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Abstract— We present a version of the Pontryagin
Maximum Principle valid for systems of flows rather than
for systems governed by ordinary differential equations. The
flow maps are required to be differentiable in a generalized
sense (using the theory of “generalized differential quotients”)
which is much weaker than ordinary differentiability and
allows the “differentials” to be sets of linear maps rather
than single linear maps. The resulting conditions apply to
control dynamics with a right-hand side that needs not be
smooth, or even Lipschitz, and could even be discontinuous.
This is so because the usual adjoint equation, in which
there occur derivatives of the reference vector field with
respect to the state, is replaced by an integrated form. This
form only involves differentials of the reference flow maps,
and therefore makes sense as long as these flow maps are
differentiable, which can happen even when the reference
vector field itself fails to be Lipschitz or even continuous. The
resulting “integrated adjoint equation” gives rise to “adjoint
vectors” that need not be absolutely continuous, and could be
discontinuous and unbounded. Furthermore, this integrated
adjoint equation relates the values of the adjoint vector
on intervals that could be disjoint and contain singularities
in between. This makes it possible to establish necessary
conditions for an optimum that yield a global adjoint vector
that satisfies various nonsmooth conditions everywhere and
at the same time satisfies extra “high-order” requirements,
such as the Goh condition, on intervals where the dynamics
is sufficiently smooth.

I. PRELIMINARY DEFINITIONS

As a preliminary to the statement of our main theorem, we
give a long series of definitions and background results.
The definitions themselves are all rather trivial and natural.
The background results are also rather simple, except for
the chain rule for GDQs and the separation theorem 2.6,
for both of which proofs are available in the literature (cf.
[3]). Theorem 2.6 is the crux of the matter, and involves a
refinement of the “topological argument” used in classical
proofs of the Maximum Principle such as the one due to
Boltyanskii (cf. Pontryaginet al. [1]).

The abbreviations “LS” and “FDLS” will stand for
“linear space” and “finite-dimensional linear space,”
respectively. (All LSs in this paper are over the fieldR of
real numbers.) IfA, B are LSs, we useLM(A,B), A† to
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denote, respectively, the space of all linear maps fromA to
B and the (algebraic) dual of a LSA, soA† = LM(A,R).

The symbolsZ, Z+, N will denote, respectively, the set
of all integers and the sets{n∈Z :n≥ 0}, {n∈Z :n>0}.
If n,m ∈ Z+, then Rm×n is the set of all real matrices
with m rows andn columns. We writeRn, Rn for Rn×1,
R

1×n. We identify LM(Rn,Rm) with R
m×n in the

usual way. The norms onRn and Rn are the Euclidean
norms, and forRm×n we use the operator norm‖ · ‖op,
defined by ‖L‖op = sup{‖L · x‖ : x ∈ Rn, ‖x‖ ≤ 1}.
If Λ ⊆ R

m×n and δ ≥ 0, we write Λδ to
denote the set {L ∈ Rm×n : dist(L,Λ) ≤ δ}, where

dist(L,Λ)def= inf{‖L− L′‖op : L′ ∈ Λ}.
Ordinary, set-valued, and augmented maps. A set-
valued map(abbr. SVM) is a tripleF = (A,B,G) such
that A and B are sets andG is a subset ofA × B.
The setsA, B, G are, respectively, thesource, target,
and graph of the SVM F , and we writeA = So(F ),
B = Ta(F ), G = Gr(F ). If x is any object, we write
F (x) = {y : (x, y) ∈ Gr(F )}. (HenceF (x) = ∅ unless
x ∈ So(F ).) The setsDo(F ) = {x ∈ So(F ) : F (x) 6= ∅},
Im(F ) =

⋃
x∈So(F ) F (x), are, respectively, thedomain

and image of F . If F = (A,B,G) is an SVM, we say
that F is an SVM from A to B, and writeF : A 7→→ B.
We say thatF is single-valued if card(F (x)) ≤ 1
for all x. We useSVM(A,B) to denote the set of all
SVMs from A to B. The expression “ppd map” stands
for “possibly partially defined (that is, not necessarily
everywhere defined) ordinary (that is, single-valued) map,”
and we writef : A ↪→ B to indicate thatf is a ppd map
from A to B.

If X is a set, thenIX denotes theidentity map of X,
i.e., the triple(X,X,∆X), where∆X = {(x, x) : x ∈ X}.
If F is an SVM, andS is a set, then therestriction
of F to S is the SVM F dS : So(F ) ∩ S 7→→ Ta(F )
whose graph isGr(F ) ∩ (S × Ta(F )). If F1, F2 are
SVMs, then thecompositeF2 ◦ F1 is defined if and only
if So(F2) = Ta(F1), and in that case, by definition,
So(F2 ◦ F1) = So(F1), Ta(F2 ◦ F1) = Ta(F2), and
Gr(F2 ◦ F1) = {(x, z) : ∃y, (y ∈ F1(x) ∧ z ∈ F2(y))}.

If A is an LS andX is a set, theA-augmentation ofX



is the setXA defined byXAdef=X × A. If X, Y are sets,
an A-augmented set-valued map(abbr. A-SVM) fromX
to Y is a set-valued mapF : XA 7→→ Y A such that
(*) F (x, a) = F (x, 0) + {(0, a)} (that is, F (x, a) =
{(y, a′+a) : (y, a′)∈F (x, 0)}) wheneverx∈X, a∈A.

We useSVMA(X,Y ) to denote the set of all A-SVMs
from X to Y . If F ∈ SVMA(X,Y ) we define an SVM

F̌ : X 7→→ Y × A by letting F̌ (x)def=F (x, 0) for x ∈ X.
It is then clear thatF can be recovered from̌F , because
F (x, a) = {(x′, a′ + a) : (x′, a′) ∈ F̌ (x)}.

If Fi ∈ SVMA(Xi−1, Xi) for i = 1, 2, then the
compositeF = F2 ◦ F1 belongs toSVMA(X0, X2), and
F̌ = F̌2◦A F̌1 , where theA-augmented compositionν◦Aµ
of two SVMs µ : X 7→→ Y × A, ν : Y 7→→ Z × A, is the
set-valued mapν ◦Aµ :X 7→→ Z×A such that, forx ∈X,
(ν◦Aµ)(x) is the set

{(x′′, a′′)∈Z×A : (∃(x′, a′)∈ µ(x)) : (x′′, a′′−a′)∈ν(x′)}.

Augmented linear maps. If A, X, Y are LSs, an
A-augmented linear mapfrom X to Y is a linear map
L : XA 7→ Y A such that L is an A-augmented SVM
from X to Y . Clearly, an L ∈ LM(XA, Y A) is A-
augmented if and only ifL(x, a) = L(x, 0) + (0, a)
for every (x, a) ∈ XA. We useLMA(X,Y ) to denote
the space of augmented linear maps fromX to Y . A
memberL of LMA(X,Y ) is determined (via the formula
L(x, a) = (`(x), a+ `0(x))) by specifying two linear maps
` : X 7→ Y and `0 : X 7→ A, known, respectively,
as the state space componentand cost componentof
L. So LMA(X,Y ) is canonically identified with the
productLM(X,Y )×LM(X,A). An A-augmented linear
functional on a LS X is a linear functional onXA.
An A-augmented linear functionalΛ : XA 7→ R is deter-
mined (via the formulaΛ(x, a) = λ(x) + λ0(a)) by itsstate
space componentλ ∈ A† and itsaugmented component
λ0 ∈ A†. The augmented componentλ0 is then given by
λ0(a) = Λ(0, a) for a ∈ A.

If Li ∈ LMA(Xi−1, Xi) for i = 1, 2, then
L = L2 ◦ L1 : XA

0 7→ XA
2 is also anA-augmented linear

map. Indeed, ifx ∈ X0 anda ∈ R, then

L(x, a) = L2(L(1(x, a)) = L2

(
L1(x, 0)) + (0, a)

)
= L2(L1(x, 0)) + L2(0, a)
= L2(L1(x, 0)) + (0, a) = L(x, 0) + (0, a) ,

because (a)L1(x, a) = L1(x, 0) + (0, a) and in addition
(b) L2(0, a) = L2(0, 0)+(0, a) = (0, a), since the fact that
L2 is linear implies thatL2(0, 0) = (0, 0). If we identify
L1, L2, L, with pairs(`1, `01), (`2, `02), (`, `0), as explained
above, then a simple calculation shows that` = `2 ◦ `1 and
`0 = `01 + `02 ◦ `1.

If Λ ∈ (Y A)† and L ∈ LMA(X,Y ), then the

composite (or “pullback”) mapL∗(Λ)def= Λ ◦ L is of course
a linear functional onXA, i.e., anA-augmented linear
functional onX. Furthermore, ifΛ̃ = Λ ◦ L, λ0, λ̃0 are
the augmented components ofΛ, Λ̃, and a ∈ A, then

λ̃0(a) = Λ̃(0, a) = Λ(L(0, a)) = Λ(0, a) = λ0(a) (since
L(0, a) = L(0, 0) + (0, a) = (0, a)), so the augmented
component of the pullbackΛ ◦ L of Λ by L is equal to
the augmented component ofΛ.
Manifolds. If k ∈ N, X is a manifold of classCk, and
x ∈ X, we useTxX, T †xX, TX to denote, respectively, the
tangent and cotangent spaces ofX at x, and the tangent
bundle ofX. (Clearly, then,TX is a manifold of class
Ck−1.)

If X,Y are manifolds of classC1, f : X ↪→ Y , and
x ∈ X is such thatf is defined and of classC1 on a
neighborhood ofx, thenDf(x) denotes the differential of
f at X, soDf(x) ∈ LM(TxX,Tf(x)Y ).

We use the following precise definition of “chart”: acubic
coordinate charton aµ-dimensional manifoldX of class
Ck is a ppd mapκ : X ↪→ R

µ such that (a)Do(κ) is
a nonempty open subset ofX, (b) Im(κ) is an open cube
]−α, α[ µ for some positiveα, (c)κ dDo(κ) andκ−1 d Im(κ)
are injective maps of classCk. A cubic chartκ is centered
at a pointx of X if κ(x) = 0.
Approximating cones. A cone in a LS A is a nonempty
subsetC of A such thatr · c ∈ C wheneverc ∈ C and
r ≥ 0. If X is a manifold of classC1, x ∈ X, and
v ∈ TxX, we use∇v to denote directional differentiation
in the direction ofv. That is,∇vϕ is equal, ifϕ : X ↪→ R

is of classC1 nearx, to the derivativeddtϕ(ξ(t))|t=0, if
ξ : [−ε, ε] 7→ X is any curve of classC1 such thatξ(0) = x
and ξ̇(0) = v. If s ∈ S ⊆ X, a Boltyanski approximating
cone to S at s is a convex coneC ⊆ TsX such that there
exist a neighborhoodU of 0 in TsX and a continuous
map f : U ∩ C 7→ S for which (a) f(0) = s and
(b) ϕ(f(v))− ϕ(s)−∇vϕ = o(‖v‖) as v → 0 via values
in C for every functionϕ : X ↪→ R which is of class
C1 near s. A limiting approximating cone to S at s is
a closed convex coneC ⊆ TsX which is the closure of
an increasing union

⋃∞
j=1 Cj of Boltyanski approximating

cones toS at s.

II. GENERALIZED DIFFERENTIAL QUOTIENTS(GDQS)

If X, Y are metric spaces, thenSVMcomp(X,Y )
will denote the subset ofSVM(X,Y ) whose members
are the set-valued maps fromX to Y that have a
compact graph. We say that a sequence{Fj}j∈N of
members ofSVMcomp(X,Y ) inward graph-convergesto

an F ∈ SVMcomp(X,Y )—and write Fj
igr−→ F—if for

every open subsetΩ of X × Y such thatGr(F ) ⊆ Ω there
exists ajΩ ∈ N such thatGr(Fj) ⊆ Ω wheneverj ≥ jΩ.

Definition 2.1: Let X, Y be metric spaces. A set-valued
mapF : X 7→→ Y is Cellina continuously approximable2

(abbr. “CCA”) if
• for every compact subsetK of X, the restrictionF dK

of F toK belongs toSVMcomp(K,Y ) and is a limit—in
the sense of inward graph-convergence—of a sequence of
continuous single-valued maps fromK to Y .

We useCCA(X;Y ) to denote the set of all CCA set-valued
maps fromX to Y .



It is easy to see that ifF : X ↪→ Y is a single-valued ppd
map, thenF belongs toCCA(X;Y ) iff it is everywhere
defined and continuous. It is not hard to prove the following.

Theorem 2.2:If X,Y, Z are metric spaces, andF , G
are inCCA(X;Y ), CCA(Y ;Z), then the composite SVM
G ◦ F belongs toCCA(X;Z).

Definition 2.3: Assume thatm,n ∈ Z+, F : Rn 7→→ R
m,

Λ ⊆ R
m×n, S ⊆ R

m, 0 ∈ S. We say thatΛ is a
generalized differential quotient(abbreviated “GDQ”)of
F at (0, 0) in the direction ofS (or “along S” ), and write
Λ ∈ GDQ(F ; 0, 0;S), if (a) Λ is compact and nonempty,
and (b) for every positiveδ ∈ R there exist a neighborhood
U of 0 in R

n and aG ∈ CCA(U ∩ S; Λδ) such that
G(x) · x ⊆ F (x) for everyx ∈ U ∩ S.
The chain rule. If X1, X2, X3 are real linear spaces, and
Λ1, Λ2 are subsets ofLM(X1, X2), LM(X2, X3), then the
compositeΛ2 ◦Λ1 is the subset ofLM(X1, X3) defined by

Λ2 ◦ Λ1
def= {L2 ◦ L1 : L2 ∈ Λ2, L1 ∈ Λ1} .

A subsetS of a topological subspaceT is a local retractat
a point s̄ ∈ S if for every neighborhoodU of s̄ there exist
a neighborhoodV of s̄ asuch thatV ⊆ U and a continuous
mapρ : V 7→ V ∩S such thatρ(s) = s whenevers ∈ V ∩S.

The following is the well-knownchain rule for GDQs.
Theorem 2.4:Assume thatn1, n2, n3, F1, F2, S1, S2,

Λ1, Λ2 are such thatn1, n2, n3 ∈ Z+ and, fori = 1, 2,

1. 0 ∈ Si andFi : Rni 7→→ R
ni+1 ;

2. Λi ∈ GDQ(Fi; 0, 0;Si).
Assume, moreover, thatF1(S1) ⊆ S2, and eitherS2 is
a local retract at0 or F1 is single-valued. ThenΛ2 ◦ Λ1

belongs toGDQ(F2 ◦ F1; 0, 0;C1).

GDQs on manifolds. If X, Y are manifolds of class
C1, m = dimX, n = dimY , x̄∈S⊆X, ȳ ∈ Y , and
F : X 7→→ Y , then we can define a setGDQ(F ; x̄, ȳ;S)
of subsets ofLM(Tx̄X,TȳY ) by picking cubic coor-
dinate chartsX 3 x 7→ ξ(x) ∈ Rm, Y 3 y 7→ η(y) ∈ Rn
centered at x̄, ȳ, and declaring a subsetΛ of
LM(Tx̄X,TȳY ) to belong to GDQ(F ; x̄, ȳ;S) if the
set Dη(ȳ) ◦ Λ ◦ Dξ(x̄)−1 (which, by definition,
is equal to {Dη(ȳ) ◦ L ◦Dξ(x̄)−1 : L ∈ Λ } ) belongs
to GDQ(η ◦ F ◦ ξ−1; 0, 0; ξ(S)). With these definitions,
So(ξ−1) = R

m, Ta(ξ−1) = So(F ) = X,
Ta(F ) = So(η) = Y , and Ta(η) = R

n, so η ◦ F ◦
ξ−1 is a well defined member ofSVM(Rm,Rn). The
chain rule then implies that, with this definition,the set
GDQ(F ; x̄, ȳ;S) does not depend on the choice of the
charts ξ, η. Moreover, the following two results can be
proved.

Theorem 2.5:If X, Y are manifolds of classC1, x ∈ X,
andF : X ↪→ Y is such thatF is defined and continuous

2In our previous papers on the subject, CCA maps were called “regular
maps.” We have now adopted the name “Cellina continuously approx-
imable” because these maps were actually introduced by A. Cellina in his
work of the 1960s.

on a neighborhood ofx andF is classically differentiable
at x, then{DF (x)} ∈ GDQ(F ;x, F (x);X).

Theorem 2.6:If X, Y are manifolds of classC1,
F : X 7→→ Y , x̄ ∈ S ⊆ X, ȳ ∈ R ⊆ Y ,
Λ ∈ GDQ(F ; x̄, ȳ;S), S, R have limiting approximating
conesCS , CR at x̄, ȳ, andCR is not a linear subspace,
then a necessary condition for the setsF (S) and R to
be separated at̄y (in the sense thatF (S) ∩ R = {ȳ}) is
that there exist aπ ∈ T †ȳY \{0} and anL ∈ Λ such that
π(v) ≥ 0 for every v ∈ CR and π(L(w)) ≤ 0 for every
w ∈ CS .
Partial GDQs. Suppose that (a) fori = 1, 2,
Xi is a manifold of classC1 and x̄i ∈ Si ⊆ Xi,
(b) Y is a manifold of classC1 and ȳ ∈ Y ,
(c) X = X1 ×X2, (d) S = S1 × S2, (e) x̄ = (x̄1, x̄2),
(f) F : X 7→→ Y , and (g)Λ ∈ GDQ(F ; x̄, ȳ;S).
Then, if we let ι1, ι2 be the partial maps
X1 3 x 7→ (x, x̄2) ∈ X and X2 3 x 7→ (x̄1, x) ∈ X,
the chain rule implies that thepartial GDQs ΛX1 , ΛX2

(where ΛXj = {LXj : L ∈ Λ} and, for L ∈ Λ, LX1 ,
LX2 are the mapsTx̄1X1 3 v 7→ L(v, 0) ∈ TȳY , and
Tx̄2X2 3 v 7→ L(0, v) ∈ TȳY , and we canonically identify
Tx̄X with Tx̄1X1 × Tx̄2X2) are GDQs ofF ◦ ι1, F ◦ ι2,
respectively, at(x̄1, ȳ) and (x̄2, ȳ), alongS1, S2.

III. F LOWS AND TRAJECTORIES.

A time set is a nonempty subset ofR. If T is a time
set, andm ∈ N, we useTm,≥ to denote the set of all
orderedm-tuples (t1, t2, · · · , tm) of members ofT such
that t1 ≥ t2 ≥ · · · ≥ tm. A state-space bundle over a time
setT is an indexed familyX = {Xt}t∈T of sets. Astate-
space bundle(abbr. SSB) is a pairX = (T, X) such that
T is a time set andX is a state-space bundle overT.
An SSB (T, X) is a bundle of topological spaces(resp.
of metric spaces, of manifolds of classCk, LSs, FDLSs,
etc.) if eachXt is a topological space (resp. a metric
space, a manifold of classCk, an LS, an FDLS, etc.).
We will use the abbreviationsCk-SSB, FDLS-SSB, for
“bundle of manifolds of classCk” and “bundle of FDLSs,”
respectively.

A section of an SSBX = (T, X) is a single-valued
everywhere defined mapξ on T such thatξ(t) ∈ Xt for
everyt ∈ T. We useSec(X ) to denote the set of all sections
of X . If X = (T, X) is a Ck-SSB, andξ ∈ Sec(X ), the
familiy TξX = {Tξ(t)Xt}t∈T is the tangent bundleof X
alongξ. Clearly,TξX is an FDLS-SSB.

If (T, X) is an SSB, aflow on (T, X) is a family
f = {ft,s}(t,s)∈T2,≥ such that (1)ft,s : Xs 7→→ Xt when-
ever (t, s) ∈ T2,≥; (2) ft,t is the identity map ofXt

whenevert ∈ T; and (3) ft,s ◦ fs,r = ft,r whenever
(t, s, r) ∈ T3,≥. A flow is a tripleF = (T, X, f) such that
(T, X) is an SSB andf is a flow on(T, X). If, for i = 1, 2,
F i = (T, X, f i) are flows with the same SSBX = (T, X),
we say thatF1 is a subflow of F2 if Gr(f1

t,s) ⊆ Gr(f2
t,s)

whenever(t, s) ∈ T2,≥. If F = (T, X, f) is a flow,
then atrajectory of F is a sectionξ ∈ Sec(X ) such that



ξ(t) ∈ ft,s(ξ(s)) whenever(t, s) ∈ T2,≥. We useTraj(F)
to denote the set of all trajectories ofF .
Augmented flows. If X = (T, X) is an SSB andA is
an LS, we useXA to denote the family{XA

t }t∈T (recall

thatXA
t

def=Xt × A), andXA to denote the SSB(T, XA).
An A-augmented flowon X is a flow (T, XA, F ) on XA
such thatFt,s ∈ SVMA(Xs, Xt) whenever(t, s) ∈ T2,≥.
We recall that the SVMsFt,s can be recovered from the
SVMs F̌t,s : Xs 7→→ XA

t defined by F̌t,s(x) = Ft,s(x, 0),
and that the flow composition law forF amounts to saying,
in terms of theF̌t,s, that F̌t,r = F̌t,s ◦A F̌s,r whenever
(t, s, r) ∈ T3,≥, where◦A stands forA-augmented compo-
sition.

IV. GDQS OF FLOWS ALONG TRAJECTORIES.

If F = (X,T, f) is a flow, (T, X) is aC1-SSB, andξ is
a trajectory ofF , then aGDQ of F along ξ is a family
g = {gt,s}(t,s)∈T2,≥ such that

(1) gt,s ∈ GDQ(ft,s; ξ(s), ξ(t);Xs) whenever (t, s)
belongs toT2,≥;

(2) gt,t = {ITξ(t)Xt} whenevert ∈ T;
(3) gt,s ◦ gs,r = gt,r whenever(t, s, r) ∈ T3,≥.

Adjoint vectors. If F = (T, X, f) is a flow
on a bundle (T, X) of manifolds of class C1,
ξ ∈ Traj(F), and g is a GDQ of F along ξ, then a
g-adjoint vector (or g-momentum) for F along ξ is a
map T 3 t 7→ π(t) ∈ T †ξ(t)Xt that satisfies the following
integrated adjoint differential inclusionfor g:

π(s) ∈ π(t) ◦ gt,s whenever (t, s) ∈ T2,≥ . (1)

A family ` = {`t,s}(t,s)∈T2,≥ such that̀ t,s ∈ gt,s for each
t, s and`t,s ◦ `s,r = `t,r whenever(t, s, r) ∈ T3,≥ is called
a compatible selectionof g.

Proposition 4.1:A map T 3 t 7→ π(t) ∈ T †ξ(t)Xt is
a g-momentum if and only if there exists a compatible
selection` of g such thatπ(s) = π(t) ◦ `t,s whenever
(t, s) ∈ T2,≥.

Proof: The “if” implication is trivial. To prove the
other one, we assume thatπ is a g-momentum and find̀.

The product spaceΓ = Π
(t,s)∈T2,≥ gt,s, endowed with the

product topology, is compact by Tikhonov’s theorem. The
members ofΓ are all the families̀ = {`t,s}(t,s)∈T2,≥ such
that `t,s ∈ gt,s for each t, s. If S is a subset ofT, let
Γc,S denote the set of all̀ ∈ Γ that are compatible over
S, in the sense that̀t,s ◦ `s,r = `t,r wheneverr ≤ s ≤ t
and r, s, t ∈ S. Then Γc,S is the intersection of the sets
Γc,{r,s,t} over all triples(t, s, r) ∈ S × S × S such that
r ≤ s ≤ t. Each Γc,{r,s,t} is closed, because the map
` 7→ `t,s ◦ `s,r − `t,r—from Γ to LM(Tξ(r)Xr, Tξ(t)Xt)—
is continuous. ThereforeΓc,S is closed. LetΓπ,S be the
set of thosè ∈ Γ that areπ-compatible overS, in the
sense thatπ(s) = π(t) ◦ `t,s whenevers, t ∈ S ands ≤ t.
Again, Γπ,S is the intersection of the setsΓπ,{s,t} over
all pairs (s, t) ∈ S × S such thats ≤ t, and the sets
Γπ,{s,t} are closed, because the map` 7→ π(s)− π(t) ◦ `t,s

(from Γ to Tξ(s)Xs) is continuous, soΓπ,S is closed.
Hence all theΓc,S andΓπ,S are compact subsets ofΓ. Let
ΓS = Γc,S ∩Γπ,S . We want to prove thatΓT 6= ∅. Clearly,
ΓT =

⋂ {
ΓS : S ⊆ T , S finite

}
. Hence our conclusion

will follow if we show that the family{ΓS}S⊆T , S finite

has the finite intersection property, i.e., that every finite
intersection ΓS1 ∩ ΓS2 ∩ · · · ∩ ΓSm is nonempty. But
ΓS1 ∩ ΓS2 ∩ · · · ∩ ΓSm ⊇ ΓS1∪S2∪···∪Sm . So it suffices to
prove that ΓS 6= ∅ wheneverS is a finite subset of
T. Write S = {s1, s2, . . . , sm} with s1 < s2 < · · · < sm.
For j = 1, . . . ,m − 1, pick `j ∈ gsj ,sj−1 such that
π(sj−1) = π(sj) ◦ `j . If s, t ∈ S ands ≤ t, define

`t,s = `j−1 ◦ `j−2 ◦ · · · ◦ `i (2)
if s = si, t = sj . (It is clear thatj ≥ i; the right-
hand side of (2) isITξ(s)Xs if s = t.) Extend the family
{`t,s}s≤t,s∈S,t∈S by picking `t,s to be an arbitrary member
of gt,s if s ≤ t but (s, t) /∈ S × S. (This, of course, uses
the Axiom of Choice.) Then the resulting familỳbelongs
to ΓS , proving thatΓS 6= ∅ as desired.
Augmented GDQs of augmented flows.According to our
general definitions, ifF = (T, XA, F ) is anA-augmented
flow on an SSBX = (T, X), a trajectory ofF is a
map T 3 t 7→ Ξ(t) ∈ Xt ×A such thatΞ(t) ∈ Ft,s(Ξ(s))
whenever(t, s) ∈ T2,≥. In terms of the mapšFt,s, we
can then regard a trajectoryΞ as being a pair(ξ, ξ0) of
mapsT 3 t 7→ ξ(t) ∈ Xt andT 3 t 7→ ξ0(t) ∈ A such that
(ξ(t), ξ0(t)− ξ0(s)) ∈ F̌t,s(ξ(s)) whenever(t, s) ∈ T2,≥.

If X = (T, X) is C1-SSB, A is a FDLS,
F = (T, XA, F ) is an A-augmented flow onX , and
Ξ = (ξ, ξ0) ∈ Traj(F), an augmented GDQof F along
Ξ is a GDQ G = {Gt,s}(t,s)∈T2,≥ of F along Ξ such
that every setGt,s is a subset ofLMA(Tξ(s)Xs, Tξ(t)Xt),
i.e., a set ofA-augmented linear maps fromTξ(s)Xs to
Tξ(t)Xt. Therefore anA-augmented GDQG of F along
Ξ is such that eachGt,s is a nonempty compact set of
pairs L = (`, `0) such that ` ∈ LM(Tξ(s)Xs, Tξ(t)Xt)
and `0 ∈ LM(Tξ(s)Xs, A). A G-momentum is
then a map T 3 t 7→ Π(t) ∈ (Tξ(t)Xt ×A)† such
that Π(s) ∈ Π(t) ◦Gt,s whenever (t, s) ∈ T2,≥.
Hence aG-momentum is a pair(π, π0) of functions
T 3 t 7→ π(t) ∈ T †ξ(t)Xt, T 3 t 7→ π0(t) ∈ A† that satisfy

π0(s) = π0(t) (3)

(∃(`, `0) ∈ Gt,s) π(s) = π(t) ◦ `+ π0(t)`0 (4)

for s, t ∈ T2,≥. Hencethe momentum-augmenting function
t 7→ π0(t) ∈ A† for a G-momentum for anA-augmented
GDQ G is constant. Condition (4) is the integrated
A-augmented adjoint differential inclusionfor G.

V. VARIATIONS

Variations of SVMs. A pointed finite-dimensional convex
subset(abbr. “PFDCS”) is a setQ endowed with a structure
consisting of a FDLSAQ (the “ambient space” ofQ)
such that (1)Q is a convex subset ofAQ with nonempty
interior, and (2) the origin0Q of AQ belongs toQ. If



X, Y are sets andf, f ′ ∈ SVM(X,Y ), a variation
of f in f ′ is a set-valued mapv : Q(v)×X 7→→ Y such
that (a)Q(v) is a compact PFDCS, (b)v(0Q(v), x) = f(x)
for every x ∈ X, and (c)v(q, x) ⊆ f ′(x) whenever
q ∈ Q(v), x ∈ X. The PFDCSQ(v) is the parameter
domain of the variationv. A variation of f is a variation
of f in the “maximal” set-valued map(X,Y,X × Y ).
If X, Y are manifolds of classC1, x̄ ∈ X, and
ȳ ∈ Y , a variational GDQ (abbr. VGDQ) at (x̄, ȳ) of
a variation v : Q(v)×X 7→→ Y of an SVM f : X 7→→ Y
is a GDQ of vA at ((0Q(v), x̄), ȳ) along Q(v)×X,
where vA : AQ(v) ×X 7→→ Y is the SVM such that
vA(q, x) = v(q, x) if q ∈ Q(v), x ∈ X, andvA(q, x) = ∅
if q ∈ AQ(v)\Q(v), x ∈ X. We useV GDQ(v; x̄, ȳ)
to denote the set of all VGDQs ofv at (x̄, ȳ), so
V GDQ(v; x̄, ȳ) = GDQ(vA; (0Q(v), x̄), ȳ;Q(v)×X). If
γ ∈ V GDQ(v; x̄, ȳ), then the partial GDQsγX , γAQ(v) are,
respectively,the state partand thethe parameter partof γ,
and we writes(γ)def= γX andp(γ)def= γAQ(v) . We know that
s(γ) ∈ GDQ(f ; x̄, ȳ;X). Given ag ∈ GDQ(f ; x̄, ȳ;X),
and a variationv of f , a γ ∈ V GDQ(v; x̄, ȳ) such
that s(γ) = g will be said to be anextension of
g. We write V GDQg(v; x̄, ȳ) to denote the set of all
γ ∈ V GDQ(v; x̄, ȳ) that are extensions ofg.

Infinitesimal variations. If F = (T, X, f) is a flow
on a C1-SSB X = (T, X), ξ ∈ Traj(F), and g is
a GDQ of F along ξ, an infinitesimal variation of g
along ξ is a triple Γ = (|Γ|, Q, γ) such that (a)|Γ| (the
“carrier” of Γ) is a compact interval[α, β] such that
(β, α) ∈ T2,≥, (b)Q is a PFDCS, and (c)γ is a nonempty
compact subset ofLM(AQ×Tξ(α)Xα, Tξ(β)Xβ) such that
s(γ) = gβ,α, where s(γ) is the set of all linear maps
Tξ(α)Xα 3 x 7→ L(0Q, x) ∈ Tξ(β)Xβ for all L ∈ γ. If
Γ = ([α, β], Q, γ) is an infinitesimal variation ofg along
ξ, and (β̃, β, α, α̃) ∈ T4,≥, then we canexpand Γ to
an infinitesimal variationΓ[α̃,β̃] of g along ξ by letting
Γ[α̃,β̃] = ([α̃, β̃], Q, γ̂), whereγ̂ = gβ̃,β ◦ γ ◦ (IAQ × gα,α̃).

If Γ1, . . . ,Γm are infinitesimal variations of g
along ξ, we define the combined infinitesimal
variation Γ = Γ1�Γ2� . . .�Γm as follows. Let
Γj = ([αj , βj ], Qj , γj) for j = 1, . . . ,m. Let
α = min{αj}j=1,...,m, β = max{βj}j=1,...,m. Let
σ be an m + 1-tuple (`, µ1, . . . , µm) consisting of a
compatible selectioǹ = {`t,s}(t,s)∈T2,≥ of g and linear
mapsµj ∈ γj such thats(µj) = `βj ,αj . Define θ(σ) to
be the linear map fromAQ1 × · · ·AQm × Tξ(α)Xα

to Tξ(β)Xβ that sends a point (q1, q2, . . . , qm, h)
belonging to AQ1 × · · ·AQm × Tξ(α)Xα to the vector
`β,α(h) +

∑m
j=1 `β,βjνj(qj), whereνj = p(µj). We then

let Γ = ([α, β], Q, γ), whereQ = Q1 × Q2 · · · × Qm and
γ is the set of all mapsθ(σ), for all σ.

Compatibility of sets of infinitesimal variations. Given
T, X, f , F , X , ξ, g, as in the previous subsection,
as well as pointsa, b of T such thata ≤ b, and an
R ∈ SVM(Xa, Xb), a setV of infinitesimal variations of

g along ξ is said to beF-R-compatible over [a, b] if
(a) all the carrier intervals of the membersV of V are
subintervals of[a, b], and (b) wheneverV0 is a finite subset
of V, the members ofV0 can be arranged in a sequence
Γ1, . . . ,Γm such that the expansionΓ[a,b] = ([a, b], Q, γ) of
the combined infinitesimal variationΓ = Γ1�Γ2� . . .�Γm
satisfies:there exists a variationv of fb,a in R such that
γ ∈ V GDQ(v; ξ(a), ξ(b)).

We are now ready to state our version of the maximum
principle. The proof is straighforward, based on applying
the definitions and the separation theorem 2.6.

VI. A NONSMOOTH MAXIMUM PRINCIPLE.

The reader should think ofξ, F , andR as the “reference
trajectory,” “reference flow,” and “reachability relation over
[a, b]” (so that “y ∈ R(x)” means “y is reachable at time
b by means of a trajectory that starts atx at timea”) of a
control system. We will first state the result as a necessary
condition for the graph ofR to be separated from some
other subsetS of Xa × Xb, and then outline how the
necessary conditions for optimal control are obtained by
applying the theorem toR-augmented flows.

Theorem 6.1:Assume thatF = (T, X, f) is a flow on a
bundleX = (T, X) of C1 manifolds,a, b ∈ T, a ≤ b,
R ∈ SVM(Xa, Xb), ξ is a trajectory ofF , and g is a
GDQ of F along ξ. Let S be a subset ofXa × Xb such
that (ξ(a), ξ(b)) ∈ S, and letC ⊆ Tξ(a)Xa × Tξ(b)Xb be
a limiting approximating cone ofS at (ξ(a), ξ(b)) which
is not a linear subspace. LetV be a set of infinitesimal
variations of F along ξ which is F − R-compatible
over [a, b]. Then, a necessary condition for the separation
condition Gr(R) ∩ S = {(ξ(a), ξ(b))} is that there exist
(a) a compatible selection{`t,s}(s,t)∈T2,≥ of g, (b) a family
{λV }V ∈V such that, for eachV = ([α, β], Q, v) ∈ V, λV is
a member ofv such thats(λV ) = `β,α, and (c) a covector
π̄ ∈ T †ξ(b)Xb\{0}, such that, if we letπ(t) = π̄ ◦ `b,t
for every t ∈ T, then (a)−π(a)h + π(b)(h̃) ≥ 0 for
every (h, h̃) ∈ C, and (b)(π(β)(λV (q, 0)) ≤ 0 whenever
V = ([α, β], Q, v) ∈ V andq ∈ Q.

If we takeGr(R) = {ξ(a)}×R0, S = {ξ(a)}×S0, where
R0 and S0 are subsets ofXb, then the theorem gives a
necessary condition for a control trajectoryξ to be such
that the reachable set fromξ(a) over the interval[a, b] is
separated atξ(b) from another setS0, provided thatS0 has
a limiting approximating coneC0 which is not a subspace.

If we take A = R, we can apply the theorem
to an A-augmented flowF , A-augmented trajectory
Ξ = (ξ, ξ0), and A-augmented GDQ G of F
along Ξ, using in the role of S a subset of the
product XRa × XRb (i.e., of (Xa × R)× (Xb × R))
of the form {(x, r), (x′, r′) : (x, x′) ∈ S0 ∧ r = ξ0(a)
∧ r′ − r ≤ ξ0(b)− ξ0(a)− d((ξ(a), ξ(b)), (x, x′))2}, for
some subsetS0 of Xa × Xb, where d is the distance
induced by some Riemannian metric onXa×Xb. We then
get a necessary condition for minimization: ifΞ is such that



ξ0(b)− ξ0(a) ≤ r′ − r whenever((x, r), (x′, r′)) ∈ Gr(R)
and (x, x′) ∈ S0, thenGr(R) ∩ S = {(Ξ(a),Ξ(b))}. If C0

is a limiting approximating cone toS0 at (ξ(a), ξ(b)), then
C = {((c, 0), (c′, ρ)) : (c, c′) ∈ C ∧ ρ ≤ 0} is a limiting
approximating cone toS at (Ξ(a),Ξ(b)). (Notice that in
this case there is no need to require thatC0 not be a linear
subspace, becauseC is never a linear subspace, even ifC0

is.) The theorem then gives a momentumΠ = (π,−π0),
where the momentum-augmenting functionπ0 is then just
a constant real number. The transversality condition (a) of
the theorem then says thatπ(b)h̃ − π(a)h − π0ρ ≥ 0 for
all (h, h̃) ∈ C0 and allρ ∈ R such thatρ ≤ 0, which is of
course equivalent to the usual pair of separate conditions
(i) π(b)h̃− π(a)h ≥ 0 for all (h, h̃) ∈ C0 and (ii) π0 ≥ 0.

Finally, the theorem can be applied with higher-
dimensional augmentation spaces, to obtain, for example,
necessary conditions for Pareto optimality.

VII. C LASSICAL AND HIGH-ORDER CONDITIONS

Theorem 6.1 can be applied to systems that are “classical”
on several nonoverlapping subintervals[cj , dj ] of [a, b], and
makes it possible to obtain “adjoint vectors” that satisfy
all the necessary conditions given by these theorems as
well as the necessary conditions of the classical nonsmooth
and high-order versions of the maximum principle in the
intervals[cj , dj ]. We now discuss two examples of this kind
of result. We just consider the case of augmented systems
corresponding to minimization problems.

First of all, suppose that our augmented control system
is given, on each of a finite collectionI1, I2, . . . , Im
of subintervals Ij = [cj , dj ] of [a, b] such that
cj < dj for all j and dj−1 ≤ cj for j = 2, . . . ,m,
by classical control equationṡξ(t) = fj(ξ(t), η(t), t) ,
ξ̇0(t) = f0

j (ξ(t), η(t), t) , wherefj andf0
j are, respectively,

vector-valued and scalar-valued functions ofx ∈ Xj ,
u ∈ Uj , t ∈ [cj , dj ], the Xjs are manifolds of class
C1, and the Uj are sets. Suppose that the reference
trajectory ξ∗ arises, onIj , from a control η∗,j which
is such that fj(x, η∗,j(t), t) and f0

j (x, η∗,j(t), t) are
Lipschitz-continuous as functions ofx for (x, t) in
some tube containing the graph of the restrictionξ∗ d Ij ,
measurable with respect tot for each x, and bounded
by an integrable function oft. Assume, moreover, that
for each fixedu ∈ Uj both fj(x, u, t) and f0

j (x, u, t)
are measurable functions oft for eachx, and continuous
functions of x for each t. Finally, assume that the class
of admissible controls contains all constant controls and
the reference control, and is closed under intertwining on
mesaurable sets. The well-known Łojasiewicz Maximum
Principle (cf., e.g., [2]) then applies on eachIj , and
yields an adjoint vectorπj and abnormal multiplier
π0
j such that the usual adjoint differential inclusion

(i.e., −π̇j(t) ∈ ∂xHj(x, π(t), π0, η∗,j(t), t)|x=ξ∗(t),

where Hj(x, p, p0, u, t)def= p · fj(x, u, t) − p0f0
j (x, u, t),

and ∂x stands for “Clarke generalized gradient with
respect tox keeping all other variables fixed”) holds,

as well as the Hamiltonian maximization condition
(i.e., the statement that for everyu ∈ U the inequality
Hj(ξ∗(t), πj(t), π0, u, t) ≤ Hj(ξ∗(t), πj(t), π0, η∗,j , t) is
satisfied for almost everyt ∈ Ij). Theorem 6.1 produces
a single multiplier (π, π0), which satisfies the adjoint
inclusion and the Hamiltonian maximization condition on
each Ij as well as all the other conditions arising from
variations on intervals that do not overlap with theIj .

For a second example, we specialize further and look at
the minimum-time problem, in the case when our system
is autonomous and, on some of the intervalsIj (more pre-
cisely, for allj in some subsetJ of {1, . . . ,m}), the control
equations are of the forṁξ(t) = f0j(x)+

∑kj
i=1 uifij(ξ(t)),

and the setUj of control values is the cube[−1, 1]kj .
(Naturally, minimum-time problems do not have a fixed
time interval, but autonomous problems with a variable
time interval can be reduced to problems with a fixed time
interval in a well-known way. Assume in addition that the
vector fieldsfij are of classC2. Then it is well known that
to the usually necessary conditions for a minimum one can
add, on eachIj such thatj ∈ J , the “Goh condition,”
i.e., the requirement thatπj(t) · [fij , fi′j ](ξ∗(t)) = 0 for
every triple (t, i, i′) such thatt ∈ Ij , t is a Lebesgue
point of the reference controlη∗,j , and the inequalities
−1 < (η∗,j)i(t) < 1 and −1 < (η∗,j)i′(t) < 1 hold. Our
result yields the stronger conclusion that there exists a single
multiplier on the whole interval[a, b] that satisfies all these
high-order conditions on all theIj for j ∈ J .

VIII. C ONCLUDING REMARKS

It would be desirable to strengthen our results so that, for
example, the regularity requirement of the second example
of the previous section is weakened to allow the vector
fields fij to be just of classC1, or perhaps even Lipschitz,
but at the moment it is unclear how this could be done.
An even more delicate question is that of extending the
“Goh condition” of the previous section to the case when
the contol setsUj are balls rather than cubes. This seems
to lead to a whole new set of questions that appear difficult
to handle with our methods. Specifically, the Goh condition
for this case gives the equalitiesπj(t) · [fij , fi′j ](ξ∗(t)) = 0
provided that the reference trajectory is such that all
the abnormal multipliers, for all Hamiltonian-maximizing
adjoint vectors, vanish.This is a global condition, and we
do not know how to split it into conditions that would apply
on separate intervals.
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