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I. A ROUGH CLASIFICATION OF VERSIONS OF THE
FDPMP (FINITE-DIMENSIONAL PONTRYAGIN
MAXIMUM PRINCIPLE)

Every known version of the FDPMP is of one of the following two
types:
— Type T. (The “T" stands for “topological.”)

— Type L. (The “L"” stands for “limiting.”)
In the transversality condition:

— Type T versions involve some kind of Boltyanskii tangent cone
to the terminal set.

— Type L versions involve the Clarke tangent cone to the ter-
minal set, or the Mordukhovich normal cone



The proofs of Type T versions typically use a topological separation
argument, based on the Brouwer fixed point theorem or some variant
thereof.

All versions of the finite-dimensional Pontryagin maximum princi-
ple with high-order conditions (Knobloch, Krener, Bianchini-Stefani,
Agrachev, Sarychev, Gamkrelidze, and many others) appear to be
Type T.

The finite dimensionality comes in where the Brouwer fixed-point
theorem is used, since that theorem depends esssentially on being
in a finite-dimensional space.



The proofs of Type L versions usually produce a sequence {p}reN
of “approximate terminal adjoint covectors” (using, for example,
the Ekeland variational principle) and then extract a convergent (or
weakly convergent) subsequence whose limit pso is the terminal value
of the adjoint covector.

The finite dimensionality comes in when one tries to establish that
Poo = 0. The p, can be normalized so that ||pg|| = 1, and the exis-
tence of a weak*-convergent subsequence (if, say, we are working on
a Hilbert space) follows from the weak*-compactness of the closed
unit ball, but in infinite dimensions one cannot prove in general that
Poo 7 0, since the unit sphere is not weak*-compact.



NATURAL QUESTIONS:

— Is it possible to unify all these versions, and their proofs, into
a single general theorem?

— If so, would that theorem be Type T, Type L, or of some
new type, involving techniques that somehow combine or go
beyond those of the two basic types?

— In particular, is there a FDPMP with high-order conditions
that would apply to a dynamical law that in some portion of
the reference trajectory is only Lipschitz, and with a transver-
sality condition involving a Clarke or Mordukhovich cone?



It turns out that the key issue is whether the following property is
true:

The Transversal Intersection Property (TIP)

If two subsets 51, S» of R"™ have tangent cones
C'1, C> at a point p € R", and the cones (', C5
are strongly transversal, then S1 NS> contains

a sequence of points p; converging to p and
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II. CONES

A. Definition

A conein a real linear space X is a subset C' of X which is nonempty,
and closed under multiplication by nonnegative scalars. (In particular,
if C' is a cone then necessarily 0 € C.)

B. Definition

The polar of a cone C in a real linear normed space X is the
set C1 of all w € XT such that (w,c) < 0 for all ¢ € C. Clearly,
C+ is always a closed convex cone . If X is finite-dimensional (so X ~ X't canon-
ically), then C11 is the smallest closed convex cone containing C, from which it
follows in particular that Ct!t = C if and only if C is closed and convex .

REMARK: X' is the dual of X.



C. Definition

Assume that S C R™ and p € S. The Bouligand tangent cone to S
at p is the set of all vectors v € R™ such that there exist

(i) a sequence {p;};cn Of points of S converging to p,

(ii) a sequence {h;},;cn Of positive real numbers converging to O,

such that

. Pj—Pp
v= lim :
J—00

hj
D. Notation

We use TZFS to denote the Bouligand tangent cone to S at p. (Itis

then clear that TpBS is always a closed cone. )



E. Definition

Assume that S C R™ and p € S. A Boltyanskii approximating cone
to S at p is a convex cone C in R"™ having the property that there
exist

(i) a nonnegative integer m,

(ii) a closed convex cone D in R™,
(iii) a neighborhood U of 0 in R™,
(iv) a continuous map F:UND — S,
(v) a linear map L : R™ — R",

such that

F(z)=p+ Lzx+o(||z]]) as z—0, z€D,
and LD = C.



F. Definition

Assume that S C R", Sisclosed, and p € S. The Clarke tangent cone
to S at p is the set of all vectors v € R™ such that, whenever {p;},cn
IS a sequence of points of S converging to p, it follows that there
exist Bouligand tangent vectors v, € T£.S such that lim;_, v; = v.

G. Notation
We use TES to denote the Clarke tangent cone to S at p. Then

TpCS is a closed convex cone.
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III. TRANSVERSALITY

A. Definition

Two convex cones C1, Co in R"™ are transversal if
Ci1—Cr=R",
i.e., if for every x € R" there exist ¢1 € (1, ¢» € Cs, such that
r = c]—C>.
B. Remark

This is a very natural generalization to cones of the ordinary notion
of transversality of linear subspaces. For subspaces Sip, Sp, it is
customary to require that S1 4+ S> = R", but it would make no
difference if we required S1 — So = R" instead.

C. Intuition

The basic idea of transversality is that, if two objects O1, O> have
first-order approximations A1, A> near a point p, and A1 and A, are
transversal, then O1 N O5 looks, near p, like A1 N As.
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IV. NON-TRANSVERSALITY = LINEAR SEPARATION

Suppose C1, C> are convex cones in R™. Then the following condi-
tions are equivalent:

e (1 and (5 are not transversal,
o C1 N (=C2)* # {0},

e there exists a nonzero linear functional p : R" — R such that

(p,c1) <0 for all c¢1 €Cq,
and

(p,cp) >0 for all c¢cp € Ch.

12



V. STRONG TRANSVERSALITY

A. Definition

Two convex cones (1, Cs in R"™ are strongly transversal if they are
transversal and in addition |C1 N Cy #= {0}

B. Intuition:

If two sets S1, So> have first-order approximations C1, C> near a point
p, and the cones (1, C5 are strongly transversal, it should follow that
S1 N Sy contains points p; converging to p and # p.

Reason:

Near p, S1 NS> should look like C1 N C5, because C7 and C> are
transversal.

Since C1 N C5 contains a full half-line through 0, S1 NS> should also
contains a nontrivial curve through p.
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C. An important caveat:

The above intuition is, of course, not a proof, and when one does
things carefully, it turns out that, for very reasonable notions of
“first-order approximation,” all one can prove is that S$1 NS> must
contain a nontrivial connected set through p, but this set could fail
to be path-connected. And for other reasonable notions one can
prove even less. (For example, that S1 NS> contains a sequence of
points p; # p that converges to p.)
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The following lemma says that transversality and strong transversality
are almost equivalent .

More precisely, the only gap between the two conditions occurs when
the cones C'1 and (5 are linear subspaces such that C1 & C> = R", in
which case C7 and (5 are transversal but not strongly transversal.

D. Lemma

If 1, C> are convex cones in R", then C7; and C5 are transversal if
and only if either

(i) C1 and C» are strongly transversal,
or

(ii) C1 and C5 are linear subspaces and C1 & Co, = R",
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PROOF.

It suffices to assume that C7 and C5 are transversal but not strongly
transversal and show that (ii) holds. (Recall that (ii) says: “C: and C» are
linear subspaces and C1 & Cy = R*.")

Let us prove that 5 is a linear subspace. Pick ce€ C1. Using the
transversality of C7 and C» write

—c=c1—c¢cp, c1€C1, coe (.

Thenci4+c=cy. Butci+ceCqy and co € Cr. SO c1+ce€ C1NCh,
and then ¢;1 4+ ¢ = 0, since C'{ and (5 are not strongly transversal.
Therefore —c = c¢q, SO —c € C1. This shows that c € C; = —c € (].
So (7 is a linear subspace. A similar argument shows that C5 is a
linear subspace. Then the transversality of C1 and C5 implies that
C1 + C> = R"”, and the fact that they are not strongly transversal
implies that C1NCy = {0}. Hence C1 & Cr =R". END OF PROOF.
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VI. Set separation

Two subsets 51, So of a Hausdorff topological
Space space T are locally separated at a point
p € T If there exists a neighborhood U of p in T
such that

S1NSonU C {p}.
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VII. The Transversal Intersection Property

If two subsets S1, S» of R™ have tangent cones
C'1, C> at a point p, and the cones (', C5 are

strongly transversal, then S; and S, are not
locally separated at p.

The statement that “S; and S, are not locally separated at p” means
the following:

S1 NS> contains a sequence of points p; converging to p and # p.
A. Remark. This is exactly the “intuition” discussed earlier.

B. Question. For what notions of “tangent cone to a set at a point”
is the TIP (Transversal Intersection Property) true?
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VIII. How the TIP is applied to prove versions of the FDPMP

To apply the TIP to prove a version of the FDPMP for optimal
control, one carries out the following steps:

St 1. Reduce the optimal control problem to a separation problem

in which, for a dynamics

, and an interval [a,b],

it is required that the reachable set R(/, [a,b], z;,) be locally
separated from some other given set S. (This reduction is well
known. It amounts to “augmenting the system by adding the cost as a

new dynamical variable”.)

St 2. Construct a “tangent cone” C1 to R(/f, [a,b], x) at the terminal

point xierm Of the reference trajectory.

NOTE: R(f,[a,b],z) is the set of all points reachable from the initial point z;,

over the interval [a,b] for the dynamics f.
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St 3.

St 4.

St 5.

St 6.

Compare C1, the tangent cone to R(/f,[a,b]l,x) at Tiepm, tO
C>, the tangent cone to S at ZTierm.-

Use the TIP to conclude that 4 and Cs cannot be strongly
transversal, because R(f, [a,b], x;,) and S are locally separated

at Tterm.

If we can go from “not strongly transversal” to “not transver-
sal,” then the non-transversality is exactly the existence of a
nontrivial covector linearly separating C; and C5, and this
yields the desired “adjoint vector’ of the Maximum Principle.

How do we go from “not strongly transversal” to “not transver-
sal” 7 In optimal control this is easy, because the cone C5 is,

typically, the product of a tangent cone to the set of admis-

sible terminal states times a half-line, so it is never a linear

subspace.
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Naturally, for all this to work one needs the notion of “tangent cone”
used in the above steps to be such that the TIP is true.

THEOREM: The TIP is true if “tangent cone”
IS taken to mean “Boltyanskii approximating

CONE." (The proof of this is Type T.)

HEOREM: The TIP is true if *tangent cone”

IS interpreted to mean “Clarke tangent cone.”
(The proof of this is Type L.)
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The first TIP result leads to a number of versions of the FDPMP
with a Boltyanskii or Boltyanskii-like tangent cones in the transver-
sality condition. In these versions, high-order conditions can easily
be included. (Classical work by Pontryagin et al., work by Knobloch,
Krener, Agrachev, Sarychev, Gamkrelidze, Bianchini, Stefani, HJS,
and lots of others.) These results are all proved using the TIP for
Boltyanskii cones or for some generalization of them, such as the
“approximating multicones” used by HJS.

The second TIP result leads to a number of versions of the FDPMP
with a Clarke or Mordukhovich normal cone in the transversality con-
dition. (Work by Clarke, Vinter, Rockafellar, Ioffe, Mordukhovich,
Loewen, da Pinho, Franskowska, and lots of others.) In these ver-
sions, it does not seem that high-order conditions can be incorpo-
rated. Most of these results are not proved by explicitly using the
TIP for Clarke cones or for some generalization thereof, but work is
now in progress by HJS which, it is hoped, will show that they can
be proved that way.
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It may seem natural to expect that a more general TIP might be
true, containing both results. I conjectured (and even briefly believed
I had proved) about 10 years ago that such a result was true.

The problem was solved in January, 2006, by Alberto Bressan, who
proved the following:

IX. Bressan’s Theorem

There exist two closed subsets S1, S> of R*, and two closed
convex cones Cq, C» in R4, such that

e (1 is a Boltyanskii approximating cone to S1 at O;

e (> Iis the Clarke tangent cone to S5 at O;

e (1, (o are strongly transversal,

e S1 NS>, ={0}.
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Using Bressan's example, one can construct an example of a La-
grange optimal control problem in R® with a terminal state con-
straint, and an optimal trajectory-control pair (&£«,7mx), defined on an
interval [a«, b«], such that

e the dynamics and Lagrangian satisfy conditions that lend them-
selves to Type T arguments,

e the terminal set S has a Clarke tangent cone C at the
terminal point of &« (b),

e there does not exist a nontrivial multiplier («(-),mg) (consist-
ing of an adjoint covector w«(-) and “abnormal multiplier” mg)
that satisfies the adjoint equation, the Hamiltonian maximiza-
tion condition, and the transversality condition —x(bs) € C+.

The actual construction is done in complete detail in the paper, and it's sort of
technical.

Remark: In this particular example, the usual nonsmooth “adjoint differential
inclusion” is actually a true "adjoint differential equation.”
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A |lot remains to be done. For example,

e find a good counterexample as above, with a very smooth op-
timal control problem, for which one can get lots of high-order
necessary conditions for optimality involving high-order varia-
tions in the direction of Lie brackets, but for which the terminal
condition on the state involves a set with a Clarke tangent cone.

e carry out the program of proving all Type L versions of the
FDPMP using the “Type L” TIP. A first step in that direc-
tion was my paper in the Sevilla CDC, where I introduced a
concept of “approximating multicones” (called “Mordukhovich-
Warga approximating multicones” ) adapted to Type L argu-
ments, and prove the TIP.
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e find a good example of failure of the FDPMP for which the dy-
namics are appropriate to Type L arguments, but the terminal
condition on the state involves a set with a Boltyanskii approx-
imating cone. (Conjecture: this will probably happen for some
problem which is governed by a differential inclusion z € F(xz,t),
and whose adjoint equation is the “intrinsic adjoint equation”

involving a partial convexification of the Mordukhovich normal
cone to the graph of F.)

Argument for the conjecture: 1 have tried and tried to derive the intrinsic equation
in the Type T setting and wasn’t able to. This suggest to me that perhaps the
intrinsic equation can only be derived with Type L methods, in which case it is

reasonable to expect that it will not “go well” with a Boltyanskii tangent cone to
the terminal set.
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