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x1. Introduction

Optimal control was born in 1696 |300 years ago this

year| in the Netherlands, when Johann Bernoulli chal-

lenged his contemporaries with the \brachystochrone

problem" (BP). The purpose of this paper is to give a

brief outline of why this event truly deserves to be called

the birth of optimal control, and how the research that

began in 1696 has led to modern optimal control theory

and, especially, to the maximum principle. In particu-

lar, we will argue that, as this path was followed, sev-

eral opportunities were missed that would have led to

much earlier discovery of the maximumprinciple. In at

least one case |that of the formulation of Hamilton's

equations| we will attempt to show that the discov-

ery was missed for no reason other than the decision

to rewrite an equation in terms of one formalism rather

than another one that would have been equally suitable

and was also available at the time. As a conclusion, we

will show how a modern look at the BP, from the per-

spective of optimal control theory, can still yield new

insights into this 300-year old problem.

Johann Bernoulli's challenge attracted a lot of atten-

tion, and some of the greatest mathematicians of the

time submitted solutions. The May 1697 issue of Acta

Eruditorum contains Johann's own solution, as well as

a rather di�erent one by his elder brother Jakob, and

contributions by Newton, Tschirnhaus, l'Hôpital and

Leibniz. So there is no doubt that something important

happened in 1696-7. For example, D. J. Struik, refer-

ring to the articles published in the May 1697Acta Eru-

ditorum, writes ([3], p. 392) that \these papers opened

the history of a new �eld, the calculus of variations."

We want to go a bit farther, however, and make a

case for a 1696 birth of optimal control theory. This,

naturally, requires some explanation.

The conventional wisdom holds that optimal control

theory was born about 40 years ago with the work on

the \Pontryagin maximumprinciple" by L. S. Pontrya-

gin and his group, cf. [2], or perhaps a few years earlier

with the work of McShane and Hestenes.

On the other hand, if we take a careful look at those

features that make optimal control di�erent from the

calculus of variations, we can already �nd quite a few

of them in the BP.

The calculus of variations deals mainly with opti-

mization problems of the \standard" form

minimize I =

R

b

a

L(q(t); _q(t); t)dt ,

subject to q(a) = �q and q(b) = q̂ ; (1)

or, equivalently, of the form

�

This research was supported in part by NSF Grant DMS95-

00798 and AFOSR Grant 0923.

minimize I =

R

b

a

L(q(t); u(t); t)dt ;

subject to q(a) = �q ; q(b) = q̂ ; (2)

and _q(t) = u(t) for a � t � b :

The distinctive feature of these problems is that the

minimization of (1) takes place in the space of all

curves, so nothing interesting happens on the level of the

set of curves under consideration, and all the nontrivial

features of the problem arise because of the Lagrangian

L. (In 20th century mathematics, \all curves" means,

of course, all curves in some appropriately chosen func-

tion space, such as that of all absolutely continuous

curves, or that of all Lipschitz curves.)

Optimal control problems, by contrast, involve a min-

imization over a set C of curves which is itself deter-

mined by some dynamical constraints. For example, C

might be the set of all curves t 7! q(t) that satisfy a

di�erential equation

_q(t) = f(q(t); u(t); t) (3)

for some choice of the \control function" t 7! u(t).

(More precisely, since it may happen that a member of

C does not uniquely determine the control u that gen-

erates it, we should really be talking about trajectory-

control pairs (q(�); u(�)).)

So in an optimal control problem there are at least

two objects that give the situation interesting struc-

ture, namely, the dynamics f and the cost functional I

to be minimized. In particular, optimal control theory

contains, at the opposite extreme from the calculus of

variations, problems where the \Lagrangian" L is � 1,

i.e. completely trivial, and all the interesting action

occurs because of the dynamics f . Such problems, in

which it is desired to minimize time|i.e. the integral I

of (2) with L � 1| among all curves t 7! q(t) that sat-

isfy endpoint constraints as in (2) and are solutions of

(3) for some control t 7! u(t), are called minimum time

problems. It is in these problems that the di�erence be-

tween optimal control and the calculus of variations is

most clearly seen, and it is no accident that these were

the problems that propelled the development of opti-

mal control in the early 1960's, and that time-optimal

control is prominently represented in today's research

and in modern optimal control textbooks. (In addi-

tion, controlled dynamical systems of the form (3) are

interesting objects to study even in the absence of a

minimization problem, which is why control theory is a

much richer subject than optimal control, which deals

with only one of many kinds of important control prob-

lems.) More recently, it has become apparent that, as

R. Hermann, R. Brockett, H. Hermes, A. Krener, C. Lo-

bry, and others had argued since the 1960's and early



70's, a controlled dynamics such as (3) is, really, a fam-

ily of vector �elds, and such an object has to be studied

using the machinery of di�erential geometry, which al-

lows us to associate an algebraic structure to a family

of vector �elds, by looking at their Lie brackets.

Within this framework, it is clear that Johann

Bernoulli's problem, as posed in the Acta Eruditorum,

is a true minimum time problem of the kind that is stud-

ied today in optimal control theory. This, incidentally,

is why it is no coincidence that Johann Bernoulli called

his fastest path the brachystochrone (from the Greek

words ��������o&: shortest, and ���o�o&: time).

Moreover, the BP is the �rst one ever to deal with

a dynamical behavior and explicitly ask for the optimal

selection of a path.

y

Finally, and most importantly, we will argue that a

large part of the subsequent history of the calculus of

variations can be best understood as the search for the

simplest and most general statement of the necessary

conditions for optimality, which is provided by the max-

imum principle of optimal control theory.

x2. Bernoulli, Euler, Lagrange, and Legendre

Johann's Bernoulli's BP is that of �nding, for two given

points A and B in a vertical plane, \the orbit AMB of

the movable point M , along which it, starting from A,

and under the inuence of its own weight, arrives at B

in the shortest possible time." In modern language, if

we choose x and y axes in the plane with the y axis

pointing downwards, use (a

1

; a

2

) and (b

1

; b

2

) to denote,

respectively, the coordinates of the end points A and B,

and �x a number E 2 IR, we want to �nd a Lipschitz

function f : [0; T ]! IR

2

, with components f

1

(t); f

2

(t),

that satis�es the constraints f(0) =A, f(T ) = B, and

1

2

(j

_

f

1

(t)j

2

+j

_

f

2

(t)j

2

)=E+gf

2

(t) for almost all t2 [0; T ],

and is such that T has the least possible value. Here g

is the gravitational constant, and the number E + ga

2

is the initial kinetic energy of the body.

Obviously, such a path must be entirely contained in

the closed half-plane H

+

(�) = f(x; y) : y � ��g, where

� =

E

g

.

It turns out that the brachystochrone |i.e. the op-

timal path| is a cycloid. When E = 0, it is the curve

described by a point P in a circle that rolls without

slipping on on the x axis, in such a way that P passes

through A and then through B, without hitting the x

axis in between. (It is easy to see that this de�nes the

cycloid uniquely.)

Johann Bernoulli derived this fact using Fermat's

minimum time principle, together with the fact that

this principle implies Snell's law about the refraction of

light. If we imagine for a moment that instead of deal-

ing with the motion of a moving body we are dealing

with a light ray, then the dynamical constraint gives

us a formula for the \speed of light" c as a function of

y

Other \calculus of variations" problems had been considered

earlier. For example, the isoperimetric problem goes back to

classical Greece, and Newton had solved a minimal drag problem

in 1685. But in both cases the curves to be computed were not

thought of as paths of a moving body or particle.

position: c =

p

2E + 2gy. From now on, let us change

coordinates so that E = 0. (This amounts to shifting

the x axis vertically.) Then � = 0, so our feasible paths

live in the half plane H

+

def

=H

+

(0). Also, let us rescale

|or \change our choice of physical units"| so that

2g = 1. Then our problem is exactly equivalent to that

of determining the light rays |i.e. the minimum-time

paths| in a plane medium where the speed of light c

varies continuously as a function of position according

to the formula c =

p

y. Bernoulli solved this problem

by dividing the half-plane H

+

into horizontal strips of

height �, treating c in each strip as a constant, �nding

the light rays for the discretized problem by means of

Snell's law, and then taking the limit as � # 0. In the

limit, he obtained the di�erential equation

y

0

(x) =

s

C � y(x)

y(x)

; (4)

for the y-coordinate of the brachystochrone as a func-

tion of its x-coordinate, where C is a constant. The

curves parametrized by

x(')=x

0

+

C

2

(' � sin') ; y(')=

C

2

(1� cos') ; (5)

with 0�' �2�, satisfy (4). It is easily seen that these

equations specify the cycloid generated by a point P on

a circle of diameter C that rolls without slipping on the

horizontal axis, in such a way that P is at (x

0

; 0) when

' = 0. Moreover, it is also easy to check that

(*) given two points A and B in H

+

there is exactly

one curve in this family passing through A and B.

The argument that we have presented is the one of Jo-

hann Bernoulli, and Equation (4) is essentially the one

that he wrote in his paper, followed by the statement

\from which I conclude that the Brachystochrone is the

ordinary Cycloid." We should keep in mind, however,

that he was not using the convention, customary in con-

temporary mathematics, according to which the symbol

p

r stands for the nonnegative square root of r. What

he meant was, clearly, what we would write today as

y

0

(x) = �

q

C�y(x)

y(x)

or, even better, as

y(x)(1 + y

0

(x)

2

) = constant : (6)

Even with the more accurate rewriting (6), the di�er-

ential equation derived by Johann Bernoulli also has

spurious solutions, not given by (5). (For example, for

any �y >0, the constant function y(x)= �y is a solution,

corresponding to C=�y.)

These spurious solutions can be eliminated in a num-

ber of ways. For example, the calculus of variations ap-

proach, based on writing the Euler-Lagrange equation

(8), gives the equation

1 + y

0

(x)

2

+ 2y(x)y

00

(x) = 0 ; (7)

which is stronger than (6), since (6) is equivalent to

y

0

+ y

03

+ 2yy

0

y

00

= 0, i.e. to y

0

(1 + y

02

+ 2yy

00

) = 0,

whose solutions are those of (7) plus the spurious solu-

tions. It is easy to verify that the solutions of (7) are

exactly the curves given by (5), without any extra spuri-

ous solutions, showing that the Euler-Lagrange method

gives better results than Johann Bernoulli's approach.



To show how the calculus of variations leads to (7),

it su�ces to put the BP in the \standard" form (1). To

do this, we consider curves y = y(x) in the x; y plane,

where y : [a

1

; b

1

] 7! IR is a function. Then the dy-

namical constraint of Bernoulli's problem can be writ-

ten (with E = 0 and 2g= 1 as before) as dx

2

+dy

2

=

y dt

2

, which gives dt =

p

dx

2

+dy

2

p

y

= L(y; _y)dx, where

L(y; u) =

p

1+u

2

p

y

, and we are using x rather than t

for the time variable, and writing _y for dy=dx. So Jo-

hann Bernoulli's problem becomes that of minimizing

the integral

R

b

1

a

1

L(y(x); _y(x))dx subject to y(a

1

) = a

2

and y(b

1

) = b

2

. The Euler-Lagrange equation for this

problem turns out to be precisely (7).

Johann Bernoulli's BP was the �rst of a series

of curve minimization problems studied by him, his

brother Jakob, his student Euler, and Lagrange. Eu-

ler studied general problems and derived what is

now known as the \Euler equation." Lagrange then

found the necessary condition known today as the

\Euler-Lagrange equation," or \Euler-Lagrange sys-

tem," which says that, if t ! q

�

(t) is a solution of

(1), then the equation

d

dt

@L

@ _q

=

@L

@q

(8)

must hold along q

�

. Equation (8) makes perfect sense

and is a necessary condition for optimality for a vector-

valued variable q as well as for a scalar one. It can be

written as a system:

d

dt

@L

@ _q

i

=

@L

@q

i

, i = 1; : : : ; n. Alter-

natively, we can regard Equation (8) as a vector iden-

tity, in which q = (q

1

; : : : ; q

n

) is an n-dimensional vec-

tor, and

@L

@q

,

@L

@ _q

stand for the n-tuples

�

@L

@q

1

; : : : ;

@L

@q

n

�

,

�

@L

@ _q

1

; : : : ;

@L

@ _q

n

�

.

A modern mathematician might be troubled by the

use of _q both as an \independent variable" and as a

function of time evaluated along a trajectory, and might

prefer to write (8) as

d

dt

"

@L

@u

�

q

�

(t)

�

#

=

@L

@q

�

q

�

(t)

�

; i=1; : : : ; n ; (9)

where q

�

(t) = (q

�

(t); _q

�

(t); t), and the \Lagrangian"

L(q; u; t) is a function of q2 IR

n

, u2 IR

n

, t2 IR. This

makes it clear that the left-hand side of (8) is computed

by �rst evaluating

@L

@ _q

\treating _q as an independent

variable," then plugging in q

�

(t) and _q

�

(t) for q, _q, and

�nally di�erentiating with respect to t.

The Euler-Lagrange system (8) |or (9)| only gave

conditions for stationarity, i.e., for the �rst variation of

I to be zero. The next natural step was to look at the

second variation, and this was done by Legendre, who

found an additional necessary condition for a minimum.

His condition is

@

2

L

@ _q

2

�

q

�

(t)

�

� 0 (i:e:

@

2

L

@u

2

�

q

�

(t)

�

� 0) : (10)

With an appropriate reinterpretation, (10) is also a

necessary condition in the vector case: we just have

to read (10) as asserting that the Hessian matrix

n

@

2

L

@u

i

@u

j

�

q

�

(t)

�o

1�i;j�n

has to be nonnegative de�nite.

x3. Two critical forks: Hamilton & Weierstrass

We are now close to the �rst and most critical fork in

the road, involving the work of W. R. Hamilton. In a

sense, the issue at stake will seem rather trivial, just a

matter of rewriting the Euler-Lagrange system in a dif-

ferent formalism. But sometimes formalism can make

a tremendous di�erence. We will argue that: (a) more

than one rewriting was possible, (b) it matters a lot

which rewriting is chosen, (c) Hamilton's own choice

may not have been the best one.

To understand what happened and what could have

happened but did not, let us try to make sense of the

two necessary conditions for a minimum that have been

presented so far. The Legendre condition is clearly the

second-order necessary condition for a minimum of a

function (namely, L(q(t); u; t) as a function of u). But

(8) does not look at all like the �rst-order condition

for a minimum of that same function. It is natural to

ask whether there might be a way to relate the two

conditions. Is it possible that both can be expressed

as necessary conditions for a minimum of one and the

same function? The answer is \yes," and understanding

how this can be done leads straight to optimal control

theory, the maximum principle, and far-reaching gen-

eralizations of the classical theory.

To see this, de�ne a function H(q; u; p; t) of three

vector variables q; u; p in IR

n

, and of t 2 IR, by letting

H(q; u; p; t) = hp; ui � L(q; u; t) : (11)

Then de�ne

p

�

(t) =

@L

@u

�

q

�

(t)

�

: (12)

It is then clear that

@H

@p

= u, so along our optimal curve

q

�

|writing qp

�

(t) = (q

�

(t); _q

�

(t); p

�

(t); t)| we have

dq

�

dt

(t) =

@H

@p

�

qp

�

(t)

�

. Also,

@H

@q

= �

@L

@q

, so (9), with

p

�

(t) de�ned by (12), says that

dp

dt

(t) = �

@H

@q

�

qp

�

(t)

�

.

Finally,

@H

@u

= p �

@L

@u

, so (12) says:

@H

@u

�

qp

�

(t)

�

=

0. The above system of three equations, which can be

written more concisely as

dq

dt

=

@H

@p

;

dp

dt

= �

@H

@q

;

@H

@u

= 0 ; (13)

is exactly equivalent to (8), provided that H is de�ned

as in (11).

In our view, Formula (11) is the de�nition that

Hamilton should have given for the Hamiltonian, and

Equations (13) are \Hamilton's equations as he should

have written them."

However, what Hamilton actually wrote was (in our

notation)

dq

dt

=

@H

@p

;

dp

dt

= �

@H

@q

; (14)

where H(q; p; t) is a function of p; q and t alone, de�ned

by the formula H(q; p; t) = hp; _qi � L(q; _q; t), which re-

sembles (11) but is not at all the same. The di�erence is

that in Hamilton's de�nition _q is supposed to be treated

not as an independent variable, but as a function of

q; p; t, de�ned implicitly by the equation p =

@L

@ _q

(q; _q; t).

It is easy to see that, if the map (q; _q; t) 7! (q; p; t)



de�ned by this equation can be inverted, then (14) is

equivalent to (13).

It should be clear from the above discussion that the

Hamiltonian reformulation of the Euler-Lagrange equa-

tions in terms of H (the \control Hamiltonian") is at

least as natural as the one Hamilton used, and arguably

even simpler. Moreover, it has at least one obvious ad-

vantage, namely,

(A1) the control version of Hamilton's equations is

equivalent to the Euler-Lagrange system under com-

pletely general conditions, whereas the classical version

only makes sense in the special case when the trans-

formation (q; _q; t) 7! (q; p; t) can be inverted, at least

locally, to solve for _q as a function of q; p; t.

We now show that (A1) is not the only advantage of

the control view over the classical one. To see this,

let us take another look at Legendre's condition (10).

Clearly, (10) is equivalent to

@

2

H

@u

2

�

qp

�

q(t)

�

� 0, i.e. to

@

2

H

@ _q

2

�

qp

�

(t)

�

� 0. If we write this side by side with

the third equation of (13), we get:

@H

@u

= 0 and

@

2

H

@u

2

� 0 : (15)

Staring at this for a few seconds, it becomes clear that

what has to be going on here is that H has a maximum

as a function of u. So we state this as a conjecture.

CONJECTURE M: besides (13) (or the equivalent form

(8)), an additional necessary condition for optimality

is that H(q

�

(t); u; p

�

(t); t), as a function of u, have a

maximum at _q

�

(t) for each t. 2

The point of this is that Conjecture M is an extremely

natural consequence of writing Hamilton's equations

\as Hamilton should have done it." One can reason-

ably guess that, if Hamilton had actually done it, then

he himself or some other 19th century mathematician

would have written (15) and be led by it to the conjec-

ture.

It turns out that Conjecture M is true, and know-

ing this leads to vast generalizations. But before we

get there, we must move to the second critical fork in

the road, and discuss the work of Weierstrass, who es-

sentially discovered and proved Conjecture M, but did

it using a language that obscured the simplicity of the

result, and for that reason missed some profound im-

plications of his discovery.

Weierstrass considered the problem of minimizing an

integral I of the form I =

R

b

a

L(q(s); _q(s)) ds for La-

grangians L such that

(W) L(q; _q) is positively homogeneous with respect to the

velocity _q (that is, L(q; � _q) = �L(q; _q) for all q; _q

and all � � 0) and does not depend on time.

When Weierstrass imposed Condition (W) on his La-

grangians, he was doing so \without loss of generality,"

since it is not hard to see that every minimization prob-

lem of the form (1) can be transformed into one where

(W) holds. However, \without loss of generality" is a

dangerous phrase, and does not at all entail \without

loss of insight." We will show that this restriction, to-

gether with the dominant view that Hamilton's equa-

tions had to be written in the form (14), may have

hidden from Weierstrass the true meaning and the far-

reaching implications of his new necessary condition.

Weierstrass introduced the \excess function"

E(q; u; �u) = L(q; �u) �

@L

@u

(q; u) � �u ; (16)

depending on three sets of independent variables q, u

and �u. He then proved his side condition:

(SC) For a curve s 7! q

�

(s) to be a solution of the min-

imization problem, the function E has to be � 0

when evaluated for q = q

�

(s), u = _q

�

(s), and a

completely arbitrary �u.

Notice that, for Lagrangians with Property (W),

L(q; u) =

@L

@u

(q; u) �u, so Weierstrass could equally well

have written his excess function as

E(q; u; �u)=L(q; �u)�

@L

@u

(q; u)��u�

�

L(q; u)�

@L

@u

(q; u)�u

�

:

(17)

Using p =

@L

@u

(q; u) as in (12), we see that

E(q; u; �u) =

�

L(q; �u)�hp; �ui

�

�

�

L(q; u)�hp; ui

�

; (18)

which the reader will immediately recognize as

E(q; u; �u) = H(q; u; p)�H(q; �u; p) ; (19)

where H is our \control Hamiltonian." So Weierstrass'

condition, expressed in terms of the control Hamilto-

nian, simply says that

(MAX) along an optimal curve t 7! q

�

(t), if we

de�ne p

�

(t) via (12), then, for every t, the value

u = _q

�

(t) must maximize the (control) Hamiltonian

H(q

�

(t); u; p

�

(t); t) as a function of u.

In Weierstrass' formulation, the condition was stated in

terms of the excess function, for the special Lagrangians

that satisfy (W). But, if one rewrites Weierstrass's con-

dition as we have done, in terms ofH, then one can take

a general Lagrangian, not satisfying (W), transform the

minimization problem into one in Weierstrass's form,

write the Weierstrass condition in the form (MAX), and

then undo the transformation and go back to the origi-

nal problem. The result is (MAX), as written, with the

control Hamiltonian of the original problem. So the

Weierstrass condition, if reformulated as in (MAX), is

valid for all problems, with exactly the same statement.

For comparison, notice that if one applies the same pro-

cedure to the formulation in terms of E , then one also

ends up with a statement valid for all problems, but the

expression for E is now much more complicated, since

one can no longer use (16) instead of (17).

Moreover, (MAX) can be considerably simpli�ed. In-

deed, the requirement that p(t) be de�ned via (12)

is now redundant: if H(q

�

(t); u; p

�

(t); t), regarded as

a function of u, has a maximum at u = _q

�

(t), then

@H

@u

(q

�

(t); _q

�

(t); p

�

(t); t) has to vanish, so p

�

(t) has

to be given by (12). Moreover, the vanishing of

@H

@u

(q

�

(t); _q

�

(t); p

�

(t); t) is also one of the conditions of

(13). So we can state (13) and (MAX) together:



(NCO) If a curve t 7! q

�

(t) is a solution of the mini-

mization problem (1), then there has to exist a function

t 7! p

�

(t) such that (p

�

is absolutely continuous and)

the following three conditions hold for all t:

_q

�

(t)=

@H

@p

(qp

�

(t)) ; _p

�

(t)=�

@H

@q

(qp

�

(t)) ; (20)

H(qp

�

(t)) = max

u

H(q

�

(t); u; p

�

(t); t) : (21)

As a version of the necessary conditions for optimality,

(NCO) encapsulates in one single statement the com-

bined power of the Euler-Lagrange necessary conditions

and the Weierstrass side condition as well, of course, as

the Legendre condition, which obviously follows from

(MAX). Notice the elegance and economy of language

achieved by this uni�ed statement: there is no need to

bring in an extra entity called the \excess function."

Nor does one need to include a formula specifying how

p

�

(t) is de�ned, since (21) does this automatically.

It is clear that (MAX) |or, more precisely, the

Weierstrass side condition part of (MAX)| is exactly

Conjecture M. So we can now add two new items to

our list of advantages of the \control formulation" of

Hamilton's equations over the classical one:

(A2) using the control Hamiltonian, it would have been

an obvious next step to write Legendre's condition in

\Hamiltonian form," as in (15), and this would have

led immediately to the formulation of Conjecture M, a

proof of which would then have been found soon after.

(A3) using the control Hamiltonian, the Weierstrass

side condition has a much simpler statement, not re-

quiring the introduction of an \excess function," and

can be combined with the Hamilton equations into an

elegant uni�ed formulation (NCO) of the necessary con-

ditions for optimality, in which there is no need to write

an equation de�ning p

�

.

But this is by no means the end of our story. There

is much more to the new formulation (NCO) than just

elegance and simplicity. Quite remarkably, in (NCO)

the derivatives with respect to the u variable

have completely disappeared. This makes it rea-

sonable to state a new conjecture:

CONJECTURE M2: (NCO) should still be a necessary

condition for optimality for problems with a constraint

_q2U�IR

n

, and with L not required to be di�erentiable

with respect to u. 2

Conjecture M2 can be easily tested by looking at some

simple toy problems where the answer is reasonably

easy to guess directly. For example, we can test the

di�erentiability part of Conjecture M2 by looking at

the following:

PROBLEM 1: Given L > 0, and � > 0 �nd a

real-valued (Lipschitz) function t 7! x(t) on the in-

terval [0; L] that satis�es x(0) = 1, and x(L) = 1,

and minimizes the integral

R

L

0

j _x(t)j

�

dt among all such

functions. This looks exactly like a calculus of varia-

tions problem of the classical sort, with a Lagrangian

L(x; _x; t) = j _xj

�

(i.e. L(x; u; t) = juj

�

), except that L is

no longer everywhere di�erentiable

z

with respect to u.

For this problem the classical Euler-Lagrange equation

cannot even be written, let alone solved. But if we ap-

ply (NCO) as stated we arrive at the correct solution,

namely, the curve x

�

(t) � 1. 2

We can also test the other part of Conjecture M2, by

looking at a problem where the range of u is no longer

the whole space.

PROBLEM 2: Given L > 0, �nd a real-valued (Lips-

chitz) function t 7! x(t) on [0; L] that satis�es x(0) = 1,

x(L) = 1, and j _x(t)j � 1 for almost all t 2 [0; L], and

minimizes the integral

R

L

0

x(t)

2

dt among all such func-

tions. Once again, this looks exactly like a calculus of

variations problem of the classical type |with a La-

grangian L(x; _x; t) = x

2

| except that the derivative _x

is required to satisfy an \inequality constraint" j _xj � 1.

It is easy to see that there is no way at all to satisfy the

Euler-Lagrange equation together with the boundary

conditions. On the other hand, if we apply (NCO) for-

mally, making the sensible guess that in this case the

maximization with respect to u should be made over

the set U = [�1; 1] of permissible values of u, then we

get the right answer. (The details are simple and we

omit them.) 2

These two elementary examples show that (NCO),

which is none other than the combination of the classi-

cal Euler-Lagrange condition and the Weierstrass side

condition, is a surprisingly powerful tool, provided only

that it is properly reinterpreted as we have done. The

formal application of version of (NCO) solves at least

some problems that do not �t within the framework

of the classical calculus of variations, either because of

nondi�erentiability of L with respect to u, or because

of the presence of an inequality constraint _q 2 U on the

velocity.

Finally, now that we have liberated ourselves from

the constraint that L be di�erentiable with respect to u,

it ought to be possible for u |i.e. _q| to be anything,

and (NCO) will still work. Once this is understood,

the next natural step is to allow _q to be even \more

arbitrary," for example a general function of some other

variable u, and of q and t. So instead of letting _q be

u, we can write _q = f(q; u; t) for a general function

f(q; u; t). Naturally, the expression hp; ui that occurs

in (11) should now be replaced by hp; f(q; u; t)i. We

then get to

CONJECTURE M3: (NCO) should still be a necessary

condition for optimality even for problems where q is

restricted to satisfy a di�erential equation _q = f(q; u; t),

with the \control function" t 7! u(t) taking values in

some set U and allowed to be a \completely arbitrary"

U -valued function of t, provided that the formula

H(q; u; p; t) = hp; f(q; u; t)i � L(q; u; t) (22)

is used to de�ne the Hamiltonian. 2

As before, we test this with a simple problem, namely,

a \soft landing in minimum time problem":

z

And not Lipschitz either, if � < 1, so it would not do to try

to write the Euler-Lagrange system using a Clarke generalized

gradient of L with respect to u.



PROBLEM 3: Suppose we have a point in IR

2

with

coordinates x; y, moving according to _x = y, _y = u,

juj � 1. Starting at x = �x, y = �y, we want to get

to x = 0, y = 0 in minimum time. It is not hard to

guess directly what the solution is, and to prove rigor-

ously that the guess is right. Using (NCO) with the

Hamiltonian de�ned according to Subconjecture M3.a,

we also �nd the correct solution, provided that we �rst

transform our problem, which is intrinsically a \variable

time interval problem," into one with a �xed time in-

terval. This can be done by introducing a `pseudotime'

parameter s, not to be thought of as true physical time,

just making sure that dt=ds > 0. We write dt=ds = v,

dx=ds = vy, dy=ds = vu, where the controls u; v sat-

isfy v > 0 and juj � 1. With such a reparametrization,

we can always work on a �xed pseudotime interval, for

example [0; 1]. The cost functional is

R

1

0

v(s)ds, so our

new Lagrangian is v. Conjecture M3 gives the correct

solution. 2

x4. The maximum principle

Conjecture M3 is essentially the maximum principle,

except for a minor adjustment. To see why some ad-

justment is needed, consider a fourth toy problem:

PROBLEM 4: An L > 0 is given, and we want to

maximize the integral

R

L

0

_x(t)

2

dt among all Lipschitz

functions x(�) : [0; L] 7! IR that satisfy the velocity

constraint _x(t) � 0 for almost all t. as well as the end-

point conditions x(0) = x(L) = 1. In this case the

Lagrangian is L(x; u; t) = �u

2

, so the Hamiltonian is

H(x; u; p; t) = pu+u

2

. It is easy to see that no trajecto-

ries at all satisfy the conditions of (NCO). However, the

curve t 7! x(t) = 1 is the solution of our optimization

problem. 2

So Conjecture M3 is not true. It turns out, however,

that only a minor change su�ces to make it true. All

we have to do is introduce a new p-variable p

0

|known

as the \abnormal multiplier.

x

"| and write the Hamil-

tonian as

H(q; u; p; p

0

; t) = hp; f(q; u; t)i � p

0

L(q; u; t) : (23)

Everything we had done until now corresponded to tak-

ing p

0

= 1. We now impose, instead, the weaker re-

quirements that _p

0

= 0 (i.e. p

0

is a constant), p

0

� 0,

and (p; p

0

) 6= (0; 0). With Conjecture M3 adjusted in

this way, we have, �nally, reached the Maximum Prin-

ciple:

(MP) For a problem of minimizing a cost functional

I =

R

b

a

L(q(t); u(t); t) dt, subject to a dynamical con-

straint (3), and constraints q(a)= �q, q(b)= q̂, u(t) 2 U ,

where q takes values in IR

n

|or in a open subset Q of

IR

n

| and the time interval [a; b] is �xed, a necessary

condition for a function t 7! u

�

(t) on [a; b] and a cor-

responding solution t 7! q

�

(t) of (3) to be a minimizer

is that there exist a function t 7! p

�

(t) 2 IR

n

and a

constant p

0

� 0 such that, for t2[a; b],

x

The need for the abnormal multiplier had already been

noticed by Bolza in 1913, cf. [1].

(1) (p

�

(t); p

0

) 6= (0; 0);

(2) (� _p

�

(t); q

�

(t)) = rH(�

�

(t));

(3) H(�

�

(t))=max

u2U

H(q

�

(t); u; p

�

(t); p

0

; t).

where we have written �

�

(t) = (q

�

(t); u

�

(t); p

�

(t); p

0

; t),

and the Hamiltonian H(q; u; p; p

0

; t) is given by (23). 2

And we hope to have convinced all readers, even

those who are not control theorists, that (MP) is

a very natural conclusion. It should be clear from

our discussion that (MP) could essentially have been

guessed almost immediately from \Hamilton's equa-

tions as Hamilton should have written them," together

with the Legendre condition, and would have been an

almost obvious conjecture to make once the Weierstrass

side condition is known, if only the \correct" Hamilto-

nian formalism had been used.

x5. The brachystochrone 300 years later

We conclude by returning to the BP, this time from the

perspective of modern optimal control theory.

Due to lack of space, we will limit ourselves to four

remarks.

First of all, it is clear that Johann Bernoulli's prob-

lem can be formulated in optimal control terms: the

motion takes place in the x; y plane, the dynamics is

given by

{

_x = u

p

jyj, _y = v

p

jyj, and the control is

a 2-dimensional vector (u; v) subject to the constraint

(u; v) 2 U = f(u; v) : u

2

+v

2

=1g.

A simple computation shows that the maximumprin-

ciple, applied to this problem, gives the correct answer,

namely the cycloids, without any \spurious solutions."

Second, we point out that the question of the ex-

istence of optimal trajectories

k

, which is delicate when

one uses the calculus of variations approach

��

, becomes

trivial in the control setting: to prove that any two

points can be joined by a minimizer, it su�ces to show

that any two points can be joined by some feasible path.

(Here the fact that

p

jyj is not Lipschitz is essential. If,

for example, the \speed of light" was jyj rather than

p

jyj, then no point in the x axis can be joined by a

feasible path to a point not in the x axis.) Once this

is established, a trivial application of Ascoli's theorem

gives the desired conclusion.

Our third remark concerns the reected BP. Suppose

we want to �nd the light rays for a mediumwhich is the

whole plane, with \speed of light" equal to

p

jyj. Can

the necessary conditions help us �nd the solution? The

problem here is that the dynamical law of the BP has

a right-hand side which is not Lipschitz with respect to

(x; y). So none of the versions of (MP) that require a

Lipschitz reference vector �eld apply.

{

It is better to shift gears slightly and regard the BP as

de�ned on the whole plane rather than a half-plane. This is

why we are now using the absolute value of y.

k

Proving existence is a crucial step for a rigorous proof

that Bernoulli's cycloids are optimal: the necessary condi-

tions for optimality imply that they are the only possible

minimizers. So, if one knows that a minimizer exists, it

follows that it is a cycloid.

��

We thank F. H. Clarke for bringing this point to our

attention.



It turns out, however, that a recent version of the

maximum principle (cf. [4]) applies, since this re-

sult does not require Lipschitz continuity |or even

continuity| of the right-hand side, and works as long

as the reference trajectory arises from a semidi�eren-

tiable ow. We refer the reader to [4] for the details.

Our fourth and last observation is much more \dif-

ferential geometric." We �rst point out that the math-

ematical formulation of the BP, as presented so far, is

not completely natural, because it takes it for granted

that we know that energy is conserved. A much better

way to pose the problem would be to write down the

equations of motion that correspond verbatim to Jo-

hann Bernoulli's problem as he stated it in June 1696.

One should then let the mathematical analysis lead us

to the discovery of energy conservation and the simpli-

�cation resulting from it.

The true equations of motion are

_x = v; _y = w ; _v = uw ; _w = �uv � g : (24)

Here x and y are the coordinates of our moving point,

and v, w are the components of the velocity vector.

The requirement that the point is freely falling \under

the inuence of its own weight" means that the force

e�ectively acting on it is equal to a vector proportional

to [0;�g] plus a \virtual force" that does no work, i.e.

is perpendicular to the velocity. Equation (24) cap-

tures these requirements, by introducing a virtual force

vector of the form [uw;�uv], where u is an arbitrary

\control," taking values in IR.

Using q = [x; y; v; w]

y

, we get the equation

_q = F (q) + uG(q) ; (25)

where F = [v; w; 0;�g]

y

, and G = [0; 0; w;�v]

y

.

This is a 4-dimensional system. From now on, we

will work on the set

~

Q= f(x; y; v; w) : v

2

+w

2

6= 0g. If

we apply (MP), we get nothing. This is because, if one

computes Lie brackets, one �nds that

[F; [F;G]]= 

1

F+ 

2

G+ 

3

[F;G] ; [G; [F;G]]=F; (26)

where the  

i

are smooth functions of q. From this one

can easily show that every iterated Lie bracket of F

and G is a linear combination of F , G, and [F;G] with

smooth coe�cients. Since F (q), G(q), and [F;G](q) are

linearly independent at each point q 2

~

Q, we can con-

clude that the Lie algebra of vector �elds generated by

F and G is 3-dimensional at each point. This means

that, at least locally, there is a nontrivial integral of

motion, i.e. a function with nonzero gradient which is

constant along all integral curves of F and G, and then

also along all solutions of (25). This integral of mo-

tion can be computed and turns out to be the energy

E. It is not hard to show that, whenever a control sys-

tem satis�es a nontrivial \holonomic constraint" such

as E = constant, then the maximum principle is unin-

formative, because every trajectory is an extremal.

On the other hand, using the integral of motionE, we

can regard the 4-dimensional q-space as foliated by the

3-dimensional level hypersurfaces of E, and conclude

that every trajectory is contained in one of the leaves.

If L is a leaf, then the maximumprinciple on manifolds

can be applied to the problem restricted to L, and the

conclusion turns out to be exactly the same as that for

the unrestricted problem, except that now the nontriv-

iality condition says that p

�

(t) cannot be orthogonal to

L at q

�

(t). (In di�erential-geometric terms, p

�

(t) is re-

ally a covector on L at q

�

(t), and has to be nontrivial

as such. Equivalently, if one insists on regarding p

�

(t)

as a vector in IR

4

, then it should not be orthogonal to

the tangent space to L at q

�

(t).)

Applying the maximum principle with this stronger

nontriviality constraint yields a formula for the optimal

control in feedback form, namely, u = � 

1

(q). (The

reader is urged to carry out all these computations ex-

plicitly as an exercise, and verify that the �nal result is

once again Johann Bernoulli's family of cycloids.)

The speci�cation of a value of E lowers the dimen-

sionality of the problem from 4 to 3. Since u is com-

pletely unrestricted, there is no obvious argument show-

ing that any two points in the same leaf L can be joined

by an optimal path. Our calculation of an optimal feed-

back control law shows that there is a smooth vector

�eld V on L such that every optimal trajectory in L is in

fact an integral curve of V . How can these facts be rec-

onciled with our earlier discussion, in which the prob-

lem|for a �xed value ofE|was two-dimensional, and

for every pair A, B of points in H

+

(�) there was a so-

lution? (This last fact says, in particular, that through

a point A there pass not just one optimal curve, but a

one-parameter family of such paths, whose union covers

the whole 2-dimensional region H

+

(�).)

The answer is that, once we have speci�ed E, and

consequently singled out a leaf L, the kinetic energy at

A = (a

1

; a

2

) is determined, and equals E + ga

2

. This

determines the length of the velocity vector at A, but

its direction is still arbitrary. That means that A is

in fact the projection of a circle in L, namely, the set

f(x; y; v; w) : x = a

1

; y = a

2

; v

2

+w

2

= 2(E+ga

2

)g. (In

modern terminology, L is, up to normalization, the unit

tangent bundle of H

+

(�).) Through each point of this

circle there passes an optimal path, namely, an integral

curve of V . The projections of these curves form a one-

parameter family of curves passing through A, which

is, of course, the family of cycloids given by (5).
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