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Abstract
We present the solution of the three-dimensional case
of a problem studied by A.A. Markov, L. Dubins,
and J. Reeds and L. Shepp, regarding the structure
of minimum-length paths with a prescribed curvature
bound and prescribed initial and terminal positions and
directions. In particular, we disprove a conjecture made
by other authors, according to which every minimizer
is a concatenation of circles and straight lines. We
show that there are many minimizers —the “helicoidal
arcs”— that are not of this form. These arcs are smooth
and are characterized by the fact that their torsion
satisfies a second-order ordinary differential equation.
The solution is obtained by applying Optimal Control
Theory. An essential feature of the problem is that
it requires the use of Optimal Control on manifolds.
The natural state space of the problem is the prod-
uct of three-dimensional Euclidean space and a two-
dimensional sphere. Although the problem is obviously
embeddable in 6-dimensional Euclidean space, the Max-
imum Principle for the embedded problem yields no in-
formation, whereas a careful application of the Maxi-
mum Principle on manifolds yields a very strong result,
namely, that every minimizer is either a helicoidal arc or
of the form C, S, CS, SC, CSC, CCC, where C, S stand

for “circle” and “segment,” respectively.
1. Introduction

The purpose of this note is to announce the solution of
the three-dimensional case of a problem first studied by
A.A. Markov in 1889, and then by L. Dubins in 1957 and
J. Reeds and L. Shepp in 1990, regarding the structure
of minimum-length paths ¢ — =z(t) with a prescribed
curvature bound ||z”(¢)|| < 1, and prescribed initial and
terminal positions and tangent vectors. In particular,
we present an elementary self-contained argument that
disproves a widely believed conjecture, stated, e.g., by
J. Reeds and L. Shepp in 1990 in [6].

Markov, in [4], and Dubins, in [2], only considered
the two-dimensional case, but Dubins explicitly posed
the question of what may happen in higher dimensions,
so we will refer to the problem as the Markov-Dubins
problem (MDP). More precisely, let R > 0, and define
I"(R) = Usocacb<+00T'g 4 (R), Where I3 5(R) is the set
of all curves z(:) : [a,b] — IR™ that (a) are of class C?,
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(b) are parametrized by arc length (i.e. ||z'(s)]] = 1
for all s), and (c) are such that the derivative z'(-) is
absolutely continuous and satisfies the curvature bound
[lz"(3)]| < R for almost all s € [a,b]. If z(-) : [a,b] —
R" is a member of I'"*(R), call z(-) an R-minimizer if it
is of minimum length among all the paths in I'"*(R) that
start at z(a) with direction z'(a) and end at z(b) with
direction z'(b). The MDP is the problem of determining
the structure of the R-minimizers.

From now on, we will always take R = 1 for simplicity,
write I'; ,, ", instead of T'g (1), ' (1), and refer to the
1-minimizers as “minimizers.”

The CSC conjecture (cf. [6]) states, among other
things, that for n = 3 every sufficiently short mini-
mizer is equivalent to one of the form CSC, ie. a
concatenation of a circle, a straight-line segment, and
another circle. (The precise definitions are given fur-
ther below. The result actually conjectured in [6] is
the stronger statement that every minimizer is CCC or
CSC. Since it can be proved that a CCC arc cannot be
a minimizer unless the length of the middle C is > ,
cf. e.g. Theorem 3.1 below, the statement of [6] ac-
tually implies the CSC conjecture.) We will disprove
this by studying curves with torsion. We introduce a
quantity N(P) that measures the “nonplanarity” of a
pair P = ((21,41); (2, y2)) of points in position-velocity
space, and show —using arcs with very large torsion—
that for all sufficiently small lengths ¢ there is a curve
v € I‘g’, of length ¢ such that the nonplanarity of the
pair 81y = ((7(0),7'(0)); (v(2), 7' (¢))) is arbitrarily close
to -:—,t"}, whereas for CSC curves 7 the number N(8,7)
cannot exceed 33, The fact that #° < 32 then disproves
the CSC conjecture. '

The work on the two-dimensional case by Markov in
[4], Dubins in [2], and Reeds and Shepp in [6], relied
heavily on very ingenious ad hoc methods, geometric
arguments and —in [6]— computer simulations. Dubins
proved in [2] that every minimizer in dimension 2 is
either CCC or CSC, and then went on to state that “the
nature of R-geodesics [i.e. ‘R-minimizers’] for n > 3 is
open.”

Reeds and Shepp studied, in [6], the related problem
in IR? where the curve z(-) is no longer required to be C?,
but we ask instead that there be an absolutely contin-
uous function y(-) with z'(¢) = xy(¢), ||y(®)|| = 1, and
llv'(#)|] < 1 for almost all £. (In other words, the “ve-
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hicle” is allowed to back up as well as move forwards.)
They proved a result similar to Dubins’, except that now
(i) the minimizers can be concatenations of up to five C
or § pieces, and (ii) there actually are minimizers with
a more complicated structure, including whole families
parametrized by an arbitrary measurable function with
values in [—1,1], so the precise statement of their re-
sult is no longer that every minimizer is “simple,” but
rather that every minimizer can be replaced by a simple
one leaving unchanged the initial and terminal positions
and directions as well as the length. They then stated
that “These problems make sense in higher dimensions
as well, but we could solve neither the forward nor re-
verse case mainly because we could not explicitly solve
the algebraic equations involved in finding the shortest
CCC from a to b in R®, i.e. with specified initial and
terminal conditions in 3 dimensions, and so we could
not use the computer to guess the answer analogous to
the way we used it here. We think this answer is CCC,
CSC for the forward problem [i.e. for the original Du-
bins problem, without ‘backing up’, HJS] but without
much evidence or hope of doing the reduction because
the equations get so complicated.”

In [8] it was shown that the results of [2] and [6] for n = 2
can be obtained without any use of the computer to
guess answers, by means of a systematic approach based
on applying the Maximum Principle (cf. [1], [3], [5])
of classical Optimal Control Theory, together with the
more recently developed tools of Differential Geometric
Control Theory (cf. [7]). Our results for n = 3 provide
a fairly complete description of the optimal paths, and
rely, once again, on the tools of Optimal Control Theory,
which are thus shown to be effective for a problem where
other methods have failed to work. The rather long
details, given in [10], will be briefly summarized in the
last section. But first we proceed to present our self-
contained argument disproving the CSC conjecture.

2. Proof that the CSC conjecture is false

Throughout this paper, the abbreviation “PAL” stands
for “parametrized by arc-length.” “Circle” means “arc
of a PAL circle of radius one,” and “segment” means
“PAL straight line segment.” Circles satisfy the equa-
tion z = —z', which is equivalent to the existence
of a parametric equation z(tf) = Z + cost§ + sint z.
Conversely, any PAL curve that satisfies z// = —z'
is a circle. Similarly, segments satisfy =’ = 0, which
is equivalent to the existence of a parametric equation
2(t) = Z + 1§, and any PAL arc that satisfies " = 0 is
a segment. The concatenations of the form CSC are, of
course, required to be in the class I'*, This means that
they have to be C! curves, so that at a transition from
C to S or from S to C the derivatives have to match.
Let M® = IR™ x S”~'. Points of M"™ will be called
states. If z(-) € Ty ,, then we write A(z(-)) = b —a,
and refer to A(z(-)) as the length of z(-). The points
z(a) and z(b) are, respectively, the initial and ter-

minal positions, and z'(a) and z'(b) are the initial
and terminal directions of z(-). The pairs 37 (z(-)) =
(z(a),2'(a)) and 87} (2(:)) = (z(b),2'(b)) are the ini-
tial and terminal states of z(-), and the pair 8;(z(-)) =
(07 (2(-)), 8% (=(-))) is the boundary value of z(-). A
path z(-) is a minimizer A(Z(-)) < A(z(-)) for every
path Z(-) € T such that 9;2(-) = 8,z(-). fz(-) is a
minimizer and in addition the equalities 8:%(-) = d1z(-),
A(%(-)) = A(=(-)) imply that Z(-) and z(-) coincide up to
a translation of their time intervals, then we call z(:) a
strict minimizer. Trivial geometric considerations show
that given any two states p,p € M™ there is an arc in
I'" whose boundary value is (p, §), and then an applica-
tion of Ascoli’s theorem shows that among all these arcs
there is one of minimum length.

From now on we let n = 3, and we just write Tap, T,
M instead of I'3 ,, '3, M3, Notice that an arc which is
just CS or SC is contained in a plane.

Given a pair P = (p, p) of points p = (2, %), p = (3,9)
in M, we measure the nonplanarity of P by means of
the scalar

NP

(8- 2,9x ). m

Notice that N(P) = 0 if and only if there is a two-
dimensional plane in IR® passing through the points Z, &
to which the vectors g, § are tangent. If z(-) € I's 3, then
the nonplanarity of z(-) is defined to be nonplanarity of
the boundary value 8;(z(-)), i.e. the number |(z(b) —
z(a), #'(b) x z'(a))]. Our result will then be a corollary
of the following two simple facts about nonplanarity:

Proposition 2.1 Let € > 0. Then there exists a § > 0
such that for every ¢ in the open interval (0, §) there is
a curve in I'o,; whose nonplanarity is > (& — ¢)t3.

Proposition 2.2 Let ¢ > 0, and let z : [0,{] — R® be
any curve in I'o; which is of the form CSC. Then the

nonplanarity of this curve is < %’-.

PROOF THAT PROPOSITIONS 2.1 AND 2.2 IMPLY
THAT THE CSC CONJECTURE IS FALSE. Propo-
sition 2.1 says that for all sufficiently small ¢ one can
produce a curve in I'o¢ whose nonplanarity is equal to

(%, +o( 1))t3. Proposition 2.2 says that for CSC curves

in Loy, and t completely arbitrary, the nonplanarity
cannot possibly exceed 3t3. In view of the inequality
7% < 32, & is strictly larger than 2¢3. So, if ¢ is suf-
ficiently small, the first result implies that we can find
a pair P of points p, p in M that can bejoined by a
curve in I'o ¢ and are such that N(P) > %. A minimum
length path in T' joining 5 and p must therefore have
length 7 < ¢. If this path was of the CSC form, then
the second result would imply that the nonplanarity of
this path is < 173, which is < N(P). But this is a
contradiction because, by definition, the nonplanarity
of any path joining p and $ is N(P). So the minimizing
path is not CSC, and the Reeds-Shepp conjecture fails
to be true.
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PROOF OF PROPOSITION 2.1. We exhxbit a curve
explicitly. Pick ¢ > 0. Let w = %, sot = Assume
t < 7. Then w > 1, so we can write w? —1+02 8 >0.
Let i, j, k be the canonical basis of R?, i.e. i = (1,0, 0),

J=1(0,1,0), k=0,0,1). Let
1—cosws, H’ws+sinws, 6(ws—sinws

z(s) = — it o3 i+ ( e )k
This curve is obviously smooth and satisfies z(0) = 0,
z'(0) = j. It is easy to verify that ¢ is PAL —i..
||z'(8)l] = 1— and that the curvature condition holds.
(Actually, [|z""(s)]| = 1.) Moreover, and although this
fact will not be used directly, we point out that the tor-
sion (cf. §3) of z(-) is constant and equal to 6.

Although (1) defines z(s) for all s, we are only inter-
ested in the restriction z, of z(:) to the interval [0,2].
To compute the nonplanarity of z;, we first differentiate
the formula for z(s) and get

sinws, 6% +cosws, 6O(1— cosws)

zy(s) = it ———j+ ——k. (2)
If we plug in 8 = ¢, then wt = =, 80
: -1, 20
zy(t) = + ;?k . (3)
Then =}(2) x z4(0) = —24i. On the other hand, z,(t) =

Zi+ &t Ent] + 25k , and therefore <z,(t), z4(t) xz§(0)> =
_:_04_ = -4—’-';- Clearly, w goes to oo as t — 0, since
w = %. Since § = vw? 1, the quot1ent £ goes to 1.

leen €, if we pick 6 so sma.ll that 2% > % — ¢ for
t < 0, then we see that, for ¢ < §, the nonplanarity of

zy is > (& —€)t%, as stated. |

PROOF OF PROPOSITION 2.2. We assume that our
curve is a concatenation of a circle, a segment, and a
another circle, of lengths t1, 3, t3, respectively, so that
t1+1; +13 = ¢. Accordingly, we divide the interval [0, ]
into I = [0,¢; +t2) and J = [t; + £2,%]. Since circles
and lines are given by fairly simple explicit formulas,
we could compute the nonplanarity of our curve by just
writing out all the formulas. We prefer, however, the
following shorter and less computational argument.

Work in a coordinate system such that £(0) = 0. De-
fine f(3) = (z(s), z'(s) x 2’(0)). The nonplanarity that
we want to estimate is |f(#)|. Notice that f(s) =
for s € I, since the first C'S piece is contained in a
plane. On the other hand, the function f is contin-
uous and has a piecewise continuous derivative, given
by f'(s) = (z(8),2"(s) x 2'(0)). The second derivative

* has jump discontinuities at ¢; and ¢; + ¢;. Now let
us just work on the interval J, and compute one more
derivative. We get

f(s) = (2'(s),2"(s) x 2'(0)) + {=(s), 2" (s) x 2'(0)},
and the second term is equal to —f(s), because ="’ =
—z'. So f satisfies f”(s) = g(s) — f(s), where g(s) =
(z'(s),2"(s) x 2'(0)). Another differentiation shows —
using 2"/ = —z' again— that g(s) is in fact a constant
g. Since f satisfies f/ + f = g on J, we have f(s) =

g + Acoso + Bsino for some A, B, where o denotes
s—1t3—t;. Using f(f1+13) = O weget g+ A =0,
so A = —g. Also, if we let 7 = t; + 3, we get B =
F(r4) = (2(71), 2" (r+) xz' (0)). So f(s) = g(1—cos o)+
f(r+)sinco. In particular,

F(t1 +t2+13) = g(1 — costs) + f/(t+)sints . (4)
Now, g = {2'(7),2"(r+) x 2'(0)). So

A g = (='(r) — 2'(0),2"(r+) x 2'(0)) ,

since z’(0) is orthogonal to z”(r+) x2'(0). Since ||z”|| <
1 on I, it is clear that ||2'(1) — 2'(0)]| < 7. But z"(7+)
and z’(0) are unit vectors. So we get the bound

lgl < 7. (5)
Also, z(7) = for z'(s)ds = 72'(0) +f0 > 2'"(r) dr ds,
and || i [y z"(r)drds|| < ’Z;, since ||:c"(r)|| < 1. So
|lz(r) — 72'(0)]| < 5. Since

f1(r+) = (@(), 2"(r+) x ' (0))
= (a(r) - 72'(0),2"(r+) x 2'(0)) ,

and |ja"(r+)|| = ||a"(0)| = 1, we get | F'(r+)| < 5 Us-
ing this together with (4) and (5), we get the inequality
If(®)] < 7(1 — costz) + '2—’sint3. Since 1 — costs < %’-
and sinij < i3, it follows that
T
HOIES <z "— + Ta

If we write 7 = ut, t3 = wvi, we find that |f(2)] <
M? Since 4 > 0, v > 0, and p+v = 1, it follows
that pr < % So|f(t)] < 1t3 and our proof is complete.
|

3. The structure of the minimizers in dimension 3

We now outline the results of [10]. Define a helicoidal
arc in IR? to be a smooth PAL curve ¢ — z(t) that has
curvature 1, and is such that the torsion ¢t — 7(t) never
vanishes, and satisfies the differential equation

3772
" ¢rir|M? (6)

T = P 273 4+ 27 —
T
for some nonnegative constant {. (Recall that, if z is
PAL and ||z"(#)|l = 1, then z satisfies a differential
equation z"'(t) = —a'(¢)+ 7(t)(2'(t) X "' (¢)). The func-
tion 7 is the forsion along z.)

Theorem 1 For the Markov-Dubins problem in dimen-
sion three, every minimizer is either (a) a helicoidal arc
or (b) a concatenation of three pieces each of which is
a circle or straight line. For a minimizer of the form
CCC, the middle circle has length > 7 and < 27. [ |

The results of the previous section show that concate-

nations of circles and segments are not enough to obtain . ..

all minimizers, so some helicoidal arcs must be minimiz-
ers. Actually, a stronger result is true, namely,

Theorem 2 Every helicoidal arc corresponding to a
value of ¢ such that { > 0 is a local strict minimizer. B
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(A “local strict minimizer” is an arc z : [a,b] — RR3
such that there is a § > 0 with the property that the
restriction of z to every subinterval of [a, b] of length < §
is a strict minimizer.)

Remark 3.1 A constant function 7 = ¢ is a solution of
(6) for some ¢ > 0if and only if |¢| < 1. This means that
curves of constant torsion are not locally optimal if the
torsion is large. In particular, the curves z; considered
in §2 are not locally optimal if ¢ < Z. (m]

We now outline the main steps of the proof of Theo-
rem 1, and make some remarks about that of Theorem 2.
To begin with, we introduce the velocity y as a new vari-
able, taking values in the unit sphere S? in R?, and work
with the class A of arcs of the form t — (z(2), z'(t)),
where z(-) € T. So A = U_sca<b<toohap, Where
Aqgp is the set of all M-valued absolutely continuous
arcs t — y(t) = (z(t),y(?)), t € [a,b], such that
#' = y and [|y’]| < 1 almost everywhere. (Recall that
M =1R3x S%) If y = (x,y) € Aqp is such an arc, we
write 0y = 01z = (7(a),7(3)), A(7) = b—a. We let
M be the class of all arcs v = (z,y) € A that minimize
time among all arcs ¥ € A such that dy = 87.

We can realize A as a set of trajectories of a control
system ¥ by writing the dynamical equations as

2 =y, Y=yxw, )
where the control w is restricted to taking values in B3,
the closed unit ball in IR3. The controls are measurable
functions t — w(t) € IB3. We let 7;(Z) denote the set
of all pairs £ = (y,w), where w : I — IB? is a mea-
surable map defined on some interval I, and v = (z,y)
is a solution of (7) defined on I. We let 7(X) denote
the set of v such that (y,w) € 7:(E) for some w, and
use A(Z) (resp. Ac(X)) for the set of v € T(Z) (resp.
(7, w) € 7.(X)) whose domain of definition is a compact
interval. The elements of T(X), 7.(X), A(Z), A(Z)
will be called, respectively, trajectories, controlled tra-
jectories, arcs and controlled arcs of . So A is exactly
A(X), the set of arcs of I.

To characterize the minimum-time arcs, we use the
Maximum Principle (abbr. MP). We consider a new
control system %* —the Hamiltonian Lft of Z—with
state space N=M xIR3*xR3xR and dynamical equa-
tions —for the variable (z,y, A, 4, v) € N— given by

. d
T 5(1:,1;, A pv)=(Va,H, -V, H0), (8)
where H is the Hamiltonian, defined by
H=H(z,y\pv,w)=Ny)+{myxw)+v. (9)
Then the evolution of z and y is given by (7) (so in
particular (z,y) evolves in M, i.e. ||y(t)]| = 1 for all ¢ if
[l¥(®)]] = 1 for some t), while that of A, y, v is governed
by the “adjoint equations”
M=0, g ==dA—wxpu, vV=0. (10)
(To compute V,H, use the the cross-product iden-

tity (A,B x C) = (B,C x A} to conclude that H =
(M v)+(y, wx p)+v.) We define the sets T(Z*), T.(Z*),

A(Z*), A(Z*) of lifted trajectories, lifted controlled tra-
jectories, lifted arcs, and lifted controlled arcs in an ob-
vious way. If we write O(z,y, A, p,v,w) = (z,y,w),
then it is clear that & = (z,y, A, p, v, w) is a lifted
controlled trajectory if and only if { = II.E is a con-
trolled trajectory and (10) holds. (In that case, = will
be called a lift of £.) We call a lifted controlled tra-
jectory E = (z,y, A, 4, v, w) H-minimizing if H(E(t)) =
min{H(z(t), y(t), A(t), u(t), v(t), v) : v € B3} for a.e. t.
The MP says that, if £ = (y,w) € Ac and v = (z,y) is
a minimizer, then there exists a lift E = (z, y, A, y, v, w)
which is H-minimizing and such that (i) v > 0,
(ii) H(Z(t)) = 0 for a.e. t, and (iii) E is nontrivial,
in the sense that
M1+ ll®) x ¥ > 0 for all £ (11)

(The reason for this formulation of the nontriviality
property is as follows: we really ought ot be working
on the cotangent bundle T*M of M, rather than on
M x R3 x R3. That is, (), u) should be regarded as a
covector on M at (z,y) or, equivalently, u should be re-
garded as a linear functional z — (u, z) on the tangent
space TyS%. This functional vanishes iff u x y = 0, so
(11) says precisely that (A, u) # 0 as a covector on M.
The distinction between (11) and the “naive” nontrivi-
ality condition (A, ) # (0,0) is crucial, as explained in
Remark 3.2 below.)

From now on, an H-minimizing lift Z of a £ € A.(X)
for which (i), (ii) and (iii) above hold will be said to be
an MP controlled arc, and an MP lift of €.

To translate the minimization condition into more fa-
miliar terms, we first use (4, Bx C) = (B, C x A) again,
to rewrite H as H = (A, y) + (w, u X y) + v. Write

def def
p = <A7y>1 W=yxupu. (12)
It is then clear that H is minimized by taking
uxy .
w=—7——if uxy#0. 13
ol 1 #XV7 -

If 4 x y = 0, then any value of w in B? is minimizing.
We can capture both cases in one formula by writing
the minimization condition as |[|uXy||lw=—pxy, i.e. as
[Wilw=w. (14)

Similarly, (11) and the condition that H = 0 say that
AI+1W][>0 and [[W]l=p+v. (15

We now make a deeper analysis of the lifted trajec-
tories. Notice that, as long as W # 0, (7) and (10)
constitute a closed, smooth system of ordinary differen-
tial equations for z, y, A, u, v, if we use the formula
w= ﬂ%ﬂ' for w. Let us call a E € T,(Z*) “nice” if W
never vanishes along . We will be particularly inter-
ested in understanding how nice lifted trajectories con-
nect up with trajectories for which W = 0.

To carry out our analysis, it is useful to to reduce the
dimension of the system by finding integrals of motion,
i.e. functions that are constant along trajectories. To
find such integrals, we use the control theory version of
Noether’s Theorem (cf. Sussmann [9]). Our system is
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clearly invariant under the 6-dimensional group of rigid
motions of IR®. Consider first the action of the transla-
tions. For v € IR3, let 7, be the translation z — z + v.
Then 7, acts on the state and control variables of our
system via 7, (z,y,w) = (z + v, y, w). The infinitesimal
generators of the action of the translations on M are the
vector fields X, given by X,(z,y) = (v,0). The Hamil-
tonian function corresponding to X, is hx, = (A,v).
By Noether’s Theorem, this function is constant along
MP controlled arcs. Since this is true for every vector
v, we have rediscovered the fact that A itself has to be
constant, as we already knew from (10).

A much more interesting conservation law is derived
by using rotational invariance. A rotation matrix R €
SO(3) acts on M x B2 via R(z,y,w) = (Rz, Ry, Rw).
The infinitesimal generators are the skew-symmetric
matrices A € 30(3). To each such matrix there cor-
responds a vector field Y4 on M, given by Y,(z,y) =
(Az, Ay). The Hamiltonian hy, corresponding to Yy is
given by hy, = (A, Az) + (i, Ay). So this quantity has
to be conserved for every A. Now recall that the skew-
symmetric transformations or IR? are exactly the maps
of the form u — v x u, where v € IR3. So what we have
shown is that the expression (A, v x z) + (u, v x y) has to
be conserved for every vector v. Using {4, B x C) =
(B,C x A) again, we can rewrite this expression as
(v,z x A) + (v,y x p). Since this has to be constant
for every v, we conclude that the vector

VE oxdtyxp=zx A+ W (16)
is conserved. (This can be verified directly using (10)
and (14). Indeed, W' =4 x p+y x 4, so (10) implies
that W' = (yxw) x p—y x A—y x (w x p). The
identity Ax (BxC)=(AxB)xC+B x(AxC) then
gives y x (w x p} = (y X w) X p+ w X (y x p). Then
(14) gives w X (yXx p) = wx W = ||Wilw x w = 0, so
y X (wxp) = (yx w)x p Then

W=—-yxA=2Axy. 17

This implies that V! =y x A+ W' =0.)

Moreover, we can also conclude that A and V cannot
both vanish. (Indeed, if A = 0 and V = 0, then W = 0,
so ||A]| + |[|W]| = 0, contradicting (15).)

We now consider a controlled arc £ = (7, w) such that
¥ = (z,y) is optimal, and let E = (z,y, A, 4, v, w) be an
MP lift of £. It is useful to introduce the scalar conserved
quantity

def

cC=(\V). (18)
Clearly, C = (A, W), since A L z x A. Then (14) implies
C = ||W||, where % % (X w). (19)

Now assume that = is nice, so W # 0 along Z. We
can then write the equations for 4 in the form

' , V—-zx2A

with full assurance that the denominator never vanishes.

In addition, V' cannot be arbitrary, because (16) im-
plies that V—zx ALy, since W.Ly. Moreover, the num-
ber v=||W{|—(A, y) has to be a nonnegative constant.

Now, for a V, A € R?, v € R, we write

Qua={(z,9) eR*xR*: V -z x X #£0}, (21)
and let Qf,, , be the set of those (z,y) € v, for which
llyll=1, V-zxAly and V“”V—-ny” —{A,y). Let us
call a solution of (20) “good” if it is contained in O, ,
for some v > 0. We have shown that every nice MP
controlled arc E gives rise to a good solution v of (20).

Conversely, we show that every solution v = (z,y) of
(20) that goes through a point of a set Q% —for some
real v— is entirely contained in QF (tha.t is, the set
QV A 18 invariant under the ﬂow deﬁned on Qy, by
(20)), and if v > 0 then v is a good solution of (20) and
arises from a nice MP controlled trajectory. To prove
this, we first let W =V —z x ), and define w via w =
Jﬁrvﬂ' Then ¢ = yxw, soy’ L y. Since there is a ¢y such

that ||[y(to)|| = 1, we conclude that ||y(t)|| = 1 for all £,
8o 7 is M-valued. Since |jw(t)|| = 1, w is a control, and
7 is a trajectory for w. We pick a time %o in the domaln
of y such that y(to) L W (to), and then choose a pio such
that y(to) X o = W(to) We then define u(t) by solving
the adjoint equation p'=—A—~wxpu with u(to) = po. We
now have to show that the minimization condition holds,
and this will follow if we prove that W = W, where
W = y x p. The desired equality holds for ¢ = #,.
The adjoint equation gives W' = —(y x A) wx W,
and it is clear that W' = —y x X. So (W wy =
wX W = ||W||W x W = ||[W||W x (W — W). Therefore
w— W is a solution of a linear homogeneous O.D.E.
Since W (to)— W(tozv— 0, we conclude that W (t) = W(¢)
for allt. So w = GIE and the minimization condition
holds. Next, we deﬁne v(t) = ||[W(@)|| — (A, y(t)). Since

W' = A xy, we have dt(”WI])._ (w,W') = (w,Axy) =
{(Myxw) = (A¢). Sor" =0. So v is a constant,
and then v is entlrely conta.med in QV ape Hv 20,

then 7 is good, and E = (z,y, A, p, v, w) is an MP lift of
= (v, w), completing the proof of our statement.

Next we have to study the maximal good solutions
of (20). Suppose y:I — Q71 ,v 18 such a solution, and
let p(-) be as above. (Naturally,  need not be unique.)
We show that if C # 0 then I = IR. (The maximal
solutions corresponding to C' = 0 will be studied later.)
To see this, let £ = sup I, £ = infI. Suppose £ < oo.
Then the limits £, § of z(t), y(t) as t — #— exist, be-
cause ||2/(¢)|| = [l (@)l = 1. To prove that the solutmn
can be extended to the right of f —which would be a
contradiction— it suffices to show that (%,9) € Qv
To see this, notice that C = (A, V) = (X, W(%)), since
(A, 2(t) x A) = 0. Since C is constant and nonzero, the
vector W = V — & x A = lim,_; (V — z(t) xA) =
lim, ,;_ W(t) must satisfy (\, W) = C # 0. Therefore
W #0, s0 (2,%) € Qv,a. This shows that t = 400, and
a similar argument proves that { = —o0.

The solutions of (20) are obviously smooth. We now
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show that the good solutions corresponding to C # 0
are precisely the helicoidal arcs defined earlier, and an-
alyze the good solutions for C = 0. So we assume until
further notice that v = (z,y) is a good solution —for
a given A, V, v— and let y, W, w be as above, so
E = (2,9, \, p, v, w) is a nice MP lift of ¢ = (v, w).

The vectors w, y —we will from now on use this no-
tation rather than w(t), y(t)— are orthogonal and of
unit length, and y’ = y x w, so the triples (y, w,¥') and
(y,9', —w) are positively oriented orthonormal bases of
IR3. Therefore y = w x ¢ and w = —y x /. Moreover,
every vector v € IR® has a unique expression

v=(v,9)y + (v,y)¥ + (v, w)w. (22)
Using (22) with v = 3"’ + y, and observing that

0=, 9)=(", )+, V)=, v)+ ¥ ¥)=0"+v,9),
and (v, ¥ )=(y,¥')=0, we find that y"”+y is a multiple

of w, so
V+y=tlyxy)=-rw (23)

for some 7 = 7(t). By definition, 7 is the torsion. To
compute 7, we first determine y” using (7), and get the
identity ¢’ = y x w' + ¢ x w. Since y = w x ¢/, we get
¥ +y =y x w'. To compute w’ we use w = W 80
that w' = %= x' 2% . We compute W' from (17), and
get W’ = X x y. Using (22) with v = A, we write
A=py+ o'y +9w. (24)
Then Axy = @'y xy+ypwxy, so W' = Axy = p'w—yy/,
and W' — (W', wjw = —¢y/. So w' = —oqy/- Then
' +y=yxw = —n-%"yxy’, showing that 7 = —"—v'%n.
Then (15) and (19) imply that
$»___ € ¢
c w2~ (p+v)*”
If we take the inner product of (23) with A and use (12)
and (19), we get " + ¢ = —79. Then (15), (19) and
(25) imply

T=— (25)

CZ
(p+v)*
For a given constant C, the global existence theory for
the solutions of the second order O.D.E. (26) on the
half-plane P, = {(p, ¢') : ¢ > —v} is easily studied by
remarking that

o +p= (26)

Cz
(p+v)?
is constant along solutions. (This is easily verified di-
rectly, by differentiating (27) and using (26). We study
the solutions of (26) on P, only, because at this point we
are looking at nice E, for which ||W|| > 0, s0 ¢ > —».)
If C > 0, the constancy of « implies that the solutions
of (26) on P, cannot have explosions in finite time.
When C = 0 the situation is different, since in that
case nothing prevents ¢ from approaching the value —v
in finite time. The general solution of (26) when C = 0
is ¢ = Acos(t—1g), with 4 and ¢ arbitrary, 4 > 0, and
then those maximal solutions for which 0 < 4 < v are

K E o+ + (27)

globally defined, whereas those for which 0 < A < v are
defined on intervals of the form (to — «, to + @), where
« i characterized by Acosa = —v, 0 < a < 7. Since
v > 0, we see that 2a is always > w. (The possibility
that A = v = 0 is excluded, because it implies ¢ = 0, so
||W]| = 0 by (15), contradicting the fact that Z is nice.)

If C # 0, then we can use the transformation 7 =
—C(p +v)~2% —cf. (25)— to turn (26) into an O.D.E.
for 7 by means of a routine calculation. The result is
precisely Equation (6), with { = VZI%I- The global ex-

istence theory for (26) then gives a similar theory for
(6), and the global solutions 7 will be positive if C' < 0,
negative if C' > 0.

The above remarks already prove that every optimal
v that has an MP lift for which C # 0 is a helicoidal
curve. To prove Theorem 1, we must show that the
optimal 4’s for which C = 0 are as in (b) of Theorem
1. Let £ = (y,w) : [a,b] — M x BB be a controlled arc
such that ¥ = (z,y) is optimal and £ has an MP lift
E=(z,y,\ p,v,w) for which C = 0. Let L={t €1I:
W(t) # 0}. Then L is relatively open in [a,b]. So L
is the union of a finite or countable set J of pairwise
disjoint relatively open subintervals of [a, b].

We first treat the case when L = 0. In this case,
|IW]| = 0. It follows from (15) and (17) that X # 0 and
A x y=0. Since ||y|| = 1 and y is continuous, it follows
that y =constant. So when L = 0 v is a straight line.

Remark 3.2 The previous seemingly trivial step is in
fact crucial, and depends in a fundamental way on the
fact that we have formulated the MP on a manifold. The
key point is the implication ||W]|] = 0 = X # 0, which
follows from (11). If we had used IR® rather than R? x
S? as our state space, then the nontriviality condition
would just have said that (A, u) # (0, 0). It is easy to see
that for every trajectory of T one can find A, p, v that
satisfy all the conditions of the MP other than (11), as
well as the weaker nontriviality property (A, n) # (0,0).
Therefore, if the problem is formulated in RS rather than
in IR3 x S%, then every trajectory is an extremal and the
Mazimum Principle gives no information whatsoever. O

From now on we assume that L # 0, s0 J # 0. Let
J be the set of J € J such that J contains one of the
endpoints a,b. Then J has at most two elements, and
the members of J = J \J are open intervals. It is clear
that the restriction of y to each J € J is a good solution
of (20), and is in fact maximalif J € J. Oneach J € J,
(23) holds with 7 = 0. So ¥’ +y = 0, i.e. =" = —2'.
Since z is PAL, we conclude that z restricted to J is
a circle. As explained above, p(t) = Asycos(t —t;) on
each J € J. The number « defined in (27) —which in
principle might have depended on J— is equal to ||A[]?,
because (24) implies that ||A||2 = ¢? + ¢’ + 9%, and
9 =0 on J, since C = 0 and ||W]| > 0. On the other
hand, « obviously equals A%. So p(t) = Acos(t—ts) on
each J € J, where A = /& = ||]|.

If ||A]| < v, i.e. A < v, then the maximal good solu-
tions of (20) are globally defined, so J = {[a, b]}. There-
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fore v itself is a circle. Naturally, the length has to be
< 27 for otherwise ¥ would contain a loop and would
not be optimal.

Next, we assume that ||A|| > v. Then each J € J has
length 2c; > 7, where ay is determined by A and v, so
ay is in fact determined by ||A|| and v and is equal to an
a which is independent of J. Therefore all the intervals
J e .7 have the same length 2¢ > 7, and the intervals
J € J have length < 2a. So J is ﬁmte, and then the
closed set Q = [a,b]\L (= {t : W(t) = 0}) is also a finite
union of intervals. If Q = 0, then J = {[a, ]} and 7 is
once again a circle of length < 27.

Now assume that @ # 0, and let K be the set of con-
nected components of Q. Then K is finite and nonvoid,
and each K € K is a compact interval. We will consider
separately the cases ||A]| > v and ||A]| = v.

Assume first that ||A]| > v. Picka K € K, K = [c,d].
Then either @ < ¢ or d < b, since we are assuming
that L # 0. Suppose d < b. Then W'(d) = A x y(d),
o ME = IWQIP + pd) = [W@IF + (v -
W@l = W2 + 2, using [[W(d)|| = 0 to-
gether with (15) and (17). Therefore W’(d) # 0, so
W(t) # 0 for t close enough to d, as long as t # d. So
¢ = d. Then Q is a finite set, and v is a finite con-
catenation of circles all of which have the same length
2a > 7 except possibly for the first and last ones, that
are of length < 2a. Moreover, for each J € 7, the
corresponding circle is contained in a two-dimensional
plane Py, orthogonal to the vector w. (It follows from
¥’ +y =0 that w = ¢/ x y is constant on J.) If{ € Q,
a <t < b, then W(t) = (¢t — )W'(£) + o(|t — £]), for ¢
near 7. So w(t) = sgn(t — )W'(Z) + o(1), for t near %,
t # £. Therefore the left and right limits w(i-), w(t+)
satisfy w(—) + w(f+) = 0. Since w is constant to the
left and to the right of £, we see that w changes sign
at 1. But then the pla.nes Pj corresponding to the two
intervals J such that £ € Clos(J ) must coincide. This
shows that the entire arc z(-) is contained in a plane P
in R3. It follows in pa.rtlcula.r that () minimizes length
among all the arcs in A that have the same initial and
terminal conditions as z(-) and are contained in P. So
z(-) is a solution of the two-dimensional version of our
problem. The solution of the problem in dimension 2
was obtained by Dubins in [2]. He showed that every
optimal trajectory is a concatenation of at most three
pieces, at most one of which is a straight line segment,
while the others are circles. Using this result, we con-
clude that our arc « is CC or CCC. (The fact that the
middle C has length > 7, which has been established
above, also follows from Dubins’ result.)

Finally, we consider the case when [|A]| = v. Now the
zeros of W no longer need to be isolated, so there may
be nontrivial intervals belonging to IC. As shown before
in our analysis of the case I = 0, the restriction of 4 to
every such interval is a straight line segment. On the
other hand, the set J must be empty, because if J €
J then the correspondmg circle would have length 2¢,
where cosa = _n_ﬂ = —1. Then a = #. This means

that z(-) contains a full loop, contradicting optimality.
Soyis C or S or C or CS or SC or CSC, as stated.
This concludes the proof or Theorem 1.

We conclude with some brief comments about the
proof of Theorem 2 (cf. [10] for full details). To prove
the local optimality of the helicoidal arcs, one has to in-
vert the transformation used to go from (26) to (6) and
show that to every solution 7 of (6), for a { > 0, there
corresponds a solution ¢ of (26), if we pick a nonzero C
in an arbitrary fashion, and define v = 4¢,/|C|. Using
this, one shows that 1f a smooth PAL curve z satisfies
|lz"]] = 1, and its torsion 7 is a solution of (6), then the
corresponding controlled arc £ = (z,z’,w) has an MP
lift 2. (Here w = ¢ x y.) The proof of optimality is
then done by a Hamilton-Jacobi technique, embedding
Z in a suitable field of MP controlled arcs.
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