (A,B,G) is a set-valued map, we say that F
is a set-valued map from A to B. In that case, we refer to the sets A, B, G
as the source, target, and graph of F , respectively, and we write A = So(F ),
B = Ta(F ), G = Gr(F ). If x ∈ So(F ), we write F (x) = {y : (x, y) ∈ Gr(F )}.
The set Do(F ) = {x ∈ So(F ) : F (x) 6= ∅} is the domain of F . If A, B are
sets, we use SVM(A,B) to denote the set of all set-valued maps from A to
B, and write F : A 7→→ B to indicate that F ∈ SVM(A,B). A ppd map from
A to B is an F ∈ SVM(A,B) such that F (x) has cardinality zero or one
for every x ∈ A. We write F : A ↪→ B to indicate that F is a ppd map
from A to B. If F : A 7→→ B, and C ⊆ A, then the restriction of F to C is the
set-valued map F dC defined by F dCdef= (C,B,Gr(F ) ∩ (C ×B)).

If F1 and F2 are set-valued maps, then the composite F2 ◦ F1 is defined
if and only if Ta(F1) = So(F2) and, in that case, So(F2 ◦ F1)def= So(F1) ,
Ta(F2 ◦ F1)def= Ta(F2), and
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Gr(F2 ◦ F1)def=
{

(x, z) : (∃y)
(

(x, y) ∈ Gr(F1) and (y, z) ∈ Gr(F2)
)}

.

If A is a set, then IA denotes the identity map of A, that is, the triple
(A,A,∆A), where ∆A is the set of all pairs (x, x), for all x ∈ A.

Epimaps and constraint indicator maps. If f : S ↪→ R is a ppd function,
then

• The epimap of f is the set-valued map f̌ : S 7→→ R whose graph is the
epigraph of f , so that f̌(s) = {f(s)+v : v ∈ R, v ≥ 0} whenever s ∈ Do(f),
and f̌(s) = ∅ if s ∈ S\Do(f).

• The constraint indicator map of f is the set-valued map χcof : S 7→→ R

such that χcof (s) = ∅ if f(s) ≤ 0 or s ∈ S\Do(f), and χcof (s) = [0,+∞ [ if
f(s) > 0 .

Cones and multicones. A cone in a FDRLS X is a nonempty subset C of
X such that r · c ∈ C whenever c ∈ C, r ∈ R and r ≥ 0. If X is a FDRLS,
a multicone in X is a nonempty set of convex cones in X. A multicone C is
convex if every member C of C is convex.

Polars. Let X be a FDNRLS. The polar of a cone C ⊆ X is the closed convex
cone C† = {λ ∈ X† : λ(c) ≤ 0 for all c ∈ C}. If C is a multicone in X, the
polar of C is the set C† = Clos

(⋃
{C† : C ∈ C}

)
, so C† is a (not necessarily

convex) closed cone in X†.

Boltyanskii approximating cones. If X is a FDNRLS, S ⊆ X, and x ∈ S,
a Boltyanskii approximating cone to S at x is a convex cone C in X such that
there exist an n ∈ Z+, a closed convex cone D in Rn, a neighborhood U of
0 in Rn, a continuous map F : U ∩ D 7→ S, and a linear map L : Rn 7→ X,
such that F (h) = x+L · h+ o(‖h‖) as h→ 0 via values in D, and C = L ·D.
A limiting Boltyanskii approximating cone to S at x is a closed convex cone
C which is the closure of an increasing union

⋃∞
j=1 Cj such that each Cj is a

Boltyanskii approximating cone to S at x.

Some function spaces. If A, B are sets, we use fn(A,B) to denote the
set of all functions from A to B. If X is a real normed space and A is a
set, then Bdfn(A,X) will denote the set of all bounded functions from A
to X. The space Bdfn(A,X) is endowed with the norm ‖ · ‖sup given by
‖f‖sup = sup{‖f(t)‖ : t ∈ A}. Then Bdfn(A,X) is a Banach space if X is a
Banach space.

If, in addition, A is a topological space, then C0(A,X) denotes the space
of all continuous functions from A to B, endowed with the norm ‖ · ‖sup. It
is clear that C0(A,X) is a closed subspace of Bdfn(A,X), so in particular
C0(A,X) is a Banach space if X is a Banach space.

Tubes. If X is a FDNRLS, a, b ∈ R, a ≤ b, ξ ∈ C0([a, b], X) and δ > 0, we
use T X(ξ, δ) to denote the δ-tube about ξ in X, defined by

T X(ξ, δ) def= {(x, t) :x∈X, a≤ t≤b, ‖x−ξ(t)‖≤δ} . (3)
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Vector fields, trajectories, and flow maps. If X is a FDNRLS, a ppd
time-varying vector field on X is a ppd map X × R 3 (x, t) ↪→ f(x, t) ∈ X.
A trajectory, or integral curve, of a ppd time-varying vector field f on X is
a locally absolutely continuous map ξ : I 7→ X, defined on a nonempty real
interval I, such that for almost all t ∈ I the following two conditions hold:
(i) (ξ(t), t) ∈ Do(f), and (ii) ξ̇(t) = f(ξ(t), t). If f is a ppd time-varying vector
field on X, then Traj (f) will denote the set of all integral curves ξ : Iξ 7→ X of
f . If S is a subset of X×R, then Traj (f, S) will denote the set of ξ ∈ Traj (f)
such that (ξ(t), t) ∈ S for all t ∈ Iξ, and Traj c(f, S) will denote the set of
ξ ∈ Traj (f, S) whose domain Iξ is a compact interval.

The flow map of a ppd time-varying vector field X×R3(x, t) ↪→f(x, t)∈X
is the set-valued map Φf : R × R × X 7→→ X that assigns to each triple
(t, s, x) ∈ R× R×X the set Φf (t, s, x) = {ξ(t) : ξ ∈ Traj (f), ξ(s) = x}.

Functions of bounded variation. Assume that X is a real normed space,
a, b ∈ R, and a < b.

Definition 2.2 A function ϕ ∈ fn([a, b], X) is of bounded variation if
there exists a nonnegative real number C such that

∑m
j=1 ‖ϕ(tj)− ϕ(sj)‖ ≤ C

whenever m ∈ N and the finite sequences {sj}mj=1, {tj}mj=1 are such that
a≤s1≤ t1≤s2≤ t2≤· · ·≤sm≤ tm≤b. ut

We use bvfn([a, b], X) to denote the set of all ϕ ∈ fn([a, b], X) that are of
bounded variation, and define the total variation norm ‖ϕ‖tv of a function
ϕ ∈ fn([a, b], X) by letting ‖ϕ‖tv = ‖ϕ(b)‖+C(ϕ) , where C(ϕ) is the smallest
C having the property of Definition 2.2. Also, we let bvfn0,b([a, b], X) denote
the set of all ϕ ∈ bvfn([a, b], X) such that ϕ(b) = 0. Then ‖ϕ‖tv = C(ϕ) if
ϕ ∈ bvfn0,b([a, b], X). It is then easy to verify that

Fact 2.3 If X is a Banach space, then the space bvfn([a, b], X), endowed with
the total variation norm ‖ · ‖tv, is a Banach space, and bvfn0,b([a, b], X) is a
closed linear subspace of bvfn([a, b], X) of codimension one. ut

Fact 2.4 If X is a Banach space and f ∈ bvfn(([a, b], X), then lims↑t f(s)
exists for every t ∈ ] a, b], and lims↓t f(s) exists for every t ∈ [a, b [ . ut

Remark 2.5 The set bvfn([a, b], X) is clearly a linear subspace of
Bdfn([a, b], X). The sup norm and the total variation norm are related by the
inequality ‖ϕ‖sup ≤ ‖ϕ‖tv, which holds whenever ϕ ∈ bvfn([a, b], X) . On the
other hand, bvfn([a, b], X) is clearly not closed in Bdfn([a, b], X). ut

Measurable spaces and measure spaces. A measurable space is a pair
(S,A) such that S is a set and A is a σ-algebra of subsets of S.

If (S,A) is a measurable space, then a nonnegative measure on (S,A) is
a map µ : A 7→ [0,+∞] that satisfies µ(∅) = 0) and is countably additive
(i.e., such that µ(

⋃∞
j=1Aj) =

∑∞
j=1 µ(Aj) whenever {Aj}j∈N is a sequence of

pairwise disjoint members of A).
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A nonnegative measure space is a triple (S,A, µ) is such that (S,A) is a
measurable space and µ is a nonnegative-measure on (S,A). A nonnegative
measure space (S,A, µ) is finite if µ(A) <∞ for all A ∈ A.

Measurability of set-valued maps; support functions. Assume that
(S,A) is a measurable space and Y is a FDNRLS.

Definition 2.6 A set-valued map Λ :S 7→→Y is said to be measurable if the
set {s ∈ S : Λ(s) ∩Ω 6= ∅} ∈ A for every open subset Ω of Y . ut

If Λ has compact values, then we define the support function of Λ to be the
function σΛ : S × Y † 7→ R given by

σΛ(s, x)=sup{〈x, y〉 : y∈Λ(s)} for x∈Y † , s∈S. (4)

(If Λ(s) = ∅ then we define σΛ(s, y) = −∞.) The following fact is well known.

Lemma 2.7 Assume that (S,A) is a measurable space, Y is a FDNRLS,
and Λ :S 7→→Y is a set-valued map with compact convex values. For each
y ∈ Y †, let ψy(s) = σΛ(s, y). Then Λ is measurable if and only if the function
ψy : S 7→ R ∪ {−∞} is measurable for every y ∈ Y †. ut

Integrable boundedness of set-valued maps. Assume that (S,A, ν) is a
nonnegative measure space.

Definition 2.8 An ν-integrable bound for a set-valued map Λ :S 7→→Y is
a nonnegative ν-integrable function k : S 7→ [0,+∞] having the property that
Λ(s)⊆{y∈Y :‖y‖≤k(s)} for ν-almost all s∈S. The map Λ is said to be
ν-integrably bounded if there exists a ν-integrable bound for Λ. ut

2.2 Generalized Jacobians, derivate containers, and Michel-Penot
subdifferentials.

For future use, we will now review the definitions and basic properties
of three classical “non-smooth” notions of set-valued derivative, namely,
Clarke generalized Jacobians, Warga derivate containers, and Michel-Penot
derivatives.

Generalized Jacobians. Assume that X, Y are FDNRLSs, Ω is an open
subset of X, F : Ω 7→ Y is a Lipschitz-continuous map, and x̄∗ ∈ Ω.

Definition 2.9 The Clarke generalized Jacobian of F at x̄∗ is the set
∂F (x̄∗) defined as follows:

• ∂F (x̄∗) is the convex hull of the set of all limits L = limj→∞DF (xj)
for all sequences {xj}j∈N in Ω such that (1) limj→∞ xj = x̄∗, (2) F is
classically differentiable at xj for all j ∈ N, and (3) the limit L exists. ut
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Warga derivate containers. Assume that X, Y are FDNRLSs, Ω is an
open subset of X, F : Ω 7→ Y , and x̄∗ ∈ Ω.

Definition 2.10 A Warga derivate container of F at x̄∗ is a compact
subset Λ of Lin(X,Y ) such that

• For every positive number δ there exist (1) an open neighborhood Uδ of x̄∗
such that Uδ ⊆ Ω, and (2) a sequence {Fj}j∈N of Y -valued functions
of class C1 on Uδ, such that (i) limj→∞ Fj = F uniformly on Uδ,
(ii) dist(DFj(x), Λ)≤δ for every (j, x)∈N×Uδ. ut

Michel-Penot subdifferentials. Assume that X is a FDNRLS, Ω is an
open subset of X, f : Ω 7→ R is a Lipschitz-continuous function, and x̄∗ ∈ Ω.
For h ∈ X, define

dof(x̄∗, h) = sup
k∈X

lim sup
t↓0

t−1
(
f(x̄∗ + t(k + h))− f(x̄∗ + tk)

)
, (5)

so that X 3 h 7→ dof(x̄∗, h) ∈ R̄ is a convex positively homogeneous function.

Definition 2.11 The Michel-Penot subdifferential of f at x̄∗ is the set
∂of(x̄∗) of all linear functionals ω ∈ X† having the property that the inequality
dof(x̄∗, h) ≥ 〈ω, h〉 holds whenever h ∈ X. ut

2.3 Finitely additive measures.

If a, b ∈ R, a < b, and X is a FDNRLS, we use Pc([a, b], X) to denote the set
of all piecewise constant X-valued functions on [a, b], so that f ∈ Pc([a, b], X)
iff f : [a, b] 7→ X and there exists a finite partition P of [a, b] into intervals
such that f is constant on each I ∈ P. We let Pc([a, b], X) denote the set of all
uniform limits of members of Pc([a, b], X), so Pc([a, b], X) is a Banach space,
endowed with the sup norm. Furthermore, Pc([a, b], X) is exactly the space of
all f : [a, b] 7→ X such that the left limit f(t−) = lims→t,s<t f(s) exists for all
t ∈ ]a, b], and the right limit f(t+) = lims→t,s>t f(s) exists for all t ∈ [a, b [ .

We define Pc0([a, b], X) to be the set of all f ∈ Pc([a, b], X) that vanish
on the complement of a countable (i.e., finite or countably infinite) set. (Then
Pc0([a, b], X) is the closure in Pc([a, b], X) of the space Pc0([a, b], X) of all
f ∈ Pc([a, b], X) such that f vanishes on the complement of a finite set.)

We let pc([a, b], X) be the quotient space Pc([a, b], X)/Pc0([a, b], X). Then
every equivalence class F ∈ pc([a, b], X) has a unique left-continuous member
F−, and a unique right-continuous member F+, and of course F− ≡ F+ on
the complement of a countable set. So pc([a, b], X) can be identified with the
set of all pairs (f−, f+) of X-valued functions on [a, b] such that f− is left-
continuous, f+ is right-continuous, and f− ≡ f+ on the complement of a
countable set.

If X is a FDNRLS, then we use bvadd([a, b], X) to denote the dual
space pc([a, b], X†)† of pc([a, b], X†). An additive X-valued interval function
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of bounded variation on [a, b] is a member of bvadd([a, b], X). A measure
µ ∈ bvadd([a, b], X) gives rise to a set function µ̂ : I([a, b]) 7→ X (where
I([a, b]) is the set of all subintervals of [a, b]), defined by 〈µ̂(I), y〉 = µ(χy

I
) for

y ∈ X†, where χy
I
(t) = 0 if t /∈ I and χy

I
(t) = y if t ∈ I. We then associate to

µ its cumulative distribution cdµ, defined by cdµ(t) = −µ̂([t, b]) for t ∈ [a, b].
Then cdµ belongs to the space bvfn0,b([a, b], X) of all functions ϕ : [a, b] 7→ X
that are of bounded variation (cf. Definition 2.2) and such that ϕ(b) = 0. The
map

bvadd([a, b], X) 3 µ 7→ cdµ ∈ bvfn0,b([a, b], X)

is a bijection. The dual Banach space norm ‖µ‖ of a µ ∈ bvadd([a, b], X)
coincides with ‖cdµ‖bv.

A µ ∈ bvadd([a, b], X) is a left (resp.right) delta function if there exist
an x ∈ X and a t ∈ ] a, b] (resp. a t ∈ [ a, b [ ) such that µ(F ) = 〈F (t−), x〉
(resp. µ(F ) = 〈F (t+), x〉) for all F ∈ pc([a, b], X). We call µ left-atomic (resp.
right-atomic) if it is the sum of a convergent series of left (resp. right) delta
functions.

A µ ∈ bvadd([a, b], X) is continuous if the function cdµ is continuous.
Every µ ∈ bvadd([a, b], X) has a unique decomposition into the sum of a
continuous part µco, a left-atomic part µat,− and a right-atomic part µat,+.
(This resembles the usual decomposition of a countably additive measure into
the sum of a continuous part and an atomic part. The only difference is that
in the finitely additive setting there are left and right atoms rather than just
atoms.)

If Y is a FDNRLS, a bounded Y -valued measurable pair on [a, b] is a
pair (γ−, γ+) of bounded Borel measurable functions from [a, b] to Y such
that γ− ≡ γ+ on the complement of a finite or countable set. If X,Y, Z are
FDNRLSs, Y ×X 3 (y, x) 7→ 〈y, x〉 ∈ Z is a bilinear map, µ ∈ bvadd([a, b], X),
and γ = (γ−, γ+) is a bounded Y -valued measurable pair on [a, b], then the
product measure γ · µ is a member of bvadd([a, b], Z) defined by multiplying
the continuous part µco by γ− or γ+, the left-atomic part by γ−, and the right-
atomic part by γ+. In particular, the product γ · µ is a well defined member
of bvadd([a, b], X) whenever µ ∈ bvadd([a, b],R) and γ is a bounded X-valued
measurable pair on [a, b].

Finally, we need to study the solutions of an “adjoint” Cauchy problem
represented formally as

dy(t) = −y(t) · L(t) · dt+ dµ(t) , y(b) = ȳ , (6)

where µ∈bvadd([a, b], X†) and L ∈ L1([a, b],L (X)). This is done by rewriting
our Cauchy problem as the integral equation

y(t)− V (t) =
∫ b

t

y(s) · L(s) · ds , where V = cdµ . (7)

Equation (7) is easily seen to have a unique solution π, given by
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π(t) = ȳ ·ML(b, t)−
∫

[t,b]

dµ(s) ·ML(s, t) , (8)

where ML : [a, b]× [a, b] 7→L (X) is the fundamental solution of Ṁ = M · L,
characterized by the identity ML(τ, t) = IX +

∫ τ
t
L(r) ·ML(r, t) dr.

3 Cellina continuously approximable (CCA) maps

The “Cellina continuously approximable” maps constitute a class of set-
valued maps that has properties similar to those of single-valued continuous
maps. The most important such property is the fixed point theorem that, for
single-valued continuous maps, is known as Brouwer’s theorem in the finite-
dimensional case, and as Schauder’s theorem in the infinite-dimensional case.
A class of set-valued maps with some of the desired properties was singled
out in the celebrated Kakutani fixed point theorem (for the finite-dimensional
case), and its infinite-dimensional generalization due to Fan and Glicksberg.
This class, whose members are the upper semicontinuous maps with nonempty
compact convex values, turns out to be insufficient for our purposes, because
is lacks the crucial property that a composite of two maps belonging to the
class also belongs to the class. (For example, if f : B̄n(0, 1) 7→→ B̄n(0, 1) has
nonempty convex values and a compact graph, and g : B̄n(0, 1) 7→ B̄n(0, 1) is
single-valued and continuous, then g also has a compact graph and nonempty
convex values, so g belongs to the class as well, but g◦f need not belong to the
class, because the image of a convex set under a continuous map need not be
convex. And yet it is obvious that g ◦ f has to have a fixed point, because the
same standard argument used to prove the Kakutani theorem applies here as
well: we can find a sequence of single-valued continuous maps fj that converge
to f in an appropriate sense, apply Brouwer’s theorem to obtain fixed points
xj of the maps g ◦ fj , and then pass to the limit.)

The previous example strongly suggests that there ought to exist a class of
maps, larger than that of the Kakutani and Fan-Glicksberg theorems, which is
closed under composition and such that the usual fixed point theorems hold.
This class was introduced by A. Cellina in a series of papers around 1970 (cf.
[3, 4, 5, 6]). We now study it in detail.

3.1 Definition and elementary properties

CCA maps are set-valued maps that are limits of single-valued continuous
maps in the sense of an appropriate (non-Hausdorff) notion of convergence.
We begin by defining this concept of convergence precisely.

Inward graph convergence. If K, Y are metric spaces and K is compact,
then SVMcomp(K,Y ) will denote the subset of SVM(K,Y ) whose members
are the set-valued maps fromK to Y that have a compact graph. We say that a
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sequence {Fj}j∈N of members of SVMcomp(K,Y ) inward graph-converges

to an F ∈ SVMcomp(K,Y )—and write Fj
igr−→ F—if for every open subset Ω

of K × Y such that Gr(F ) ⊆ Ω there exists a jΩ ∈ N such that Gr(Fj) ⊆ Ω
whenever j ≥ jΩ .

The above notion of convergence is a special case of the following more
general idea. Recall that Comp0(X) is the set of all compact subsets of X.
Then we can define a topology TComp0(X) on Comp0(X) by declaring a subset
U of Comp0(X) to be open if for every K ∈ U there exists an open subset U
of X such that K ⊆ U and {J ∈ Comp0(X) : J ⊆ U} ⊆ U . (This topology is
non-Hausdorff even if X is Hausdorff, because if J,K ∈ Comp0(X), J ⊆ K,
and J 6= K, then every neighborhood of K contains J .) Inward graph
convergence of a sequence {Fj}j∈N of members of SVMcomp(K,Y ) to an
F ∈ SVMcomp(K,Y ) is then equivalent to convergence to Gr(F ) of the sets
Gr(Fj) in the topology TComp0(X).

The convergence of sequences and, more generally, of nets, in the space
TComp0(X) can be characterized as follows, in terms of the quasidistance ∆qua

defined in (1).

Fact 3.1 Let (Z, dZ) be a metric space, let K = {Kα}α∈A be a net of members
of Comp0(Z), indexed by a directed set (A,�A), and let K ∈ Comp0(Z).
Then the net K converges to K with respect to TComp0(Z) if and only if
limα∆

qua
Z (Kα,K) = 0. ut

Fact 3.1 can be applied in the special case when the metric space Z is a
product X × Y , equipped with the distance dZ : Z × Z 7→ R+ given by

dZ

(
(x, y), (x′, y′)

)
= dX(x, x′) + dY (y, y′) . (9)

We then obtain the following equivalent characterization of inward graph
convergence.

Fact 3.2 Let X, Y be metric spaces, with distance functions dX , dY , let
F = {Fα}α∈A be a net of members of SVMcomp(X,Y ), indexed by a directed
set (A,�A), and let F ∈ SVMcomp(X,Y ). Then the net F converges to F
in the inward graph convergence sense (that is, the graphs Gr(Fα) converge
to Gr(F ) in TComp0(X×Y )) if and only if limα∆

qua
Z

(
Gr(Fα),Gr(F )

)
= 0,

where Z = X × Y , equipped with the distance dZ given by (9). ut

Compactly graphed set-valued maps. Suppose that X and Y are metric
spaces, and F : X 7→→ Y . Then F is compactly graphed if, for every compact
subset K of X, the restriction F dK of F to K has a compact graph, i.e., has
the property that the set Gr(F dK)def= {(x, y) : x ∈ K ∧ y ∈ F (x)} is compact.

We recall that, if X, Y are topological spaces, then a set-valued map
F : X 7→→ Y is said to be upper semicontinuous if the inverse image of every
closed subset U of Y is a closed subset of X. It is then easy to see that
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Fact 3.3 If X and Y are metric spaces and F : X 7→→ Y has compact values,
then F is upper semicontinuous if and only if it is compactly graphed. ut

CCA maps. Finally, we are now in a position to define the notion of a
“Cellina continuously approximable map.”

Definition 3.4 Assume that X and Y are metric spaces, and F : X 7→→ Y .
We say that F is Cellina continuously approximable (abbr. “CCA”) if
F is compactly graphed and

• For every compact subset K of X, the restriction F dK is a limit—in the
sense of inward graph-convergence—of a sequence of continuous single-
valued maps from K to Y . ut

We will use the expression CCA(X,Y ) to denote the set of all CCA set-
valued maps from X to Y . It is easy to see that

Fact 3.5 If f : X ↪→ Y is a ppd map, then the following are equivalent:

(1) f ∈ CCA(X,Y ),
(2) f is everywhere defined and continuous,
(3) f is everywhere defined and compactly graphed. ut

Composites of CCA maps. The following simple observation will play a
crucial role in the theory of GDQs and AGDQs.

Theorem 3.6 Assume that X, Y , Z are metric spaces. Let F ∈ CCA(X,Y ),
G ∈ CCA(Y, Z). Then the composite map G ◦ F belongs to CCA(X,Z).

Proof. Let H = G ◦ F . We prove first that H is compactly graphed. Let K
be a compact subset of X, and let J = Gr(H dK). A pair (x, z) belongs
to J if and only if there exists y ∈ Y such that (x, y) ∈ Gr(F dK)
and (y, z) ∈ Gr(G). Let Q = π(Gr(F dK)), where π is the projection
X × Y 3 (x, y) 7→ y ∈ Y . Then (x, z) ∈ J iff there exists y ∈ Q such that
(x, y) ∈ Gr(F dK) and (y, z) ∈ Gr(G dQ). Equivalently, (x, z) ∈ J iff there
exists a point p = (x, y, ỹ, z) ∈ S such that Π(p) = (x, z) and p ∈ A, where
A = {(x, y, ỹ, z) ∈ X × Y × Y ×Z : y = ỹ}, S = Gr(F dK)×Gr(G dQ), and
Π is the projection X × Y × Y × Z ∈ (x, y, ỹ, z) 7→ (x, z) ∈ X × Z.

So J = Π(S ∩A). Since S is compact and A is closed in X × Y × Y × Z,
the set S ∩A is compact, so J is compact, since Π is continuous. Hence H is
compactly graphed.

We now fix a compact subset K of X, let h = H dK, and show that
there exists a sequence {hj}j∈N of continuous maps from K to Z such that

hj
igr−→ h. For this purpose, we let f = F dK, and use the fact that F is a

CCA map to construct a sequence {fj}j∈N of continuous maps from K to

Y such that fj
igr−→ f as j → ∞. Then the set B = Gr(f) ∪

(⋃∞
j=1 Gr(fj)

)
is clearly compact. (Proof: Pick a sequence ν = {(xk, yk)}k∈N of points of
B. Let I = {k ∈ N : (xk, yk) ∈ Gr(f)}. If I is infinite, then νI = {(xk, yk)}k∈I
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is a subsequence of ν, and νI contains a subsequence σ that converges to a
point of Gr(f), since Gr(f) is compact. Since Gr(f) ⊆ B, σ converges to a
point of B. Now suppose that I is finite. Then, by passing to a subsequence,
we may assume that I is empty, i.e., that no point (xk, yk) belongs to Gr(f).
Then each (xk, yk) belongs to some Gr(fj), and we let j(k) be the smallest
j such that (xk, yk) ∈ Gr(fj). If the sequence of positive integers {j(k)}k∈N
is unbounded, then we can extract a subsequence {jσ(`)}`∈N that goes to

infinity. Since fj
igr−→ f , the numbers δj = sup{Θ(x, y) : (x, y) ∈ Gr(fj)} go

to zero as j → ∞, where Θ(x, y) = inf{d(x, x̃) + d(y, ỹ) : (x̃, ỹ) ∈ Gr(f)}.
So δ(jσ(`)) → 0 as ` → ∞. Since (xσ(`), yσ(`)) ∈ Gr(fj(`)), we can choose
(x̂`, ŷ`) ∈ Gr(f) such that d(xσ(`), x̂`) + d(yσ(`), ŷ`) ≤ δ(j(σ(`))) + 2−`. Since
{(x̂`, ŷ`)}`∈N is a sequence of members of the compact set Gr(f), we can
extract a subsequence {(x̂τ(m), ŷτ(m))}m∈N that converges to a member (x̄, ȳ)
of Gr(f), and then η = {(xσ(τ(m)), yσ(τ(m)))}m∈N is a subsequence of ν that
converges to (x̄, ȳ) ∈ Gr(f). Finally, we have to consider the case when the
sequence {j(k)}k∈N is bounded. In that case, we can choose a j̄ ∈ N such that
the set Ij̄ = {k ∈ N : j(k) = j̄} is infinite, and then find an increasing map
σ : N 7→ N such that σ(N) = Ij̄ . Then ξ = {(xσ(`), yσ(`))}`∈N is a subsequence
of ν that consists of members of the compact set Gr(fj̄), so ξ has a subsequence
η = {(xσ(τ(m)), yσ(τ(m)))}m∈N that converges to a point (x̄, ȳ) ∈ Gr(fj̄). So
we have shown, in all possible cases, that ν has a subsequence that converges
to a point of B.)

Let C = π(B), where π is the projection defined above. Then C is a
compact subset of Y , and the fact that G is a CCA map implies that there
exists a sequence {gj}j∈N of continuous maps gj : C 7→ Z such that gj

igr−→ g,
where g = G dC.

We now define hj = gj ◦ fj , and begin by observing that the hj are well
defined continuous maps from K to Z. (The reason that hj is well defined
is that if x ∈ K, then (x, fj(x)) ∈ Gr(fj) ⊆ B, so (x, fj(x)) ∈ B, and then
fj(x) ∈ C, so gj(fj(x)) is defined. The continuity of hj then follows because
it is a composite of continuous maps.)

To conclude the proof, we have to establish that hj
igr−→ h. Let us first

define αj = sup{Ξ(x, z) : (x, z) ∈ Gr(hj)}, where Ξ is the map given by
Ξ(x, z) = inf{d(x, x̃) + d(z, z̃) : (x̃, z̃) ∈ Gr(h)}. We want to show that αj → 0
as j →∞. Suppose not. Then by passing to a subsequence we may assume that
αj ≥ 2ᾱ for all j, for some strictly positive ᾱ. For each j, pick (xj , zj) ∈ Gr(hj)
such that Ξ(xj , zj) ≥ ᾱ. Let yj = fj(xj), so zj = gj(yj). The point (xj , yj)
then belongs to Gr(fj), so Θ(xj , yj)→ 0, where Θ was defined above. Hence
we can find (x̃j , ỹj) ∈ Gr(f) such that d(xj , x̃j) + d(yj , ỹj) → 0. Similarly,
we can define Θ̂(y, z) = inf{d(y, ỹ) + d(z, z̃) : (ỹ, z̃) ∈ Gr(g)}, and conclude

that Θ̂(yj , zj) → 0, since gj
igr−→ g, so we can find points (ỹ#

j , z̃j), belonging
to Gr(g), such that d(yj , ỹ

#
j ) + d(zj , z̃j)→ 0. So all four quantities d(xj , x̃j),

d(yj , ỹj), d(yj , ỹ
#
j ), and d(zj , z̃j), go to 0. Since Gr(f) and Gr(g) are compact
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we may assume, after passing to a subsequence, that the (x̃j , ỹj) converge to
a limit (x̃, ỹ) ∈ Gr(f), and the (ỹ#

j , z̃j) converge to a limit d(ỹ#, z̃) ∈ Gr(g).
Since d(yj , ỹj) → 0 and d(yj , ỹ

#
j ) → 0, we have dỹj , ỹ

#
j ) → 0, so ỹ = ỹ#. So

(x̃, ỹ) ∈ Gr(F ) and (ỹ, z̃) ∈ Gr(G), from which it follows that (x̃, z̃) ∈ Gr(H).
But d(xj , x̃j)→ 0 and x̃j → x̃, so d(xj , x̃)→ 0. Similarly, d(zj , z̃)→ 0. Hence
Ξ(xj , zj)→ 0 contradicting the inequalities Ξ(xj , zj) ≥ ᾱ > 0. So αj → 0,
and our proof is complete. ut

3.2 Fixed point theorems for CCA maps

The space of compact connected subsets of a compact metric space.
Recall that, if X is a metric space, then Comp(X) denotes the set of all
nonempty compact subsets of X. The Hausdorff distance ∆X was introduced
in Definition 2.1. We write Compc(X) to denote the set of all connected
members of Comp(X). We will need the following fact about Comp(X).

Proposition 3.7 Let X be a compact metric space. Then (I) (Comp(X),∆X)
is compact, and (II) Compc(X) is a closed subset of Comp(X).

Proof. We first prove (I). Let X be compact, and let D be the diameter of
X, that is, D = max{dX(x, x′) : x, x′ ∈ X}. Let {Kj}j∈N be a sequence
in Comp(X). For each j ∈ N, let ϕj : X 7→ R be the function given by
ϕj(x) = dX(x,Kj). Then each ϕj is a Lipschitz function on X, with Lipschitz
constant 1. Furthermore, the bounds 0 ≤ ϕj(x) ≤ D clearly hold. Hence
{ϕj}j∈N is a uniformly bounded equicontinuous sequence of continuous real-
valued functions on the compact spaceX. Therefore the Ascoli-Arzelà theorem
implies that there exist an infinite subset J of N and a continuous function
ϕ : X 7→ R such that the ϕj converge uniformly to ϕ as j →∞ via values in
J . Define K = {x : ϕ(x) = 0}. Then K is a compact subset of X.

Let us show that K 6= ∅. For this purpose, use the fact that each Kj is
nonempty to find a member xj of Kj . Since X is compact, there exists an
infinite subset J ′ of J such that the limit x = limj→∞,j∈J′ xj exists. Since
ϕj(xj) = 0, and ϕj → ϕ uniformly, it follows that ϕ(x) = 0, so x ∈ K, proving
that K 6= ∅, so that K ∈ Comp(X).

We now show that Kj →J K in the Hausdorff metric, where “→J”
means “converges as j goes to ∞ via values in J .” First, we prove that
∆qua
X (K,Kj) →J 0. By definition, ∆qua

X (K,Kj) = sup{ϕj(x) : x ∈ K}. Since
ϕj →J ϕ uniformly on X, it follows that ϕj →J ϕ uniformly on K. But ϕ ≡ 0
on K, so ϕj →J 0 uniformly on K, and then sup{ϕj(x) : x ∈ K} →J 0, that
is, ∆qua

X (K,Kj)→J 0.
Next, we prove that ∆qua

X (Kj ,K) →J 0. If this was not so, there would
exist an infinite subset J ′ of J and an α such that α > 0 and

∆qua
X (Kj ,K) ≥ α whenever j ∈ J ′ . (10)
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For each j ∈ J ′, pick xj ∈ Kj such that distX(xj ,K) = ∆qua
X (Kj ,K). Then,

using the compactness of X, pick an infinite subset J ′′ of J ′ such that the
limit x = limj→∞,j∈J′′ xj exists. Clearly, ϕ(xj) = 0, because xj ∈ Kj . Hence
ϕ(x) = 0, so x ∈ K. But dX(xj , x)→ 0 as j →

J′′ ∞. Hence distX(xj ,K)→ 0
as j →

J′′ ∞, contradicting (10). This proves (I).
We now prove (II). Let {Kj}j∈N be a sequence in Comp(X) that converges

to aK ∈ Comp(X) and is such that all theKj are connected. We have to prove
that K is connected. Suppose K was not connected. Then there would exist
open subsets U1, U2 of X such that K ⊆ U1∪U2, U1∩U2 = ∅, K∩U1 6= ∅, and
K ∩U2 6= ∅. The fact that Kj → K clearly implies that there exists a j∗ such
that, if j ≥ j∗, then (a) Kj ⊆ U1 ∪U2, (b) Kj ∩U1 6= ∅, and (c) Kj ∩U2 6= ∅.
But then, if we pick any j such that j ≥ j∗, the set Kj is not connected, and
we have reached a contradiction. This completes the proof of (II). ut

Connected sets of zeros. The following result is a very minor modification
of a theorem of Leray and Schauder—stated in [14] and proved by F. Browder
in [2]—according to which: if K ⊆ Rn is compact convex, 0 ∈ IntK, R > 0,
and H : K × [0, R] 7→ R

n is a continuous map such that H(x, 0) = x whenever
x ∈ K and H never vanishes on ∂K × [0, R], then there exists a compact
connected subset Z of K × [0, R] such that H(x, t) = 0 whenever (x, t) ∈ Z,
and the intersections Z ∩ (K × {0}), Z ∩ (K × {R}) are nonempty.

Our version allows H to be a set-valued CCA map, and in addition allows
0 to belong to the boundary of K, but requires that 0 be a limit of interior
points vj such that H never takes the value vj on ∂K × [0, R].

Theorem 3.8 Let n ∈ Z+, and let K be a compact convex subset of Rn.
Assume that R > 0 and H : K × [0, R] 7→→ R

n is a CCA map. Assume,
moreover, that

(1)H(x, 0) = {x} whenever x ∈ K,
(2) there exists a sequence {vj}j∈N of interior points of K such that

(2.1) limj→∞ vj = 0,
(2.2) H(x, t) 6= vj whenever x∈∂K, t∈ [0, R], j∈N.

Then there exists a compact connected subset Z of K × [0, R] such that

(a) 0 ∈ H(x, t) whenever (x, t) ∈ Z,
(b) Z ∩ (K × {0}) 6= ∅,
(c) Z ∩ (K × {R}) 6= ∅.

Remark 3.9 If 0 is an interior point of K, and H never takes the value 0
on ∂K × [0, R], then Hypothesis (2) is automatically satisfied, since in that
case we can take vj = 0. If in addition H is single-valued, then Theorem 3.8
specializes to the result of [14] and [2]. ut

Remark 3.10 Any point (ξ, τ) of intersection of Z ∩ (K × {0}) must satisfy
τ = 0 and 0 ∈ H(ξ, 0). Since H(ξ, 0) = {ξ}, ξ must be 0. So Conclusion (b) is
equivalent to the assertion that (0, 0) ∈ Z. ut
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Proof of Theorem 3.8. Pick a sequence {H1
k}k∈N of ordinary continuous maps

H1
k : K × [0, R] 7→ R

n such that H1
k

igr−→ H as k →∞. Then, for each k, pick
a sequence {H2

k,`}k∈N of polynomial maps H2
k,` : Rn × R 7→ R

n such that

sup{‖H2
k,`(x, t)−H1

k(x, t)‖ : (x, t) ∈ K × [0, R]} ≤ 2−` .

Let H3
k = H2

k,k, and define H4
k(x, t) = H3

k(x, t) + x −H3
k(x, 0). Then the H4

k

are polynomial maps from R
n×R to Rn such that H4

k(x, 0) = x for all x ∈ Rn.
We claim that

H4
k d (K × [0, R])

igr−→ H as k →∞ . (11)

To prove (11), we let αk = sup{θk(ξ, τ) : (ξ, τ) ∈ K × [0, R]}, where

θk(ξ, τ)=min
{
‖ξ−x‖+|τ−t|+‖H4

k(ξ, τ)−y‖ : (x, t)∈K×[0, R], y∈H(x, t)
}
, (12)

and show that αk → 0. Assume that αk does not go to 0. Then assume, after
passing to a subsequence if necessary, that αk ≥ 3β for a strictly positive
β. Then we may pick (ξk, τk) ∈ K × [0, R] such that θk(ξk, τk) ≥ 2β for all
k. After passing once again to a subsequence, we may assume that the limit
(ξ̄, τ̄) = limk→∞(ξk, τk) exists and belongs to K × [0, R]. Then (12) implies,
since θk(ξk, τk) ≥ 2β, that ‖ξk− ξ̄‖+ |τk− τ̄ |+‖H4

k(ξk, τk)−y‖ ≥ 2β whenever
y ∈ H(ξ̄, τ̄). If k is large enough then ‖ξk − ξ̄‖ + |τk − τ̄ | ≤ β. So we may
assume, after passing to a subsequence, that ‖H4

k(ξk, τk) − y‖ ≥ β whenever
y ∈ H(ξ̄, τ̄).

On the other hand, if y ∈ H(ξ̄, τ̄). then

β ≤ ‖H4
k(ξk, τk)− y‖

≤ ‖H4
k(ξk, τk)−H1

k(ξk, τk)‖+ ‖H1
k(ξk, τk)− y‖

= ‖H3
k(ξk, τk) + ξk −H3

k(ξk, 0)−H1
k(ξk, τk)‖+ ‖H1

k(ξk, τk)− y‖
= ‖H3

k(ξk, τk)−H1
k(ξk, τk)‖+ ‖ξk −H3

k(ξk, 0)‖+ ‖H1
k(ξk, τk)− y‖

= ‖H2
k,k(ξk, τk)−H1

k(ξk, τk)‖+ ‖ξk −H2
k,k(ξk, 0)‖+ ‖H1

k(ξk, τk)− y‖
≤ 2−k + ‖ξk −H1

k(ξk, 0)‖+ ‖H1
k(ξk, 0)−H2

k,k(ξk, 0)‖+ ‖H1
k(ξk, τk)− y‖

≤ 21−k + ‖ξk −H1
k(ξk, 0)‖+ ‖H1

k(ξk, τk)− y‖
= 21−k + ‖ξk − uk‖+ ‖vk − y‖ ,

where uk = H1
k(ξk, 0), vk = H1

k(ξk, τk). Since (ξk, 0, uk) ∈ Gr(H1
k) and

H1
k

igr−→ H, we may pick points (ξ̃k, τ̃k, ũk) ∈ Gr(H) such that

‖ξk − ξ̃k‖+ τ̃k + ‖uk − ũk‖ → 0 as t→∞ . (13)

We may then pass to a subsequence and assume that the limit (ξ̃∞, τ̃∞, ũ∞) of
the sequence {(ξ̃k, τ̃k, ũk)}k∈N exists and belongs to Gr(H). Then (13) implies
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that ξk → ξ̃∞ (from which it follows that ξ̃∞ = ξ̄), τ̃∞ = 0, and, finally
ũ∞ = limk→∞ uk = limk→∞H1

k(ξk, 0).
Since (ξ̄, 0, ũ∞) = (ξ̃∞, τ̃∞, ũ∞) ∈ Gr(H), we conclude that ũ∞ ∈ H(ξ̄, 0),

so ũ∞ = ξ̄. Since ξk → ξ̄ and uk → ξ̄, we see that limk→∞ ‖ξk − uk‖ = 0.

Next, since (ξk, τk, vk) ∈ Gr(H1
k) and H1

k

igr−→ H, we may pick points
(ξ̂k, τ̂k, v̂k) ∈ Gr(H) such that

‖ξk − ξ̂k‖+ |τk − τ̂k|+ ‖vk − v̂k‖ → 0 as t→∞ . (14)

It is then possible to pass to a subsequence and assume that the limit
(ξ̂∞, τ̂∞, v̂∞) = limk→∞(ξ̂k, τ̂k, v̂k) exists and belongs to Gr(H). Then (14)
implies that ξk → ξ̂∞ (so that ξ̂∞ = ξ̄), τk → τ̂∞ (so that τ̂∞ = τ̄), and
v̂∞ = limk→∞ vk = limk→∞H1

k(ξk, τk) (so that ‖vk − v̂∞‖ → 0 as k → ∞).
Since (ξ̄, τ̄ , v̂∞) = (ξ̂∞, τ̂∞, v̂∞) ∈ Gr(H), we conclude that v̂∞ ∈ H(ξ̄, τ̄).
Hence we can apply the inequality β ≤ 21−k + ‖ξk − uk‖ + ‖vk − y‖ with
y = v̂∞, and conclude that

β ≤ 21−k + ‖ξk − uk‖+ ‖vk − v̂∞‖ . (15)

However, we already know that limk→∞ ‖ξk − uk‖ = 0, and limk→∞ ‖vk −
v̂∞‖ = 0. So the right-hand side of (15) goes to zero as k →∞, contradicting
the fact that β > 0. This contradiction completes the proof of (11).

The set

Q = H(∂K × [0, R]) = {y ∈ Rn : (∃x ∈ ∂K)(∃t ∈ [0, R])(y ∈ H(x, t)}

is compact, and our hypotheses imply that the points vj do not belong to Q.
Let Qk = H4

k(∂K × [0, R]), so Qk is also compact. We claim that

($) for every j ∈ N there exists a κ(j) ∈ N such that vj /∈ Qk whenever
k ≥ κ(j).

To see this, suppose that j is such that vj ∈ Qk for infinitely many values of k.
Then we may assume, after passing to a subsequence, that vj ∈ Qk for all k.

Let vj = H4
k(xk, tk), xk ∈ ∂K, tk ∈ [0, R]. Since H4

k d (K × [0, R])
igr−→ H, we

may pick (x̃k, t̃k, ṽk) ∈ Gr(H)1 such that ‖xk−x̃k‖+‖tk− t̃k‖+‖vj− ṽk‖ → 0.
Since Gr(H) is compact, we may pass to a subsequence and assume that
the limit (x̃∞, t̃∞, ṽ∞) = limk→∞(x̃k, t̃k, ṽk) exists and belongs to Gr(H).
But then x̃∞ = limk→∞ xk, so in particular x̃∞ ∈ ∂K, because xk ∈
∂K, and ỹ∞ = limk→∞ tk. In addition, ṽk = vj . So vj ∈ H(x̃∞, t̃∞) and
(x̃∞, t̃∞) ∈ ∂K × [0, R]. Hence vj ∈ Q, and we have reached a contradiction,
proving ($).

We now pick, for each j, an index k(j) such that k(j) ≥ κ(j) and
k(j) ≥ j, and let H5

j = H4
k(j). Then each H5

j is a polynomial map such that
H5
j (x, 0) = x whenever x ∈ Rn, and H5

j (x, t) 6= vj whenever (x, t) belongs to

∂K × [0, R]. Furthermore, H5
j d (K × [0, R])

igr−→ H as j → ∞. Since the set
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Pj = H5
j (∂K × [0, R]) is compact, vj /∈ Pj , and vj ∈ Int(K), we may pick

for each j an εj such that 0 < εj < 2−j with the property that the ball
Bj = {v ∈ Rn : ‖v − vj‖ < εj} is a subset of Int(K) and does not intersect
Pj . It follows from Sard’s theorem that, for any given j, almost every v ∈ Rn
is a regular value of both maps Rn × R 3 (x, t) 7→ H5

j (x, t) ∈ R
n and

R
n 3 x 7→ H5

j (x,R) ∈ Rn. So we may pick wj ∈ Bj which is a regular
value of both maps. Since vj → 0 as j → ∞ and ‖wj − vj‖ < εj < 2−j , we
can conclude that limj→∞ wj = 0.

We now fix a j. Let S = {(x, t) ∈ Rn × R : H5
j (x, t) = wj}. Then S is the

set of zeros of the polynomial map

R
n × R 3 (x, t) 7→ H5

j (x, t)− wj ∈ Rn ,

which does not have 0 as a regular value. It follows that S is a closed embedded
one-dimensional submanifold of Rn × R, so each connected component of
S is a closed embedded one-dimensional submanifold of Rn × R which is
diffeomorphic to R or to the circle S1 = {(x, y) ∈ R2 : x2 + y2 = 1}. Since
H5
j (wj , 0) = wj , the point (wj , 0) belongs to a connected component C of

Sj . Since C is diffeomorphic to R or S1, the set X of all smooth vector fields
X on C such that ‖X(x)‖ = 1 for every x ∈ C has exactly two members.
Fix an X ∈ X , so the other member of X is −X. The vector X(wj , 0) is then
tangent to C at (wj , 0), and therefore belongs to the kernel of DH5

j (wj , 0). On
the other hand, the differential at wj of the map Rn 3 x 7→ H5

j (x, 0) ∈ Rn is
the identity map, which is injective. It follows that the vector X(wj , 0) is not
tangent to Rn×{0}. Hence X(wj , 0) = (ω, r), with ω ∈ Rn, r ∈ R, and r 6= 0.
We may then assume, after relabeling −X as X, if necessary, that r > 0.

Next, still keeping j fixed, we let γq be, for each q ∈ C, the maximal
integral curve of X such that γq(0) = q. Then each γq is defined, in principle,
on an interval Iq = ]αq, βq[ , where −∞ ≤ αq < 0 < βq ≤ +∞. It turns out,
however, that the numbers αq, βq cannot be finite. (For example, suppose
βq was finite. Then the limit p = limt↑βq γq(t) would exist, as a limit in
the ambient space Rn × R, because γq is Lipschitz. Then p would have to
belong to C, since C is closed, and p would also be the limit in C of γq(t)
as t ↑ βq, because C is embedded. Hence we would be able to extend γq to a
continuous map from the interval Iq = ]αq, βq] to C such that γq(βq) = p, and
concatenate this with an integral curve γ̃ : [βq, βq+ε[ 7→ C such that γ̃(βq) = p,
thereby obtaining an extension of γq to a larger interval, and contradicting
the maximality. of γq. A similar argument works for αq. So αq = −∞ and
βq = +∞.) Therefore Iq = R for every q ∈ C. Clearly, the set Aq = γq(R)
is an open submanifold of C. Furthermore, if q, q′ ∈ C then the sets Aq, Aq′
are either equal or disjoint. Since C is connected, all the sets Aq coincide and
are equal to C. In particular, if we let q̄ = (wj , 0), and write γ = γq̄, then
γ(R) = C. Write γ(t) = (ξ(t), τ(t)), ξ(t) ∈ Rn, τ(t) ∈ R. Then there exists
a positive number δ such that ξ(t) ∈ Int(K) for −δ < t < δ and tτ(t) > 0
for 0 < |t| < δ. It follows, after making δ smaller, if necessary, that γ(t) is an
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interior point of K× [0, R] for 0 < t < δ. If C is diffeomorphic to S1, then γ is
periodic, so there exists a smallest time T > 0 such that γq̄(T ) = γ(0). Then
γ(T − h) = γ(−h) for small positive h, so τ(T − h) = τ(−h) < 0 for such h,
implying that γ(t) /∈ K × [0, R] when t < T and T − t is small enough. It
follows that it is not true that γ(t) ∈ K × [0, R] for all t ∈ [0, T ]. If we let
M = {t ∈ [0, T ] : γ(t) /∈ K × [0, R]}, then M is a nonempty relatively open
subset of [0, T ]. Let T0 = inf M . Then T0 > 0, because γ(t) ∈ K× [0, R] when
0 ≤ t < δ. Therefore T0 /∈ M , because if T0 ∈ M then the facts that M is
relatively open in [0, T ] and T0 > 0 would imply that T0 − h ∈ M for small
positive h, contradicting the fact that T0 = inf M . It follows that

(&) T0 > 0, γ(t) ∈ K × [0, R] for 0 ≤ t ≤ T0, γ(T0 + h`) /∈ K × [0, R] for a
sequence {h`}`∈N of positive numbers converging to 0, and γ is an injective
map on [0, T0].

So we have proved the existence of a T0 for which (&) is true, under the
hypothesis that C is diffeomorphic to S1.

We now show, still keeping j fixed, that a T0 for which (&) holds also
exists if C is diffeomorphic to R. To prove this, we define a set M by letting
M = {t ∈ [0,+∞[ : γ(t) /∈ K × [0, R]}. Then M is a relatively open subset of
[0,+∞[ . Furthermore, M 6= ∅. (Proof. If M was empty, then γ(t) would
belong to K × [0, R] for all positive t. So we could pick a sequence {t`}`∈N of
positive numbers converging to +∞ and such that γ(t`) converges to a limit
q. But then q ∈ C, because C is closed, and the equality lim`→∞ γ(t`) = q
also holds in C, because C is embedded. Since C is embedded, there exists a
neighborhood U of q in Rn×R which is diffeomorphic to a product −]ρ, ρ[n+1

under a map Φ : U 7→ −]ρ, ρ[n+1 that sends q to 0 and is such that Φ(U ∩C) is
the arc A = {(s, 0, . . . , 0) : −ρ < s < ρ}. Then γ(t`) ∈ A if ` is large enough.
But A itself, suitably parametrized, is an integral curve ]α, β[3 t 7→ ζ(t) of
X such that α < 0 < β and ζ(0) = q. It follows that for large enough `
there exist h` ∈ ]α, β[ such that h` → 0 as ` → ∞ and ζ(h`) = γ(t`). Let
T ∈ R be such that γ(T ) = q. Then γ(T + h`) = ζ(h`) = γ(t`). Since the
t` go to +∞, but the T + h` are bounded, there must exist at least one `
such that T + h` 6= t`. Since γ(T + h`) = ζ(h`) = γ(t`), it follows that γ is
periodic and then C = γ(R) is compact, contradicting the assumption that C
is diffeomorphic to R.) Let T0 = inf M . Then T0 > 0, because γ(t) ∈ K×[0, R]
when 0 ≤ t < δ. Therefore T0 /∈M , because if T0 ∈M then the facts that M
is relatively open in [0,+∞[ and T0 > 0 would imply that T0 − h ∈ M for
small positive h, contradicting the fact that T0 = inf M . Hence (&) holds.

So we have shown that

(&&) For every j there exist a positive number T j0 and a smooth curve
[0,+∞[3 s 7→ γj(s) = (ξj(s), τ j(s)) ∈ Rn × R such that

(&&.1) γj0(0) = (wj , 0);
(&&.2) γj : (s) ∈ K × [0, R] for 0 ≤ s ≤ T j0 ;
(&&.3) there exists a sequence {h`}`∈N of positive numbers, converging to

0, such that γj(T j0 + h`) /∈ K × [0, R] for every `;
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(&&.4) γj is an injective map on [0, T j0 ];
(&&.5) H5

j (γj(s)) = wj for every s ∈ [0, T j0 ].

We now let Zj = γj([0, T j0 ]) for every j ∈ N. Then each Zj is a compact
connected subset of K×[0, R], such that (wj , 0) ∈ Zj and the function H5

j −wj
vanishes on Zj . Furthermore, we claim that Zj ∩ (K × {R}) 6= ∅. (Proof.
We show that γj(T j0 ) ∈ K × {R}. To see this, observe that (&&.2) implies
that γj(T j0 ) ∈ K × [0, R], and (&&.3) implies that γj(T j0 ) is not an interior
point of K × [0, R], so γj(T j0 ) ∈ ∂(K × [0, R]). On the other hand, it is
clear that ∂(K × [0, R]) = (∂K × [0, R]) ∪ (K × {0, R}). But γj(T j0 ) cannot
belong to ∂K× [0, R], because H5

j (γj(T j0 )) = wj and H5
j never takes the value

wj on ∂K × [0, R] (because wj ∈ Bj and Bj ∩ Pj = ∅). So γj(T j0 ) belongs
to (K × {0}) ∪ (K × {R}). But γj(T j0 ) cannot belong to K × {0}, because
γj(T j0 ) 6= γj(0) (thanks to (&&.4)), γj(0) = (wj , 0), and (wj , 0) is the only
point of K × {0} where H5

j − wj vanishes (since H5
j (x, 0) = x for all x). So

γj(T j0 ) ∈ K × {R}, as desired.)
Since Z = {Zj}j∈N is a sequence of nonempty compact connected subsets

of K × [0, R], Proposition 3.7 implies that we may assume, after passing to a
subsequence, that Z converges in the Hausdorff metric to a nonempty compact
connected subset Z of K × [0, R]. We now show that Z satisfies the three
properties of the conclusion of our theorem. First. we prove that 0 ∈ H(x, t)
whenever (x, t) ∈ Z. Pick a point (x, t) of Z. Then dist((x, t), Zj) goes to 0
as j → ∞. So we may pick (xj , tj) ∈ Zj such that xj → x and tj → t. Since
(xj , tj) ∈ Zj , the point ((xj , tj), wj) belongs to Gr(H5

j d (K × [0, R]). Since

H5
j d (K× [0, R])

igr−→ H, we may pick points ((x̃j , t̃j), w̃j) in Gr(H) such that

lim
j→∞

(
‖xj − x̃j‖+ |tj − t̃j |+ ‖wj − w̃j‖

)
= 0 . (16)

Since xj → x, tj → t, and wj → 0, (16) implies that ((x̃j , t̃j), w̃j)→ ((x, t), 0).
Since Gr(H) is compact, ((x, t), 0) belongs to Gr(H), so 0 ∈ H(x, t), as
desired. Next we show that Z ∩ (K × {0}) 6= ∅. To see this, it suffices to
observe that (wj , 0) ∈ Zj and wj → 0, so (0, 0) ∈ Z. Finally, we prove that
Zj ∩ (K × {R}) 6= ∅. For this purpose, we use the fact that Zj∩(K×{R}) 6= ∅
to pick points zj ∈ K such that (zj , R) ∈ Zj . Using the compactness of K,
pick an infinite subset J of N such that z = limj→∞,j∈J zj exists and belongs
to K. Then, since (zj , R) ∈ Zj , (zj , R)→ (z,R), and Zj → Z in the Hausdorff
metric, it follows that (z,R) ∈ Z, concluding our proof. ut

Kakutani-Fan-Glicksberg (KFG) maps. An important class of examples
of CCA maps consists of those that we will call Kakutani-Fan-Glicksberg
(abbreviated “KFG”) maps, because they occur in the celebrated finite-
dimensional Kakutani fixed point theorem as well as in its infinite-dimensional
version due to Fan and Glicksberg.
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Definition 3.11 If X is a metric space and C is a convex subset of a normed
space, a KFG map from X to C is a compactly-graphed set-valued map
F : X 7→→ C such that F (x) is convex and nonempty whenever x ∈ X. ut

Remark 3.12 It follows from Fact 3.3 that a set-valued map F : X 7→→ C
from a metric space X to a convex subset C of a normed space is a KFG
map if and only if it is an upper semicontinuous map with nonempty compact
convex values. ut

The following result is due to A. Cellina, cf. [3, 4, 6].

Theorem 3.13 If X is a metric space, C is a convex subset of a normed
space Y , F : X 7→→ C, and F is a KFG map, then F is a CCA map.

Proof. The definition of a KFG map implies that Gr(F dK) is compact and
nonempty whenever K is a nonempty compact subset of X, which is one of the
two conditions needed for F to be a CCA map. To prove the other condition,
we fix a nonempty compact subset K of X and prove that there exists a
sequence {Fj}∞j=1 of continuous maps Fj : K 7→ C such that Fj

igr−→ F dK as
j →∞.

For each positive number ε, select a finite subset Sε of K such that
K ⊆

⋃
s∈Sε BX(s, ε). For x ∈ K, s ∈ Sε, let ψs,ε(x) = max

(
0, ε − dX(x, s)

)
,

so ψs,ε : K 7→ R is continuous and nonnegative and ψs,ε(x) > 0 if and only

if x ∈ BX(s, ε). Define ϕs,ε(x) =
(∑

s′∈Sε ψs′,ε(x)
)−1

ψs,ε(x), so the ϕs,ε

are continuous nonnegative real-valued functions on K having the property
that

∑
s∈Sε ϕs,ε(x) = 1 for all x ∈ K. Using the fact that the sets F (x) are

nonempty, pick a ys,ε ∈ F (s) for each s ∈ Sε. Define Hε : K 7→ C by letting
Hε(x) =

∑
s∈Sε ϕs,ε(x)ys,ε. Then each Hε is continuous.

Now let {εj}j∈N be a sequence of positive numbers that converges to zero.

We claim that the Hεj
igr−→ F dK. To see this, we let

αj = sup{dX×Y (q,Gr(F dK)) : q ∈ Gr(Hεj )} ,

and prove that αj → 0. The proof will be by contradiction.
Assume that {αj} does not go to zero. Then we may pass to a subsequence

and assume that the αj are bounded below by a fixed strictly positive number
α. Pick a β such that 0 < β < α. Pick qj ∈ Gr(Hεj ) such that

dX×Y (qj ,Gr(F dK)) ≥ β . (17)

Write qj = (xj , yj). Then the xj belong to K, so we may assume, after passing
to a subsequence, that the limit x̄ = limj→∞ xj exists.

Fix a γ such that 0 < γ and 2γ < β. Pick a positive δ such that
dY (z, F (x̄)) < γ whenever w ∈ K, z ∈ F (w), and dX(x̄, w) ≤ δ. (The
existence of such a δ is easily proved: suppose, by contradiction, that there
exist sequences {wk}, {zk} in K such that zk ∈ F (wk), wk → x̄ as k →∞, and
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dY (zk, F (x̄)) ≥ γ; since Gr(F dK) is compact we may assume, after passing to
a subsequence, that the sequence {zk} converges to a limit z; since zk ∈ F (wk),
and wk → x̄, the compactness of Gr(F dK) also implies that z ∈ F (x̄); since
zk → z, we see that dY (zk, F (x̄))→ 0, and we have derived a contradiction.)

Now let j∗ ∈ N be such that

2 εj ≤ δ and dX(xj , x̄) ≤ min
(
γ,
δ

2

)
(18)

whenever j ≥ j∗. If j ≥ j∗, x = xj , and ε = εj , then all the terms in the
summation defining Hε for which dX(s, x̄) ≥ δ vanish, because dX(s, x̄) ≥ δ
implies dX(xj , s) ≥ δ

2 ≥ εj in view of (18), so ϕs,εj (xj) = 0. Therefore, if we
let yj = Hεj (xj), we have

yj = Hεj (xj) =
∑

s∈Ŝεj,x̄

ϕs,εj (xj)ys,εj , (19)

where Ŝεj ,x̄ =
{
s ∈ Sεj : dX(s, x̄) < δ

}
. For every s ∈ Ŝεj ,x̄, the point ys,εj

is in F (s), so dist(ys,εj , F (x̄)) < γ. Therefore we may pick ỹs,εj ∈ F (x̄) such
that ‖ys,εj − ỹs,εj‖ ≤ γ. If we let ỹj =

∑
s∈Ŝεj,x̄

ϕs,εj (xj)ỹs,εj , and compare

this with (19), we find ‖ỹj − yj‖ ≤
∑
s∈Ŝεj,x̄

ϕs,εj (xj)‖ỹs,εj − ys,εj‖ ≤ γ.

On the other hand, ỹj clearly is a convex combination of points of F (x̄), so
ỹj ∈ F (x̄), because F (x̄) is convex. Since ‖yj − ỹj‖ ≤ γ and dX(xj , x̄) ≤ γ for

j ≥ j∗, and the point q̃j
def= (x̄, ỹj) belongs to Gr(F dK), we can conclude that

dX×Y (qj ,Gr(F dK)) ≤ 2 γ < β if j ≥ j∗ This, together with formula (17),
shows that the assumption that αj does not go zero leads to a contradiction.
So αj → 0, and the proof is complete. ut

The Cellina, Kakutani, and Fan-Glicksberg fixed point theorems.
Many fixed point properties of continuous maps are also valid for CCA maps,
as we now show. Let us recall that, if A is a set, and F : A 7→→ A, then a fixed
point of F is a point a ∈ A such that a ∈ F (a).

Theorem 3.14 (Cellina, cf. [5]) Let K be a nonempty compact convex subset
of a normed space X, and let F : K 7→→ K be a CCA map. Then F has a fixed
point.

Proof. Let {Fj}j∈N be a sequence of continuous maps from K to K such that

Fj
igr−→ F as j → ∞. By the Schauder fixed point theorem, there exist xj

such that Fj(xj) = xj . Since K is compact we may pass to a subsequence,
if necessary, and assume that the sequence {xj}j∈N has a limit x ∈ K. Then
Fj(xj)→ x as well, so x ∈ F (x). ut

Corollary 3.15 (The Kakutani-Fan-Glicksberg fixed point theorem, cf.
Kakutani [13], Fan [10], Glicksberg [11].) Let K be a nonempty compact convex
subset of a normed space X. Let F : K 7→→ K be a set-valued map with a
compact graph and nonempty convex values. Then F has a fixed point.
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Proof. Theorem 3.13 tells us that F is a CCA map, and then Theorem 3.14
implies that F has a fixed point. ut

4 GDQs and AGDQs

We use Θ to denote the class of all functions θ : [0,+∞ [ 7→ [0,+∞] such that

• θ is monotonically nondecreasing (that is, θ(s) ≤ θ(t) whenever s, t are
such that 0 ≤ s ≤ t < +∞);

• θ(0) = 0 and lims↓0 θ(s) = 0.

If X,Y are FDNRLSs, we endow Lin(X,Y ) with the operator norm ‖ · ‖op
defined in (2). If Λ ⊆ Lin(X,Y ) and δ > 0, we define

Λδ = {L ∈ Lin(X,Y ) : dist(L,Λ) ≤ δ} ,

where dist(L,Λ) = inf{‖L − L′‖op : L′ ∈ Λ}. Notice that if L ∈ Lin(X,Y ),
then dist(L, ∅) = +∞. In particular, if Λ = ∅ then Λδ = ∅. Notice also that
Λδ is compact if Λ is compact and Λδ is convex if Λ is convex.

4.1 The basic definitions

Generalized differential quotients (GDQs). We assume that (1) X and
Y are FDNRLSs, (2) F : X 7→→ Y is a set-valued map; (3) x̄∗ ∈ X, (4) ȳ∗ ∈ Y ,
and (5) S ⊆ X.

Definition 4.1 A generalized differential quotient (abbreviated “GDQ”)
of F at (x̄∗, ȳ∗) in the direction of S is a compact subset Λ of Lin(X,Y )
having the property that for every neighborhood Λ̂ of Λ in Lin(X,Y ) there
exist U , G such that

(I) U is a neighborhood of x̄∗ in X;
(II) ȳ∗ +G(x) · (x− x̄∗) ⊆ F (x) for every x ∈ U ∩ S;

(III) G is a CCA set-valued map from U ∩ S to Λ̂. ut

We will use GDQ(F, x̄∗, ȳ∗, S) to denote the set of all GDQs of F at (x̄∗, ȳ∗)
in the direction of S.

Remark 4.2 The set Λ can, in principle, be empty. Actually, it is very easy
to show that the following three conditions are equivalent:

(1) ∅ ∈ GDQ(F, x̄∗, ȳ∗, S);
(2) every compact subset of Lin(X,Y ) belongs to GDQ(F, x̄, ȳ, S);
(3) x̄∗ does not belong to the closure of S. ut

It is easy to prove the following alternative characterization of GDQs.



24 Héctor J. Sussmann

Proposition 4.3 Let X,Y be FDNRLSs, let F : X 7→→ Y be a set-valued map,
and let Λ be a compact subset of Lin(X,Y ). Let x̄∗ ∈ X, ȳ∗ ∈ Y , S ⊆ X. Then
Λ ∈ GDQ(F, x̄∗, ȳ, S) if and only if there exists a function θ ∈ Θ—called a
GDQ modulus for (Λ,F, x̄∗, ȳ∗, S)—having the property that

(*) for every ε ∈ ] 0,+∞ [ such that θ(ε) < ∞ there exists a set-valued map
Gε ∈ CCA(B̄X(x̄∗, ε)∩S, Lin(X,Y )) such that for every x ∈ B̄X(x̄∗, ε)∩S
the inclusions Gε(x) ⊆ Λθ(ε) and ȳ∗ +Gε(x) · (x− x̄∗) ⊆ F (x) hold.

Proof. Assume that Λ belongs to GDQ(F, x̄∗, ȳ∗, S). For each nonnegative
real number ε, let H(ε) be the set of all δ such that (i) δ > 0, and
(ii) there exists a G ∈ CCA(B̄X(x̄∗, ε)∩S, Lin(X,Y )) with the property that
G(x) ⊆ Λδ and ȳ∗ + G(x) · (x − x̄∗) ⊆ F (x) whenever x ∈ B̄X(x̄∗, ε) ∩ S.
Let θ0(ε) = inf H(ε), and then define θ(ε) = θ0(ε) + ε. (Notice that
the set H(ε) could be empty, in which case θ0(ε) = θ(ε) = +∞.) It is
clear that θ is monotonically non-decreasing, since H(ε′) ⊆ H(ε) whenever
0 ≤ ε < ε′. The fact that Λ ∈ GDQ(F, x̄∗, ȳ∗, S) implies that, given any
positive δ, there exist a neighborhood U of x̄∗ and a map G̃ ∈ CCA(U ∩ S,Λδ)
such that ȳ∗ + G̃(x) · (x− x̄∗) ⊆ F (x) whenever x ∈ U ∩ S. Find ε such that
B̄X(x̄∗, ε) ⊆ U , and let G = ι2 ◦ G̃ ◦ ι1, where ι1 : B̄X(x̄∗, ε) ∩ S 7→ U ∩ S
and ι2 : Λδ 7→ Lin(X,Y ) are the set inclusions. Then it is clear that G
belongs to CCA(B̄X(x∗, ε) ∩ S, Lin(X,Y )), and also that G(x) ⊆ Λδ and
ȳ∗ +G(x) · (x− x̄∗) ⊆ F (x) whenever x ∈ B̄X(x̄∗, ε)∩S. Therefore δ ∈ H(ε),
so θ0(ε) ≤ δ. This proves that limε↓0 θ0(ε) = 0, thus establishing that
θ0 ∈ Θ, and then θ ∈ Θ as well. Finally, if θ(ε) < +∞, then we can
pick a δ ∈ H(ε) such that θ0(ε) ≤ δ ≤ θ(ε), and then find a G belonging
to CCA(B̄X(x̄∗, ε) ∩ S, Lin(X,Y )) for which the conditions G(x) ⊆ Λδ and
ȳ∗ +G(x) · (x− x̄∗) ⊆ F (x) hold whenever x ∈ B̄X(x̄∗, ε)∩S. Since δ ≤ θ(ε),
the map G takes values in Λθ(ε). Hence we can choose Gε to be G, and the
condition of (*) is satisfied.

To prove the converse, let θ be a GDQ modulus for Λ,F, x̄∗, ȳ∗, S. Fix
a positive number δ. Pick an ε such that θ(ε) < δ. Then pick Gε such
that the conditions of (*) hold. Then the map Gε satisfies the requirement
that ȳ∗ + Gε · (x − x̄∗) ⊆ F (x) whenever x ∈ B̄X(x̄∗, ε) ∩ S. Furthermore,
Gε ∈ CCA(B̄X(x̄∗, ε) ∩ S, Lin(X,Y )), and Gε takes values in Λθ(ε). Since
θ(ε) < δ, if K is a compact subset of B̄X(x̄∗, ε) ∩ S, and {Gj}j∈N is a sequence

of continuous maps from K to Lin(X,Y ) such that Gj
igr−→ Gε dK, then Gj

takes values in Λδ if j is large enough. Therefore Gε ∈ CCA(B̄n(x̄∗, ε)∩S,Λδ).
This shows that Λ ∈ GDQ(F, x̄∗, ȳ∗, S), concluding our proof. ut

Approximate generalized differential quotients (AGDQs) Motivated
by the characterization of GDQs given in Proposition 4.3, we now define a
slightly larger class of generalized differentials. First, if X, Y are FDNRLSs,
we let Aff(X,Y ) be the set of all affine maps from X to Y , so the members
of Aff(X,Y ) are the maps X 3 x 7→A(x) =L · x+h , L∈Lin(X,Y ), h∈ Y .
(For a map A of this form, the linear map L ∈ Lin(X,Y ) and the vector
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h ∈ Y are the linear part and the constant part of A.) We identify Aff(X,Y )
with Lin(X,Y ) × Y by identifying each A ∈ Aff(X,Y ) with the pair
(L, h) ∈ Lin(X,Y )× Y , where L, h are, respectively, the linear part and the
constant part of A.

Definition 4.4 Assume that X,Y are FDNRLSs, F : X 7→→ Y is a set-valued
map, Λ is a compact subset of Lin(X,Y ), x̄∗ ∈ X, ȳ∗ ∈ Y , and S ⊆ X. We
say that Λ is an approximate generalized differential quotient of F at
(x̄∗, ȳ∗) in the direction of S—and write Λ∈AGDQ(F, x̄∗, ȳ∗, S)—if there
exists a function θ ∈ Θ—called an AGDQ modulus for (Λ,F, x̄∗, ȳ∗, S)—
having the property that

(**) for every ε ∈ ]0 0,+∞ [ such that θ(ε) < ∞ there exists a set-valued
map Aε ∈ CCA(B̄X(x̄∗, ε) ∩ S,Aff(X,Y ) such that

L ∈ Λθ(ε) , ‖h‖ ≤ θ(ε)ε , and ȳ∗ + L · (x− x̄∗) + h ∈ F (x)

whenever x ∈ B̄X(x̄∗, ε) ∩ S and (L, h) belongs to Aε(x) . ut

4.2 Properties of GDQs and AGDQs

Retracts, quasiretracts and local quasiretracts In order to formulate
and prove the chain rule, we first need some basic facts about retracts.

Definition 4.5 Let T be a topological space and let S be a subset of T . A
retraction from T to S is a continuous map ρ : T 7→ S such that ρ(s) = s
for every s ∈ S. We say that S is a retract of T if there exists a retraction
from T to S. ut

Often, the redundant phrase “continuous retraction” will be used for emphasis,
instead of just saying “retraction.”

It follows easily from the definition that

Fact 4.6 If T is a Hausdorff topological space and S is a retract of T , then
S is closed. ut

Also, it is easy to show that every retract is a “local retract” at any point,
in the following precise sense:

Fact 4.7 If T is a Hausdorff topological space, S is a retract of T , and s ∈ S,
then every neighborhood U of s contains a neighborhood V of s such that S∩V
is a retract of V . ut

It will be convenient to introduce a weaker concept, namely, that of a
“quasiretract,” as well as its local version.

Definition 4.8 Let T be a topological space and let S be a subset of T . We
say that S is a quasiretract of T if for every compact subset K of S there
exist a neighborhood U of K and a continuous map ρ : U 7→ S such that
ρ(s) = s for every s ∈ K. ut
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Definition 4.9 Assume that T is a topological space, S ⊆ T , and s̄∗ ∈ T . We
say that S is a local quasiretract of T at s̄∗ if there exists a neighborhood
U of s̄∗ such that S ∩ U is a quasiretract of U . ut

It is then easy to verify the following facts.

Fact 4.10 If T is a topological space and S ⊆ T , then

(1) if S is a retract of T then S is a quasiretract of T ;
(2) if S is a quasiretract of T and Ω is an open subset of T then S ∩ Ω is a

quasiretract of Ω. ut

Fact 4.11 Assume that T is a topological space, S ⊆ T , and s̄∗ ∈ T . Then
the following are equivalent:

(a) S is a local quasiretract of T at s̄∗;
(b) every neighborhood V of s̄∗ contains an open neighborhood U of s̄∗ in T

such that S ∩ U is a quasiretract of U . ut

Fact 4.11 implies, in particular, that being a local quasiretract is a local-
homeomorphism invariant property of the germ of S at s̄∗. Precisely,

Corollary 4.12 Assume that T, T ′ are topological spaces, S ⊆ T , S′ ⊆ T ′,
s̄∗ ∈ T , and s̄′∗ ∈ T ′. Assume that there exist neighborhoods V , V ′ of s̄∗, s̄′∗ in
T, T ′, and a homeomorphism h from V onto V ′ such that h(S ∩ V ) = S′ ∩ V ′
and h(s̄∗) = s̄′∗. Then S is a local quasiretract of T at s̄∗ if and only if S′ is
a local quasiretract of T ′ at s̄′∗.

Proof. It clearly suffices to prove one of the two implications. Assume that S
is a local quasiretract of T at s̄∗. Then Fact 4.11 implies that there exists an
open subset U of T such that s̄∗ ∈ U , U ⊆ V , and S ∩ U is a quasiretract
of U . Let U ′ = h(U). Since h is a homeomorphism, U ′ is a relatively open
subset of V ′ such that s̄′∗ ∈ U ′, and S′ ∩ U ′ is a quasiretract of U ′. Since V ′

is a neighborhood of s̄′∗ in T ′, it follows that U ′ is a neighborhood of s̄′∗ in T ′,
so Definition 4.9 tells us that S′ is a local quasiretract of T ′ at s̄′∗. ut

Remark 4.13 The set S = {(x, y) ∈ R2 : y > 0} ∪ {(0, 0)} is a quasiretract
of R2. (Indeed, if K is a compact subset of S, then the convex hull K̂ of K
is also compact, and K̂ ⊆ S because S is convex. Therefore K̂ is a retract of
R

2. If ρ : R2 7→ K̂ is a retraction, then ρ maps R2 into S, and ρ(s) = s for
every s ∈ K.)

On the other hand, S is not a retract of R2, because S is not a closed subset
of R. This shows that the notion of quasiretract is strictly more general than
that of a retract.

The same is true for the notions of “local quasiretract” and “local retract.”
For example, the set S of our previous example is a local quasiretract at the
origin, but it is not a local retract at (0, 0), because there does not exist a
neighborhood V of (0, 0) such that S ∩V is a relatively closed subset of V . ut
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The chain rule. We now prove the chain rule for GDQs and AGDQs.

Theorem 4.14 For i = 1, 2, 3, let Xi be a FDNRLS, and let x̄∗,i be a point
of Xi. Assume that, for i = 1, 2, (i) Fi : Xi 7→→ Xi+1 is a set-valued map,
(ii) Si is a subset of Xi, and (iii) Λi ∈ AGDQ(Fi, x̄∗,i, x̄∗,i+1, Si). Assume,
in addition, that (iv) F1(S1) ⊆ S2, and

(v) either (v.1) S2 is a local quasiretract of X2 at x̄∗,2 or (v.2) there exists a
neighborhood U of x̄∗,1 in X1 such that the restriction F1 d (U ∩S1) of F1

to U ∩ S1 is single-valued.

Then Λ2 ◦ Λ1 ∈ AGDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1). Furthermore, if the sets Λ1,
Λ2 belong to GDQ(F1, x̄∗,1, x̄∗,2, S1) and GDQ(F2, x̄∗,2, x̄∗,3, S2), respectively,
then Λ ∈ GDQ(F, x̄∗,1, x̄∗,3, S1).

Proof. We assume, as is clearly possible without loss of generality, that
x̄∗,i = 0 for i = 1, 2, 3. We let F def= F2◦F1, Λ def= Λ2◦Λ1. We will first prove the
conclusion for AGDQs, and then indicate how to make a trivial modification
to obtain the GDQ result.

To begin with, let us fix AGDQ moduli θ1, θ2 for (Λ1, F1, 0, 0, S1) and
(Λ2, F2, 0, 0, S2), respectively. Also, let κi = 1 + sup

{
‖L‖ : L ∈ Λi

}
, for

i = 1, 2. (We add 1 to make sure that κi > 0 even if Λi = {0}.) It is then easy
to see that Λδ22 ◦Λ

δ1
1 ⊆ Λκ2δ1+κ1δ2+δ1δ2 if δ1 ≥ 0, δ2 ≥ 0. (Indeed, if L1 ∈ Λδ11 ,

L2 ∈ Λδ22 , we may pick L̃1 ∈ Λ1, L̃2 ∈ Λ2 such that ‖L̃1 − L1‖ ≤ δ1 and
‖L̃2 − L2‖ ≤ δ2. Then ‖L̃2L̃1 − L2L1‖ ≤ ‖L̃2L̃1 − L̃2L1‖ + ‖L̃2L1 − L2L1‖,
so ‖L̃2L̃1 − L2L1‖ ≤ ‖L̃2‖ ‖L̃1 − L1‖+ ‖L̃2 − L2‖ ‖L1‖ ≤ (κ2 + δ2)δ1 + κ1δ2,
showing that L2L1 ∈ Λκ2δ1+κ1δ2+δ1δ2 .)

We now use Hypothesis (5). If S2 is a local quasiretract of X2 at 0, then
we choose a neighborhood U of 0 in X2 such that S2 ∩ U is a quasiretract of
U , and then we choose a positive number σ̄ such that the open ball BX2(0, σ̄)
is contained in U . Then Fact 4.10 implies that S2∩BX2(0, σ̄) is a quasiretract
of BX2(0, σ̄). If S2 is not a local quasiretract of X2, then Hypothesis (5)
guarantees that F1 d (U ∩ S1) is single-valued for some neighborhood U of 0
in X1. In this case, we choose a positive ε̄ such that F1 is single-valued on
B̄X1(0, ε̄) ∩ S1, and then take σ̄ to be equal to ε̄.

Then, for ε ∈ ] 0,+∞ [ , we define σ0
ε = (κ1 + 2θ1(ε))ε, σε = σ0

ε + ε,

θ0(ε) = κ2θ1(ε) + κ1θ2(σε) + 3θ1(ε)θ2(σε) , θ(ε) =
{
θ0(ε) if σε < σ̄
+∞ if σε ≥ σ̄ .

Let us show that θ is an AGDQ modulus for (Λ,F, 0, 0, S1). For this purpose,
we first observe that θ ∈ Θ. We next fix a positive ε such that θ(ε) is finite,
and set out to construct a CCA map A : B̄X1(0, ε) ∩ S1 7→→ Lin(X1, X3)×X3

such that(
x ∈ B̄X1(0, ε) ∩ S1 ∧ (L, h) ∈ A(x)

)
⇒(

L ∈ Λθ(ε) ∧ ‖h‖ ≤ θ(ε)ε ∧ L · x+ h ∈ F (x)
)
. (20)
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The fact that θ(ε) < +∞ clearly implies that σε < σ̄, θ(ε) = θ0(ε),
θ1(ε) < +∞, and θ2(σε) < +∞. We may therefore choose set-valued maps

A1 ∈ CCA(B̄X1(0, ε) ∩ S1, Lin(X1, X2)×X2) ,
A2 ∈ CCA(B̄X2(0, σε) ∩ S2, Lin(X2, X3)×X3) ,

such that the conditions

L1 ∈ Λθ1(ε)
1 , ‖h1‖ ≤ θ1(ε)ε , L1 · x+ h1 ∈ F1(x) , (21)

L2 ∈ Λθ2(σε)
2 , ‖h2‖ ≤ θ2(σε)σε , L2 · y + h2 ∈ F2(y) (22)

hold whenever x ∈ B̄X1(0, ε) ∩ S1, (L1, h1) ∈ A1(x), y ∈ B̄X2(0, σε) ∩ S2, and
(L2, h2) ∈ A2(y).

We then define our desired set-valued map A from B̄X1(0, ε) ∩ S to
Lin(X1, X3)×X3 as follows. For each x ∈ B̄X1(0, ε) ∩ S1, we let

A(x) =
{

(L2 · L1, L2h1 + h2) : (L1h1) ∈ A1(x) , (L2, h2) ∈ A2(L1 · x+ h1)
}
.

Assume that x ∈ B̄X1(0, ε) ∩ S1 and (L, h) ∈ A(x), and let z = L · x + h.
Then there exist (L1, h1) ∈ A1(x) and (L2, h2) ∈ A2(L1 · x + h1) such that
L = L2 · L1 and h = L2h1 + h2. The fact that (L1, h1) ∈ A1(x) implies that
L1 ∈ Λθ(ε)1 , ‖h1‖ ≤ θ1(ε)ε, and ydef=L1 · x+ h1 ∈ F1(x). Then y ∈ S2 (because
F1(S1) ⊆ S2), and ‖y‖ ≤ (κ1 + θ1(ε))ε+ θ1(ε)ε = σ0

ε < σε, so

y ∈ B̄X2(0, σ0
ε) ∩ S2 ⊆ BX2(0, σε) ∩ S2 (23)

and then L2 ∈ Λ
θ(σε)
2 , ‖h2‖ ≤ θ2(σε)σε, and L2 · y + h2 ∈ F2(y). It follows

that L = L2L1 ∈ Λκ1θ2(σε)+κ2θ1(ε)+θ2(σε)θ1(ε) ⊆ Λθ(ε). Also,

‖h‖ ≤ ‖L2‖ ‖h1‖+ ‖h2‖
≤ (κ2 + θ2(σε))θ1(ε)ε+ θ2(σε)σε
= (κ2 + θ2(σε))θ1(ε)ε+ θ2(σε)(κ1 + 2θ1(ε))ε

=
(
κ2θ1(ε) + θ2(σε)θ1(ε) + θ2(σε)κ1 + 2θ2(σε)θ1(ε)

)
ε

=
(
κ2θ1(ε) + θ2(σε)κ1 + 3θ2(σε)θ1(ε)

)
ε

= θ(ε)ε .

Finally,

z = L·x+h = L2L1 ·x+L2 ·h1+h2 = L2(L1 ·x+h1)+h2 = L2 ·y+h2 ∈ F2(y) .

Since y ∈ F1(x), we conclude that z ∈ F (x). Hence A satisfies (20).
To conclude our proof, we have to show that

A ∈ CCA(B̄n(0, ε) ∩ S1, Lin(X1, X3)×X3) . (24)
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We let

Q1,ε = B̄X1(0, ε) ∩ S1 , T1,ε = Q1,ε × Lin(X1, X2)×X2 ×X2 ,

R1,ε = B̄X2(0, σε) ∩ S2 , T2,ε = Q1,ε × Lin(X1, X2)×X2 ×R1,ε ,

and let Ψ1,ε be the set-valued map with source Q1,ε and target T1,ε that sends
each x ∈ Q1,ε to the set Ψ1,ε(x) of all 4-tuples (ξ, L1, h1, y) ∈ T1,ε such that
ξ = x, (L1, h1) ∈ A1(x), and y = L1 · x + h1. We then observe that Ψ1,ε

takes values in T2,ε. (This is trivial, because we have already established—cf.
(23)—that if x ∈ Q1,ε, (L1, h1) ∈ A1(x), and y = L1 · x+ h1, then y ∈ R1,ε.)

Let Ψ̃1,ε be “Ψ1,ε regarded as a set-valued map with target T2,ε.” (Precisely,
Ψ̃1,ε is the set-valued map with source Q1,ε, target T2,ε, and graph Gr(Ψ1,ε).)

We now show that Ψ̃1,ε ∈ CCA(Q1,ε, T2,ε). To prove this, we pick a
compact subset K of Q1,ε, and show that (a) Gr(Ψ̃1,ε dK) is compact, and
(b) there exists a sequence H = {Hj}j∈N of continuous maps Hj : K 7→ T2,ε

such that Hj
igr−→ Ψ̃1,ε dK as j →∞.

The compactness of Gr(Ψ̃1,ε dK) follows from the fact that Gr(Ψ̃1,ε dK) is
the image of Gr(A1 dK) under the continuous map

Q1,ε×Lin(X1, X2)×X2 3 (x, L1, h1) 7→ (x, (x, L1, h1, L1 ·x+h1) ∈ Q1,ε×T1,ε .

To prove the existence of the sequence H, we use the fact that A1 belongs
to CCA(Q1,ε, Lin(X1, X2)×X2) to produce a sequence {Aj1}j∈N of ordinary

continuous maps from K to Rn2×n1×Rn2 such that Aj1
igr−→ A1 dK as j →∞,

and we write Aj1(x) = (Lj1(x), hj1(x)) for x ∈ K.
We will construct H in two different ways, depending on whether (v.1) or

(v.2) holds.
First suppose that (v.1) holds. The set

K = {L1 · x+ h1 : (x, L1, h1) ∈ Gr(A1 dK)} (25)

is compact, and we know from (23) that every y ∈ K is a member of
BX2(0, σε) ∩ S2. Since BX2(0, σ̄) ∩ S2 is a quasiretract of BX2(0, σ̄), and
σε < σ̄, Fact 4.10 implies that BX2(0, σε) ∩ S2 is a quasiretract of BX2(0, σε).
Hence there exist an open subset Ω of BX2(0, σε) and a continuous map
ρ : Ω 7→ BX2(0, σε) ∩ S2 such that ρ(y) = y whenever y ∈ K. Since

Aj1
igr−→ A1 dK, the functions Aj1 must satisfy

{Lj1(x) · x+ hj1(x) : x ∈ K} ⊆ Ω (26)

for all sufficiently large j. (Otherwise, there would exist an infinite subset
J of N and xj ∈ K such that yj = Lj1(xj) · xj + hj1(xj) /∈ Ω. By making J
smaller—but still infinite—if necessary, we may assume that the sequence
{(xj , Lj1, h

j
1)}j∈J converges to a limit (x, L1, h1) ∈ Gr(A1 dK). Then if we let

y = L1 · x + h1, we see that y ∈ K. On the other hand, the yj are not in Ω,
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so y is not in Ω either, because Ω is open. Since K ⊆ Ω, we have reached a
contradiction.)

So we may assume, after passing to a subsequence, that (26) holds for
all j ∈ N. We then define Hj(x) = (x, Lj1(x), hj1(x), ρ(Lj1(x) · x + hj1(x))) for
x ∈ K, j ∈ N. Then the Hj are continuous maps from K to T2,ε, because ρ
takes values in R1,ε.

We now show that Hj
igr−→ Ψ̃1,ε dK as j goes to ∞. To prove this, we let

νj = sup{dist(q,Gr(Ψ̃1,ε dK) : q ∈ Gr(Hj)}, and assume that νj does not go
to zero. We may then assume, after passing to a subsequence, that there exists
a ν̄ such that 0 < 2ν̄ ≤ νj for all j. We can then pick xj ∈ K such that

‖xj−x‖+‖Lj1(xj)−L1‖+‖hj1(xj)−h1‖+‖ρ(Lj1(xj)·x+hj1(xj))−y‖ ≥ ν̄ (27)

whenever (x, L1, h1, y) ∈ Gr(Ψ̃1,ε dK), j ∈ N. Since Aj1
igr−→ A1 dK, we may

clearly assume, after passing to a subsequence if necessary, that the sequence
{(xj , Lj1(xj), h

j
1(xj))}j∈N has a limit (x̄, L̄1, h̄1) ∈ Gr(A1 dK).

Let ȳ∗ = L̄1 · x̄ + h̄1. Then ȳ∗ ∈ K, because of (25) and the fact that
(x̄, L̄1, h̄1) ∈ Gr(A1 dK). Therefore ρ(ȳ∗) = ȳ∗. Furthermore, xj → x̄,
Lj1(xj) → L̄1, and hj1(xj) → h̄1. Hence Lj1(xj) · xj + hj1(xj) converges to

L̄1(x̄) · x̄ + h̄1 = ȳ∗. But then limj→∞

(
ρ(Lj1(xj) · x + hj1(xj))

)
= ρ(ȳ∗),

since ρ is continuous, so limj→∞

(
ρ(Lj1(xj) · x + hj1(xj))

)
= ȳ∗, and then

limj→∞ ‖ρ(Lj1(xj) · x+ hj1(xj))− ȳ∗‖ = 0. It follows that

‖xj−x̄‖+‖Lj1(xj)−L̄1‖+‖hj1(xj)−h̄1‖+‖ρ(Lj1(xj)·xj+hj1(xj))−ȳ∗‖ → 0 . (28)

Let ȳ∗ = (x̄, L̄, L̄ · x̄). Then ȳ∗ ∈ Gr(Ψ̃1,ε dK), so (28) contradicts (27). This

concludes the proof of Hj
igr−→ Ψ̃1,ε dK as j → ∞. We have thus established

that the sequence H exists, under the assumption that (v.1) holds.
Next, we consider the case when (v.2) holds. Then σ̄ = ε̄, so the fact that

σε < σ̄ implies that ε < ε̄, and then the map F1 is single-valued onQ1,ε. Define
ϕ(x) = {L1 · x + h1 : (L1, h1) ∈ A1(x)} for x ∈ K. Since L1 · x + h1 ∈ F1(x)
whenever x ∈ K and (L1, h1) ∈ A1(x), the hypothesis that F1 is single-valued
on Q1,ε implies that ϕ is a single-valued CCA map from K to X2, so ϕ is an
ordinary continuous map fromK toX2. Since L1·x+h1 ∈ B̄X2(0, σε) whenever
x ∈ K, and (L1, h1) ∈ A1(x), we conclude that ϕ is in fact a continuous map
from K to R1,ε. We then define Hj(x) = (x, Lj1(x), hj1(x), ϕ(x)) for x ∈ K,
j ∈ N. Then the Hj are continuous maps from K to T2,ε, and it is easy to see

that Hj
igr−→ Ψ̃1,ε dK as j → ∞. So the existence of H has also been proved

when (v.2) holds.
We are now ready to prove (24). We do this by expressing A as a composite

of CCA maps as follows: A = Ψ3,ε ◦ Ψ2,ε ◦ Ψ̃1,ε, where

1. T3,ε = T2,ε × Lin(X2, X3)×X3;
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2. Ψ2,ε : T2,ε 7→→ T3,ε is the set-valued map that sends (x, L1, h1, y) ∈ T2,ε to

the set Ψ2,ε(x, L1, h1, y)def= {x} × {L1} × {h1} × {y} ×A2(y);
3. T4,ε = Lin(X1, X3)×X3;
4. Ψ3,ε : T3,ε 7→ T4,ε is the continuous single-valued map that sends

(x, L1, h1, y, L2, h2) ∈ T3,ε to the pair (L2L1, L2h1 + h2) ∈ T4,ε.

It is clear that Ψ2,ε and Ψ3,ε are CCA maps, so A is a CCA map, and our
proof for AGDQs is complete.

The proof of the statement for GDQs is exactly the same, except only for
the fact in this case all the constant components h of the various pairs (L, h)
are always equal to zero. ut

GDQs and AGDQs on manifolds. If M and N are manifolds of class
C1, x̄∗∈M , ȳ∗∈N , S⊆M , and F : M 7→→ N , then it is possible to define
sets GDQ(F, x̄∗, ȳ∗, S), AGDQ(F, x̄∗, ȳ∗, S) of compact subsets of the space
Lin(Tx̄∗M,Tȳ∗N) of linear maps from Tx̄∗M to Tȳ∗N as follows. We let
m = dimM , n = dimN , and pick coordinate charts M 3 x ↪→ ξ(x) ∈ Rm,
N 3 y ↪→ η(y) ∈ Rn, defined near x̄∗, ȳ∗ and such that ξ(x) = 0 and η(y) = 0,
and declare that a subset Λ of Lin(Tx̄∗M,Tȳ∗N) belongs to GDQ(F, x̄∗, ȳ∗, S)
(resp. to AGDQ(F, x̄∗, ȳ∗, S)) if the composite map Dη(ȳ∗) ◦ Λ ◦Dξ(x̄∗)−1

is in GDQ(η ◦ F ◦ ξ−1, 0, 0, ξ(S)) (resp. in AGDQ(η ◦ F ◦ ξ−1, 0, 0, ξ(S))). It
then follows easily from the chain rule that, with this definition, the sets
GDQ(F, x̄∗, ȳ∗, S) and AGDQ(F, x̄∗, ȳ∗, S) do not depend on the choice of the
charts ξ, η. In other words, the notions of GDQ and AGDQ are invariant un-
der C1 diffeomorphisms and therefore make sense intrinsically on manifolds
of class C1.

The following facts about GDQs and AGDQs on manifolds are then easily
verified.

Proposition 4.15 If M , N are manifolds of class C1, S ⊆ M , x̄∗ ∈ M ,
ȳ∗ ∈ N , and F : M 7→→ N , then

(1) GDQ(F, x̄∗, ȳ∗, S) ⊆ AGDQ(F, x̄∗, ȳ∗, S).
(2) If (i) U is a neighborhood of x̄∗ in M , (ii) the restriction F d (U ∩ S)

is a continuous everywhere defined map, (iii) ȳ∗ = F (x̄∗), (iv) F is
differentiable at x̄∗ in the direction of S, (v) L is a differential of F
at x̄∗ in the direction of S (that is, L belongs to Lin(Tx̄∗M,Tȳ∗N) and

limx→x̄∗,x∈S ‖x − x̄∗‖−1
(
F (x) − F (x̄∗) − L · (x − x̄∗)

)
= 0 relative to

some choice of coordinate charts about x̄∗ and ȳ∗), then {L} belongs to
GDQ(F, x̄∗, ȳ∗, S).

(3) If (i) U is an open neighborhood of x̄∗ in M , (ii) the restriction F dU
is a Lipschitz-continuous everywhere defined map, (iii) F (x̄∗) = ȳ∗, and
(iv) Λ is the Clarke generalized Jacobian of F at x̄∗, then Λ belongs to
GDQ(F, x̄∗, ȳ∗,M). ut

Proposition 4.16 (The chain rule.) Assume that (I) for i = 1, 2, 3, Mi

is a manifold of class C1 and x̄∗,i∈Mi, and (II) for i = 1, 2, (II.1) Si ⊆Mi,
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(II.2) Fi : Mi 7→→ Mi+1, and (II.3) Λi ∈ AGDQ(Fi, x̄∗,i, x̄∗,i+1, Si). Assume,
in addition, that either S2 is a local quasiretract of M2 or F1 is single-valued
on U∩S1 for some neighborhood U of x̄∗,1. Then the composite Λ2◦Λ1 belongs
to AGDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1). If in addition Λi ∈ GDQ(Fi, x̄∗,i, x̄∗,i+1, Si)
for i = 1, 2, then Λ2 ◦ Λ1 ∈ GDQ(F2 ◦ F1, x̄∗,1, x̄∗,3, S1). ut

Proposition 4.17 (The product rule.) Assume that, for i = 1, 2, (1) Mi

and Ni are manifolds of class C1, (2) Si ⊆Mi, (3) x̄∗,i ∈Mi, (4) ȳ∗,i ∈ Ni,
(5) Fi : Mi 7→→ Ni, (6) Λi ∈ AGDQ(Fi, x̄∗,i, ȳ∗,i, Si). Assume also that

(7) x̄∗ = (x̄∗,1, x̄∗,2), ȳ∗ = (ȳ∗,1, ȳ∗,2), and S = S1 × S2;
(8) F = F1×F2, where F1×F2 is the set-valued map from M1×M2 to N1×N2

that sends each point (x1, x2) ∈ M1 ×M2 to the subset F1(x1) × F2(x2)
of N1 ×N2;

(9) Λ = Λ1 × Λ2, where Λ1 × Λ2 is the set of all linear maps L1 × L2 for all
L1 ∈ Λ1, L2 ∈ Λ2, and L1 × L2 is the map

Tx̄∗,1M1 × Tx̄∗,2M2 3 (v1, v2) 7→ (L1v1, L2v2) ∈ Tȳ∗,1N1 × Tȳ∗,2N2,

and we are identifying Tx̄∗,1M1 × Tx̄∗,2M2 with T(x̄∗,1,x̄∗,2)(M1 ×M2) and
Tȳ∗,1N1 × Tȳ∗,2N2 with T(ȳ∗,1,ȳ∗,2)(N1 ×N2).

Then Λ ∈ AGDQ(F, x̄∗, ȳ∗, S). Furthermore, if Λi ∈ GDQ(Fi, x̄∗,i, ȳ∗,i, Si)
for i = 1, 2, then Λ ∈ AGDQ(F, x̄∗, ȳ∗, S). ut

Proposition 4.18 (Locality.) Assume that (1) M , N , are manifolds of class
C1, (2) x̄∗ ∈ M , (3) ȳ∗ ∈ N , (4) Si ⊆ M , (5) Fi : M 7→→ N for i = 1, 2,
and (6) there exist neighborhoods U , V of x̄∗, ȳ∗, in M , N , respectively,
such that U ∩ S1 = U ∩ S2 and (U × V ) ∩Gr(F1) = (U × V ) ∩Gr(F2).
Then (a) AGDQ(F1, x̄∗, ȳ∗, S1) = AGDQ(F2, x̄∗, ȳ∗, S2), and in addition
(b) GDQ(F1, x̄∗, ȳ∗, S1) = GDQ(F2, x̄∗, ȳ∗, S2). ut

Remark 4.19 It is easy to exhibit maps that have GDQs at a point x̄∗ but
are not classically differentiable at x̄∗ and do not have differentials at x̄∗ in
the sense of other theories such as Clarke’s generalized Jacobians, Warga’s
derivate containers, or our “semidifferentials” and “multidifferentials”. (A
simple example is provided by the function f :R 7→R given by f(x)=x sin 1/x
if x 6= 0, and f(0) = 0. The set [−1, 1] belongs to GDQ(f, 0, 0,R), but is not
a differential of f at 0 in the sense of any of the other theories.) ut

Closedness and monotonicity. GDQs and AGDQs have an important
closedness property. In order to state it, we first recall that, if Z is a
metric space, then (i) Comp0(Z) is the set of all compact subsets of Z,
(ii) Comp0(Z) has a natural non-Hausdorff topology TComp0(Z), defined
in §3. In particular, if X and Y are FDRLSs, then Comp0(Lin(X,Y ))
is the set of all compact subsets of Lin(X,Y ). Clearly, a subset O of
Comp0(Lin(X,Y )) is open in the topology TComp0(Lin(X,Y )) if and only if
for every Λ̄ ∈ O there exists an open subset Ω of Lin(X,Y ) such that
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(i) Λ̄ ⊆ Ω and (ii) {Λ ∈ Comp0(Lin(X,Y )) : Λ ⊆ Ω} ⊆ O. It is clear that
the topology TComp0(Lin(X,Y )) can be entirely characterized by its convergent
sequences. (That is, a subset C of Comp0(Lin(X,Y )) is closed if and only
if it is sequentially closed, i.e., such that, whenever {Λk}k∈N is a sequence
of members of C and Λ ∈ Comp0(Lin(X,Y )) is such that Λk → Λ in the
topology TComp0(Lin(X,Y )) as k →∞, it follows that Λ ∈ C.)

Furthermore, convergence of sequences is easily characterized as follows.

Fact 4.20 Assume that X and Y are FDRLSs, {Λk}k∈N is a sequence of
members of Comp0(Lin(X,Y )), and Λ belongs to Comp0(Lin(X,Y )). Then
Λk → Λ as k →∞ in the topology TComp0(Lin(X,Y )) if and only if

limk→∞ sup
{

dist(L,Λ) : L ∈ Λk
}

= 0. ut

The following result is then an easy consequence of the definitions of GDQ
and AGDQ.

Fact 4.21 If M , N are manifolds of class C1, F : M 7→→ N , (x̄∗, ȳ∗) ∈M×N ,
S ⊆ M , X = Tx̄∗M , and Y = Tȳ∗N , then the sets GDQ(F, x̄∗, ȳ∗, S) and
AGDQ(F, x̄∗, ȳ∗, S) are closed relative to the topology TComp0(Lin(X,Y )). ut

Fact 4.21 then implies that GDQs and AGDQs also have the following
monotonicity property.

Fact 4.22 If M , N are manifolds of class C1, F : M 7→→N , (x̄∗, ȳ∗)∈M×N ,
S ⊆M , Λ∈AGDQ(F, x̄∗, ȳ∗, S), Λ̃ ∈ Comp0(Lin(Tx̄∗M,Tȳ∗N)), and Λ⊆ Λ̃,
then Λ̃ ∈ AGDQ(F, x̄∗, ȳ∗, S). Furthermore, if Λ∈GDQ(F, x̄∗, ȳ∗, S) then Λ̃
belongs to GDQ(F, x̄∗, ȳ∗, S).

Proof. It suffices to use Fact 4.21 and observe that, under our hypotheses, Λ̃
belongs to the closure of the set {Λ} relative to TComp0(Lin(X,Y )). ut

In addition, GDQs and AGDQs also have a monotonicity property with
respect to F and S. Precisely, the following is a trivial corollary of the defini-
tions of GDQ and AGDQ.

Fact 4.23 Suppose that M , N are manifolds of class C1, (x̄∗, ȳ∗) ∈M ×N ,
S̃ ⊆ S ⊆M , F : M 7→→ N , F̃ : M 7→→ N , and Gr(F ) ⊆ Gr(F̃ ). Then

GDQ(F, x̄∗, ȳ∗, S) ⊆ GDQ(F̃ , x̄∗, ȳ∗, S̃)

and AGDQ(F, x̄∗, ȳ∗, S) ⊆ AGDQ(F̃ , x̄∗, ȳ∗, S̃) . ut

Fact 4.21 says in particular that every GDQ of a map is also a GDQ of
any “larger” map. On the other hand, it is perfectly possible for the “larger”
map to have smaller GDQs. For example, if f : R 7→ R is the function given
by f(x) = |x|, then the interval [−1, 1] is a GDQ of f at 0 in the direction
of R, and no proper subset of [−1, 1] has this property. But if we “enlarge”
f and consider the set-valued map F : R 7→→ R given by F (x) = [0, |x|], then
{0} ∈ GDQ(F, 0, 0,R).
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4.3 The directional open mapping and transversality properties

The crucial fact of GDQs and AGDQs that leads to the maximum principle
is the transversal intersection property, which is a simple consequence of the
directional open mapping theorem. We will now prove these results. As a
preliminary, we need information on pseudoinverses.

Linear (Moore-Penrose) pseudoinverses. If X, Y are FDRLSs and
L ∈ Lin(X,Y ), a linear right inverse of L is a linear map M ∈ Lin(Y,X)
such that L ·M = IY . It is clear that L has a right inverse if and only if it is
surjective. Let Linonto(X,Y ) be the set of all surjective linear maps from X
to Y . Since every L ∈ Linonto(X,Y ) has a right inverse, it is natural to ask if
it is possible to choose a right inverse I(L) for each L in a way that depends
continuously (or smoothly, or real-analytically) on L. One way to make this
choice is to let I(L) be L#, the “Moore-Penrose pseudoinverse” of L (with
respect to a particular inner product on X).

To define L#, assume X, Y are FDRLSs and endow both X and Y with
Euclidean inner products (although, as will become clear below, only the
choice of the inner product on X matters). Then every map L ∈ Lin(X,Y )
has an adjoint (or transpose) L† ∈ Lin(Y,X), characterized by the property
that 〈L†y, x〉 = 〈y, Lx〉 whenever x ∈ X, y ∈ Y . It is then easy to see that

Fact 4.24 If X and Y are FDRLSs endowed with Euclidean inner products,
then L ∈ Linonto(X,Y ) if and only if LL† is invertible. ut

Definition 4.25 If X and Y are FDRLSs endowed with Euclidean inner
products, and L ∈ Linonto(X,Y ), the Moore-Penrose pseudoinverse of
L is the linear map L# ∈ Lin(Y,X) given by L# = L†(LL†)−1, where the
symbol “†” stands for “adjoint.” ut

The following result is then a trivial consequence of the definition.

Fact 4.26 Suppose that X and Y are FDRLSs endowed with Euclidean inner
products. Then Linonto(X,Y ) is an open subset of the space Lin(X,Y ), and
the map Linonto(X,Y ) 3 L 7→ L# ∈ Lin(Y,X) is real-analytic. Furthermore,
the identity LL# = IX holds for all L ∈ Lin(X,Y ). ut

Remark 4.27 If X, Y , L are as in Definition 4.25, y ∈ Y , x = L#y, and ξ
is any member of L−1y, then

〈ξ, x〉 = 〈ξ, L#y〉 = 〈ξ, L†(LL†)−1y〉 = 〈Lξ, (LL†)−1y〉 = 〈y, (LL†)−1y〉 .

In particular, the above equalities are true for x in the role of ξ, so that
〈x, x〉 = 〈y, (LL†)−1y〉, and then 〈ξ, x〉 = 〈x, x〉, so 〈ξ − x, x〉 = 0. Therefore

‖ξ‖2 = ‖ξ−x+x‖2 = ‖ξ−x‖2 +‖x‖2 +2〈ξ−x, x〉 = ‖ξ−x‖2 +‖x‖2 ≥ ‖x‖2 .

It follows that L#y is the member of L−1y of minimum norm. This shows, in
particular, that the map L#y does not depend on the choice of a Euclidean
inner product on Y . ut
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More generally, we would like to find a pseudoinverse P of a given surjective
map L ∈ Lin(X,Y ) that, for a given v ∈ X, has the value v when applied to
Lv. This is clearly impossible if Lv = 0 but v 6= 0, because P0 has to be 0.
But, as we now show, it can be done as long as Lv 6= 0, with a P that depends
continuously on L and v.

To see this, we first define Ω(X,Y )={(L, v) :L∈Linonto(X,Y ) , Lv 6=0}.
We then fix inner products 〈·, ·〉

X
, 〈·, ·〉

Y
, on X, Y , and use L# to denote, for

L ∈ Linonto(X,Y ), the Moore-Penrose pseudoinverse of L corresponding to
these inner products. Then, for (L, v) ∈ Ω(X,Y ), we define

L#,v(y) = L#(y) +
〈y, Lv〉

Y

〈Lv, Lv〉
Y

(v − L#Lv) . (29)

Then it is clear that

Fact 4.28 If (L, v) belongs to Ω(X,Y ), then (1) L#,v is a linear map from
Y to X, (2) LL#,v = IY , and (3) L#,vLv = v. Furthermore, the map
Ω(X,Y ) 3 (L, v) 7→ L#,v ∈ Lin(Y,X) is real-analytic. ut

Pseudoinverses on cones. If X,Y are FDRLSs and C is a convex cone in
X, we define

Σ(X,Y,C)=
{

(L, y)∈Lin(X,Y )×Y :y∈ Int(LC)
}
. (30)

(Here “Int(LC)” denotes the absolute interior of LC, i.e., the largest open
subset U of Y such that U ⊆ LC.)

Lemma 4.29 Let X,Y be FDRLSs, let C be a convex cone in X, let SC be
the linear span of C, and let C

o

be the interior of C relative to SC . Then

(1) Σ(X,Y,C) is an open subset of Lin(X,Y )× Y .
(2) There exists a continuous map ηX,Y,C : Σ(X,Y,C) 7→ X such that the

following are true whenever (L, y) ∈ Σ(X,Y,C) and r ≥ 0:

ηX,Y,C(L, y) ∈ C
o

∪ {0} , (31)
LηX,Y,C(L, y) = y , (32)
ηX,Y,C(L, ry) = rηX,Y,C(L, y) . (33)

Proof. We assume, as we clearly may, that X and Y are endowed with inner
products, and we write Σ = Σ(X,Y,C), S = SC .

Statement (1) is trivial, because if (L̄, ȳ) ∈ Σ, and m = dim(Y ), then we
can find m + 1 points q0, . . . , qm in Int(L̄C) such that ȳ is an interior point
of the convex hull of the set Q = {q0, . . . , qm}. Then we can write qj = L̄pj ,
with pj ∈ C, for j = 0, . . . ,m. If L ∈ Lin(X,Y ) is close to L̄, and y ∈ Y is
close to ȳ, then the points qLj = Lpj belong to LC, and y is an interior point
of their convex hull, so y ∈ Int(LC), proving (1).
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For each (L̄, ȳ) ∈ Σ, we pick a point xL̄,ȳ ∈ C
o

such that L̄ · xL̄,ȳ = ȳ. (To

see that such a point exists, fix a z ∈ C
o

, and observe that ȳ− εL̄ · z ∈ L̄C if ε
is positive and small enough, because ȳ ∈ Int(L̄C), since (L̄, ȳ) ∈ Σ. Pick one
such ε, write ȳ−εL̄·z = L̄·x for an x ∈ C, and then let xL̄,ȳ = x+εz. It is then

clear that L̄ ·xL̄,ȳ = ȳ and xL̄,ȳ ∈ C
o

.) We then define a map µL̄,ȳ : Σ → X by
letting µL̄,ȳ(L, y) = xȳ,L̄+(LS)#(y−LSxL̄,ȳ) for (L, y) ∈ Σ, where LS denotes
the restriction of L to S (so LS ∈ Linonto(S, Y ), because LS ∈ Lin(S, Y ) and
y ∈ Int(LC) = Int(LSC) ⊆ Int(LSS), showing that Int(LSS) 6= ∅, so LS is
surjective).

Then µL̄,ȳ is a continuous map from Σ to S, and satisfies the identity
µL̄,ȳ(L̄, ȳ) = xL̄,ȳ. In addition, if (L, y) ∈ Σ,

L · µL̄,ȳ(L, y) = L · xL̄,ȳ + L · (LS)# · (y − L · xL̄,ȳ))
= L · xL̄,ȳ + y − L · xL̄,ȳ
= y .

Since µL̄,ȳ(L̄, ȳ) = xL̄,ȳ ∈ C
o

, C
o

is a relatively open subset of S, and µL̄,ȳ is
a continuous map from Σ to S, we can pick an open neighborhood VL̄,ȳ of

(L̄, ȳ) in Σ such that µL̄,ȳ(L, y) ∈ C
o

whenever (L, y) ∈ VL̄,ȳ.
The family V = {VL̄,ȳ}(L̄,ȳ)∈Σ of open sets is an open covering of Σ. So

we can find a locally finite set W of open subsets of Σ which is a covering of
Σ and a refinement of V. (That is, (a) every W ∈ W is an open subset of Σ,
(b) for every W ∈ W there exists (L̄, ȳ) ∈ Σ such that W ⊆ VL̄,ȳ, (c) every
(L, y) ∈ Σ belongs to some W ∈ W, and (d) every compact subset K of Σ
intersects only finitely many members of W.)

Let {ϕW }W∈W be a continuous partition of unity subordinate to the
covering W. (That is, (a) each ϕW is a continuous nonnegative real-valued
function on Σ such that support(ϕW ) ⊆ W , and (b)

∑
W∈W ϕW ≡ 1. Recall

that the support of a function ψ : Σ 7→ R is the closure in Σ of the set
{σ ∈ Σ : ψ(σ) 6= 0}.) Select, for each W ∈ W, a point (L̄W , ȳW ) ∈ Σ
such that W ⊆ VL̄W ,ȳW , and define η̃(L, y) =

∑
W∈W ϕW (L, y)µL̄W ,ȳW (L, y)

for (L, y) ∈ Σ. Then η̃ is a continuous map from Σ to X. If (L, y) ∈ Σ,
let W(L, y) be the set of all W ∈ W such that ϕW (L, y) 6= 0. Then
(L, y) ∈ W for every W ∈ W(L, y), so W(L, y) is a finite set. Clearly,
η̃(L, y) =

∑
W∈W(L,y) ϕW (L, y)µL̄W ,ȳW (L, y), and

∑
W∈W(L,y) ϕW (L, y) = 1.

If W ∈ W(L, y), then (L, y) ∈ W ⊆ VL̄W ,ȳW , so µL̄W ,ȳW (y, L) ∈ C
o

and
L · µL̄W ,ȳW (L, y) = y. So η̃(L, y) is a convex combination of points belonging

to C
o

, and then η̃(L, y) ∈ C
o

. Furthermore,

L · η̃(L, y)=
∑

W∈W(L,L)

ϕW (L, y)L · µL̄W ,ȳW (L, y)=
( ∑
W∈W(L,y)

ϕW (L, y)
)
y=y .

Hence, if we took ηX,Y,C to be η̃, we would be satisfying all the required
conditions, except only for the homogeneity property (33). In order to satisfy
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(33) as well, we define ηX,Y,C(L, y), for (L, y) ∈ Σ, by letting

ηX,Y,C(L, y) =

{
‖y‖η̃

(
L, y
‖y‖

)
if y 6= 0 ,

0 if y = 0 .

(This is justified, because if (L, y) ∈ Σ and y 6= 0 then
(
L. y‖y‖

)
∈ Σ as well.)

Then ηX,Y,C clearly satisfies (31), (32) and (33), and it is easy to verify
that ηX,Y,C is continuous. (Continuity at a point (L, y) of Σ such that y 6= 0
is obvious. To prove continuity at a point (L, 0) of Σ, we pick a sequence
{(Lj , yj)}j∈N of members of Σ such that Lj → L and yj → 0, and prove that
ηX,Y,C(Lj , yj)→ 0. If this conclusion was not true, there would exist a positive
number ε and an infinite subset J of N such that

‖ηX,Y,C(Lj , yj)‖ ≥ ε for all j ∈ J . (34)

In particular, if j ∈ J then yj 6= 0, so we can define a unit vector zj = yj
‖yj‖

and conclude that (Lj , zj) ∈ Σ and ηX,Y,C(Lj , yj) = ‖yj‖η̃(Lj , zj). Since
the zj are unit vectors, there exists an infinite subset J ′ of J such that the
limit z = limj→∞,j∈J′ zj exists. Since (L, 0) ∈ Σ, 0 is an interior point of the
cone LC, so LC = Y and then z ∈ Int(LC) as well. Therefore (L, z) ∈ Σ.
Since (Lj , zj) → (L, z) as j → ∞ via values in J ′, the continuity of η̃ on
Σ implies that η̃(Lj , zj)→ η̃(L, z) as j → ∞ via values in J ′. But then
ηX,Y,C(Lj , yj) → 0 as j →

J′ ∞, because ηX,Y,C(Lj , yj) = ‖yj‖η̃(Lj , zj) and
yj → 0. This contradicts (34).) So ηX,Y,C satisfies all our conditions, and the
proof is complete. ut

The open mapping theorem. We are now ready to prove the open mapping
theorem.

Theorem 4.30 Let X,Y be FDNRLSs, and let C be a convex cone in X. Let
F : X 7→→ Y be a set-valued map, and let Λ ∈ AGDQ(F, 0, 0, C). Let ȳ ∈ Y be
such that ȳ ∈ Int(LC) for every L ∈ Λ. Then

(I) there exist a closed convex cone D in X such that ȳ ∈ Int(D), and
positive constants ᾱ, κ, having the property that

(I.∗) for every y ∈ D such that 0 < ‖y‖ ≤ ᾱ there exists an x ∈ C such
that ‖x‖ ≤ κ‖y‖ and y ∈ F (x).

(II) Moreover, ᾱ and κ can be chosen so that
(II.∗) there exists a function ] 0, ᾱ] 3 α 7→ ρ(α) ∈ [0, 1 [ such that

limα↓0 ρ(α) = 0, for which, if we write C(r) = C ∩ B̄X(0, r), then
(II.∗.#) for every α ∈ ] 0, ᾱ] and every y ∈ D such that ‖y‖ = α

there exists a compact connected subset Zy of the product
C(κα)× [ρ(α), 1] having the following properties:

Zy ∩
(
C(κα)× {ρ(α)}

)
6= ∅ , Zy ∩

(
C(κα)× {1}

)
6= ∅ , (35)

ry∈F (x) and ‖x‖ ≤ κr‖y‖ whenever ρ(α) ≤r≤1 and (x, r)∈Zy . (36)
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(III) Finally, if Λ ∈ GDQ(F, 0, 0, C) then the cone D and the constants α,
κ can be chosen so that the following stronger conclusion holds:

(III.∗) if y∈D and ‖y‖≤ ᾱ then there exists a compact connected subset
Zy of C(κ‖y‖)×[0, 1] such that (0, 0)∈Zy, Zy∩

(
C(κα)×{1}

)
6=∅,

and ry∈F (x) whenever (x, r) ∈ Zy.

Remark 4.31 For ȳ 6= 0, Conclusion (I) of Theorem 4.30 is the directional
open mapping property with linear rate and fixed angle for the restriction
of F to C, since it asserts that there is a neighborhood N of the half-line
Hȳ = {rȳ : r ≥ 0} in the space HY of all closed half-lines emanating from 0
in Y such that, if DN is the union of all the members of N , then for every
sufficiently small ball B̄Y (0, α) the set

(
B̄Y (0, α) ∩DN

)
\{0} is contained in

the image under F of a relative neighborhood B̄X(0, r) ∩ C of 0 in C, whose
radius r can be chosen proportional to α.

For ȳ = 0, Conclusion (I) is the punctured open mapping property with
linear rate for the restriction of F to C, because in that case the cone D
is necessarily the whole space Y , and Conclusion (I) asserts that for every
sufficiently small ball B̄Y (0, α) the punctured neighborhood B̄Y (0, α)\{0} is
contained in the image under F of a relative neighborhood B̄X(0, r) ∩ C of 0
in C, whose radius r can be chosen proportional to α. ut

Proof of Theorem 4.30. It is clear that (II) implies (I), so there is no need
to prove (I), and we may proceed directly to the proof of (II). Furthermore,
Conclusion (III) is exactly the same as Conclusion (II), except only for the
fact that in (III) ρ(α) is chosen to be equal to 0. So we will just prove (II),
making sure that whenever we show the existence of ρ(α) it also follows that
ρ(α) can be chosen to be equal to zero when Λ ∈ GDQ(F, 0, 0, C).

Next, we observe that, once our conclusion is proved for ȳ 6= 0, its validity
for ȳ = 0 follows by a trivial compactness argument. So we will asume from
now on that ȳ 6= 0, and in that case it is clear that, without loss of generality,
we may assume that ‖ȳ‖ = 1.

Let SC be the linear span of C, and let C
o

be the interior of C relative
to SC . Write Σ = Σ(X,Y,C) (cf. (30)). Then Lemma 4.29 tells us that Σ is
open in Lin(X,Y ) × Y , and there exists a continuous map ηX,Y,C : Σ 7→ X
such that (31), (32) and (33) hold. We write η = ηX,Y,C .

Our hypothesis says that the compact set Λ×{ȳ} is a subset of Σ. Hence
we can find numbers γ̂, δ, such that δ > 0, 0 < γ̂ < 1, and Λδ× B̄Y (ȳ, γ̂) ⊆ Σ.
Let D̂ = {ry : r ∈ R, r ≥ 0, y ∈ Y, ‖y − ȳ‖ ≤ γ̂}. Then D̂ is a closed convex
cone in Y and ȳ ∈ Int(D̂). Furthermore, it is clear that Λδ× (D̂\{0}) ⊆ Σ. So
η(L, y) is well defined whenever L ∈ Λδ and y ∈ D̂\{0}. In particular, η(L, y)
is defined for (L, y) ∈ J , where J = {(L, y) : L ∈ Λδ , y ∈ D̂, ‖y‖ = 1}, so J is
compact. Let H = {η(L, y) : (L, y) ∈ J}. Then H is a compact subset of C

o

.
Pick a compact subset H̃ of C

o

such that H is contained in the interior of H̃.
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Since H̃ is a compact subset of the convex set C
o

, the convex hull Ĥ of H̃
is also a compact subset of C

o

. If 0 /∈ Ĥ, and we define C = {rx : r ≥ 0, x ∈ Ĥ}
then C is a closed convex cone in Rn such that

C ⊆ C
o

∪ {0} and η(L, y) ∈ Int(C) whenever (L, y) ∈ J . (37)

If 0 ∈ Ĥ, then 0 ∈ C
o

, so C = SC and then in particular C is closed, so we can
define C = C, and then then C is a closed convex cone in Rn such that (37)
holds. Let κ̂ = max{‖η(L, y)‖ : (y, L) ∈ J}. Then ‖η(L, y)‖ ≤ κ̂‖y‖ whenever
(L, y) ∈ Λδ × (D̂\{0}). This shows that η can be extended to a continuous
map from Λδ × D̂ to C by letting η(L, 0) = 0 for L ∈ Λδ.

Fix a γ ∈ ] 0, γ̂ [ , and let D = {ry : r ∈ R, r ≥ 0, y ∈ Y, ‖y − ȳ‖ ≤ γ}.
Then D is a closed convex cone in Y , ȳ ∈ Int(D), and D ⊆ Int(D̂)∪{0}. More
precisely, we may pick a σ̃ such that σ̃ > 0 and B̄Y (y, σ̃‖y‖) ⊆ D̂ whenever
y ∈ D. (For example, σ̃ = γ̂ − γ will do. A simple calculation shows that the
best—i.e., largest—possible choice of σ̃ is σ̃ = (γ̂ − γ)(1− γ)−1/2.) We then
let σ = σ̃

2 , κ = κ̂(1 + 2σ).
Fix an AGDQ modulus θ for (F, 0, 0, C). For each ε such that θ(ε) is finite,

pick a map Aε ∈ CCA(C(ε), Lin(X,Y )× Y ) such that(
x∈C(ε) ∧ (L, h)∈Aε(x)

)
⇒
(
L∈Λθ(ε) ∧ ‖h‖≤θ(ε)ε ∧ L · x+h∈F (x)

)
.

Also, observe that when Λ ∈ GDQ(F, 0, 0, C) then Aε can be chosen so that
all the members (L, h) of Aε(x) are such that h = 0. In that case, we let Gε(x)
be such that Aε(x) = Gε(x)× {0}.

Next, fix a positive number ε̄ such that θ(ε̄) < δ and θ(ε̄) < σ
κ . Let ᾱ = ε̄

κ .
Fix an α such that 0 < α ≤ ᾱ, and let ε = κα, so 0 < ε ≤ ε̄. Then θ(ε) < δ

and θ(ε) < σ
κ . Let C(ε) = C ∩ B̄X(0, ε). Then C(ε) is a nonempty compact

convex subset of X.
Now choose ρ(α)—for α ∈ ] 0, ᾱ]—as follows:

ρ(α) =
{

0 if Λ ∈ GDQ(F, 0, 0, C)
κθ(κα)
σ if Λ /∈ GDQ(F, 0, 0, , C) .

It is then clear that 0 ≤ ρ(α) < 1, because θ(κα) ≤ θ(κᾱ) = θ(ε̄) < σ
κ .

Furthermore, ρ(α) clearly goes to 0 as α ↓ 0.
Fix a y ∈ D such that ‖y‖ = α. Let Qε = C(ε)× [0, 1], and define a

set-valued map Hε : Qε 7→→ X by letting Hε(x, t) = x − Uε(x, t) (that is,
Hε(x, t) = {x− ξ : ξ ∈ Uε̄(x, t)}) for x ∈ C(ε), t ∈ [0, 1], where, for (x, t) ∈ Qε,

• if Λ /∈ GDQ(F, 0, 0, C), then Uε(x, t)=
{
η(L, ty−ϕε(t)h) : (L, h)∈Aε(x)

}
and the function ϕε : [0, 1] 7→ [0, 1] is defined by

ϕε(t) =
t

ρ(α)
if 0 ≤ t < ρ(α) , ϕε(t) = 1 if ρ(α) ≤ t ≤ 1 .
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• if Λ ∈ GDQ(F, 0, 0, C), then Uε(x, t) =
{
η(L, ty) : L ∈ Gε(x)

}
.

We claim that Hε ∈ CCA(Qε, X). To see this, we first show that

ty − ϕε(t)h ∈ D̂ whenever (x, t) ∈ Qε and (L, h) ∈ Aε(x) . (38)

This conclusion is trivial if Λ ∈ GDQ(F, 0, 0, C), because in that case h = 0.
Now consider the case when Λ /∈ GDQ(F, 0, 0, C), and observe that if x ∈ C(ε)
and (L, h) ∈ Aε(x) then L ∈ Λθ(ε) and

‖ϕε(t)h‖ ≤
t

ρ(α)
‖h‖ ≤ t

ρ(α)
θ(ε)ε =

t

ρ(α)
θ(κα)κ‖y‖ =

t

ρ(α)
θ(κα)κ‖y‖

=
1

ρ(α)
θ(κα)κ
σ

tσ‖y‖ =
1

ρ(α)
ρ(α)tσ‖y‖ = tσ‖y‖ .

It follows that ty−ϕε(t)h belongs to the ball B̄Y (ty, tσ‖y‖), which is contained
in D̂. So ty − ϕε(t)h ∈ D̂, completing the proof of (38).

Next, let µ be the set-valued map with sourceQε and target Lin(X,Y )×Y ,
such that µ(x, t) = {(L, ty − ϕε(t)h) : (L, h) ∈ Aε(x)}. Then µ belongs to
CCA(Qε, Lin(X,Y )× Y ), because it is the composite of the maps

Qε 3 (x, t) 7→→ Aε(x)× {t} ⊆ Lin(X,Y )× Y × R ,

and Lin(X,Y )×Y ×R 3 (L, h, t) 7→ (L, ty−ϕε(t)h) ∈ Lin(X,Y )×Y .

On the other hand, µ actually takes values in Λθ(ε) × D̂. Therefore, if we let
ν be the map having exactly the same graph as µ, but with target Λδ × D̂,
then ν ∈ CCA(Qε, Λδ × D̂). (Indeed, if {µj}j∈N is a sequence of continuous

maps from Qε to Lin(X,Y ) × Y with the property that µj
igr−→ µ, and we

write µj(x, t) = (Lj(x, t), ζj(x, t)), then Lj will take values in Λδ if j is large
enough, because Λδ is a neighborhood of Λθ(ε). On the other hand, D̂ is
a closed convex subset of Y , so it is a retract of Y . If ω : Y 7→ D̂ is a
retraction, and νj(x, t) = (Lj(x, t), ω(ζj(z, t))), then {νj}j∈N,j≥j∗ is—for some

j∗—a sequence of continuous maps from Qε to Λδ × D̂ such that νj
igr−→ ν.)

Now, Uε is the composite η ◦ ν, and η is a continuous map on Λδ × D̂. So
Uε ∈ CCA(Qε, X), and then Hε ∈ CCA(Qε, X) as well, completing the proof
of that Hε ∈ CCA(Qε, X)

It is clear that

if (x, t) ∈ Qε then 0 ∈ Hε(x, t)⇐⇒ x ∈ Uε(x, t) .

We now analyze the implications of the statement “x ∈ Uε(x, t)” in two cases.
First, suppose that Λ ∈ GDQ(F, 0, 0, C). Then x ∈ Uε(x, t) if and only if

(∃L ∈ Gε(x))(x = η(L, ty)). If such an L exists, then L · x = Lη(L, ty) = ty,
so ty ∈ Gε(x) ·x, and then ty ∈ F (x). Furthermore, the fact that x = η(L, ty))
implies that ‖x‖ ≤ κ̂t‖y‖, so a fortiori ‖x‖ ≤ κt‖y‖.
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Now suppose that Λ /∈ GDQ(F, 0, 0, C). Then x ∈ Uε(x, t) if and only if(
∃(L, h) ∈ Aε(x)

)(
x = η(L, ty − ϕε(t)h)

)
. If such a pair (L, h) exists, and

t ≥ ρ(α), then

L · x = Lη(L, ty − ϕε(t)h) = Lη(L, ty − h) = ty − h

so L · x + h = ty, and then ty ∈ F (x). On the other hand, the fact
that x = η(L, ty − ϕε(t)h) implies that ‖x‖ ≤ κ̂(t‖y‖+ tσ‖y‖), since we have
already established that ‖ϕε(t)h‖ ≤ tσ‖y‖). Hence ‖x‖ ≤ κt‖y‖.

So we have shown, in both cases, that

(A) if (x, t) ∈ Qε, 0 ∈ Hε(x, t) and ρ(α) ≤ t ≤ 1, then ty ∈ F (x) and
‖x‖ ≤ κt‖y‖.

In addition, Hε obviously satisfies

(B) Hε(x, 0) = {x} whenever x ∈ C(ε).

Next, choose a sequence {vj}j∈N of interior points of C such that vj → 0 as
j →∞ and ‖vj‖ < σκ̂‖y‖ for all j. We claim that

(C) vj /∈ Hε(x, t) whenever x ∈ ∂C(ε), t ∈ [0, 1], and j ∈ N.

To see this, we first observe that the condition vj ∈ Hε(x, t) is equivalent to
x ∈ vj + Uε(x, t). If x ∈ ∂C(ε), then either x ∈ ∂C or ‖x‖ = κ‖y‖. If x ∈ ∂C,
then x cannot belong to vj + Uε(x, t), because Uε(x, t) ⊆ C and vj ∈ Int(C),
so vj +Uε(x, t) ⊆ Int(C). If ‖x‖ = κ‖y‖, then x cannot belong to vj +Uε(x, t)
either, because if (L, h) ∈ Aε̄(x) then

‖η(L, ty − ϕε(t)h)‖ ≤ κ̂‖ty − ϕε(t)h)‖ ≤ κ̂‖ty‖+ κ̂‖ϕε(t)h)‖

≤ tκ̂‖y‖+tκ̂‖σ‖y‖ = tκ̂(1+σ)‖y‖ ≤ κ̂(1+σ)‖y‖ ,

so ‖vj + η(L, ty)‖ ≤ κ̂(1 + σ)‖y‖+ ‖vj‖ < κ̂(1 + σ)‖y‖+ κ̂σ‖y‖ = κ‖y‖.
Hence we can apply Theorem 3.8 and conclude that there exists a compact

connected subset Z of C(ε)× [0, 1] such that (i) the sets Z ∩ (C(ε)×{0}) and
Z ∩ (C(ε)× {1}) are nonempty, and (ii) 0 ∈ Hε(x, t) whenever (x, t) ∈ Z.

For β such that 0 < β < 1−ρ(α)
2 , let Z(β) be the open β-neighborhood of Z

in Qε, so that Z(β) = {q ∈ Qε : dist(q, Z) < β}. Then Z(β) is a relatively open
subset of Qε. It is clear that Z(β) is connected, so it is path-connected. Since
Z(β) intersects both sets C(ε)× {0} and C(ε)× {1}, there exists a continuous
map ξ : [0, 1] 7→ Z(β) such that ξ(0) ∈ C(ε)× {0} and ξ(1) ∈ C(ε)× {1}. Let

I−=
{
t∈ [0, 1] :ξ(t)∈C(ε)×[0, ρ(α)+β]

}
, I+ =

{
t∈ [0, 1] :ξ(t)∈C(ε)×[1−β, 1]

}
.

Then it is clear that both I− and I+ are nonempty compact subsets of [0, 1],
so I− has a largest element t− and I+ has a smallest element t+. Therefore
ξ(t−) ∈ C(ε)× {ρ(α) + β}, ξ(t+) ∈ C(ε)× {1− β}, and
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ξ(t) ∈ C(ε)× [ρ(α) + β, 1− β] whenever t− ≤ t ≤ t+ . (39)

Hence, if we define W β = γ([t−, t−]), we see that (i) W β is compact and
connected, (ii) W β ⊆ C(ε)×[ρ(α)+β, 1−β], (iii) W β∩

(
C(ε)×{ρ(α)+β}

)
6= ∅,

(iv) W β ∩
(
C(ε)× {1− β}

)
6= ∅, and (v) dist(w,Z) ≤ β whenever w ∈W β .

Let Z̃ = Z∩(C(ε)×[ρ(α), 1]). Then Z̃ is a compact subset of C(ε)×[ρ(α), 1].
If w ∈ W β , then the point zw ∈ Z closest to w is at a distance ≤ β from w,
and must therefore belong to C(ε)× [ρ(α), 1], since w ∈ C(ε)× [ρ(α)+β, 1−β].
It follows that zw ∈ Z̃. Therefore

dist(w, Z̃) ≤ β whenever w ∈W β . (40)

We now use Theorem 3.7 to pick a sequence {βj}j∈N converging to zero,
such that the sets W βj converge in Comp(Qε) to a compact connected set
W . It then follows from (40) that W ⊆ Z̃. On the other hand, since the sets
W βj∩

(
C(ε)×{ρ(α)+βj}

)
andW βj∩

(
C(ε)×{1−βj}

)
are nonempty for each j,

we can easily conclude that W∩
(
C(ε)×{ρ(α)}

)
6= ∅ and W∩

(
C(ε)×{1}

)
6= ∅.

Hence, if we take Zy to be the set W , we see that (i) Zy is compact connected,

(ii) Zy ⊆ Z ∩
(
C(ε)× [ρ(α), 1]

)
, and (iii) Zy has a nonempty intersection with

both C(ε)× {ρ(α)} and C(ε)× {1}.
Now, if (x, t) ∈ Zy, we know that 0 ∈ Hε(x, t), and then (A) implies that

ty ∈ F (x) and ‖x‖ ≤ κt‖y‖, since ρ(α) ≤ t ≤ 1. This shows that Zy satisfies
all the conditions of our statement, and completes our proof. ut
Approximating multicones. Assume that M is a manifold of class C1, S
is a subset of M and x̄∗ ∈ S.

Definition 4.32 An AGDQ approximating multicone to S at x̄∗ is a
convex multicone C in Tx̄∗M such that there exist an m ∈ Z+, a set-valued
map F : Rm 7→→ M , a convex cone D in Rm, and a Λ ∈ AGDQ(F, 0, x̄∗, D),
such that F (D) ⊆ S and C = {LD : L ∈ Λ}. If Λ can be chosen so
that Λ ∈ GDQ(F, 0, x̄∗, D), then C is said to be a GDQ approximating
multicone to S at x∗. ut

Transversality of cones and multicones. If S1, S2 are subsets of a linear
space X, we define the sum S1 + S2 and the difference S1 − S2 by letting

S1+S2 ={s1+s2 :s1∈S1, s2∈S2} , S1−S2 ={s1−s2 :s1∈S1, s2∈S2} .

Definition 4.33 Let X be a FDRLS. We say that two convex cones C1, C2

in X are transversal, and write C1∩|
−
C2, if C1 − C2 = X. ut

Definition 4.34 Let X be a FDRLS. We say that two convex cones C1, C2

in X are strongly transversal, and write C1∩||
−
C2, if C1∩|

−
C2 and in addition

C1 ∩ C2 6= {0}. ut
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The definition of “transversality” of multicones is a straightforward extension
of that of transversality of cones.

Definition 4.35 Let X be a FDRLS. We say that two convex multicones

C1 and C2 in X are transversal, and write C1∩|
−
C2, if C1∩|

−
C2 for all pairs

(C1, C2) ∈ C1 × C2. ut

The definition of “strong transversality” for multicones requires more care.
It is clear that two convex cones C1, C2 are strongly transversal if and only

if (i) C1∩|
−
C2, and (ii) there exists a nontrivial linear functional λ ∈ X† such

that C1∩C2∩{x ∈ X : λ(x) > 0} 6= ∅. It is under this form that the definition
generalizes to multicones.

Definition 4.36 Let X be a finite-dimensional real linear space. Let C1, C2

be convex multicones in X. We say that C1 and C2 are strongly transversal,

and write C1∩||
−
C2, if (i) C1∩|

−
C2, and (ii) there exists a nontrivial linear

functional λ ∈ X† such that C1 ∩ C2 ∩ {x ∈ X : λ(x) > 0} 6= ∅ for every
(C1, C2) ∈ C1 × C2. ut

The nonseparation theorem. If S1, S2 are subsets of a topological space
T , and s̄∗ ∈ S1 ∩S2, we say that S1 and S2 are locally separated at s̄∗ if there
exists a neighborhood U of s̄∗ such that S1 ∩ S2 ∩ U = {s̄∗}. If T is metric,
then it is clear that S1 and S2 are locally separated at s̄∗ if and only if there
does not exist a sequence {sj}j∈N of points of (S1 ∩S2)\{0} converging to s̄∗.

Theorem 4.37 Let M be a manifold of class C1, let S1, S2 be subsets of M ,
and let s̄∗ ∈ S1∩S2. Let C1, C2 be AGDQ-approximating multicones to S1, S2

at s̄∗ such that C1∩||
−
C2. Then S1 and S2 are not locally separated at s̄∗ (that

is, the set S1 ∩ S2 contains a sequence of points sj converging to s̄∗ but not
equal to s̄∗). Furthermore,

(1) if ξ : Ω 7→ R
n is a coordinate chart of M , defined on an open set Ω

containing s̄∗, and such that ξ(s̄∗) = 0, then there exist positive numbers
ᾱ, κ, σ, and a function ρ : ] 0, ᾱ] 7→ [0, 1 [ such that limα↓0 ρ(α) = 0, having
the property that whenever 0 < α ≤ ᾱ, the set ξ(S1 ∩ S2 ∩ Ω) contains a
nontrivial compact connected set Zα such that Zα contains points x−(α),
x+(α), for which ‖x−(α)‖ ≤ κρ(α)α and ‖x+(α)‖ ≥ σα,

(2) if C1, C2 are GDQ-approximating multicones to S1, S2 at s̄∗. then S1 ∩S2

contains a nontrivial compact connected set Z such that s̄∗ ∈ Z.

In view of our definitions, Theorem 4.37 will clearly follow if we prove:

Theorem 4.38 Let n1, n2,m be positive integers. Assume that, for i = 1, 2,
(1) Ci is a convex cone in Rni , (2) Fi : Rni 7→→ R

m is a set-valued map, and
(3) Λi ∈ AGDQ(Fi, 0, 0, Ci). Assume that the transversality condition

L1C1 − L2C2 = R
m for all (L1, L2) ∈ Λ1 × Λ2 (41)
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holds, and there exists a nontrivial linear functional µ : Rm 7→ R such that

L1C1 ∩ L2C2 ∩ {y ∈ Rm : µ(y)>0} 6= ∅ for all (L1, L2)∈Λ1×Λ2 (42)

Let I =
{

(x1, x2, y) ∈ C1 × C2 × Rm : y ∈ F1(x1) ∩ F2(x2)
}

. Then there
exist positive constants ᾱ, κ, σ, and a function ρ : ] 0, ᾱ] 7→ [0, 1[ such that
limα↓0 ρ(α) = 0, having the property that

(*) for every α for which 0 < α ≤ ᾱ there exist a compact connected subset
Zα of I, and points (x1,α,−, x2,α,−, yα,−), (x1,α,+, x2,α,+, yα,+) of Zα, for
which ‖yα,+‖ ≥ σα and ‖yα,−‖ ≤ κρ(α)α.

Furthermore, if Λi ∈ GDQ(Fi, 0, 0, Ci) for i = 1, 2, then it is possible to
choose ρ(α) ≡ 0.

Proof. Define a set-valued map F : Rn1 × Rn2 × Rm 7→→ R
m × Rm × R by

letting F(x1, x2, y) = (y − F1(x1), y − F2(x2), µ(y)) for x1 ∈ Rn1 , x2 ∈ Rn2 ,
y ∈ R

m. (Precisely, this means that F(x1, x2, y) is the set of all triples
(y − y1, y − y2, µ(y)), for all y1 ∈ F1(x1), y2 ∈ F2(x2).)

Also, define a cone C ⊆ Rn1 × Rn2 × Rm by letting C = C1 × C2 × Rm,
and a subset L of Lin(Rn1 ×Rn2 ×Rm,Rm×Rm×R) by letting L be the set
of all linear maps LL1,L2 , for all (L1, L2) ∈ Λ1 ×Λ2, where LL1,L2 is the map
from R

n1 × Rn2 × Rm to Rm × Rm × R such that

LL1,L2(x1, x2, y)=(y−L1x1, y−L2x2, µ(y)) if (x1, x2, y)∈Rn1×Rn2×Rm. (43)

It then follows immediately from the definition of AGDQs and GDQs that
L ∈ AGDQ(F , 0, 0, 0, C), and also that L ∈ GDQ(F , 0, 0, 0, C) if Λi is in
GDQ(Fi, 0, 0, Ci) for i = 1, 2.

Let w̄∗ = (0, 0, 1). We want to show that the conditions of the directional
open mapping theorem are satisfied, that is, that w̄∗ ∈ Int(LC) whenever
L ∈ L. Let L ∈ L, and write L = LL1,L2 , with L1 ∈ Λ1, L2 ∈ Λ2. Using
(42), find c̄1 ∈ C1, c̄2 ∈ C2, such that L1c̄1 = L2c̄2 and µ(L1c̄1) > 0. Let
ᾱ = µ(L1c̄1). Let v1, v2 ∈ Rm be arbitrary vectors. We claim that the equation

L(x1, x2, y) = (v1, v2, r) (44)

has a solution (x1, x2, y) ∈ C provided that r is large enough. To see this,
observe first that (41) implies that we can express v2 − v1 as a difference

v2 − v1 = L1c1 − L2c2 , c1 ∈ C1 , c2 ∈ C2 . (45)

Then, if we let ỹ = v1 +L1c1 (so that (45) implies that ỹ = v2 +L2c2 as well),
it is clear that L(c1, c2, ỹ) = (ỹ − L1c1, ỹ − L2c2, µ(ỹ)) = (v1, v2, r̃), if we let
r̃

def= µ(ỹ). If r ≥ r̃, then we can choose

y = ỹ +
r − r̃
ᾱ
· L1c̄1 , x1 = c1 +

r − r̃
ᾱ
· c̄1 , x2 = c2 +

r − r̃
ᾱ
· c̄2 .
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With this choice, we have

y − L1x1 = ỹ − L1c1 +
r − r̃
ᾱ
· L1c̄1 −

r − r̃
ᾱ
· L1c̄1 = ỹ − L1c1 = v1 ,

y − L2x2 = ỹ − L2c2 +
r − r̃
ᾱ
· L1c̄1 −

r − r̃
ᾱ
· L2c̄2

= ỹ − L2c2 +
r − r̃
ᾱ
· L1c̄1 −

r − r̃
ᾱ
· L1c̄1 = ỹ − L2c2 = v2 ,

and µ(y) = µ(ỹ) + r−r̃
ᾱ µ(L1c̄1) = r̃ + r − r̃ = r. It then follows that

L(x1, x2, y) = (v1, v2, r), and we have found our desired solution of (44).
So we have shown that for every (v1, v2) ∈ Rm × Rm the vector (v1, v2, r)

belongs to L · C if r is large enough. This easily implies that the point
w̄∗ = (0, 0, 1) belongs to the interior of L · C. (This can be proved in many
ways. For example, let E = (e0, . . . , e2m) be a sequence of 2m + 1 affinely
independent vectors in R

m × Rm such that the origin of Rm × Rm is an
interior point of the convex hull of E. Then we can find an r̄ such that r̄ > 0
and (ei, r̄) ∈ LC whenever r ≥ r̄. It then follows that the vectors (ei, r̄) and
(ei, r̄ + 2) belong to LC, so the vector (0, 0, r̄ + 1) is in Int(LC), and then
(0, 0, 1) ∈ Int(LC) as well.)

We can then apply Theorem 4.30 to the map F and conclude that there
exist positive numbers ᾱ, κ, and a function ρ : ] 0, ᾱ] 7→ [0, 1 [ such that, if
α ∈ ] 0, ᾱ] and we let ŵ∗(α) = αw̄∗, then there exists a compact connected
subset Ẑα of C(κα)× [ρ(α), 1] such that Zα intersects the sets C(κα)×{ρ(α)}
and C(κα)× {1}, and the conditions

rŵ∗(α) ∈ F(x1, x2, y) and ‖x1‖+ ‖x2‖+ ‖y‖ ≤ κrα

hold whenever ((x1, x2, y), r) ∈ Ẑα and ρ(α) ≤ r ≤ 1. (Here we are writing
C(r) = {(x1, x2, y) ∈ C : ‖x1‖+ ‖x2‖+ ‖y‖ ≤ r}.) We let σ = ‖µ‖−1.

If we now define Zα=
{

(x1, x2, y) : (∃r∈ [ρ(α), 1])
(

((x1, x2, y), r)∈ Ẑα
)}

,
then Zα is a continuous projection of a compact connected set, so Zα is
compact and connected. If (x1, x2, y) ∈ Zα, then there is an r ∈ [ρ(α), 1] such
that ((x1, x2, y), r) ∈ Ẑα, and then (0, 0, rα) ∈ F(x1, x2, y), so in particular
0 = y − y1 = y − y2 for some y1 ∈ F1(x1) and some y2 ∈ F2(x2). But then
y1 = y2 = y, so y ∈ F1(x1) ∩ F2(x2), showing that (x1, x2, y) ∈ I. So Zα ⊆ I,
as desired.

Finally, we must show that Zα contains points (x1,α,−, x2,α,−, yα,−) and
(x1,α,+, x2,α,+, yα,+) for which ‖yα,−‖ ≤ κρ(α)α and ‖yα,+‖ ≥ σα. Let
((x1,α,−, x2,α,−, yα,−), rα,−) and ((x1,α,+, x2,α,+, yα,+), rα,+) be members of
Ẑα∩(C(κα)×{ρ(α)}) and Ẑα∩(C(κα)×{1}), respectively. Then rα,− = ρ(α),
and (0, 0, ρ(α)α) = (0, 0, rα,−α) = rα,−ŵ∗(α) ∈ F(x1,α,−, x2,α,−, yα,−), from
which it follows that ‖yα,−‖ ≤ κrα,−α. On the other hand, rα,+ = 1, and then
(0, 0, α) = (0, 0, rα,+α) = rα,+ŵ∗(α) ∈ F(x1,α,+, x2,α,+, yα,+), from which
it follows that µ(yα,+) = α, so that α = µ(yα,+) ≤ ‖µ‖ ‖yα,+‖, and then
‖yα,+‖ ≥ σα. ut
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5 Variational generators

Assume that X and Y are FDNRLSs, S ⊆ X, and x̄∗ ∈ X. Recall that a
linear map L : X 7→ Y is said to be a differential of F at x̄∗ in the direction
of S if the linearization error ElinF,L,x̄∗(h) = F (x̄∗+h)−F (x̄∗)−L ·h is o(‖h‖)
as h→ 0 via values such that x̄∗ + h ∈ S.

Remark 5.1 The precise meaning of the sentence “ElinF,L,x̄∗(h) is o(‖h‖) as
h→ 0 via values such that x̄∗ + h ∈ S ” is:

• There exists a function θ ∈ Θ (cf. §4, page 23) having the property that
‖ElinF,Λ,ȳ∗(x̄∗, h)‖ ≤ θ(‖h‖)‖h‖ for every h such that x̄∗ + h ∈ S. ut

A natural generalization of that, when Λ is a set of linear maps, F is
set-valued, and we have picked a point ȳ∗ ∈ Y to play the role of F (x̄∗), is
obtained by defining the linearization error via the formula

ElinF,Λ,x̄∗,ȳ∗(h) def= inf
{
‖y − ȳ∗ − L · h‖ : y ∈ F (x̄∗ + h), L ∈ Λ

}
. (46)

Definition 5.2 Assume that X and Y are FDNRLSs, (x̄∗, ȳ∗) ∈ X × Y ,
F :X 7→→Y , and S ⊆ X. A weak GDQ of F at (x̄∗, ȳ∗) in the direction of
S is a compact set Λ of linear maps from X to Y such that the linearization
error ElinF,Λ,x̄∗,ȳ∗(h) is o(‖h‖) as h→ 0 via values such that x̄∗ + h ∈ S. ut

In other words, a weak GDQ is just the same as a classical differential,
except for the fact that, since the map F is set-valued and the “differential”
Λ is a set, we compute the linearization error by choosing the y ∈ F (x̄∗ + h)
and the linear map L ∈ Λ that give the smallest possible error.

We will write WGDQ(F, x̄∗, ȳ∗, S) to denote the set of all weak GDQs of
F at (x̄∗, ȳ∗) in the direction of S.

The following trivial observations will be important, so we state them
explicitly. (The second assertion is true because infimum of the empty subset
of [0,+∞] is +∞.)

Fact 5.3 Assume that X and Y are FDNRLSs, (x̄∗, ȳ∗) ∈ X × Y , F :X 7→→Y ,
and S⊆X. Then

• If Λ ∈ WGDQ(F, x̄∗, ȳ∗, S), Λ′ ∈ CLin(X,Y ), and Λ ⊆ Λ′, then
Λ′ ∈WGDQ(F, x̄∗, ȳ∗, S).

• ∅ ∈WGDQ(F, x̄∗, ȳ∗, S) if and only if x̄∗ /∈ Closure(S). ut

We recall that the distance dist(S, S′) between two subsets S, S′ of a metric
space (M,dM ) is defined by dist(S, S′) = inf{dM (s, s′) : s ∈ S, s′ ∈ S′}. It
follows that dist(S, S′) ≥ 0, and also that dist(S, S′) < +∞ if and only if both
S and S′ are nonempty. Furthermore, the linearization error ElinF,Λ,x̄∗,ȳ∗(h)
defined in (46) is exactly the same as the distance dist(ȳ∗ + Λ · h, F (x̄∗ + h)).

The following two propositions are rather easy to prove, but we find it
convenient to state them explicitly, because they will be the key to the notion
of “variational generator” in GDQ theory.
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Proposition 5.4 Suppose X, Y are FDNRLSs, F : X 7→→ Y , S ⊆ X, (x̄∗, ȳ∗)
belongs to X × Y , and Λ is a compact set of linear maps from X to Y . Then
the following three conditions are equivalent:

(1)Λ ∈WGDQ(F, x̄∗, ȳ∗, S);
(2) there exist a positive number δ̄∗ and a family {κδ}0<δ≤δ̄∗ of positive

numbers such that limδ↓0 κ
δ = 0, having the property that

dist
(
ȳ∗+Λ ·h, F (x̄∗+h)

)
≤δκδ whenever ‖h‖≤δ≤ δ̄∗ and x̄∗+h∈S; (47)

(3) if {hj}j∈N is a sequence in X such that limj→∞ hj = 0 and x̄∗ + hj ∈ S
for all j, then there exist (i) a sequence {Lj}j∈N of members of Λ (ii) a
sequence {yj}j∈N for which yj ∈ F (x̄∗ + hj) for each j, (iii) a sequence
{rj}j∈N of positive numbers such that ‖yj − ȳ∗ − Lj · hj‖ ≤ rj‖hj‖ for all
j ∈ N and limj→∞ rj = 0. ut

Proposition 5.5 Let X,Y, F, S, x̄∗, ȳ∗ be as in Proposition 5.4. Then

• If Λ ∈ AGQD(F, x̄∗, ȳ∗, S) it follows that Λ ∈WGQD(F, x̄∗, ȳ∗, S).
• If Λ belongs to WGQD(F, x̄∗, ȳ∗, S), Λ is convex, and the restriction F dS

is upper semicontinuous with closed convex values, then it follows that
Λ ∈WGQD(F, x̄∗, ȳ∗, S). ut

5.1 GDQ Variational generators

For a set-valued map F : X × R 7→→ Y , we write Fx, F t, if x ∈ X, t ∈ R, to
denote the partial maps Fx : R 7→→ Y , F t : X 7→→ Y , such that

Fx(s) = F (x, s) and F t(u) = F (u, t) if s ∈ R, u ∈ X .

For a subset S of X × R, we write Sx, St, if x ∈ X, t ∈ R, to denote
the sections Sx ⊆ R, St ⊆ X, given by Sx = {s ∈ R : (x, s) ∈ S} and
St = {u ∈ X : (u, t) ∈ S}.

We would like to define the notion of “variational generator” as follows,
assuming that:

(VGA1) X and Y are FDNRLSs, a, b ∈ R, and a ≤ b;
(VGA2) ξ∗ ∈ C0( [a, b] ; X ) and σ∗ is a ppd single-valued function from

[a, b] to Y ;
(VGA3) S ⊆ X × R;
(VGA4) F : X × R 7→→ Y is a set-valued map.

Tentative definition: Assume that (VGA1,2,3,4) hold. A GDQ variational
generator of F along (ξ∗, σ∗) in the direction of S is a set-valued map
Λ : [a, b] 7→→ Lin(X,Y ) such that, for every t ∈ [a, b], the set Λ(t) is a weak
GDQ of F t at (ξ∗(t), σ∗(t)) in the direction of St. ut



48 Héctor J. Sussmann

The trouble with this definition is twofold:

• First of all, there at least two natural ways to define the “linearization
error” at a particular time t, because we could
(1) use the “fixed time error” h 7→ ElinF,Λ,ξ∗,σ∗(h, t)

def=ElinF t,Λ(t),ξ∗(t),σ∗(t)
(h),

where ElinF t,Λ(t),ξ∗(t),σ∗(t)
(h) is obtained by applying Formula (46) to the

map F t, so that

ElinF,Λ,ξ∗,σ∗(h, t) = dist(σ∗(t) + Λ(t) · h, F (ξ∗(t) + h, t)) ; (48)

(2) work instead with a “robust” version of the error, in which we try to
approximate F (ξ∗(t+ s) + h, t+ s)− σ∗(t+ s) by Λ(t) · h not just for
s = 0 but also for s in some neighborhood of 0; this leads to defining

Elin,robF,Λ,ξ∗,σ∗
(h, s, t) = dist(σ∗(t+s)+Λ(t)·h, F (ξ∗(t+s)+h, t+s)) . (49)

• Second, once we have settled on which form of the error to use, this
will lead to introducing functions t 7→ κδ(t), t 7→ κδ,s(t) such that
‖ElinF,Λ,ξ∗,σ∗(h, t)‖ ≤ δκδ(t) and ‖Elin,robF,Λ,ξ∗,σ∗

(h, s, t)‖ ≤ δκδ,s(t) whenever
|h‖ ≤ δ, and require that these functions “go to zero.” However, when
functions are involving, “going to zero” can mean many different things,
since the convergence could be, for example, pointwise, in L1, or uniform.

It follows that, in principle, there are at least twice as many reasonable notions
of “variational generators” as there are notions of convergence of functions,
since for each convergence notion we can require that the convergence take
place for the fixed-time error or for the robust one.

It turns out, however, that of all these possible notions of “variational
generator,” only two will be important to us. So we will define these two
notions and ignore all the others.

L1 fixed-time GDQ variational generators. Let us assume that X, Y ,
a, b, ξ∗, σ∗, S, F are such that (VGA1,2,3,4) hold.

Definition 5.6 An L1 fixed-time GDQ variational generator of the
map F along (ξ∗, σ∗) in the direction of the set S is a set-valued map
Λ : [a, b] 7→→ Lin(X,Y ) such that,

• there exist a positive number δ̄ and a family {κδ}0<δ≤δ̄ of measurable
functions κδ : [a, b] 7→ [0,+∞] such that limδ↓0

∫ b
a
κδ(t) dt = 0 and, in

addition, dist(σ∗(t) + Λ(t) · h, F (ξ∗(t) + h, t)) ≤ δκδ(t) whenever h ∈ X,
t ∈ [a, b], (ξ∗(t) + h, t) ∈ S, and ‖h‖ ≤ δ. ut

We will write V GL
1,ft

GDQ(F, ξ∗, σ∗, S) to denote the set of all L1 fixed-time GDQ
variational generators of F along (ξ∗, σ∗) in the direction of S.
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Pointwise robust GDQ variational generators. Again, let us assume
that X, Y , a, b, ξ∗, σ∗, S, F are such that (VGA1,2,3,4) hold.

Definition 5.7 A pointwise robust GDQ variational generator of the
map F along (ξ∗, σ∗) in the direction of the set S is a set-valued map
Λ : [a, b] 7→→ Lin(X,Y ) such that,

• there exist δ̄ > 0, s̄ > 0, and a family {κδ,s}0<δ≤δ̄,0<s≤s̄ of functions
κδ,s : [a, b] 7→ [0,+∞], such that (i) limδ↓0,s↓0 κ

δ,s(t) = 0 for every t ∈ [a, b]
and (ii) dist(σ∗(t+s)+Λ(t)·h, F (ξ∗(t+s)+h, t+s))≤δκδ,s(t) whenever
h∈X, ‖h‖≤δ, t∈ [a, b], t+s ∈ [a, b], and (ξ∗(t+s)+h, t+s) ∈ S. ut

We write V Gpw,robGDQ (F, ξ∗, σ∗, S) to denote the set of all pointwise robust GDQ
variational generators of F along (ξ∗, σ∗) in the direction of S.

5.2 Examples of variational generators

We now prove four propositions giving important examples of variational
generators.

Clarke generalized Jacobians. Recall that ∂xf(q, t) denotes the Clarke
generalized Jacobian (cf. Definition 2.9) at x = q of the map x 7→ f(x, t).

Proposition 5.8 Assume that X, Y are FDNRLSs, and f is a single-valued
ppd map from X × R to Y , whose domain contains a tube T X(ξ∗, δ̄) about a
continuous curve ξ∗ : [a, b] 7→ X. Assume that each partial map t 7→ f(x, t)
is measurable and each partial map x 7→ f(x, t) is Lipschitz with a Lipschitz
constant C(t) such that the function C(·) is integrable. Let Z = Lin(X,Y ),
and define Λ(t) = ∂xf(ξ∗(t), t) and σ∗(t) = f(ξ∗(t), t) for t ∈ [a, b]. Then Λ
is an integrably bounded measurable set-valued function from [a, b] to Z with
a.e. nonempty compact convex values, and Λ is an L1 fixed-time variational
GDQ of f along (ξ∗, σ∗) in the direction of X × [a, b].

Proof. To begin with, we observe that the bound ‖L‖ ≤ C(t) holds for every
t ∈ [a, b] and every L ∈ Λ(t), so Λ is integrably bounded. Furthermore, Λ
clearly has compact convex a.e. nonempty values. A somewhat tedious but
elementary argument proves that Λ is measurable.

Now, let κδ(t) denote the maximum of the distances dist(L,Λ(t)) for all
L ∈ Λ(δ)(t), where Λ(δ)(t) is the closed convex hull of the set of all the
differentials Df t(x) for all x ∈ Dtδ, and Dtδ is the set of all points x in the the
open ball BX(ξ∗(t), δ) such that f t is differentiable at x. Then κδ is easily seen
to be measurable, and such that limδ↓0 κ

δ(t) = 0 for every t. Furthermore, if
‖h‖ ≤ δ, then the equality f(ξ∗(t) + h, t) − f(ξ∗(t), t) = L̃ · h holds for some
L̃ ∈ Λ(δ)(t), and we can pick L ∈ Λ(t) such that ‖L̃−L‖ ≤ κδ(t), and conclude
that

f(ξ∗(t) + h, t)− f(ξ∗(t), t)− L · h = (L̃− L) · h ,

from which it follows that ‖f(ξ∗(t) + h, t)− f(ξ∗(t), t)− L · h‖ ≤ δκδ(t).
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On the other hand, it is clear that κδ(t) ≤ 2C(t). So the functions κδ

converge pointwise to zero and are bounded by a fixed integrable function.
Hence limδ↓0

∫ b
a
κδ(t) dt = 0, and our proof is complete. ut

Michel-Penot subdifferentials. Recall that if f : X×R ↪→ R then ∂oxf(q, t)
is the Michel-Penot subdifferential (cf. Definition 2.11) at x = q of the function
x 7→ f(x, t), and that the notion of epimap was defined in §2.1, page 5.

Proposition 5.9 Let X be a FDNRLS, and let f be a single-valued ppd map
from X×R to R, whose domain contains a tube T X(ξ∗, δ̄) about a continuous
curve ξ∗ : [a, b] 7→ X. Assume that each partial map t 7→ f(x, t) is measurable
and each partial map x 7→ f(x, t) is Lipschitz with a Lipschitz constant
C(t) such that the function C(·) is integrable. Let Λ(t) = ∂oxf(ξ∗(t), t), and
let σ∗(t) = f(ξ∗(t), t). Let F be the epimap of f . Then Λ is an integrably
bounded measurable set-valued function with a.e. nonempty compact convex
values, and Λ is an L1 fixed-time variational GDQ of F along (ξ∗, σ∗) in the
direction of X × [a, b].

Proof. To begin with, we observe, as in the previous proof, that (i) the bound
‖L‖ ≤ C(t) holds for every t ∈ [a, b] and every L ∈ Λ(t), so Λ is integrably
bounded, and (ii) Λ clearly has compact convex a.e. nonempty values.

Next, we prove that Λ is measurable. For this purpose, we need to review
how the Michel-Penot subdifferential Λ(t) is defined: for each t ∈ [a, b], let
f t be the function B̄X(ξ∗(t), δ̄) 3 x 7→ f(x, t) ∈ R; extend f t to all of X by
defining it in an arbitrary fashion outside B̄X(ξ∗(t), δ̄); for x, h ∈ X, define
dof t(x, h) = supk∈X lim supt↓0 t−1

(
f(x+t(k+h))−f(x+tk)

)
, so that, for each

x ∈ X, the function X 3 h 7→ df(x, h) ∈ [−∞,+∞] is convex and positively
homogeneous; then Λ(t) is the set of all linear functionals ω ∈ X† such that
dof t(ξ∗(t), h) ≥ 〈ω, h〉 whenever h ∈ X.

We define the support function σΛ using (4), with R in the role of Y ,
and X† = Lin(X,R) in the role of X, so σΛ is a function on [a, b]×X. The
measurability of Λ will follow if we prove that the function [a, b] 3 t 7→ σΛ(t, h̄)
is measurable for each h̄ ∈ X.

Fix an h̄ ∈ X and a t ∈ [a, b]. If ω ∈ Λ(t), then 〈ω, h̄〉 ≤ dof t(ξ∗(t), h̄).
Therefore σΛ(t, h̄) ≤ dof t(ξ∗(t), h̄). We will prove that the opposite inequality
is also true. Define E = {(h, r) ∈ X × R : r ≥ dof t(ξ∗(t), h)}, Then E is the
epigraph of the function X 3 h 7→ dof t(ξ∗(t), h) ∈ R , which is everywhere
finite, convex, and positively homogeneous. In particular, E is a closed convex
cone in X × R with nonempty interior. If we let r̄ = dof t(ξ∗(t), h̄), then
the point (h̄, r̄) belongs to the boundary of E. Hence the Hahn-Banach
theorem implies that there exists a linear functional Ω ∈ (X × R)†\{0} such
that 0 = Ω(h̄, r̄) ≤ Ω(h, r) for all (h, r) ∈ E. Then there exist a linear
functional ω : X 7→ R and a real number ω0 such that Ω(h, r) = −ω(h) +ω0r
for all (h, r) ∈ X × R, and (ω, ω0) 6= (0, 0). Clearly, ω0 ≥ 0, because
0 = −ω(h̄) + ω0r̄ ≤ −ω(h̄) + ω0(r̄ + 1). Furthermore, ω0 6= 0, because if
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ω0 = 0 then ω(h̄) = −Ω(h̄, r̄) = 0, and then the inequality Ω(h̄, r̄) ≤ Ω(h, r)
implies 0 = −ω(h̄) ≤ −ω(h) for all h ∈ X, so ω = 0 as well. So we may assume
that ω0 = 1, and then 0 = −ω(h̄) + r̄ ≤ −ω(h) + r for all (h, r) ∈ E. Hence
ω(h) ≤ r for all (h, r) ∈ E, so in particular ω(h) ≤ dof t(ξ∗(t), h) for all h ∈ X.
It follows that ω ∈ Λ(t). On the other hand, the fact that −ω(h̄) + r̄ = 0 tells
us that ω(h̄) = dof t(ξ∗(t), h̄). Hence σΛ(t, h̄) ≥ dof t(ξ∗(t), h̄).

It follows that σΛ(t, h̄) = dof t(ξ∗(t), h̄) for all h̄ ∈ X. This implies the
desired measurability of the function [a, b] 3 t 7→ σΛ(t, h̄) ∈ R, because
[a, b] 3 t 7→ dof t(ξ∗(t), h̄) is clearly measurable.

Now fix t ∈ [a, b]. For h ∈ Rn such that ‖h‖ ≤ δ̄, let

θ̂t(h) = min{f(ξ∗(t) + h, t)− σ∗(t)− ω · h : ω ∈ Λ(t)} . (50)

If in addition h 6=0, write θt(h)= θ̂t(h)
‖h‖ . We claim that lim suph→0,h 6=0 θ

t(h)≤0.
Indeed, if this was not so there would exist a positive ε and a sequence {hj}j∈N
converging to zero and such that hj 6= 0 and θt(hj) ≥ ε for all j. Then
f(ξ∗(t) + hj , t) − f(ξ∗(t), t) − ω · hj ≥ ε‖hj‖ for all j and all ω ∈ Λ(t). Let
τj = ‖hj‖, wj = hj

τj
, so ‖wj‖ = 1. By passing to a subsequence, if necessary,

assume that the limit w = limj→∞ wj exists. Let ej = wj−w, so ej → 0. Then
hj = τjwj = τj(w + ej), so f(ξ∗(t) + τj(w + ej), t)− f(ξ∗(t), t)− ω · hj ≥ ετj
for all j ∈ N and all ω ∈ Λ(t).

It follows that lim supj→∞ τ−1
j

(
f(ξ∗(t)+τj(w+ej), t)−f(ξ∗(t), t)−ω ·hj

)
≥ ε

if ω ∈ Λ(t). But f(ξ∗(t)+τj(w+ej), t)−f(ξ∗(t)+τjw, t)≤C(t)τj‖ej‖. Hence

lim supj→∞ τ−1
j

(
f(ξ∗(t) + τjw, t) − f(ξ∗(t), t) − ω · hj

)
≥ ε, and then we

find that lim supj→∞ τ−1
j

(
f(ξ∗(t) + τjw, t) − f(ξ∗(t), t)

)
≥ ε + ω · w, from

which it follows that lim supτ↓0 τ−1
(
f(ξ∗(t) + τw, t)− f(ξ∗(t), t)

)
≥ ε+ω ·w.

So we have shown that dof t(ξ∗(t), w) ≥ ε + ω · w for all ω ∈ Λ(t). But
this is impossible, because we already know that dof t(ξ∗(t), w) = σΛ(t, w),
so dof t(ξ∗(t), w) = ω · w for some ω ∈ Λ(t). This proves our claim that
lim suph→0 θ

t(h) ≤ 0.
Now define κδ(t)=max

(
0, sup{θt(h) :‖h‖≤δ}

)
. Then the functions κδ are

measurable and nonnegative, and converge pointwise to zero. In addition, they
clearly satisfy κδ ≤ 2C(t), since (50) implies that θ̂(h) ≤ 2C(t)‖h‖. Therefore
limδ↓0

∫ b
a
κδ(t) dt = 0.

Given t ∈ [a, b] and h ∈ X such that ‖h‖ ≤ δ, we can pick ω ∈ Λ(t) such
that f(ξ∗(t) + h, t)− σ∗(t)− ω · h = θ̂t(h), and then

f(ξ∗(t) + h, t)− σ∗(t)− ω · h = ‖h‖θt(h) ≤ ‖h‖κδ(t) ≤ δκδ(t) .

It then follows that we can pick a real number r ∈ F (ξ∗(t) + h, t) such that
|r − σ∗(t) − ω · h| ≤ δκδ(t). (Indeed, if f(ξ∗(t) + h, t)− σ∗(t)− ω · h ≥ 0, we
may pick r = f(ξ∗(t) + h, t), and if f(ξ∗(t) + h, t) − σ∗(t) − ω · h < 0 pick
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r = σ∗(t) + ω · h.) But then dist
(
F (ξ∗(t) + h, t), σ∗(t) + Λ(t) · h

)
≤ δκδ(t),

since σ∗(t) + ω · h ∈ σ∗(t) + Λ(t) · h and r ∈ F (ξ∗(t) + h, t). This completes
our proof. ut

Classical differentials. If (M,dM ), (N, dN ) are metric spaces, and x̄∗ ∈M ,
a map F : M ↪→ N is calm at x̄∗ if there exist positive constants C, δ̄ such
that x ∈ Do(F ) and dN (F (x), F (x̄∗) ≤ CdM (x, x̄∗) whenever dM (x, x̄∗) ≤ δ.
If a, b ∈ R, a < b, and ξ∗ : [a, b] 7→ M is continuous, then a ppd map
F : M × [a, b] ↪→ N is integrably calm along ξ∗ if there exist a positive constant
δ̄ and an integrable function C : [a, b] 7→ [0,+∞] such that, for almost all
t ∈ [a, b], the following two conditions are satisfied whenever dM (x, ξ∗(t)) ≤ δ:
(i) x ∈ Do(F ), and (ii) dN (F (x, t), F (ξ∗(t), t)) ≤ C(t)dM (x, ξ∗(t)). Then the
following is easily proved.

Proposition 5.10 Assume that X,Y are FDNRLSs, and f is a single-valued
ppd map from X × R to Y . whose domain contains a tube T X(ξ∗, δ̄) about a
continuous curve ξ∗ : [a, b] 7→ X. Assume that each partial map t 7→ f(x, t) is
measurable. Assume in addition that

• for each t the map x 7→ f(x, t) is differentiable at ξ∗(t),
• f is integrably calm along ξ∗.

Let σ∗(t) = f(ξ∗(t), t), and let Λ(t) = {Dxf(ξ∗(t), t)}. Then Λ is an integrable
single-valued map. Furthermore, Λ is an L1 fixed-time variational GDQ of f
along (ξ∗, σ∗) in the direction of X × [a, b]. ut

The set-valued maps ∂>g. We are going to assume that

(A) X is a FDNRLS, ξ∗ ∈ C0([a, b], X), δ̄ > 0, and T = T X(ξ∗, δ̄).
(B) g : T 7→ R is a single-valued everywhere defined function such that

(i) g(ξ∗(t), t) ≤ 0 for all t ∈ [a, b], and (ii) each partial map x 7→ g(x, t)
is Lipschitz on {x ∈ X : ‖x− ξ∗(t)‖ ≤ δ̄}, with a Lipschitz constant C
which is independent of t for t ∈ [a, b].

We define Avg = {(x, t) ∈ T X(ξ∗, δ̄) : g(x, t) > 0}, so Avg is the domain of
the constraint indicator map χcog (cf. §2.1, page 5).

Remark 5.11 For an optimal control problem with an inequality state space
constraint g(x, t) ≤ 0, Avg is the set to be avoided, that is, the set of points
(x, t) such that any trajectory ξ for which (ξ(t), t), for some t, is one of these
points fails to be admissible. ut

We define ∂>x g(x̄, t) to be the convex hull of the set of all limits limj→∞ ωj ,
for all sequences {(xj , tj , ωj)}j∈N such that limj→∞(xj , tj) → (x̄, t) and, for
all j, (1) (xj , tj) ∈ Avg, (2) the function x 7→ g(x, tj) is differentiable at xj ,
and (3) ωj = ∇xg(xj , tj).

We let K be the set of all t ∈ [a, b] such that (ξ∗(t), t) belongs to the
closure of Avg. Then K is compact.
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Remark 5.12 The set K could be empty. (This happens if and only if the
closure of Avg does not contain any point of the form (ξ∗(t), t), t ∈ [a, b].) ut

Proposition 5.13 Assume that X, a, b, ξ∗, δ̄, T = T X(ξ∗, δ̄), g, C are such
that (A), (B) hold, and Avg, ∂>x g, K are defined as above. Let σ∗(t) = 0 for
t ∈ [a, b], and define Λ(t) = ∂>x g(ξ∗(t), t) for t ∈ [a, b]. Then

(1) Λ is an upper semicontinuous set-valued map with compact convex
values;

(2) K = {t ∈ [a, b] : Λ(t) 6= ∅};
(3) Λ is a pointwise robust GDQ variational generator of χcog along (ξ∗, σ∗)

in the direction of Avg.

Proof. The desired conclusions do not depend on the choice of a norm on X,
so we will assume that the norm on X is Euclidean. For each t ∈ [a, b], let gt

denote the function x 7→ g(x, t), with domain Bt = B̄X(ξ∗(t), δ̄), and let Dt

be the set of points x ∈ Bt such that gt is differentiable at x. Then Dt is a
subset of full measure of Bt.

Let us show that Λ is upper semicontinuous and has compact convex
values. The convexity of the sets Λ(t) is clear from the definition of Λ. We
will prove that the graph of Λ is compact, from which it will follow that Λ is
upper semicontinuous and has compact values.

First, we observe that every member (t, ω) of Gr(Λ) is a limit of sequence
{(tj , ωj)}j∈N such that ‖ωj‖ ≤ C for all j. Therefore ‖ω‖ ≤ C whenever
t ∈ [a, b] and ω ∈ Λ(t).

Now, take a sequence {(tj , ωj)}j∈N of points in Gr(Λ). Then ‖ωj‖ ≤ C
for all j, so we may find an infinite subset J of N such that the sequence
{(tj , ωj)}j∈J converges to a limit (t, ω) ∈ [a, b] × X†. We need to show
that ω ∈ Λ(t). For each j ∈ J , the covector ωj is a convex combination∑n
k=0 αj,kωj,k, where αj,k ≥ 0,

∑n
k=0 αj,k = 1, and ωj,k = lim`→∞ ωj,k,`,

with xj,k,` ∈ Dtj,k,` , g(xj,k,`, tj,k,`) > 0, ωj,k,` = ∂g
∂x (xj,k,`, tj,k,`), and

lim`→∞(xj,k,`, tj,k,`) = (ξ∗(tj), tj). Pick an infinite subset J ′ of J such that the
limits ω̃k = limj→∞,j∈J′ ωj,k and α̃k = limj→∞,j∈J′ αj,k exist. Then α̃k ≥ 0,∑n
k=0 α̃k = 1, and

∑n
k=0 α̃kω̃k = ω. Therefore the conclusion that ω ∈ Λ(t)

will follow if we show that ω̃k ∈ Λ(t) for each k. For j ∈ J ′, k ∈ {0, . . . , n},
pick `(j, k) ∈ N such that

‖ω̂j,k − ωj,k‖+ ‖x̂j,k − ξ∗(tj)‖+ |t̂j,k − tj | ≤ 2−j ,

where ω̂j,k = ωj,k,`(j,k), x̂j,k = xj,k,`(j,k), t̂j,k = tj,k,`(j,k). Then
ω̃k = limj→∞,j∈J′ ω̂j,k, with ω̂j,k ∈ ∂xg(x̂j,k, t̂j,k), g(x̂j,k, t̂j,k) > 0, and
limj→∞(x̂j,k, t̂j,k) = (ξ∗(t), t). Therefore ω̃k ∈ Λ(t) for each k, and then
ω ∈ Λ(t), completing the proof that Λ is upper semicontinuous and has
compact values. So we have proved (1).

Now let us prove (2). Fix a t ∈ K. Then there exist, for j ∈ N, pairs
(x̃j , tj) ∈ Sg such that g(x̃j , tj) > 0 and ‖x̃j − ξ∗(t)‖+ |tj − t| < 2−j . Pick
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xj ∈ Dtj such that g(xj , tj) > 0 and ‖xj − x̃j‖ < 2−j . Let ωj = ∂g
∂x (xj , tj).

Then ‖ωj‖ ≤ C for all j. Therefore, we can pick an infinite subset J of N
such that ω = lim

j→∞,j∈J ωj exists. Then ω ∈ Λ(t), so Λ(t) 6= ∅. Next, fix
a t ∈ [a, b]\K. Then no sequence {(xj , tj , ωj)j∈N of the kind specified in the
definition of ∂>x g exists, so ∂>x g(x̄, t) is empty, that is, Λ(t) = ∅. This completes
the proof of (2).

We now prove (3). We take a point t̄ ∈ [a, b], a sequence {(tj , hj)}j∈N of
points of Sg such that limj→∞ hj = 0, and limj→∞ tj = t̄, and show that

lim
j→∞

µj = 0, where µj =
ρj
‖hj‖

, ρj = dist(χcog (ξ∗(tj)+hj , tj), Λ(t̄)·hj) . (51)

Write xj = ξ∗(tj)+hj , x̄ = ξ∗(t̄) (so that limj→∞ xj = x̄). Suppose (51) is not
true. Then we can pick an infinite subset J of N and an ε ∈ R such that ε > 0
and µj ≥ ε for all j ∈ J . Fix a j ∈ J . Then g(xj , tj) > 0. Let γj = g(xj , tj),
and use Σj to denote the sphere {h ∈ X : ‖h‖ = ‖hj‖}. (Recall that hj 6= 0,
so Σj is a true sphere, not reduced to a point.) For h ∈ X\{0}, let σh denote
the segment {ξ∗(tj) + sh : 0 ≤ s ≤ 1}. It then follows from Fubini’s theorem
and Rademacher’s theorem that the function gtj is differentiable at almost all
points of σh (that is, ξ∗(tj) + sh ∈ Dtj for almost all s ∈ [0, 1]) for almost all
h ∈ Σj . Therefore we can pick h̃j ∈ Σj such that, if we let x̃j = ξ∗(tj) + h̃j ,
then ‖h̃j − hj‖ ≤ (2C)−1γj and ξ∗(tj) + sh̃j ∈ Dtj for almost all s ∈ [0, 1].
Therefore ‖x̃j − xj‖ ≤ (2C)−1γj and g(xj , tj)− g(x̃j , tj) ≤ C‖xj − x̃j‖ ≤ γj

2
from which it follows (since g(xj , tj) = γj) that g(x̃j , tj) ≥ γj

2 . Clearly,

g(x̃j , tj) = g(ξ∗(tj), tj) +
(∫ 1

0

∂g

∂x
(ξ∗(tj) + sh̃j , tj) ds

)
· h̃j .

Since g(ξ∗(tj), tj) ≤ 0, and g(x̃j , tj) ≥ γj
2 , we conclude that(∫ 1

0

∂g

∂x
(ξ∗(tj) + sh̃j , tj) ds

)
· h̃j ≥

γj
2
.

We claim that we can pick sj ∈ [0, 1] such that the three conditions

ξ∗(tj)+sj h̃j ∈Dtj , g(ξ∗(tj)+sj h̃j , tj)>0,
∂g

∂x
(ξ∗(tj)+sj h̃j , tj)·h̃j≥

γj
2

(52)

hold. To see this, let η(s) = g(ξ∗(tj) + sh̃j , tj) − g(ξ∗(tj), tj) for s ∈ [0, 1],
so η(0) = 0, η(1) > 0, η is Lipschitz, and η̇(s) = ∂g

∂x (ξ∗(tj) + sh̃j , tj) · h̃j
for almost all s ∈ [0, 1]. Let τ = sup{s ∈ [0, 1] : η(s) ≤ 0}. Then τ < 1,
η(τ) = 0, η(1) ≥ γj

2 , and η(s) > 0 for s > τ . Therefore, there exists an s

such that τ < s < 1, ξ∗(tj) + sh̃j ∈ Dtj , and η̇(s) ≥ γj
2 (because if such

an s did not exist it would follow that η̇(s) < γj
2 for all s ∈]τ, 1[ such that

ξ∗(tj) + sh̃j ∈ Dtj , i.e., that η̇(s) < γj
2 for almost all s ∈ [τ, 1], and then∫ 1

τ
η̇(s) ds < γj

2 , so η(1)− η(τ) < γj
2 , contradicting the fact that η(τ) = 0 and

η(1) ≥ γj
2 ). This s is our desired sj , and the claim is proved.
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Now let ĥj = sj h̃j ,k x̂j = ξ∗(tj) + ĥj , ωj = ∂g
∂x (x̂j , tj). Then the sequence

{ωj}j∈J3 is bounded (because ‖ωj‖ ≤ C) so we may find an infinite subset J ′

of J such that ω = limj→∞,j∈J′ ωj exists. It then follows from the definition
of Λ that ω ∈ Λ(t̄). Then, if j ∈ J ′, we have

ω · hj = (ω−ωj) · hj+ωj · (hj−h̃j)+ωj · h̃j . (53)

It follows from (52) that ωj · h̃j ≥ γj
2 , while on the other hand we also have

|ωj · (hj − h̃j)| ≤ γj
2 , since ‖h̃j − hj‖ ≤ (2C)−1γj and ‖ωj‖ ≤ C. Then (53)

allows us to conclude that

ω · hj ≥ −‖ω − ωj‖ · ‖hj‖ . (54)

Since χcog (ξ∗(tj) + hj , tj) = [0,+∞[, and ω · hj belongs to Λ(t̄) · hj , (54)
implies that the distance ρj between the sets Λ(t̄) · hj and χcog (ξ∗(tj) + hj , tj)
is not greater than ‖ω − ωj‖ · ‖hj‖. Hence µj ≤ ‖ω − ωj‖. Therefore
limj→∞,j∈J′ µj = 0. But this contradicts the facts that J ′ ⊆ J and µj ≥ ε
for all j ∈ J . This contradiction concludes our proof. ut

6 Discontinuous vector fields

In this section we will study classes of discontinuous vector fields f that
have good properties, such as local existence of trajectories, local Cellina
approximability of flow maps, and differentiability of the flow maps
(t, s, x) 7→ Φf (t, s, x) at points (t̄, t̄, x̄). (The flow map of a ppd time-varying
vector field was defined in §2.1, page 6.)

These classes have already been studied in great detail in [24], so here we
will just limit ourselves to presenting the relevant definitions, referring the
reader to [24] for the proofs.

6.1 Co-integrably bounded integrally continuous maps.

The goal of this subsection is to define (i) the class of “co-IBIC” time-
varying maps K 3 (x, t) 7→ f(x, t) ∈ Y , where X,Y are FDNRLSs and K
is a compact subset of X × R, and (ii) the lower semicontinuous analogue
of the co-IBIC condition—called “co-ILBILSC,”—in the case when Y = R.
(The two abbreviations “co-IBIC” and “co-ILBILSC” stand, respectively, for
“co-integrably bounded and integrally continuous” and “co-integrably lower
bounded and integrally lower semicontinuous.”)

The co-IBIC class will be interesting when Y = X, i.e., when f is a
time-varying vector field on X. Roughly speaking the co-IBIC condition is
the minimum requirement that has to be satisfied so that local existence of
trajectories can be proved using the Schauder fixed point theorem. For a
time-varying vector field f : X × R 7→ X, and an initial condition (t̄, x̄), one
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would like to prove existence of a trajectory ξ of f , defined on some interval
[t̄− ε, t̄+ ε], by finding a fixed point of the map

Ξt̄,ε,x̄ 3 ξ 7→ I(ξ) ∈ Z such that I(ξ)(t) = x̄+
∫ t

t̄

f(ξ(s), s) ds ,

where Z = C0([t̄−ε, t̄+ε], X), and Ξt̄,ε,x̄ is the set of all ξ ∈ C0([t̄−ε, t̄+ε], X)
for which ξ(t̄) = x̄. To guarantee the existence of a fixed point, one needs I
to map Ξt̄,ε,x̄ continuously into a compact convex subset of Ξt̄,ε,x̄.

Traditionally, this is done—if, for example, f is continuous with respect
to x for each t and measurable with respect to t for each x—by assuming
that a bound ‖f(x, t)‖ ≤ k(t) is satisfied for all x, t, where the function
k : R 7→ [0,+∞] is locally integrable. (Naturally, it suffices to assume that
a function kJ exists for every compact subset J of x.) In that case, the
functions I(ξ), for ξ ∈ Ξt̄,ε,x̄, are absolutely continuous with derivatives
ξ̇(t) bounded in norm by k(t), and the Ascoli-Arzelà theorem guarantees
the desired compactness, while the continuity of the map follows from the
Lebesgue dominated convergence theorem.

Here we will consider a much large class of time-varying vector fields, and
in particular we will not require that f(x, t) be continuous with respect to
x. The main condition is going to be the continuity of the map I. We will
still want to assume the existence of the integral bounds k, and the continuity
of the integral map will only be assumed on the set of absolutely continuous
arcs ξ whose derivatives are bounded by the same function k. That is, we
will single out, for each compact subset S of X × R, the set Arc (S) of all
arcs ξ : I 7→ X, defined on a ξ-dependent compact interval I, and such that
(ξ(t), t) ∈ S for all t ∈ I, and the subset Arc k(S) of Arc (S) consisting of
all absolutely continuous ξ ∈ Arc (S) such that ‖ξ̇(t)‖ ≤ k(t) for almost all
t. This leads us to the concept of “co-IBIC” time-varying ppd vector fields,
that is, maps f : X × R ↪→ X such that, on a given compact subset S of
X × RX, satisfy a bound ‖f(x, t)‖ ≤ k(t) and also give rise to a continuous
integral map I on Arc k′(S), with the integrable functions k and k′ equal to
each other.

Finally, we point out that, for the integral map to be continuous, an
obvious prerequisite is that it be well defined. If ξ ∈ Arc (S), and Do(ξ) = I,
then of course the map I 3 t 7→ f(ξ(t), t) will be bounded by an integrable
function of t as long as f satisfies a bound ‖f(x, t)‖ ≤ k(t). But in addition
we have to make sure that the map is measurable, and this will require that
f be measurable with respect to (x, t) in some appropriate sense. This is why
our discussion will begin with the definition of “essential Borel×Lebesgue
measurability.”

Measurability conditions. If X is a FDNRLS, we use Bo(X), Leb(X),
BLeb(X,R), to denote, respectively, the Borel and Lebesgue σ-algebras of
subsets of X, and the product σ-algebra Bo(X)⊗ Leb(R). We let N (X,R)
denote the set of all subsets S of X × R such that ΠX(S) is a Lebesgue-null
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subset of R, where ΠX is the canonical projection X × R 3 (x, t)→ t ∈ R.
Finally, we use BLe(X,R) to denote the σ-algebra of subsets of X × R
generated by BLeb(X,R) ∪ N (X,R). It is then clear that the relations
Bo(X × R) ⊂ BLeb(X,R) ⊂ BLe(X,R) hold, and both inclusions are strict.

Definition 6.1 Let X,Y be FDNRLSs, let f be a ppd map from X×R to Y ,
and let K be a compact subset of X × R.

• We say that f is essentially Borel×Lebesgue measurable on K, or
BLe(X,R)-measurable on K, if K ⊆ Do(f) and f−1(U)∩K belongs to
BLe(X,R) for all open subsets U of Y .

• We use MBLe(X ×R,K, Y ) to denote the set of ppd maps from X ×R to
Y that are BLe(X,R)-measurable on K.

Integrable boundedness. Assume that X,Y are FDNRLSs, f is a ppd map
from X × R to Y , let K is a compact subset of X × R.

• An integrable bound for f on the set K is an integrable function
R 3 t→ ϕ(t) ∈ [0,+∞] such that ‖f(x, t)‖ ≤ ϕ(t) for all (x, t) ∈ K.

• If Y = R, an integrable lower bound for f on K is an integrable function
R 3 t→ ϕ(t) ∈ [0,+∞] such that f(x, t) ≥ −ϕ(t) for all (x, t) ∈ K.

• We call f integrably bounded (IB)—resp. integrably lower bounded
(ILB)—on K if f is BLe(X,R)-measurable on K and there exists an
integrable bound—resp. an integrable lower bound—for f on K.

• We write IB(X ×R,K, Y ), ILB(X ×R,K,R) to denote, respectively, the
sets of (i) all ppd maps from X × R to Y that are IB on K, and (ii) all
ppd maps from X × R to R that are ILB on K. ut

Spaces of arcs. If S ⊆ X × R, and I is a nonempty compact interval,
we write Arc (I, S) to denote the set of all curves ξ∈C0( I ; X ) such that
(ξ(t), t) ∈ S for all t ∈ I. If k : R 7→ R+ ∪ {+∞} is a locally integrable
function, then Arc k(I, S) will denote the set of all ξ ∈ Arc (I, S) such that ξ
is absolutely continuous and ‖ξ̇(t)‖ ≤ k(t) for almost all t ∈ I. We then write
Arc (S), Arc k(S) to denote, respectively, the union of the sets Arc (J, S) and
the union of the Arc k(J, S), taken over all nonempty compact subintervals J
of R. It is then easy to show that

Fact 6.2 If X,Y are FDNRLSs, K ⊆ X × R is compact, I is a compact
interval, ξ ∈ Arc (K), and f belongs toMBLe(X × R,K, Y ) then the function
Do(ξ) 3 t 7→ f(ξ(t), t) ∈ Y is measurable. ut

The sets Arc (S) are metric spaces, with the distance d(ξ, ξ′) between two
members ξ : [a, b] 7→ X, ξ′ : [a′, b′] 7→ X of Arc (S) defined by

d(ξ, ξ′) = |a− a′|+ |b− b′|+ sup{‖ξ̃(t)− ξ̃′(t)‖ : t ∈ R}

where, for any continuous map γ : [α, β] 7→ X, γ̃ denotes the extension of γ
to R which is identically equal to γ(α) on ] −∞, α] and to γ(β) on [β,+∞[.
Clearly, then
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Fact 6.3 If X is a FDNRLS and S ⊆ X × R, then

(1) if {ξj}j∈N is a sequence of members of Arc (S), with domains [aj , bj ], and
ξ ∈ Arc (S) has domain [a, b], then {ξj}j∈N converges to ξ if and only
if (a) limj→∞ aj = a, (b) limj→∞ bj = b, and (c) limj→∞ ξj(tj) = ξ(t)
whenever {tj}j∈N is a sequence such that tj ∈ [aj , bj ] for each j and
limj→∞ tj = t ∈ [a, b],

(2) if S is compact, k : R 7→ R+ ∪ {+∞} is locally integrable, then Arc k(S) is
compact. ut

Integral continuity. If X,Y are FDNRLSs, K ⊆ X×R is compact, and
f ∈ IB(X × R,K, Y ), then it is convenient to define a real-valued integral
map If,K : Arc (K) 7→ R, by letting If,K(ξ) =

∫
Do(ξ)

f(ξ(s), s) ds for every
ξ ∈ Arc (K). If S ⊆ Arc (K), we call f integrally continuous (abbr. IC)
on S if If,K d S is continuous. If f ∈ ILB(X × R,K,R), then If,K is still
well defined as a map into R ∪ {+∞}, and we call f integrally lower
semicontinuous (abbr. ILSC) on S if If,K d S is lower semicontinuous.

We will be particularly interested in maps f that, for some integrable
function k, are both integrably bounded with integral bound k and integrally
continuous on Arc k(K).

Definition 6.4 If X, Y are FDNRLSs, K is a compact subset of X×R, and
f : X × R ↪→ Y , we call f co-IBIC (“co-integrably bounded and integrally
continuous”) on K if f ∈ IB(X × R,K, Y ) and there exists an integrable
bound k : R 7→ [0,+∞] for f on K such that f is integrally continuous on
Arc k(K). If f : X ×R ↪→ R, we call f co-ILBILSC (“co-integrably bounded
and integrally lower semicontinuous”) on K if f ∈ ILB(X × R,K,R) and
there exists an integrable lower bound k : R 7→ [0,+∞] for f on K such that
f is integrally lower semicontinuous on Arc k(K). ut

6.2 Points of approximate continuity

Suppose that X and Y are FDNRLSs, f is a ppd map from X × R to Y , and
(x̄∗, t̄∗) ∈ X × R. A modulus of approximate continuity (abbr. MAC) for f
near (x̄∗, t̄∗) is a function ] 0,+∞ [×R 3 (β, r) 7→ ψ(β, r) ∈ ] 0,+∞ ] such that

(MAC.1) the function R 3 r 7→ ψ(β, r) ∈ ] 0,+∞ ] is measurable for each
β ∈ ] 0,+∞ [ ,

(MAC.2) lim(β,ρ)→(0,0),β>0,ρ>0
1
ρ

∫ ρ
−ρ ψ(β, r) dr = 0,

(MAC.3) there exist positive numbers β∗, ρ∗, such that
(MAC.3.a) f(x, t) is defined whenever ‖x− x̄∗‖ ≤ β∗ and |t− t̄∗| ≤ ρ∗,
(MAC.3.b) the inequality ‖f(x, t)−f(x̄∗, t̄∗)‖≤ψ(β, t− t̄∗) holds whenever

β ∈ R, x ∈ X, t∈R are such that ‖x−x̄∗‖≤β≤β∗ and
|t− t̄∗|≤ρ∗.

Definition 6.5 A point of approximate continuity (abbr. PAC) for f
is a point (x̄∗, t̄∗) ∈ X ×R having the property that there exists a MAC for f
near (x̄∗, t̄∗). ut
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An important example of a class of maps with many points of approximate
continuity is given by the following corollary of the well-known Scorza-Dragoni
theorem.

Proposition 6.6 Suppose X, Y are FDNRLSs, Ω is open in X, a, b ∈ R,
a < b, and f : Ω × [a, b] 7→ Y is such that

• the partial map [a, b] 3 t 7→ f(x, t) ∈ Y is measurable for every x ∈ Ω,
• the partial map Ω 3 x 7→ f(x, t) ∈ Y is continuous for every t ∈ [a, b], and
• there exists an integrable function [a, b] 3 t 7→ k(t) ∈ [0,+∞] such that the

bound ‖f(x, t)‖ ≤ k(t) holds whenever (x, t) ∈ Ω × [a, b].

Then there exists a subset G of [a, b] for which meas([a, b]\G) = 0, such that
every (x̄∗, t̄) ∈ Ω ×G is a point of approximate continuity of f . ut

Another important example of maps with many PACs is given by the
following result, proved in [24].

Proposition 6.7 Suppose that X and Y are FDNRLSs, a, b ∈ R, a < b, and
F : X × [a, b] 7→→ Y is an almost lower semicontinuous set-valued map with
closed nonempty values such that for every compact subset K of X the function
[a, b] 3 t 7→ sup{min{‖y‖ : y ∈ F (x, t)} : x ∈ K} is integrable. Then there
exists a subset G of [a, b] such that meas([a, b]\G) = 0, having the property
that, whenever x∗ ∈ X, t∗ ∈ G, v∗ ∈ F (x∗, t∗), and K ⊆ X is compact,
there exists a map K × [a, b] 3 (x, t) 7→ f(x, t) ∈ F (x, t) which is co-IBIC on
K × [a, b] and such that (x∗, t∗) is a PAC of f and f(x∗, t∗) = v∗. ut

7 The maximum principle

We consider a fixed time-interval optimal control problem with state space
constraints, of the form

minimize ϕ(ξ(b)) +
∫ b
a
f0(ξ(t), η(t), t) dt

subject to


ξ(·) ∈W 1,1([a, b], X) and ξ̇(t) = f(ξ(t), η(t), t) a.e. ,
ξ(a) = x̄∗ and ξ(b) ∈ S ,
gi(ξ(t), t) ≤ 0 for t ∈ [a, b] , i = 1, . . . ,m ,
hj(ξ(b)) = 0 for j = 1, . . . , m̃ ,
η(t) ∈ U for all t ∈ [a, and η(·) ∈ U ,

and a reference trajectory-control pair (ξ∗, η∗).

The technical hypotheses. We will make the assumption that the data
14-tuple D = (X,m, m̃, U, a, b, ϕ, f0, f, x̄∗,g,h, S,U) satisfies:

(H1) X is a normed finite-dimensional real linear space, x̄∗ ∈ X, and m, m̃
are nonnegative integers;

(H2) U is a set, a, b ∈ R and a < b;
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(H3) f0, f are ppd functions from X × U × R to R, X, respectively;
(H4) g = (g1, . . . , gm) is an m-tuple of ppd functions from X × R to R;
(H5) h = (h1, . . . , hm̃) is an m̃-tuple of ppd functions from X to R;
(H6) ϕ is a ppd function from X to R;
(H7) S is a subset of X;
(H8) U is a set of ppd functions from R to U such that the domain of every

η ∈ U is a nonempty compact interval.

Given such a D, a controller is a ppd function η : R ↪→ U whose domain is a
nonempty compact interval. (Hence (H8) says that U is a set of controllers.)
An admissible controller is a member of U . If α, β ∈ R and α ≤ β, then we
use W 1,1([α, β], X) to denote the space of all absolutely continuous maps
ξ : [α, β] 7→ X. A trajectory for a controller η : [α, β] 7→ U is a map
ξ ∈W 1,1([α, β], X) such that, for almost every t ∈ [α, β], (ξ(t), η(t), t) belongs
to Do(f) and ξ̇(t) = f(ξ(t), η(t), t). A trajectory-control pair (abbr. TCP) is a
pair (ξ, η) such that η is a controller and ξ is a trajectory for η. The domain
of a TCP (ξ, η) is the domain of η, which is, by definition, the same as domain
of ξ. A TCP (ξ, η) is admissible if η ∈ U .

A TCP (ξ, η) with domain [α, β] is cost-admissible if

• (ξ, η) is admissible;
• the function [α, β] 3 t 7→ f0(ξ(t), η(t), t) is a.e. defined, measurable, and

such that
∫ β
α

min
(

0, f0(ξ(t), η(t), t)
)
dt > −∞;

• the terminal point ξ(β) belongs to the domain of ϕ.

It follows that if (ξ, η) is cost-admissible then the number

J(ξ, η) = ϕ(ξ(β)) +
∫ β

α

f0(ξ(t), η(t), t) dt

—called the cost of (ξ, η)—is well defined and belongs to ]−∞,+∞].
A TCP (ξ, η) with domain [α, β] is constraint-admissible if it satisfies all

our state space constraints, that is, if

(CA1) ξ(α) = x̄∗,
(CA2) (ξ(t), t) ∈ Do(gi) and gi(ξ(t), t) ≤ 0 if t ∈ [α, β] and i ∈ {1, . . . , m̂},
(CA3) ξ(β) ∈ S ∩

(
∩m̃j=1 Do(hj)

)
and hj(ξ(β)) = 0 for j = 1, . . . , m̃.

For the data tuple D, we use ADM(D) to denote the set of all cost-admissible,
constraint-admissible TCPs (ξ, η), and ADM[a,b](D) to denote the set of all
(ξ, η) ∈ ADM(D) whose domain is [a, b].

The hypothesis on the reference TCP (ξ∗, η∗) is that it is a cost-minimizer
in ADM[a,b](D), i.e., an admissible, cost admissible, constraint-admissible
TCP with domain [a, b] that minimizes the cost in the class of all admissible,
cost-admissible, constraint-admissible, TCP’s with domain [a, b]. That is,

(H9) The pair (ξ∗, η∗) satisfies (ξ∗, η∗) ∈ ADM[a,b](D), J(ξ∗, η∗) < +∞,
and J(ξ∗, η∗) ≤ J(ξ, η) for all pairs (ξ, η) ∈ ADM[a,b](D) .
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To the data D, ξ∗, η∗ as above, we associate the cost-augmented dynamics
f : X×U×R ↪→ R×X defined by

Do(f) = Do(f0) ∩Do(f), and f(z) = (f0(z), f(z)) for z = (x, u, t) ∈ Do(f) .

We also define the epi-augmented dynamics f̌ : X × U × R 7→→ R×X, given,
for each z = (x, u, t) ∈ X × U × R, by

f̌(z) = [f0(z),+∞[×{f(z)} if z ∈ Do(f), f̌(z) = ∅ if z /∈ Do(f) .

We will also use the constraint indicator maps χcogi :X×R 7→→R, for i=1, . . . ,m,
and the epimap ϕ̌ : X 7→→ R. (These two notions were defined in §2.1.)

For i ∈ {1, . . . ,m}, we let

σf
∗(t)= f(ξ∗(t), η∗(t), t) and σgi∗ (t)=gi(ξ∗(t), t) if t ∈ [a, b],
Avgi ={(x, t) ∈ X × [a, b] : gi(x, t) > 0}

(so the Avgi are the “sets to be avoided”). We then define Ki to be the set
of all t ∈ [a, b] such that (ξ∗(t), t) belongs to the closure of Avgi . Then Ki is
obviously a compact subset of [a, b].

We now make technical hypotheses on D, ξ∗, η∗, and five new objects
called Λf , Λg, Λh, Λϕ, and C. To state these hypotheses, we let Uc,[a,b]
denote the set of all constant U -valued functions defined on [a, b], and define
Uc,[a,b],∗ = Uc,[a,b] ∪ {η∗} . The technical hypotheses are then as follows.

(H10) For each η ∈ Uc,[a,b],∗. there exist a positive number δη such that
(H10.a) f(x, η(t), t) is defined for all (x, t) in the tube T X(ξ∗, δη);
(H10.b) the time-varying vector field T X(ξ∗, δη) 3 (x, t) 7→ f(x, η(t), t) is

co-IBIC on T X(ξ∗, δη);
(H10.c) the time-varying function T X(ξ∗, δη) 3 (x, t) 7→ f0(x, η(t), t) ∈ R

is co-ILBILSC on T X(ξ∗, δη).
(H11) The number δη∗ can be chosen so that (i) each function gi is defined

on T X(ξ∗, δη∗), and (ii) for each i ∈ {1, . . . ,m}, t ∈ [a, b], the set
{x ∈ X : gi(x, t) > 0, ‖x− ξ∗(t)‖ ≤ δη∗} is relatively open in the ball
{x ∈ X : ‖x− ξ∗(t)‖ ≤ δη∗}.

(H12) Λf is a measurable integrably bounded set-valued map from [a, b]
to X†×L (X) with compact convex values such that Λf belongs to
V GL

1,ft
GDQ(f̌ , [a, b], ξ∗, σf

∗, X × R).
(H13) Λg is an m̂-tuple (Λg1 , . . . , Λgm̂) such that, for each i ∈ {1, . . . , m̂},

Λgi is an upper semicontinuous set-valued map from [a, b] to X† with
compact convex values, such that Λgi ∈ V Gpw,robGDQ (χcogi , ξ∗, σ

gi
∗ , Avgi).

(H14) Λh is a generalized differential quotient of h at ( ξ∗(b),h(ξ∗(b))) in the
direction of X.

(H15) Λϕ is a generalized differential quotient of the epifunction ϕ̌ at the
point (ξ∗(b), ϕ(ξ∗(b))) in the direction of X.

(H16) C is a limiting Boltyanskii approximating cone of S at ξ∗(b).
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Our last hypothesis will require the concept of an equal-time interval-
variational neighborhood (abbr. ETIVN) of a controller η. We say that a set
V of controllers is an ETIVN of a controller η if

• for every n ∈ Z+ and every n-tuple u = (u1, . . . , un) of members
of U , there exists a positive number ε = ε(n,u) such that whenever
η′ : Do(η) 7→ U is a map obtained from η by first selecting an n-tuple
I = (I1, . . . , In) of pairwise disjoint subintervals of Do(η) with the property
that

∑n
j=1 meas(Ij) ≤ ε, and then substituting the constant value uj for

the value η(t) for every t ∈ Ij, j = 1, . . . , n, it follows that η ∈ U .

We will then assume

(H17) The class U is an equal-time interval-variational neighborhood of η∗.

We define the Hamiltonian to be the function Hα : X × U ×X† × R ↪→ R

given by Hα(x, u, p, t) = p · f(x, u, t)−αf0(x, u, t), so Hα depends on the real
parameter α.
The main theorem. The following is our version of the maximum principle.

Theorem 7.1 Assume that the data D, ξ∗, η∗, Λf , Λg, Λh, Λϕ, C satisfy
Hypotheses (H1) to (H20). Let I be the set of those indices i ∈ {1, . . . ,m}
such that Ki is nonempty. Then there exist

1. a covector π̄ ∈ X†, a nonnegative real number π0, and an m̃-tuple
λ = (λ1, . . . , λm̃) of real numbers,

2. a measurable selection [a, b] 3 t 7→ (L0(t), L(t)) ∈ X†×L (X) of the set-
valued map Λf ,

3. a family {νi}i∈I of nonnegative additive measures νi ∈ bvadd([a, b],R) such
that support(νi) ⊆ |Λi| for every i ∈ I,

4. a family {γi}i∈I of pairs γi = (γ−i , γ
+
i ) such that γ−i : |Λgi | 7→ X† and

γ+
i : |Λgi | 7→ X† are measurable selections of Λgi , and γ−i (t) = γ+

i (t) for
all t in the complement of a finite or countable set,

5. a member Lh = (Lh1 , . . . , Lhm̃) ∈ (X†)m̃ of Λh and a member Lϕ of Λϕ,

having the property that, if we let π : [a, b] 7→ X† be the unique solution of the
adjoint Cauchy problem{

dπ(t)=(−π(t) · L(t)+π0L0(t))dt+
∑
i∈I dµi(t)

π(b) = π̄ −
∑m̃
j=1 λjL

h
j − π0L

ϕ

(where µi ∈ bvadd(Λgi) is the finitely additive X†-valued measure such that
dµi = γi · dνi, defined in Page 9), then the following conditions are true:

I. the Hamiltonian maximization condition: the inequality

Hπ0(ξ∗(t̄), η∗(t̄), π(t̄)) ≥ Hπ0(ξ∗(t̄), u, π(t̄))

holds whenever u ∈ U , t̄ ∈ [a, b] are such that (ξ∗(t̄), t̄) is a point of
approximate continuity of both augmented vector fields (x, t) 7→ f(x, u, t)
and (x, t) 7→ f(x, η∗(t), t),
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II. the transversality condition: −π̄ ∈ C†,
III. the nontriviality condition: ‖π̄‖+ π0 +

∑m̃
j=1 |λj |+

∑
i∈I ‖νi‖ > 0.

Remark 7.2 The adjoint equation satisfied by π can be written in integral
form, incorporating the terminal condition at b. The result is the formula

π(t)= π̄−
m̃∑
j=1

λjL
h
j−π0L

ϕ+
∫ b

t

(
π(s) ·L(s)−π0L0(s)

)
ds−

∑
i∈I

∫
[t,b]

γi(s)dνi(s),

from which it follows, in particular, that π(b) = π̄ −
∑m̃
j=1 λjL

h
j − π0L

ϕ . ut

Remark 7.3 The adjoint covector π can also be expressed using (8). This
yields π(t) = π(b)−

∫ b
t
ML(s, t)†

(
π0L0(s) ds+

∑
i∈I d(γi · νi)(s)

)
, where

π(b) = π̄ −
∑m̃
j=1 λjL

h
j −π0L

ϕ, and ML is the fundamental solution of the
equation Ṁ = L ·M . ut
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