Combining high-order necessary conditions for optimality with
nonsmoothness

Héctor J. Sussmann
Department of Mathematics
Rutgers, the State University of New Jersey
Hill Center—Busch Campus
110 Frelinghuysen Road
Piscataway, NJ 08854-8019, USA

sussmann@math.rutgers.edu

Abstract—We present a version of the Pontryagin
Maximum Principle valid for systems of flows rather than
for systems governed by ordinary differential equations. The
flow maps are required to be differentiable in a generalized
sense (using the theory of “generalized differential quotients”)
which is much weaker than ordinary differentiability and
allows the “differentials” to be sets of linear maps rather
than single linear maps. The resulting conditions apply to
control dynamics with a right-hand side that needs not be
smooth, or even Lipschitz, and could even be discontinuous.
This is so because the usual adjoint equation, in which
there occur derivatives of the reference vector field with
respect to the state, is replaced by an integrated form. This
form only involves differentials of the reference flow maps,

and therefore makes sense as long as these flow maps are

differentiable, which can happen even when the reference
vector field itself fails to be Lipschitz or even continuous. The
resulting “integrated adjoint equation” gives rise to “adjoint

vectors” that need not be absolutely continuous, and could be
discontinuous and unbounded. Furthermore, this integrated
adjoint equation relates the values of the adjoint vector
on intervals that could be disjoint and contain singularities

denote, respectively, the space of all linear maps frbto
B and the (algebraic) dual of a L8, so AT = LM (A,R).

The symbolsZ, Z., N will denote, respectively, the set
of all integers and the sefgi€Z:n >0}, {n€Z:n>0}.
If n,m € Zy, thenR™" is the set of all real matrices
with m rows andn columns. We writeR”, R,, for R™**!,
RY", We identify LM(R",R™) with R™*" in the
usual way. The norms o™ and R, are the Euclidean
norms, and forR™*" we use the operator norh- ||,p,

defined by ||L|l,p =sup{||L-z| :2z € R™|z| <1}
f A C R™™ and § > 0, we write A° to
denote the set{L e R™*™:dist(L,A) <d§}, where

dist(L, A) inf{||L — L'|lop : L' € A}.

Ordinary, set-valued, and augmented maps. A set-
valued map(abbr. SVM) is a triplef’ = (A, B, G) such
that A and B are sets and~ is a subset ofA x B.
The setsA, B, G are, respectively, thesource target
and graph of the SVM F, and we write A = So(F),

in between. This makes it possible to establish necessary p — Ta(F), G = Gr(F). If z is any object, we write

conditions for an optimum that yield a global adjoint vector
that satisfies various nonsmooth conditions everywhere and
at the same time satisfies extra “high-order” requirements,
such as the Goh condition, on intervals where the dynamics
is sufficiently smooth.

|. PRELIMINARY DEFINITIONS

As a preliminary to the statement of our main theorem, W8\/Ms from A to
give a long series of definitions and background result

The definitions themselves are all rather trivial and natur

F(z)={y: (z,y) € Gr(F)}. (Hence F(z) = 0 unless

x € So(F).) The setsDo(F) = {z € So(F) : F(z) # 0},
Im(F) = U,eso(r) F'(z), are, respectively, thelomain
andimageof F. If F = (A,B,G) is an SVM, we say
that F' is an SVM from A to B, and write ' : A — B.

We say thatF is single-valued if card(F(z)) < 1

for all z. We useSV M (A, B) to denote the set of all
B. The expression “ppd map” stands
or “possibly partially defined (that is, not necessarily
verywhere defined) ordinary (that is, single-valued) map,”

The background results are also rather simple, except f%d we writef : A — B to indicate thatf is a ppd map

the chain rule for GDQs and the separation theorem 2.

for both of which proofs are available in the literature (cf.

[3]). Theorem 2.6 is the crux of the matter, and involves a he trio|
refinement of the “topological argument” used in classicd€ the triple
proofs of the Maximum Principle such as the one due t

Boltyanskii (cf. Pontryagiret al. [1]).

The abbreviations “LS” and “FDLS” will stand for
“linear space” and “finite-dimensional linear
respectively. (All LSs in this paper are over the fiédof
real numbers.) If4, B are LSs, we usd. M (A4, B), AT to
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space,

If X is a set, therly denotes thddentity map of X,
(X, X,Ax), whereAx = {(z,2) : x € X}.

F is an SVM, andS is a set, then theestriction
of FF'to S isthe SYMF[S : So(F) NS +» Ta(F)
whose graph isGr(F) N (S x Ta(F)). If Fy, Fy are

SVMs, then thecompositeF, o F; is defined if and only

if So(Fy,) = Ta(Fy), and in that case, by definition,
So(Fy 0 Fy) = So(Fy), Ta(Fy o Fy) Ta(Fy), and
Gr(Fyo Fy) ={(x,2): 3y, (y € Fi(x) Nz € Fa(y))}.

If Aisan LS andX is a set, thed-augmentation of X



is the setX4 defined byX4%' X x A. If X, Y are sets,

an A-augmented set-valued mafabbr. A-SVM) from X

to Y is a set-valued map' : X4 — Y4 such that

(*) F(z,a) = F(2,0) + {(0,a)} (that is, F(z,a) =
{(y,a’+a):(y,a’) € F(x,0)}) whenever: € X, a € A.

We useSV M4(X,Y) to denote the set of all A-SVMs
from X to Y. If F € SVMA(X,Y) we define an SVM
F: X Y x A by letting F(z) & F(z,0) for z € X.
It is then clear thatF can be recovered fronk', because
F(x,a) = {(2',a’ +a): (z',a') € F(x)}.

If F; € SVMA(X;_1,X;) for i = 1,2, then the
compositel’ = I, o Fy belongs toSV M4 (X,, X5), and
F = Fyo” I, where thed-augmented compositiono 1.
oftwo SVMspy : X — Y x A, v:Y +— Z x A, is the
set-valued mapo® ;i : X —» Z x A such that, forz € X,
(vol ) (x) is the set

{(@",a"yeZxA:(3(2,d") € p(x)):(2",a"—ad") ev(z')}.

Augmented linear maps. If A, X, Y are LSs, an
A-augmented linear mapfrom X to Y is a linear map
L: XA~ Y4 such thatL is an A-augmented SVM
from X to Y. Clearly, an L € LM(X4,Y4) is A-
augmented if and only ifL(z,a) = L(z,0) + (0,a)
for every (r,a) € X4. We use LM4(X,Y) to denote
the space of augmented linear maps frommto Y. A
memberL of LM#(X,Y) is determined (via the formula
L(z,a) = ({(z),a + ¢°(x))) by specifying two linear maps
¢ : X — Y and ¢ : X — A, known, respectively,
as thestate space componerand cost componentof
L. So LMA(X,Y) is canonically identified with the
productLM (X,Y) x LM (X, A). An A-augmented linear
functional on a LS X is a linear functional onX4.
An A-augmented linear functional : X4 — R is deter-
mined (via the formula\(x, a) = A(x) + A\°(a)) by its state
space componenh € Af and itsaugmented component
A0 € Af. The augmented componeit is then given by
X(a) = A(0,a) for a € A.

If L, € LMA(X;_1,X;) for i 1,2, then
L=1LyolL;: X4+ X4 is also anA-augmented linear
map. Indeed, ifr € Xy, anda € R, then

La(L(1(w, ) = Ly (L1(2,0)) + (0,0))
L2(L1 (1‘70)) + LQ(O,CL)
La(Lx(2,0)) + (0,0) = L(z,0) + (0,a),

because (a).(z,a) = Ly(x,0) + (0,a) and in addition
(b) L2(0,a) = L2(0,0) + (0,a) = (0,a), since the fact that
L, is linear implies thatl,(0,0) = (0,0). If we identify
Ly, Ly, L, with pairs(¢1,£9), (¢2,£9), (¢,£°), as explained
above, then a simple calculation shows that /5 o ¢; and
éo 25(1)—&—68061

If A ¢ (YY" and L € LMA(X,Y), then the

composite (or “pullback”) mapL*(A)défA o L is of course

a linear functional onX4, i.e., an A-augmented linear
functional on X. Furthermore, ifA = Ao L, \°, X0 are

the augmented components df, A, and a € A, then

L(z,a)

A(a) = A(0,a) = A(L(0,a)) = A(0,a) = X\°(a)  (since
L(0,a) = L(0,0) + (0,a) = (0,a)), so the augmented
component of the pullbackA o L of A by L is equal to
the augmented component of.

Manifolds. If k£ € N, X is a manifold of clasxC*, and
r € X, we useT, X, Ti X, TX to denote, respectively, the
tangent and cotangent spacesfat x, and the tangent
bundle of X. (Clearly, then,7X is a manifold of class
Ckfll)

If X,Y are manifolds of clas€!, f : X — Y, and
x € X is such thatf is defined and of clas§! on a
neighborhood ofr, then D f(x) denotes the differential of
fatX,soDf(x) € LM(T, X, Ts)Y).

We use the following precise definition of “chart’cabic
coordinate charton a p-dimensional manifoldX of class
C* is a ppd maps : X — R* such that (a)Do(k) is
a nonempty open subset &f, (b) Im(x) is an open cube
-, a # for some positivey, () [ Do(x) andx ! [ Im(k)
are injective maps of class*. A cubic chartx is centered
at a pointz of X if x(x) =0.

Approximating cones. A conein a LS A is a honempty
subsetC' of A such thatr - ¢ € C wheneverc € C and
r > 0. If X is a manifold of classC!, z € X, and
v € T, X, we useV, to denote directional differentiation
in the direction ofv. That is,V,p is equal, ifp: X — R
is of classC! nearz, to the derivative%go(g(t))hzo, if
¢ : [~e,e] — X is any curve of clas€'! such thatt(0) = z
andé(o) =w. If s € § C X, aBoltyanski approximating
coneto S at s is a convex con&’ C T, X such that there
exist a neighborhood/ of 0 in T,X and a continuous
map f : UnNnC ~ S for which (a) f(0) = s and
() p(f(v)) — @(s) = Vyp = o(||v]]) asv — 0 via values
in C for every functiony : X — R which is of class
C' nears. A limiting approximating coneto S at s is
a closed convex con€ C T,X which is the closure of
an increasing uniorhj‘;il C; of Boltyanski approximating
cones toS at s.

Il. GENERALIZED DIFFERENTIAL QUOTIENTS(GDQs)

If X, Y are metric spaces, therbV M m,(X,Y)
will denote the subset o6V M (X,Y) whose members
are the set-valued maps frorX to Y that have a
compact graph. We say that a sequen(k;};cy of
members ofSV Mo, (X,Y) inward graph-convergego
an F € SV Mepmp(X,Y)—and write F; 25 F—if for
every open subsé? of X x Y such thatGr(F) C Q there
exists ajo € N such thatGr(F;) C Q wheneverj > jq.
Definition 2.1: Let X, Y be metric spaces. A set-valued

map F : X —» Y is Cellina continuously approximable

(abbr. “CCA") if
o for every compact subsét of X, the restrictionF [ K
of F' to K belongs taSV Mom,(K,Y) and is a limit—in

the sense of inward graph-convergence—of a sequence of

continuous single-valued maps fralto Y.
We useCCA(X;Y) to denote the set of all CCA set-valued
maps fromX to Y. ]



It is easy to see that if : X — Y is a single-valued ppd
map, thenF belongs toCCA(X;Y) iff it is everywhere

on a neighborhood of and F' is classically differentiable
atz, then{DF(z)} € GDQ(F;z, F(z); X). |

defined and continuous. It is not hard to prove the following. Theorem 2.6:If X, Y are manifolds of classC?,

Theorem 2.2:If X,Y, Z are metric spaces, and’, G
are inCCA(X;Y), CCA(Y; Z), then the composite SVM
G o I belongs toCCA(X; Z). [ |

Definition 2.3: Assume thain,n € Z,, F : R" —» R™,
A C R § C R™ 0 € S. We say thatA is a
generalized differential quotien{abbreviated “GDQ")of
F at (0,0) in the direction of S (or “along S”), and write

F:X—Y, z € § C X,y € R C Y,
A e GDQ(F;z,3;S), S, R have limiting approximating
conesCys, Cgr at z, g, and Cg is not a linear subspace,
then a necessary condition for the sét¢S) and R to
be separated @ (in the sense that'(S) N R = {7}) is
that there exist ar € T}Y\{O} and anL € A such that
m(v) > 0 for everyv € Cr and w(L(w)) < 0 for every

A € GDQ(F;0,0;95), if (a) A is compact and nonempty, w € Cs. ]

and (b) for every positivé € R there exist a neighborhood Partial

U of 0in R®" and aG € CCA(U N S;A°) such that
G(z) -z C F(zx) for everyz e UNS. [

The chain rule. If X, X,, X5 are real linear spaces, and(c) X = X; x X,

Ay, Ay are subsets adE M (X, X5), LM (X2, X3), then the
compositeAs o A; is the subset of. M (X, X3) defined by

Ay OAldéf{LQ oly:Ls €Ay, L4 € Al}

A subsetS of a topological subspacE is alocal retractat
a points € S if for every neighborhood/ of s there exist
a neighborhood’ of 5 asuch thal” C U and a continuous
mapp : V — VNS such thap(s) = s whenevers € VNS.
The following is the well-knowrchain rule for GDQs.
Theorem 2.4:Assume thatny, no, ns, Fi, Fy, Si, Sa,
A4, As are such that, ne,n3 € Z4 and, fori =1, 2,
1. 0 e S; and F; : R™i +—» R™i+1;
2. A € GDQ(FZ, 0,0; Sz)
Assume, moreover, thaky(S;) C Ss, and eitherS, is
a local retract ab or Fy is single-valued. Them\; o Ay
belongs toGDQ(F; o F1;0,0;Cy). [ ]

GDQs on manifolds. If X, Y are manifolds of class
C', m=dimX,n=dimY, z€6SCX, § € Y, and
F: X+ Y, then we can define a s&tDQ(F;z,y;S5)
of subsets of LM (T3X,T;Y) by picking cubic coor-
dinate chartsX >z — £(z) e R™, Y5y n(y) e R
centered atz, gy, and declaring a subsetA of
LM(TzX,T3Y) to belong to GDQ(F;z,y;S) if the
set Dn(y) o A o DEE)~Y  (which, by definition,
is equal to {Dn(y)oLoDE(Z) "t LeA}) belongs
to GDQ(no Fo&~10,0;£(S)). With these definitions,
So(¢7h) R™, Ta(¢71) So(F) X,
Ta(F) =So(n) =Y, and Ta(n) R™, sono F o
¢~ is a well defined member ofV M (R™,R"™). The
chain rule then implies that, with this definitiothe set

GDQs. Suppose that (a) fori 1,2,
X, is a manifold of classC! and z; € S; C X,
(b) Y is a manifold of classC' and § € Y,
(d) S=51 %8s, (6) T=(Z1,Z2),
and (@A € GDQ(F; z,7; S).
Then, if we let :,.o be the partial maps
X122z (2,72) € X and X3z~ (T1,2) € X,
the chain rule implies that thpartial GDQs Ax,, Ax,
(where Ax, = {Lx,: L€ A} and, for L € A, Lx,,
Lx, are the mapsTz X; >v— L(v,0) € T;Y, and
Tz,X2 3 v L(0,v) € T;Y, and we canonically identify
T: X with Tz, X7 x Tz, X5) are GDQs ofF o ¢y, F o 19,
respectively, a{z;,y) and (z2,y), along Sy, Ss.

f) F: XY,

A time setis a nonempty subset dR. If T is a time
set, andm € N, we useT™ 2 to denote the set of all
orderedm-tuples (t1,to, - -, t,,) of members ofT such
thatt; > t, > --- > t,,. A state-space bundle over a time
setT is an indexed familyX = {X,}:cT Of sets. Astate-
space bundlgabbr. SSB) is a pait’ = (T, X) such that
T is a time set andX is a state-space bundle ovr.
An SSB (T, X) is abundle of topological spaceresp.
of metric spacesof manifolds of classC*, LSs, FDLSs,
etc.) if each X, is a topological space (resp. a metric
space, a manifold of clas€*, an LS, an FDLS, etc.).
We will use the abbreviation§*-SSB, FDLS-SSB, for
“bundle of manifolds of clas§€”*” and “bundle of FDLSs,”
respectively.

A sectionof an SSBX = (T, X) is a single-valued
everywhere defined map on T such thaté(t) € X, for
everyt € T. We useSec(X) to denote the set of all sections
of X. If X = (T, X) is aC*-SSB, and¢ € Sec(X), the
familly Te X' = {T¢) X:}ier is the tangent bundleof X
along¢. Clearly, T¢ X' is an FDLS-SSB.

If (T,X) is an SSB, aflow on (T, X) is a family

FLOWS AND TRAJECTORIES

GDQ(F;z,y;S) does not depend on the choice of the f = {fis}ser2> such that (1)f; s : X — X; when-
charts ¢, . Moreover, the following two results can beever (t,s) € T*Z; (2) fi. is the identity map ofX;,

proved.
Theorem 2.5:If X, Y are manifolds of clas€'!, z € X,

whenevert € T; and (3) fis o fsr = frr Whenever
(t,s,7) € T>=. A flow is a triple F = (T, X, f) such that

and F : X — Y is such thatF is defined and continuous (T, X) is an SSB and is a flow on(T, X). If, for : = 1, 2,

Fi=(T, X, f?) are flows with the same SSB = (T, X),

2In our previous papers on the subject, CCA maps were called “‘regulgie say thatF' is a subflowof F? if Gr(ftl ) - Gr(ftQ )
8/ = ,8

maps.” We have now adopted the name “Cellina continuously approx-
imable” because these maps were actually introduced by A. Cellina in hW

work of the 1960s.

henever(t,s) € T>Z. If F = (T,X,f) is a flow,
then atrajectory of F is a sectionf € Sec(X) such that



£(t) € f1.5(£(s)) whenever(t, s) € T%2. We uselraj(F)
to denote the set of all trajectories &.

Augmented flows.If X = (T, X) is an SSB and4 is
an LS, we useX* to denote the family{ X;*};cr (recall
that XA X, x A), and X4 to denote the SSET, X4).
An A-augmented flowon X is a flow (T, X4, F) on X4
such thatF, ; € SV M4(X,, X;) whenever(t,s) € T%2.
We recall that the SVM&, ; can be recovered from the
SVMs F,: X, +» X/ defined by F, ((z) = F} (x,0),
and that the flow composition law far amounts to saying,
in terms of theFts, that Ftr = Fts FST whenever
(t,s,7) € T>Z, whereo stands forA-augmented compo-
sition.

IV. GDQS OF FLOWS ALONG TRAJECTORIES

If 7= (X,T,f) is a flow, (T, X) is aC!-SSB, and¢ is
a trajectory ofF, then aGDQ of F along¢ is a family
g = {gt,S}(t,s)ETQ‘E such that

(1) gi.s € GDQ(f15:€(5),£(t); Xs)  whenever (¢, s)
belongs toT?Z;

@) gt = {Ir,,,x,} whenevert € T,

() gt.s © gs.r = g1.r Whenever(t,s,r) € T3=

Adjoint vectors. If F = (T,X,f) is a flow

on a bundle (T,X) of manifolds of class C*,

£ eTraj(F), and g is a GDQ of F along &, then a
g-adjoint vector (or g-momentun) for F along ¢ is a

map T > t — =(t) € T} »X¢ that satisfies the following
integrated adjoint differential inclusionfor g:

m(s) € w(t) o g;s whenever (t,s) € T>=. (1)

A family ¢ = {ft,s}(t,s)errzz such that/; s € g s for each
t,s and/; sol, . = £, Wwhenever(t, s,r) € T>= is called
a compatible selectiorof g.

Proposition 41:Amap T > ¢t — =(t) € T( )Xt is

a g-momentum if and only if there exists a compatible

selection? of g such thatr(s) = n(t) o ¢, , whenever
(t,s) € T?=.
Proof: The “if” implication is trivial. To prove the
other one, we assume thatis a g-momentum and find.
The product spacE = H( eras s endowed with the

product topology, is compact by Tikhonov’s theorem. The

members of" are all the familied = {/; s}, s)eT2.> such
that ¢, ; € g for eacht,s. If S is a subset ofT, let
'+ denote the set of all € T that are compatible over
S, in the sense that; ; o {5, = ¢;, wheneverr < s <t

(from T' to T¢(,)X,) is continuous, sol'™* is closed.
Hence all thel'>® andT'™° are compact subsets bf Let
'Y =1sSNT™5, We want to prove that'™ # (). Clearly,

T=N {FS : S C T, S finite } Hence our conclusion

will follow if we show that the family{FS}SgTﬂ finite
has the finite intersection property, i.e., that every finite
intersectionT'>* N I'S2 N ... N TS is nonempty. But
r'Nro%n...nrs» O r5usU-USs  go it suffices to
prove thatI'® # () wheneverS is a finite subset of
T. Write S = {s1,52,...,8m} With 51 < $3 <+ < 8p.
For j = 1,...,m — 1, pick U € gs,5,_, such that
m(sj_1) =m(sj) o t7. If s,t € S ands < t, define
bpg=0"10li"20. .0/ (2)
if s = s;,t = s; (Itis clear thatj > i; the right-
hand side of (2) idr, X, if s = t.) Extend the family
{1, }s<t.ses.tes by picking ¢, ; to be an arbitrary member
of g, if s <t but(s,t)¢ S xS, (This, of course, uses
the Axiom of Choice.) Then the resulting famitybelongs
to I', proving thatl'® # () as desired. [
Augmented GDQs of augmented flowsAccording to our
general definitions, ifF = (T, X4, F) is an A-augmented
flow on an SSBX = (T, X), a trajectory of F is a
mapT > ¢ — E(t) € X, x A such that=E(t) € F, ((2(s))
whenever(t,s) € T*Z. In terms of the mapd; ,, we
can then regard a trajectod as being a pair&,£°) of
mapsT >t — &(t) € X, andT > t — £°(t) € A such that
(€(t),€0(t) — €°(s)) € Fy 4(£(s)) whenever(t, s) € T?2.

If x (T,X) is C'-SSB, A is a FDLS,
F=(T,X4 F) is an A-augmented flow onX, and
= = (£,£% € Traj(F), an augmented GDQof F along
= is a GDQ G = {G¢s},s)eT2> Of F along = such
that every sety, ; is a subset OIMA(Tg(S)XS,Tg(t)Xt),
i.e., a set ofA-augmented linear maps frof ) X, to
T £t ) X¢. Therefore anA-augmented GDQ~ of F along
is such that eaclt; ; is a nonempty compact set of

—_
[l
—_
[l

=
—

pairs L = (£,(°) such thatl € LM (T¢5Xs, Ter) Xe)
and ° € LM(T¢sXs,4). A G-momentum is
then a map T >t II(t) € (Tgy X, x A)T  such

that TI(s) € II(t) o G; s whenever (t,s) € T2,
Hence aG- momentum is a pair(m,7%) of functions
Tot—n(t) € Tg(t)Xt, T >t~ 79(t) € AT that satisfy

m(s) () @)
(3, 0°) € Gy) (s) m(t) ol + 70 ()e° (4)

for s,t € T?2Z. Hencethe momentum-augmenting function

andr,s,t € S. ThenT® is the intersection of the setst — =°(t) € A for a G-momentum for am-augmented

reinst over all triples(t,s,7) € S x S x S such that

GDQ G is constant Condition (4) is theintegrated

r < s < t. EachT'»{"t} is closed, because the mapA-augmented adjoint differential inclusiorfor G.

f— ft s © Eé r ét ~—from I to LM Tf(T)XV, ét)Xt
is continuous. Therefor&®S is closed. Letl™S be the
set of those/ € T' that arew-compatible overS, in the
sense thatr(s) = 7(t) o ¢; s whenevers,t € S ands < t.
Again, I'>% is the intersection of the sef§™{**} over
all pairs (s,t) € S x S such thats < ¢, and the sets
™1t} are closed, because the map- m(s) — m(t) ol

V. VARIATIONS

Variations of SVMs. A pointed finite-dimensional convex
subsefabbr. “PFDCS”) is a sef) endowed with a structure
consisting of a FDLSAq (the “ambient space” oiy)
such that (1)@ is a convex subset afly with nonempty
interior, and (2) the origin0g of Ag belongs toQ. If



X, Y are sets andf,f’ € SVM(X,Y), a variation
of fin f' is a set-valued map : Q(v) x X — Y such
that (a)Q(v) is a compact PFDCS, (0)(0¢ ., z) = f(x)
for every x € X, and (c)v(q,x) C f'(x) whenever
g€ Q), r € X. The PFDCSQ(v) is the parameter
domain of the variationv. A variation of f is a variation
of f in the “maximal’ set-valued magX,Y, X xY).
If X, Y are manifolds of classC!, z € X, and
y € Y, avariational GDQ (abbr. VGDQ) at (z,y) of
a variationv:Q( )><X»—»Y of an SVMf:Xt—»Y
is a GDQ of v4 ((OQ(U), z),y) along Q(v) x
where v*: Ag) x X — Y is the SVM such that

(q,)—v(q,)lfqu()xeXandv( )_(Z)
if q € Agw)\Q(v), z € X. We useVGDQ(v;ﬁc,gj)
to denote the set of all VGDQs of at (z,y), so
VGDQ(v;2,7) = GDQ(v: (0g(u), 2), 5 Q(v) x X). If
v € VGDQ(v; z,9), then the partial GDQ$x, v.4,,,, are,
respectivelythe state parand thethe parameter parbf v,
and we ertes('y) 7X and p(y ) ’Y-AQ(v We know that
s(v) € GDQ(f;z,y; X). Given ag € GDQ(f;Z,y; X),
and a variationv of f, a v € VGDQ(v;Z,y) such
that s(v) g will be said to be anextension of
g. We write VGDQ,(v;Z,y) to denote the set of all
v € VGDQ(v; Z, ) that are extensions of.

Infinitesimal variations. If F (T, X, f) is a flow
on a(Cl-SSB X = (T,X), £€Traj(F), and g is
a GDQ of F along &, an infinitesimal variation of g
along ¢ is a tripleT" = (|T'|, @, ~) such that (a)|T'| (the
“carrier” of T') is a compact intervalla, 5] such that
(B,a) € T#Z, (b) Q is a PFDCS, and (cy is a nonempty
compact subset ab M (Aq x Te(a)Xa, Te(3)X ) Such that
s(v) = gs.a, Wheres(y) is the set of all linear maps
Té(a)X BZHL(OQ, )ETg(ﬁ)Xﬁ for all L € ~. If
I = ([o, 8], Q, ) is an infinitesimal variation of; along
¢ and (B,ﬂ,a,d) € T*=, then we canexpand I' to
an infinitesimal variation'[*-° of ¢ along ¢ by letting

rlefl = ([a, 5], Q,4), wherey = g5 ;070 (Lag X ga,a)-
If I'y,...,T, are infinitesimal variations of g
along &, we define the combined infinitesimal
variation I'=I00%0...00,, as follows. Let
F]' = ([aj7ﬂj],Qj,7j) for j = 1,....m. Let
a = min{e;j}tj=1,..m, B = max{f;};=1,.. m. Let

o be anm + 1-tuple (¢, uq,...,uy) consisting of a
compatible selectiorf = {; s} s)cT2> Of g and linear
mapsyu; € v; such thats(u;) = g, o,. Define (o) to
be the linear map fromAg, x -+ Ag, X TymXa
to Ty Xp that sends a point(qi,q2,...,qm,h)
belonging to Ag, x ---Agq,, x T¢wyXa to the vector
lga(h) + 300 L, @Juj(qj) wherev; = p(u;). We then
letT = ([« ﬂ] Q,7), where@Q = Q1 X Q2 -+ X @, and

~v is the set of all map$(o), for all o.
Compatibility of sets of infinitesimal variations. Given

g along ¢ is said to beF-R-compatible over|a,?b] if
(a) all the carrier intervals of the membet5s of V are
subintervals ofa, b], and (b) whenevey, is a finite subset
of V, the members ol); can be arranged in a sequence
I'y,...,T, such that the expansidi®® = ([a,b], Q,~) of
the combined infinitesimal variatian = I';OI',O . . . O,
satisfies:there exists a variatiorv of f;, , in R such that
v € VGDQ(v;£(a),£(b).

We are now ready to state our version of the maximum
principle. The proof is straighforward, based on applying
the definitions and the separation theorem 2.6.

VI.

The reader should think of, 7, and R as the “reference
trajectory,” “reference flow,” and “reachability relation over
[a,b]” (so that “y € R(x)” means % is reachable at time

b by means of a trajectory that startszatit timea”) of a
control system. We will first state the result as a necessary
condition for the graph ofR to be separated from some
other subsetS of X, x X,, and then outline how the
necessary conditions for optimal control are obtained by
applying the theorem t®-augmented flows.

Theorem 6.1:Assume thatF = (T, X, f) is a flow on a
bundle X = (T, X) of C! manifolds,a,b € T, a < b,
Re SVM(X,,Xp), € is a trajectory of F, and g is a
GDQ of F along¢. Let S be a subset of, x X such
that (§(G)7f(b)) € S, and letC C Tg(a)Xa X Tg(b)Xb be
a limiting approximating cone of at ({(a),&(b)) which
is not a linear subspace. L&t be a set of infinitesimal
variations of F along ¢ which is F — R-compatible
over [a,b]. Then, a necessary condition for the separation
condition Gr(R) N S = {(&(a),&(b))} is that there exist
(a) a compatible selectioft; .}, ¢)eT2.> Of g, (b) a family
{Av }vev such that, for eacl = ([a, 8], Q,v) € V, Ay is
a member ofv such thats(Ay) = 45+, and (c) a covector
7 GT »Xe\{0}, such that, if we letr(t) = 7 ol

for everyj € T, then (@) —w(a)h + =(b)(h) > 0 for
every (h,h) € C, and (b)(7(8)(Av(g,0)) < 0 whenever
= ([a, 8], Q,v) € V andq € Q. u

If we take Gr(R) = {£(a)} X Ry, S = {&(a)} x Sp, where
Ry and S, are subsets ofX;, then the theorem gives a
necessary condition for a control trajectofyto be such
that the reachable set fro§{a) over the intervala, b] is
separated af(b) from another sef, provided thatS, has
a limiting approximating con€’, which is not a subspace.
If we take A R, we can apply the theorem
to an A-augmented flowF, A-augmented trajectory
=Z=(£¢%, and A-augmented GDQ G of F
along =, using in the role of S a subset of the
product X% x X7 (e, of (X, xR)x (X, xR))
of the form {(z,r),(a/,7"): (z,2') € Sy Ar =E%(a)
Al =1 <€) — €%(a) — d((£(a).E()). (x,27))?}, for

A NONSMOOTH MAXIMUM PRINCIPLE.
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T, X, f, F, X, & g, as in the previous subsection,some subsetS, of X, x X;, where d is the distance

as well as pointsa,b of T such thata < b, and an
R e SVM(X,, Xy), a sety of infinitesimal variations of

induced by some Riemannian metric &y x X;. We then
get a necessary condition for minimization=ifis such that



€0(b) — €%a) < v’ —r whenever((x,r), (2',7")) € Gr(R) as well as the Hamiltonian maximization condition

and(z,z’) € Sp, thenGr(R) N S = {(E(a),Z(b))}. If Cy  (i.e., the statement that for every € U the inequality

is a limiting approximating cone t§, at (£(a),£(b)), then  H;(&.(t), m;(t), 70 u, t) < H;(&(t),7;(t), 7% mw s, t) S

C = {((c,0),(c,p)) : (¢,d) € CAp <0} is alimiting satisfied for almost every € I;). Theorem 6.1 produces

approximating cone t& at (=(a),=(b)). (Notice that in a single multiplier (=, 7°), which satisfies the adjoint

this case there is no need to require thgtnot be a linear inclusion and the Hamiltonian maximization condition on

subspace, becaugeis never a linear subspace, everCf eachl; as well as all the other conditions arising from

is.) The theorem then gives a momentdin= (7, —7"), variations on intervals that do not overlap with the

where the momentum-augmenting functiet is then just For a second example, we specialize further and look at

a constant real number. The transversality condition (a) dfie minimum-time problem, in the case when our system

the theorem then says thatb)h — m(a)h — 7% > 0 for  is autonomous and, on some of the intervgl{more pre-

all (h,h) € Cy and allp € R such thatp < 0, which is of cisely, for allj in some subsef of {1,...,m}), the control

course equivalent to the usual pair of separate conditiomgjuations are of the forg(t) = fo, (x)+2f;'1 w; fi;(€(1)),

(i) m(b)h—m(a)h >0 forall (h,h) € Cy and (i)7® > 0. and the setU; of control values is the cubg-1,1]%.
Finally, the theorem can be applied with higher{Naturally, minimum-time problems do not have a fixed

dimensional augmentation spaces, to obtain, for exampléme interval, but autonomous problems with a variable

necessary conditions for Pareto optimality. time interval can be reduced to problems with a fixed time

VII. CLASSICAL AND HIGH-ORDER CONDITIONS interval_in a well-known way. Assume in addition that the

, . __vector fieldsf;; are of classC?. Then it is well known that

Theorem 6.1 can be applied to systems that are “classicqlj the ysually necessary conditions for a minimum one can

on seve.ral nonpverlappmg .sublnt.e(v{il,a d;] of [a,b], and_ add, on eachl; such thatj € J, the “Goh condition,”

makes it possible to ol?t_aln "at_jjomt vectors” that satisfy o~ the requirement that; (t) - [fi;, fi;](£.(t)) = 0 for

all the necessary conditions given by these theorems &ery triple (t,i,i") such thatt € I,, t is a Lebesgue

well as the necessary conditions of the classical nonsmooélaim of the reference contral, ;, and the inequalities
and high-order versions of the maximum principle in the | _ (n.)i(t) <1 and —1 < (n7j’»)4,(t) <1 hold. Our
*,J )1 *,J )1 :

intervals(c;, d;]. We now discuss two examples of this kindrggyt yields the stronger conclusion that there exists a single
of result. We just consider the case of augmented systemgjtiplier on the whole intervala, b] that satisfies all these

corr.esponding to minimization problems. high-order conditions on all thé; for j € .J.

First of all, suppose that our augmented control system
is given, on each of a finite collectiod;, I,..., I, VIII. CONCLUDING REMARKS
of subintervals I; = |[¢;,d;] of [a,b] such that It would be desirable to strengthen our results so that, for
cj < dj foral jandd; ; < ¢ for j = 2,...,m, example, the regularity requirement of the second example
by classical control equation§(t) = f;(&(¢),n(t),t), of the previous section is weakened to allow the vector

(t) = ff(f(t)ﬂ?(t),t) , Wheref; andeQ are, respectively, fields f;; to be just of clas€”?, or perhaps even Lipschitz,
vector-valued and scalar-valued functions of € X;, but at the moment it is unclear how this could be done.
u € Uj, t € [¢j,d;], the X;s are manifolds of class An even more delicate question is that of extending the
C', and the U; are sets. Suppose that the referencéGoh condition” of the previous section to the case when
trajectory &, arises, onlI;, from a control 7, ; which the contol setd/; are balls rather than cubes. This seems
is such that f;(x,n.;(t),t) and f9(x,n.;(t),t) are tolead toawhole new set of questions that appear difficult
Lipschitz-continuous as functions of for (z,¢) in to handle with our methods. Specifically, the Goh condition
some tube containing the graph of the restrictior{ I;,  for this case gives the equalities(t) - [fi;, fir;](&(t) =0
measurable with respect tb for eachz, and bounded provided that the reference trajectory is such that all
by an integrable function of. Assume, moreover, that the abnormal multipliers, for all Hamiltonian-maximizing
for each fixedu € U; both f;(z,u,t) and fJ(x,u,t) adjoint vectors, vanishThis is a global condition, and we
are measurable functions offor eachz, and continuous do not know how to split it into conditions that would apply
functions of 2 for eacht. Finally, assume that the classon separate intervals.
of admissible controls conFams all constaqt contr.o!s and REFERENCES
the reference control, and is closed under intertwining on ) . )
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Principle (cf., e.g., [2]) then applies on eadh, and Wiley, New York, 1962.
yields an adjoint vectorm; and abnormal multiplier [2] Sussmann, H. J.A strong version of the tojasiewicz maximum

principle. In Optimal Control of Differential Equations\. H. Pavel

0 - . o .
m; such that the usual adjoint differential inclusion gy “Marcel Dekker Inc., New York, 1994, pp. 293-309.

(le., —m;(t) €  O.Hj(w,m(t), 7,0 ;(t),t)|sme.ty,  [3] Sussmann, H.J., “New theories of set-valued differentials and new
0 def 0 £0 versions of the maximum principle of optimal control theory.”
where Hj(z,p,p” u,t)=p - fij(z,u,t) — p f (7, u,t), In Nonlinear Control in the year 20Q0A. Isidori, F. Lamnabhi-

and 0, stands for “Clarke generalized gradient with Lagarrigue and W. Respondek Eds., Springer-Verlag, London, 2000,
respect tox keeping all other variables fixed”) holds, pp. 487-526.



