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Abstract—We present some new results, together with a number of particularly simple and user-
friendly versions of results obtained in recent years by the author and M. Malisoff, on the uniqueness
of solutions of the Hamilton-Jacobi-Bellman equation (HJBE) for deterministic finite-dimensional
optimal control problems under non-standard hypotheses. Our approach is completely control-
theoretic and totally self-contained, using the systematic construction of special trajectories of various
kinds, and not involving any PDE methods. We donot assume that the Lagrangian is positive, or
that the dynamics is Lipschitz-continuous.

1. Introduction

The purpose of this note is to present some new results, together with a number of particularly simple and user-
friendly versions of results obtained in recent years by the author and M. Malisoff, on the uniqueness of solutions
of the Hamilton-Jacobi-Bellman equation (HJBE) for deterministic finite-dimensional optimal control problems
under non-standard hypotheses. Our approach is completely control-theoretic and totally self-contained, using the
systematic construction of special trajectories of various kinds, and not involving any PDE methods. We will not
assume that the Lagrangian is positive, or that the dynamics is Lipschitz-continuous.

We will consider autonomous Lagrangian optimization problems involving a state variable x which takes values in
an open subset Ω of Rn, a control variable u taking values in a control space U , and a target set T , which is a closed
subset of the closure of Ω disjoint from Ω itself. The dynamics is given by an ordinary differential equation

ẋ = f(x, u) , (1)
the cost functional to be minimized is

J =
∫ τ+(ξ)

τ−(ξ)

L(ξ(t), η(t)) dt , (2)

(where τ−(ξ), τ+(ξ) are, respectively, the initial and terminal times of the trajectory ξ), and the minimization is
supposed to be, for each initial state x ∈ Ω, over the set AΣ̂

x,T of all pairs Ξ = (ξ, ξ0) such that

(i) Ξ consists of a trajectory ξ of (1) (i.e., a locally absolutely continuous function ξ that satisfies ξ̇(t) = f(ξ(t), η(t))
for almost all t) corresponding to some U -valued control η, and a “running cost” function ξ0 corresponding to
ξ and η (i.e., a locally absolutely continuous function ξ0 such that ξ̇0(t) = L(ξ(t), η(t)) for almost all t);

(ii) ξ starts at x, and “ends at the target” in a sense to be defined precisely later.

We will refer to a pair Ξ = (ξ, ξ0) for which (i) above holds as an “augmented trajectory” of our system, because it
really is a trajectory of the “augmented control system”

ẋ = f(x, u) , ẋ0 = L(x, u) (3)

obtained from (1) by “adding the cost as an extra variable” in a well known way. We will write J(Ξ), rather than
just J , for the left-hand side of (2), because it is easy to see that the natural arguments for our cost functional J
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are really augmented trajectories, since (i) one cannot just regard J as a functional of ξ only, because the integral
of (2) involves the control η as well as ξ, but on the other hand (ii) the cost is completely determined once we know
ξ and a running cost ξ0, because in that case L(ξ(t), η(t)) = ξ̇0(t).

The infimum V (x) of the costs J(Ξ) of all augmented trajectories Ξ ∈ AΣ̂
x,T is the value of our problem at x. (If

the set AΣ̂
x,T is itself empty, then of course V (x) = +∞.) The function V : Ω 7→ R∪{−∞,+∞} is the value function

of our problem.
Our goal is to prove uniqueness theorems, showing that a viscosity solution of the HJBE that satisfies an

appropriate boundary condition is necessarily the value function. “Uniqueness” is to be understood as “uniqueness
within a class defined by some additional properties,” such as the class of all functions that are continuous and
bounded below.

We will work with a class of systems which is sufficiently general to capture some interesting phenomena not
commonly addressed in the literature, and at the same time restricted enough to make it possible to prove strong
theorems. In particular, we will asume that the sets FΣ̂(x,U) = {(f(x, u), L(x, u)) : u ∈ U} are closed and convex,
but will not require them to be compact, and will instead impose a “local coerciveness” condition, according to
which, locally, an inequality of the form ‖f(x, u)‖r ≤ L(x, u) + C, with C > 0 and r > 1, holds uniformly with
respect to u. We will also require f(x, u) and L(x, u) to be continuous with respect to x, with the continuity being
uniform with respect to u locally in x.

On the other hand, we will most definitely not require that the dynamics f(x, u) be Lipschitz-continuous with
respect to x, since one of the main purposes of this work is to clarify the exact role of the Lipschitz-continuity
assumptions often made in the viscosity literature. The answer we will propose is as follows:

(a) Without any Lipschitz-continuity hypotheses, one can prove, for continuous viscosity solutions V of the HJBE,
an existence theorem for trajectories, asserting that, starting at every point of x of Ω, there is a maximally
defined “augmented trajectory of steepest descent,” that is, a maximally defined pair Ξ = (ξ, ξ0) defined on a
interval I such that 0 = min I, and having the property that the inequality

V (ξ(t)) + ξ0(t) ≥ V (ξ(s)) + ξ0(s) (4)

holds whenever s, t ∈ I and s ≤ t. (This is Theorem 6.1 below.)

(b) As a trivial corollary of the existence of steepest descent trajectories (applied to −V and −L), we get the
existence of “DPI trajectories” (where “DPI” is an acronym for “Dynamic Programming Inequality”), i.e.,
augmented trajectories Ξ = (ξ, ξ0) along which the inequality

V (ξ(t)) + ξ0(t) ≤ V (ξ(s)) + ξ0(s) (5)

(that is, the exact opposite of (4)) is satisfied.

(c) The existence result of (b) says that for every “sufficiently nice” (e.g., piecewise constant) control η there exists
a trajectory of η with the given initial condition along which the DPI holds. This is almost, but not quite, what
is needed to prove that V is bounded above by the value function.

(d) The gap between the existence result for DPI trajectories and what would actually be needed to prove that
V is bounded above by the value function is that to achieve the latter goal one needs the DPI to hold for all
trajectories, and it is not enough to have just one DPI trajectory for every intial condition and every control.

(e) The gap described in (d) clearly does not exist when there is uniqueness of trajectories for every given control
and initial condition.

(f) In particular, the gap does not exist when, for every admissible control η, the corresponding time-varying vector
field (x, t) 7→ f(x, η(t)) satisfies a Lipschitz-Carathéodory condition that guarantees uniqueness of trajectories.

(g) Naturally, the Lipschitz-Carathéodory condition can be replaced by weaker conditions that guarantee unique-
ness, such as the requirement that a bound

〈f(x, η(t))− f(y, η(t)), x− y〉 ≤ k(t)‖x− y‖2 , (6)

with k integrable, hold locally.

(h) Even more generally, the only property that really matters is that, if we pick a sequence {ηj}j=1 of piecewise
constant controls such that our augmented trajectory Ξ can be approximated by augmented trajectories Ξj
corresponding to the ηj—with, say, the same initial condition—then the Ξj converge to Ξ uniformly no matter
how the Ξj are chosen. We call such trajectories “uniquely limiting,” and use this concept in the statement of
our main theorem.

The following important issues will not be discussed here:

(1) Whether the value function itself satisfies the conditions of our main theorem, i.e., whether it is a continuous
viscosity solution of the HJBE and whether it is bounded below.
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(2) What happens when the sets F (x,U) are not closed and convex. (This would require considering relaxed
controls, and using trajectories for which the steepest descent property holds approximately rather than exactly.
It turns out to be possible to extend our results under fairly general conditions, provided our system has
appropriate local controllability properties.)

Remark 1.1 The approach followed here owes a great deal to the book [11] by A.I. Subbotin. We point out, however,
that Subbotin considers viscosity solutions of PDEs of the form F (x, u(x), Du(x)) = 0, where the Hamiltonian
F (x, u, p) is required to be globally Lipschitz with respect to the momentum variable p (cf. Equation (2.2) in page
9 of [11]). A somewhat weaker hypothesis is also considered later, in which the Lipschitz requirement is replaced by
the condition that for any Λ > 0 there exists a positive constant µ(Λ) such that the estimate

|F (x, z, s)− F (x, z, p)| ≤ µ(Λ)(1 + ‖s− p‖)
holds for all s ∈ Rn such that ‖s‖ ≤ Λ and all p ∈ Rn (cf. page 37 of [11]). In particular, even with the weakened
requirements, these hypotheses are not sufficient to cover, for example, coercive problems of the kind discussed
here, such as linear quadratic optimal control. (For example, for the optimal control problem of minimizing the
integral 1

2

∫
(x2 + u2), with a scalar state x and a scalar control u, and dynamics ẋ = u, the function F is given by

F (x, z, p) = 1
2 (p2−x2). Therefore F (x, z, s)−F (x, z, p) = 1

2 (s2− p2) = 1
2 (s+ p)(s− p), and for the desired estimate

to be satisfied the sum s+ p would have to be bounded by a constant µ(Λ) for all s ∈ Rn such that ‖s‖ ≤ Λ and all
p ∈ Rn, and such a bound obviously does not hold. ♦

2. The main theorem

If n is a positive integer, an n-dimensional control system is a triple Σ = (Ω, U, f) such that Ω (the state space of
Σ) is an open subset of Rn, U (the control space of Σ) is a nonempty set, and f (the dynamics of Σ) is a map
Ω× U 3 (x, u) 7→ f(x, u) ∈ Rn.

An n-dimensional augmented control system is a 4-tuple Σ̂ = (Ω, U, f, L) such that Σ = (Ω, U, f, L) is an
n-dimensional control system and L (the Lagrangian of Σ̂) is a map Ω × U 3 (x, u) 7→ L(x, u) ∈ R. (In that
case, the state space, control space, and dynamics of Σ are also called the state space, control space, and dynamics
of Σ̂.)

An augmented control system Σ̂ = (Ω, U, f, L) is said to be continuous if the maps Ω 3 x 7→ f(x, u) ∈ Rn and
Ω 3 x 7→ L(x, u) ∈ R are continuous for each fixed u. We call Σ̂ uniformly continuous on a subset S of Ω if there
exists a function ω : ]0,∞[7→ [0,∞] such that lims↓0 ω(s) = 0, having the property that

‖f(x, u)− f(y, u)‖+ |L(x, u)− L(y, u)| ≤ ω(‖x− y‖) whenever x, y ∈ S and u ∈ U .
We call Σ̂ locally uniformly continuous if it is uniformly continuous on every compact subset of Ω, and globally
uniformly continuous if it is uniformly continuous on Ω. We say that Σ̂ is Lipschitz continuous if the maps
Ω 3 x 7→ f(x, u) ∈ Rn and Ω 3 x 7→ L(x, u) ∈ R are Lipschitz continuous for each fixed u. We call Σ̂ uniformly
Lipschitz continuous on a subset S of Ω if there exists a positive constant C such that

‖f(x, u)− f(y, u)‖+ |L(x, u)− L(y, u)| ≤ C‖x− y‖ whenever x, y ∈ S and u ∈ U .
We call Σ̂ locally uniformly Lipschitz continuous if it is uniformly Lipschitz continuous on every compact subset of
Ω, and globally uniformly Lipschitz continuous if it is uniformly Lipschitz continuous on Ω.

Remark 2.1 Naturally, the concepts of continuity, uniform continuity, Lipschitz continuity, and uniform Lipschitz
continuity, also make sense for a control system Σ = (Ω, U, f), by taking the same definitions given above and
omitting the parts that refer to L. In order to avoid having to make a similar remark for other concepts to be
introduced in the future, we adopt the convention that any concept X that we define for an augmented control
system Σ̂ = (Ω, U, f, L) is automatically understood to apply to a control system Σ = (Ω, U, f), in the sense that
“X of Σ” means “X of the augmented system Σ̂ = (Ω, U, f, 0).” ♦

The augmented control system Σ̂ = (Ω, U, f, L) is coercive on a subset S of Ω if there exist real constants r, A, C,
such that A > 0, C > 0, r > 1, and

‖f(x, u)‖r ≤ AL(x, u) + C for all x ∈ S , u ∈ U . (7)
We call Σ̂ locally coercive if it is coercive on every compact subset of Ω, and globally coercive if it is coercive on Ω.

Remark 2.2 If Σ̂ is coercive on a set S, then it is always possible to choose C, r, such that C > 0, r > 1, and (7)
holds with A = 1. Indeed, let A, C, r be such that A > 0, C > 0, r > 1, and (7) holds. Pick ρ such that 1 < ρ < r,
and lets = ρ

r−ρ . Let x ∈ Ω, u ∈ U . Then, if ‖f(x, u)‖r−ρ > A, we have

‖f(x, u)‖ρ =
‖f(x, u)‖r

‖f(x, u)‖r−ρ
≤ A−1(AL(x, u) + C) = L(x, u) +

C

A
≤ L(x, u) +

C

A
+As ,

while on the other hand, if ‖f(x, u)‖r−ρ ≤ A, we find that

‖f(x, u)‖ρ = (‖f(x, u)‖r−ρ)s ≤ As ≤ A−1‖f(x, u)‖r +As ≤ A−1(AL(x, u) + C) +As = L(x, u) +
C

A
+As .

Hence (7) holds if r, C, A are replaced by ρ, CA +As, and 1. ♦
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For an augmented control system Σ̂ = (Ω, U, f, L), we define a map FΣ̂ : Ω × U 7→ Rn+1 (called the augmented
dynamics of Σ̂) by letting FΣ̂(x, u) = (f(x, u), L(x, u)) for x ∈ Ω, u ∈ U . We say that Σ̂ satisfies the convexity and
upper semicontinuity condition if, for each x ∈ Ω,

FΣ̂(x,U) =
⋂
ε>0

co
( ⋃

{FΣ̂(x′, U) : ‖x′ − x‖ ≤ ε}
)
, (8)

where “co” stands for “closed convex hull,” and FΣ̂(x,U)def= {(f(x, u), L(x, u)) : u ∈ U}.

Remark 2.3 If Σ̂ = (Ω, U, f, L) is locally uniformly continuous, then Σ̂ satisfies the convexity and upper semicon-
tinuity condition if and only if the set FΣ̂(x,U) is closed and convex for every x ∈ Ω. Indeed, the “only if” assertion
is trivial, since the right-hand side of (8) is obviously closed and convex. To prove the “if” part, we fix x ∈ Ω and
assume that FΣ̂(x,U) is closed and convex. We choose a δ such that δ > 0 and Bδ(x)

def= {x′ ∈ Rn : ‖x′−x‖ ≤ δ} ⊆ Ω
and a function ω :]0,∞[7→ [0,∞] such that lims↓0 ω(s) = 0 and ‖FΣ̂(y, u) − FΣ̂(z, u)‖ ≤ ω(‖y − z‖) whenever

u ∈ U and y, z ∈ Bδ(x). We then pick v ∈
⋂
ε>0 co

( ⋃
{FΣ̂(x′, U) : ‖x′ − x‖ ≤ ε}

)
, and prove that v ∈ FΣ̂(x,U).

We let εk = 2−k, and use the fact that v ∈ co
( ⋃

{FΣ̂(′, U) : ‖x′ − x‖ ≤ εk}
)

to find, for each sufficiently large
k, a member vk of the convex hull of

⋃
{FΣ̂(x′, U) : ‖x′ − x‖ ≤ εk} such that ‖v − vk‖ < εk. We then write

vk =
∑n+1
j=0 αk,jFΣ̂(xk,j , uk,j), where the xk,j belong to Ω and satisfy ‖xk,j − x‖ ≤ εk, the uk,j belong to U , and

the αk,j are nonnegative and satisfy
∑n+1
j=0 αk,j = 1. Then ‖FΣ̂(x, uk,j)− FΣ̂(x, uk,j)‖ ≤ ω(εk). Therefore, if we let

wk =
∑n+1
j=0 αk,jFΣ̂(x, uk,j), we have ‖wk − vk‖ ≤ ω(εk). Hence wk → v as k → ∞. Since FΣ̂(x, U) is convex, the

wk belong to FΣ̂(x, U). Since FΣ̂(x,U) is closed, v ∈ FΣ̂(x, U), and the proof is complete. ♦

A target for an augmented control system Σ̂ = (Ω, U, f, L) is a closed subset T of Rn such that T ⊆ Closure Ω and
T ∩ Ω = ∅.

A trajectory of Σ̂ = (Ω, U, f, L) is a locally absolutely continuous curve
I 3 t 7→ ξ(t) ∈ Ω , (9)

defined on a nonempty subinterval I of R, having the property that ξ̇(t) ∈ f(ξ(t), U) for almost every t ∈ I. An
augmented trajectory of Σ̂ is a locally absolutely continuous curve

I 3 t 7→ Ξ(t) = (ξ(t), ξ0(t)) ∈ Ω× R , (10)
defined on a subinterval I of R, having the property that Ξ̇(t) ∈ FΣ̂(ξ(t), U) for almost every t ∈ I.

The initial time, or starting time of a trajectory ξ (resp. an augmented trajectory Ξ = (ξ, ξ0)) with domain I is the
time τ−(ξ)def= min I (resp. τ−(Ξ)def= min I)), if the minimum exists, i.e., if I is bounded below and its infimum belongs
to I. If the initial time of ξ (resp. Ξ) exists, then (i) the point x−(ξ)def= ξ(τ−(ξ)) (resp. x−(Ξ)def= ξ(τ−(Ξ))) is the starting
point, or initial point, of ξ (resp. Ξ), and (ii) the ordered pair ∂−(ξ)def=(τ−(ξ), x−(ξ)) (resp. ∂−(Ξ)def=(τ−(Ξ), x−(Ξ)))
is the initial condition of ξ (resp. Ξ). If ∂−(ξ) = (t, x) (resp. ∂−(Ξ) = (t, x)), we say that ξ (resp. Ξ) starts at x at
time t.

If T is a target for Σ̂ = (Ω, U, f, L), then a trajectory ξ or augmented trajectory Ξ = (ξ, ξ0) with domain I ends
at T if the limit ξ(↑)def= limt↑sup I ξ(t) exists and belongs to T .

For each x ∈ Ω, we let AΣ̂
x,T be the set of all augmented trajectories Ξ = (ξ, ξ0) of Σ̂ such that

(i) ∂−(Ξ) = (0, x),
(ii) ξ0(0) = 0,
(iii) Ξ ends at the target,

(iv) the limit ξ0(↑)
def= limt↑sup domain Ξ ξ0(t) exists.

If Ξ = (ξ, ξ0) ∈ AΣ̂
x,T then the cost of Ξ is the number

J(Ξ)def= ξ0(↑) . (11)

The value function of the optimal control problem defined by Σ̂ and the target T is the function
VΣ̂
T : Ω ∪ T 7→ R ∪ {−∞,+∞} given by

VΣ̂
T (x) =

{
inf{J(Ξ) : Ξ ∈ AΣ̂

x,T } if x ∈ Ω
0 if x ∈ T .

If V : Ω 7→ R is a function, then an augmented trajectory of Σ̂ of steepest descent with respect to V is an augmented
trajectory Ξ = (ξ, ξ0) of Σ̂ such that

ξ0(s) + V (ξ(s)) ≥ ξ0(t) + V (ξ(t)) whenever s, t ∈ domainΞ and s ≤ t . (12)
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We use SDΣ̂,V to denote the set of all augmented trajectories of Σ̂ of steepest descent with respect to V , and SDΣ̂,V,x

to denote the set of all Ξ ∈ SDΣ̂,V such that ∂−(Ξ) = (0, x).

If x ∈ Ω, a maximal augmented trajectory of Σ̂ from x of steepest descent with respect to V is a Ξ ∈ SDΣ̂,V,x

that cannot be extended to a Ξ̃ ∈ SDΣ̂,V,x defined on an interval which is strictly larger than domain(Ξ). We use
MSDΣ̂,V,x to denote the set of all maximal augmented trajectories of Σ̂ from x of steepest descent with respect to V .

Remark 2.4 We have set up our definitions in such a way that the notion of “maximal augmented trajectory of
steepest descent” always means “maximal within the class SDΣ̂,V,x of augmented trajectories Ξ of steepest descent
with initial condition ∂−(Ξ) = (0, x), for a fixed x ∈ Ω.” (In other words, there is no such thing as a “maximal
augmented trajectory;” there are only “maximal augmented trajectories from a given point x.”) Since all the
members of SDΣ̂,V,x start at time 0 at the point x, the only way that a Ξ ∈ SDΣ̂,V,x, defined on an interval I (that
necessarily starts at time 0), could fail to belong to MSDΣ̂,V,x, would be for Ξ to be “extendable to the right,” that
is, such that there exists an extension Ξ̃ ∈ SDΣ̂,V,x which is defined on an interval Ĩ that also starts at 0 and is
strictly larger than I. Naturally, it may also happen that Ξ can be extended on the left, to an augmented trajectory
Ξ̂ of steepest descent defined on an interval Î = ]-ε, 0] ∪ I for some positive ε. But such an extension will of course
no longer start at time 0, so its existence does not affect the possibility that Ξ might belong to MSDΣ̂,V,x. ♦

Definition 2.5 . If Ω is an open subset of Rn, and ξ :I 7→Ω is a curve, we say that ξ is right-unbounded if
(i) the interval I is open on the right (that is, if τ = sup I, then either (a) τ = +∞ or (b) τ is finite and does not

belong to I),
and
(ii) if τ is finite, then for every compact subset K of Ω there exists a τK such that 0 ≤ τK < τ and ξ(t) /∈ K

whenever τK < t < τ .
(Equivalently, condition (ii) asserts that limt↑τ ξ(t) = ∞Ω, where ∞Ω is the point at infinity of the one-point
compactification of Ω.) ♦

The following observation is completely trivial given our definitions, but we state it explicitly as a separate result
for future reference. We emphasize that this trivial result is valid under no technical hypotheses whatsoever on Σ̂ or
V . The reader is warned that the result is not a true “existence theorem” for trajectories of steepest descent, even
though at first sight it may appear to be, because the member Ξ of MSDΣ̂,V,x whose existence it asserts could very
well turn out to be the trivial trajectory Ξtrivx , where Ξtrivx is the map Ξ : {0} 7→ Ω× R such that Ξ(0) = (x, 0).
The true “existence theorem,” yielding the existence of a nontrivial maximal trajectory of steepest descent and, in
fact, asserting the stronger conclusion that every maximal trajectory of steepest descent is right-unbounded in the
sense of Definition 2.5. This will be proved later (cf. Theorem (6.1) and, naturally, will depend on our technical
hypotheses on Σ̂ and V .

Proposition 2.6 If Σ̂ = (Ω, U, f, L) is an augmented control system, V : Ω 7→ R is a function, and x ∈ Ω, then the
set MSDΣ̂,V,x of maximal augmented trajectories of Σ̂ from x of steepest descent with respect to V is nonempty.

Proof. Fix x. Let Z be the set of all pairs (I,Ξ) such that I is a subinterval of [0,∞[, 0 ∈ I, and
Ξ = (ξ, ξ0) : I 7→ Ω× R is an augmented trajectory of Σ̂ which is of steepest descent with respect to V and such that
ξ(0) = x. We partially order Z by stipulating that, if (Ii,Ξi) ∈ Z for i = 1, 2, then (I1,Ξ1) � (I2,Ξ2) iff I1 ⊆ I2
and Ξ1 is the restriction of Ξ2 to I1.

It is clear that Z 6= ∅, because the pair ({0},Ξtrivx )—where Ξtrivx is the map defined above, in the paragraph
preceding the statement of our proposition—belongs to Z. If Z is a totally ordered subset of Z, we show that Z has
an upper bound (I∗,Ξ∗) in Z. This conclusion is trivial if Z = ∅, for in that case we can take (I∗,Ξ∗) = ({0},Ξtrivx ).
Assume that Z 6= ∅. Let I∗ be the union of the intervals I for all the members (I,Ξ) of Z. Then I∗ is obviously a
subinterval of [0,∞[, and 0 ∈ I. If t ∈ I∗, we define Ξ∗(t) = Ξ(t), where (I,Ξ) is any member of Z such that t ∈ I.
Write Ξ∗ = (ξ∗, ξ0,∗). Then Ξ∗ is obviously well defined, and is an augmented trajectory of Σ̂ such that ξ∗(0) = x.
If t ∈ I∗, then we can pick (I,Ξ) ∈ Z such that t ∈ I, and then Ξ∗(s) = Ξ(s) for all s ∈ I, and in particular
for all s ∈ [0, t], since [0, t] ⊆ I. Furthemore, if we write Ξ = (ξ, ξ0), then the fact that Ξ ∈ SDΣ̂,V implies that
V (x) ≥ ξ0(t) + V (ξ(t)) = ξ0,∗(t) + V (ξ∗(t)). Since t is an arbitrary member of I∗, we have shown that Ξ∗ ∈ SDΣ̂,V .
Therefore (I∗, ξ∗) ∈ Z. Furthermore, it is clear that (I∗,Ξ∗) is an upper bound for Z. So we have shown that every
totally ordered subset of Z has an upper bound, and that Z 6= ∅. Therefore Zorn’s Lemma implies that Z has a
maximal element (I∗,Ξ∗). Clearly, such a maximal element is a member of MSDΣ̂,V,x, and our proof is complete.
♦

An augmented arc is an augmented trajectory whose domain is a compact interval. If Ξ = (ξ, ξ0) is an augmented
arc with domain [a, b], then an improvement of Ξ is an augmented arc Ξ′ = (ξ′, ξ′0), with domain [a′, b′], such that
ξ′(a′) = ξ(a), ξ′(b′) = ξ(b), and ξ′0(b

′)− ξ′0(a
′) ≤ ξ0(b)− ξ0(a).
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If Σ̂ = (Ω, U, f, L) is an augmented control system, then an augmented arc Ξ = (ξ, ξ0) of Σ̂ with domain [a, b] is
uniquely limiting if there exists a sequence {ηj}∞j=1 of piecewise constant functions ηj : [a, b] 7→ U such that

(*) if {Ξj}∞j=1 is an arbitrary sequence of maximally defined augmented trajectories of Σ̂ such that a ∈ domain(Ξj)
and Ξj(a) = Ξ(a) for every j, then [a, b] ⊆ domain(Ξj) if j is large enough, and Ξj → Ξ uniformly on [a, b] as
j →∞.

Example 2.7 Suppose Ξ = (ξ, ξ0) is an augmented arc of Σ̂ with domain [a, b] such that

(#) there exist a positive number δ, a function η : [a, b] 7→ U , and a function ϕ : [a, b] 7→ [0,∞], such that

(i) Ξ̇(t) =
(
f(x, η(t)), L(x, η(t))

)
for almost every t ∈ [a, b],

(ii) the map t 7→
(
f(x, η(t)), L(x, η(t))

)
, on the compact set Ix

def= {t : a ≤ t ≤ b∧‖x−ξ(t)‖ ≤ δ}, is measurable
for each x ∈ Ω,

(iii) the map x 7→
(
f(x, η(t)), L(x, η(t))

)
, on the compact set Itdef= {x ∈ Ω : ‖x− ξ(t)‖ ≤ δ}, is measurable for

each t ∈ [a, b],
(iv) ϕ is integrable,

(v) the inequality
〈
f(x, η(t)) − f(x′, η(t)), x − x′

〉
≤ ϕ(t)‖x − x′‖2 holds whenever t ∈ [a, b], ‖x − ξ(t)‖ ≤ δ,

and ‖x′ − ξ(t)‖ ≤ δ,
(vi) the inequality |L(x, η(t))| ≤ ϕ(t) holds whenever t ∈ [a, b] and ‖x− ξ(t)‖ ≤ δ.

Then Ξ is uniquely limiting. The proof is essentially as follows. By dividing [a, b] into small intervals, we can
assume that there is a fixed compact ball B such that B ⊆ Ω, ξ is entirely contained in the interior of B, and
the bound of (v) holds whenever t ∈ [a, b] and x, x′ ∈ B. We then write Fu(x) = (f(x, u, L(x, u)) for each
x ∈ B, u ∈ U , and observe that the set F = {F η(t) : t ∈ [a, b]} is a subset of the separable Banach space
C0(B,Rn+1). Then [a, b] 3 t 7→ F η(t) is an L1 C0(B,Rn+1)-valued map. Therefore one can approximate this
map in L1 by piecewise constant F-valued maps. In other words, one can find a sequence {ηj}∞j=1 of piecewise
constant G-valued functions (where G = {η(t) : t ∈ [a, b]}), and integrable functions kj : [a, b] 7→ [0,+∞], such
that ‖f(x, η(t))− f(x, ηj(t))‖+ |L(x, η(t))−L(x, ηj(t))| ≤ kj(t) whenever a ≤ t ≤ b, x ∈ B, and j ∈ N, and
limj→∞

∫ b
a
kj(t) dt = 0. Then, if a ≤ c ≤ d ≤ b, and ζ : [c, d] 7→ B, θ : [c, d] 7→ B, are trajectories of η, ηj ,

respectively, Gronwall’s inequality yields the bound

‖ζ(t)− θ(t)‖ ≤ e
∫ b

a
ϕ(s)ds

(
‖kj‖L1 + ‖ζ(c)− θ(c)‖

)
if t ∈ [c, d]. If we apply this with c = a and ζ = ξ, letting θ be any trajectory ξj of ηj starting at ξ(a) at time
a, and defined on some subinterval [a, d] of [a, b], we see that, as long as j is large enough, the maximum of the
‖ξ(t) − ξj(t)‖ is bounded by a small constant. This guarantees that ξj actually exists on the whole interval [a, b],
and then the Gronwall bound implies that ξj → ξ uniformly as j →∞. Then the integrals

∫ t
a
L(ξj(s), ηj(s)) ds differ

from
∫ t
a
L(ξj(s), η(s)) ds by less than ‖kj‖L1 , in view of the bound

|L(x, η(t))− L(x, ηj(t))| ≤ kj(t) ,

and
∫ t
a
L(ξj(s), η(s)) ds →

∫ t
a
L(ξ(s), η(s)) ds as j → ∞, because L(ξj(s), η(s)) → L(ξ(s), η(s)) for each s, and

|L(ξj(s), η(s))| ≤ ϕ(s). ♦

An augmented trajectory Ξ = (ξ, ξ0) with domain I is locally uniquely limiting if for every compact subinterval I ′
of I the restriction of Ξ to I ′ is uniquely limiting.

An augmented trajectory Ξ = (ξ, ξ0) with domain I is almost uniquely limiting if there exists a finite subset B of I
such that the restriction of Ξ to every subinterval of I\B is locally uniquely limiting.

If Ω is an open subset of Rn, we say that a function V : Ω 7→ R satisfies the inequality

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} ≥ 0 (13)

on Ω in the viscosity sense if

(V+) if x ∈ Ω, and p ∈ Rn is a subdifferential of V at x, then sup{−〈p, f(x, u)〉 − L(x, u) : u ∈ U} ≥ 0 .

(We recall that, if Ω is open in Rn, then a subdifferential of a function V : Ω 7→ R at a point x̄ ∈ Ω is a vector p ∈ Rn

such that lim infx→x̄
V (x)−V (x̄)−p·(x−x̄)

‖x−x̄‖ ≥ 0 .)
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Similarly, we say that V satisfies the inequality

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} ≤ 0 (14)
on Ω in the viscosity sense if

(V−) if x ∈ Ω, and p ∈ Rn is a superdifferential of V at x, then sup{−〈p, f(x, u)〉 − L(x, u) : u ∈ U} ≤ 0 .

(A superdifferential of V at x∗ is a vector p such that −p is a subdifferential of −V at x∗.)
We say that V satisfies the equation

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} = 0 (15)
on Ω in the viscosity sense if it satisfies (13) and (14) in the viscosity sense.

Remark 2.8 The definition of “viscosity solution” given here is known to be equivalent to the more common one
involving test functions, cf. [1]. ♦

Our main result is the following theorem:

Theorem 2.9 Let Σ̂ = (Ω, U, f, L) be an augmented control system, let T be a target for Σ̂, and let V : Ω ∪ T 7→ R
be a function. Assume that

(1) Σ̂ is locally uniformly continuous, locally coercive, and such that FΣ̂(x, U) is closed and convex for every x ∈ Ω.

(2) V is continuous.

(3) V satisfies (15) on Ω in the viscosity sense.

(4) V vanishes on T .

(5) Every augmented arc has an almost locally uniquely limiting improvement.

(6) Whenever x ∈ Ω, Ξ = (ξ, ξ0) ∈MSDΣ̂,V,x, and ξ is right-unbounded, it follows that Ξ ∈ AΣ̂
x,T .

Then V ≡ VΣ̂
T .

Remark 2.10 Condition (6) was essentially introduced by M. Malisoff, cf. especially [9]. ♦

3. Examples

Example 3.1 (Linear-quadratic optimal control.) Consider the standard linear-quadratic optimal control problem,
in which x, u take values in Rn, Rm, respectively, the dynamical law is

ẋ = Ax+Bu , (16)
the Lagrangian is given by

L(x, u) = x†Rx+ u†Su ,

the square matrices R, S are strictly positive definite, and the pair (A,B) is stabilizable. We take the target set T
to consist of the origin of Rn. (In order to satisfy the condition that FΣ̂(x,U) is convex for every x ∈ Ω, we add a
new scalar nonnegative control variable v, in such a way that the dynamical law (16) remains unchanged but the
Lagrangian L is replaced by L̃, where L̃(x, u, v)def=L(x, u) + v.) The crucial technical issue here is the fact that the
Lagrangian is not bounded away from zero. The hypotheses of our main theorem (including the coerciveness, which
follows from the positive definiteness of S) are easily verified as long as V is bounded below. The only nontrivial
point is the verification of condition (6). To prove that this holds, let Ξ : [0, τ [ 7→ Rn × R be a right-unbounded
maximal trajectory of steepest descent with respect to V that does not end at the target, and write Ξ = (ξ, ξ0) in the
usual way. Then τ has to be infinite, because if τ was finite then the boundedness of the cost (arising from the fact
that Ξ = (ξ, ξ0) is of steepest descent and V is bounded below) would trivially imply an L2 bound on the control,
from which it would follow that Ξ can be extended to the closed interval [0, τ ], and then the assumption that Ξ does
not end at the target would enable us to use Proposition 2.6 and Theorem 6.1 (applied with Ω = Rn\{0}) to extend
Ξ even further, contradicting maximality. So τ is infinite. On the other hand, the fact that V is bounded below and
Ξ is of steepest descent implies that the integral∫ ∞

0

(
ξ(t)†Rξ(t) + η(t)†Sη(t)

)
dt

is finite, if η is an open-loop control that generates Ξ. But then ξ and η are square-integrable, so the condition that
ξ̇ = Aξ +Bη implies that ξ is square-integrable and has a square-integrable derivative, and then Barbalat’s lemma
implies that ξ ends at the target, as desired. ♦
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Example 3.2 (Fuller’s problem, cf., e.g., [13].) This is the optimal control problem for the dynamical law
ẋ = y , ẏ = u ,

with control constraint −1 ≤ u ≤ 1. The target set T consists of the origin of R2. The Lagragian is L(x, y, u) = x2.
The crucial technical issue here is the fact that the Lagrangian is not bounded away from zero, and in fact has a
whole line of zeros. The hypotheses of our main theorem are easily verified as long as V is bounded below. The only
nontrivial point is the verification of condition (6). To prove that this holds, let Ξ : [0, τ [ 7→ R3 be a right-unbounded
maximal trajectory of steepest descent with respect to V that does not end at the target, and write Ξ = (ξ, ξ0)
in the usual way. Then τ has to be infinite, because if τ was finite then the boundedness of the control would
trivially imply that Ξ can be extended to the closed interval [0, τ ], and then the assumption that Ξ does not end
at the target enables us to use Proposition 2.6 and Theorem 6.1 (applied with Ω = R2\{(0, 0)}) to extend Ξ even
further, contradicting maximality. So τ is infinite. On the other hand, the fact that V is bounded below and Ξ
is of steepest descent implies that the integral

∫∞
0
x(t)2dt is finite, if we write ξ(t) = (x(t), y(t)). But then x(·) is

a square-integrable function on [0,∞ [ whose second derivative is bounded. By a straightforward generalization of
Barbalat’s lemma, this implies that both x(·) and y(·) go to zero, i.e., that ξ ends at the target, as desired. ♦

Example 3.3 (The reflected brachistochrone problem.) This is the minimum time problem for the dynamical law

ẋ = u
√
|y| , ẏ = v

√
|y| ,

with control constraint u2 + v2 ≤ 1. The target set T consists of a single point B ∈ R2. The crucial technical issue
here is the fact that the dynamical law is not Lipschitz-continuous with respect to the state. The hypotheses of
our main theorem are easily verified. The only nontrivial point is the verification of condition (5). To prove that
this holds, we pick an arbitrary integral arc ξ : [a, b] 7→ R2, and observe that either (i) ξ(t) never belongs to the x
axis X = {(x, y) ∈ R2 : y = 0} or (ii) there exist t−, t+ ∈ [a, b] such that t− ≤ t+, ξ(t) /∈ X whenever a ≤ t < t−
or t+ > t ≤ b, ξ(t−) ∈ X, and ξ(t+) ∈ X. If (i) holds, then ξ satisfies the conditions of Example 2.7, so ξ is
uniquely limiting. If (ii) holds and t+ = t−, then the restriction of ξ to each of the intervals [a, t− [+,, ] t+, b],
is locally uniquely limiting, so ξ is almost locally uniquely limiting. Finally, if (ii) holds and t+ < t−, then the
restriction ξ̃ of ξ to the interval [t−, t+] is such that the set S = {t ∈ [a, b] : ξ(t) /∈ X} is the union of a finite or
countable infinite collection I of pairwise disjoint relatively open subintervals of [a, b]. If I ∈ I, then the restriction
ξ̃I of ξ̃ to I is entirely contained in the open upper half-plane or in the open lower half-plane. By reflecting ξ̃I
with respect to X, if necessary, we may assume that ξ̃I is entirely contained in the open upper half-plane for every
I ∈ I. Then ξ̃ is a trajectory of our system entirely contained in the closed upper half-plane. It is well known
that the problem in the closed upper half-plane H+ is the famous “brachistochrone problem,” whose time-optimal
trajectories ζ : [α, β] 7→ H+ are cycloids such that ζ(t) is an interior point of H+ whenever α < t < β. It follows
that we can always replace ξ̃ by a cycloid ζ, thereby obtaining an almost locally uniquely limiting improvement of
ξ. ♦

Example 3.4 (An example with a continuous non-Lipschitz dynamics where uniqueness fails.) Let ϕ : [0, 1] 7→ R
be a nonnegative continuous function such that (a) the set {x ∈ [0, 1] : ϕ(x) = 0} is exactly the Cantor set, and
(b)

∫ 1

0
dx
ϕ(x) < ∞. (For example, we may take ϕ to be given by ϕ(x) = dist(x,C)ρ, where C is the Cantor set and

ρ is a positive number such that ρ < 1 − log
3
2. An explicit calculation shows that

∫ 1

0
dx
ϕ(x) = (1 − ρ)−12ρ

∑∞
j=1 θ

j ,
where θ = 2

3 ×3ρ. Our choice of ρ guarantees that θ < 1, so the integral is finite.) Extend ϕ to a function defined on
R by making it periodic of period 1. Then consider the optimal control problem on R whose dynamics is ẋ = uϕ(x),
|u| ≤ 1, and where the goal is to reach the origin in minimum time. It is easy to see that the optimal trajectory
from each point x exists and is obtained by “moving towards the target as fast as possible.” Precisely, this means
the we use the control u = −1 as long as we are to the right of the origin, and we use u = 1 if we are to the left.
This, however, does not suffice to specify the optimal trajectories, because of the lack of uniqueness of solutions.
The complete specification of the optimal trajectories is as follows. Suppose x̄ < 0. Define a function τ : [x̄, 0] 7→ R
by letting τ(x) =

∫ x
x̄

dy
ϕ(y) . Then τ is aboslutely continuous, strictly increasing, and such that τ(x̄) = 0. Therefore

τ maps the interval [x̄, 0] homeomorphically onto the interval [0, τ(0)]. Let ξ be the inverse function, so ξ maps
[0, τ(0)] homeomorphically onto [x̄, 0]. Then ξ is absolutely continuous, and ξ̇(t) = ϕ(ξ(t)) for almost all t ∈ [0, τ(0)].
So ξ is a trajectory of our system which goes from x̄ to 0 in time τ(0), and it is easy to see that ξ is the optimal
trajectory from x̄ to 0. It follows that optimal time to go from x̄ to 0 is τ(0), that is,

∫ 0

x̄
dy
ϕ(y) . A similar contruction

applies when x̄ > 0. Then the value function V̄ for our problem is given by

V̄ (x) =
∫ max(x,0)

min(x,0)

dy

ϕ(y)
.

The HJBE for our problem is
|V ′(x)|ϕ(x)− 1 = 0 . (17)

The function V̄ is a solution of this equation on R\{0} in the viscosity sense. (This follows from the fact that, for
problems such as this one, the value function is automatically a viscosity solution of the HJBE. In addition, one
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can also verify this directly. Let O be the set of points where ϕ(x) > 0. Then on O the function V̄ is smooth,
and its derivative is 1

ϕ when x < 0, and − 1
ϕ when x > 0, so (17) holds. At points x where ϕ(x) = 0, the viscosity

solution requirements say that −1 ≥ 0 whenever p is a subdifferential of V̄ at x, and −1 ≤ 0 whenever p is a
superdifferential of V̄ at x. The second condition is trivially true. To verify the first condition, we need to show
that it is satisfied vacuously, i.e., that there are no subdifferentials of V̄ at x. But this easy. Suppose, say, that
x < 0. The difference quotient 1

h (V (x+ h)− V (x)) is equal, if h > 0, to − 1
h

∫ x+h
x

dy
ϕ(y) , which is bounded above by

ζ(h) = − 1
max{ϕ(y):y∈[x,x+h]} . Since ϕ(x) = 0, ζ(h) goes to −∞ as h→ 0. This shows that the right derivative of V̄

at x is equal to ∞, from which it follows easily that there exist no subdifferentials of V̄ at x. A similar argument
shows that if x > 0 the left derivative of V̄ at x is equal to +∞, from which it follows once again that there are no
subdifferentials of V̄ at x.

We now show that there exist nonnegative continuous functions V̂ : R 7→ R other than V̄ that satisfy the HJBE
on R\{0} and are such that V̂ (0) = 0. To see this, we let W be a continuous monotonically nondecreasing real-
valued function on [0,∞ [ such that (a) W (0) = 0, (b) W is constant on each connected component of the set
{x : x > 0∧ϕ(x) > 0}, and (c) W (x) < W (y) whenever 0 ≤ x < y and the interval [x, y] contains a zero of ϕ. (Such
a function is easily constructed using the well known Cantor function.) We then extend W to all of R by defining
W (x) = W (−x) when x < 0. Using W , we define V̂ = V̄ +W . Then V̂ is continuous, V̂ (0) = 0, and V̂ (x) > V̄ (x)
whenever x 6= 0. Let us show that V̂ is also a solution of the HJBE for our problem on R\{0}. Near points x
such that ϕ(x) > 0, the functions V̄ and V̂ differ by a constant, so the fact that V̄ satisfies the HJBE implies that
the same is true for V̂ . If x 6= 0 but ϕ(x) = 0, the viscosity solution requirements say that −1 ≥ 0 whenever p is
a subdifferential of V̂ at x, and −1 ≤ 0 whenever p is a superdifferential of V̂ at x, and the second one of these
conditions is trivially true. As for the first condition, if x < 0 then we have already shown that the right derivative
of V̄ at x is equal to ∞, and this clearly implies that the right derivative of V̂ at x is equal to ∞ as well, since
V̂ = V̄ +W and W is monotonically nonincreasing near x. Hence there exist no subdifferentials of V̂ at x. A similar
argument applies if x > 0, and we conclude that first one of the viscosity requirements is satisfied vacuously.

It follows that for our example the value function is not the unique continuous nonnegative function that vanishes
at the target and satisfies the HJBE. In the example, the reason for the failure of uniqueness is easy to understand,
and clearly related to the non-uniqueness of trajectories. Notice that the spurious value function V̂ is bounded below
by the true value function, so what goes wrong is the other inequality, which is related to the dynamic programming
inequality (DPI). And, indeed, the DPI fails, and this makes it impossible to draw the conclusion that V̂ ≤ V̄ .
Furthermore, the failure of the DPI happens exactly as described in our general analysis: given any control u(·) and
any initial condition x0, it is easy to construct a maximal trajectory ξ for u(·) starting at x0 along which the DPI for
V̂ holds. (It suffices to follow the only possible trajectory for u(·) as long as ϕ 6= 0, and stopping at x̄ and staying
there for ever as soon as we reach the first point x̄ where ϕ vanishes.) This ξ is not, however, the only trajectory
for u(·) starting at x0. And the fact that the DPI holds along ξ does not imply that that the DPI holds for every
trajectory for u(·) that starts at x0. (Indeed, if for example x0 < 0 and u(t) ≡ 1, then in addition to the ξ given by
our construction we could also consider ξopt, the optimal trajectory described earlier. The DPI for V̂ clearly fails
along ξopt, because if it was true it would imply that V̂ (x0) ≤ V̄ (x0), whereas we know that V̂ (x0) > V̄ (x0).) ♦

4. The main technical lemma

Let Σ̂ = (Ω, U, f, L) be an augmented control system. For every x ∈ Ω and every positive number δ such that
dist(x,Rn\Ω) > δ, we let Φδ,Σ̂(x) be the closed convex hull of all the vectors FΣ̂(x′, u), for all pairs (x′, u) such that
x′ ∈ Ω, ‖x′ − x‖ ≤ δ, and u ∈ U . Then Φδ,Σ̂(x) is a closed convex subset of Rn+1. Clearly, Φδ,Σ̂(x) ⊆ Φδ′,Σ̂(x)
whenever 0 < δ ≤ δ′.

Let V : Ω 7→ R̄ be a real-valued function, and let x∗ ∈ Ω. We say that V satisfies the infinitesimal steepest descent
condition for Σ̂ at x∗ if

(ISD) there exist sequences {xj}∞j=1, {vj}∞j=1, {λj}∞j=1, {hj}∞j=1, {γj}∞j=1 in Ω, Rn, R, R, and R, respectively, such
that

(1) hj > 0, γj > 0, (vj , λj) ∈ FΣ̂(x∗, U), and ‖xj − x∗ − hjvj‖ ≤ hjγj for all j,
(2) hj ↓ 0, xj → x∗, and γj ↓ 0 as j →∞,

and

(3) V (xj) ≤ V (x∗)− hjλj + hjγj for all j.

We say that V satisfies the weak infinitesimal steepest descent condition for Σ̂ at x∗ if

(WISD) there exist sequences {xj}∞j=1, {vj}∞j=1, {λj}∞j=1, {hj}∞j=1, {δj}∞j=1, {γj}∞j=1 in Ω, Rn, R, R, R, and R,
respectively, such that
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(1) hj > 0, δj > 0, γj > 0, (vj , λj) ∈ Φδj ,Σ̂
(x∗), ‖xj − x∗‖ ≤ δj, and ‖xj − x∗ − hjvj‖ ≤ hjγj for all j,

(2) hj ↓ 0, δj ↓ 0, and γj ↓ 0 as j →∞,
and
(3) V (xj) ≤ V (x∗)− hjλj + hjγj for all j.

We say that V satisfies (13) on Ω in the ISD sense if V satisfies the infinitesimal steepest descent condition for Σ̂ at
x for every x ∈ Ω. We say that V satisfies (13) on Ω in the WISD sense if V satisfies the weak infinitesimal steepest
descent condition for Σ̂ at x for every x ∈ Ω.

Theorem 4.1 Let Σ̂ = (Ω, U, f, L) be an n-dimensional augmented control system and let V : Ω 7→ R be a continuous
function. Then

(1) Condition (WISD) holds at every point x∗ ∈ Ω where (ISD) holds. In particular, if V satisfies (13) on Ω in the
ISD sense then V satisfies (13) on Ω in the WISD sense.

(2) If Σ̂ is locally uniformly continuous and such that FΣ̂(x, U) is convex for every x ∈ Ω, then (ISD) holds at every
point x∗ where (WISD) holds, and in particular if V satisfies (13) on Ω in the WISD sense then V satisfies
(13) on Ω in the ISD sense.

(3) If Σ̂ is locally coercive, and and such that FΣ̂(x,U) is closed and convex for every x ∈ Ω, then

(3.i) if V satisfies (13) on Ω in the ISD sense then V satisfies (13) on Ω in the viscosity sense;
(3.ii) if V satisfies (13) on Ω in the viscosity sense it follows that if V satisfies (13) on Ω in the WISD sense.

In particular, if Σ̂ is locally uniformly continuous, locally coercive, and such that FΣ̂(x, U) is closed and convex for
every x ∈ Ω, then the three concepts of solution of (13) on Ω (viscosity, ISD, and WISD) are equivalent.

Proof. We first prove (1). We assume that V x∗ is a point of Ω where (ISD) holds, and prove that (WISD) is true
as well. Let {xj}∞j=1, {vj}∞j=1, {λj}∞j=1, {hj}∞j=1, {γj}∞j=1 be sequences that satisfy the properties of (ISD). Define
δj = ‖xj − x∗‖. Then all the conclusions of (WISD) are true, so (WISD) holds, and (1) is proved.

Next, we prove (2). We assume that Σ̂ is locally uniformly continuous and (WISD) holds at a point x∗ ∈ Ω, and
prove that (ISD) holds at x∗ as well. To do this, we pick sequences {xj}∞j=1, {vj}∞j=1, {λj}∞j=1, {hj}∞j=1, {δj}∞j=1,
{γj}∞j=1 with the properties specified in (WISD). We pick δ such that

Bδ(x∗) = {x ∈ Rn : ‖x− x∗‖ ≤ δ} ⊆ Ω ,

and a function ω : ] 0,+∞[ 7→ [0,+∞] such that lims↓0 ω(s) = 0 and

‖f(x, u)− f(x′, u)‖+ |L(x, u)− L(x′, u)| ≤ ω(‖x− x′‖)
whenever x, x′ ∈ Bδ(x∗). We then pass to a subsequence, if necessary, and assume that δj ≤ δ for all j. We use the
fact that (vj , λj) ∈ Φδj ,Σ̂

(x∗) to find a (wj , `j) of the form
∑n+1
k=0 αj,kFΣ̂(xj,k, uj,k) such that αj,k ≥ 0,

∑n+1
k=0 αj,k = 1,

‖xj,k − x∗‖ ≤ δj , and ‖wj − vj‖+ |`j − λj | ≤ 2−j . We then define

ṽj =
n+1∑
k=0

αj,kf(x∗, uj,k) , λ̃j =
n+1∑
k=0

αj,kL(x∗, uj,k) ,

and conclude that ‖ṽj − wj‖ ≤ ω(δj) and ‖λ̃j − `j‖ ≤ ω(δj). We then let γ̃j = γj + 2−j + ω(δj) , so γ̃j → 0 as
j → ∞. It is then clear that ‖xj = x∗ − hj ṽj‖ ≤ hj γ̃j and V (xj) ≤ V (x∗)− hλ̃j + hj γ̃j for all j. Finally, we have
(ṽj , λ̃j) =

∑n+1
k=0 αj,kFΣ̂(x∗, uj,k), so (ṽj , λ̃j) ∈ FΣ̂(x∗, U), since FΣ̂(x∗, U) is convex. This completes the proof that

(WISD) implies (ISD).

We now turn to the proof of (3), for which purpose we assume that Σ̂ is locally coercive and such that FΣ̂(x, U)
is closed and convex for every x ∈ Ω. To prove (3.i), we assume in addition that V satisfies (13) on Ω in the ISD
sense, and show that V satisfies (13) on Ω in the viscosity sense. To prove this, we pick x∗ ∈ Ω and a subdifferential
p of V at x∗, and show that

sup{−p · f(x∗, u)− L(x∗, u) : u ∈ U} ≥ 0 . (18)

Using (ISD), we pick sequences {xj}∞j=1, {vj}∞j=1, {λj}∞j=1, {hj}∞j=1, {γj}∞j=1 in Ω, Rn, R, R, and R, respectively, such
that hj > 0, γj > 0, (vj , λj) ∈ FΣ̂(x∗, U), ‖xj − x∗ − hjvj‖ ≤ hjγj , and V (xj) ≤ V (x∗)− hjλj + hjγj for all j, and
hj ↓ 0, xj → x∗, and γj ↓ 0 as j →∞. Let J = {j : xj = x∗}. Then for j ∈ J the inequality ‖xj −x∗−hjvj‖ ≤ hjγj
implies ‖vj‖ ≤ γj , so limj→∞,j∈J vj = 0. On the other hand, the inequality V (xj) ≤ V (x∗)− hjλj + hjγj implies
hjλj ≤ hjγj , i.e., λj ≤ γj . Since the sequence {λj}∞j=1 is bounded below (for example, because the local coercivity
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implies a bound λj ≥ ‖vj‖r − C), we may assume, after replacing J by a smaller infinite set, if necessary, that
λ = limj→∞,j∈J λj exists. Since λj ≤ γj , λ must be ≤ 0. Furthermore, the vector (0, λ) is a limit of vectors
(vj , λj) ∈ FΣ̂(x∗), so (0, λ) ∈ FΣ̂(x∗, U), since FΣ̂(x∗, U) is closed. Hence there exists ū ∈ U such that f(x∗, ū) = 0
and L(x∗, ū) ≤ 0. But then −p · f(x∗, ū)− L(x∗, ū) ≥ 0, so (18) holds.

We now consider the case when the set J is finite. In this case, after passing to a subsequence, if necessary, we
may assume that J is empty, i.e., that xj 6= x∗ for all j. Since p is a subdifferential of V at x∗, we have

lim inf
x→x∗,x 6=x∗

V (x)− V (x∗)− p · (x− x∗)
‖x− x∗‖

≥ 0 . (19)

Since the xj converge to x∗ and are different from x∗, (19) implies

lim inf
j→∞

V (xj)− V (x∗)− p · (xj − x∗)
‖xj − x∗‖

≥ 0 . (20)

Since V (xj) ≤ V (x∗)− hjλj + hjγj , (20) implies

lim inf
j→∞

−hjλj + hjγj − p · (xj − x∗)
‖xj − x∗‖

≥ 0 . (21)

Now, xj − x∗ = xj − x∗ − hjvj + hjvj = hj(wj + vj), where wj = h−1
j (xj − x∗ − hjvj). Hence

lim inf
j→∞

−λj + γj − p · (wj + vj)
‖wj + vj‖

≥ 0 . (22)

Hence, given a positive ε there exists a j(ε) such that
−λj + γj − p · (wj + vj) ≥ −ε‖wj + vj‖ whenever j ≥ j(ε) .

Therefore

−λj − p · vj ≥ −ε‖vj‖ − ε‖wj‖+ p · wj − γj if j ≥ j(ε) .

Since wj → 0, there is—for each ε—a j′(ε) such that

−λj − p · vj ≥ −ε‖vj‖ − ε whenever j ≥ j′(ε) . (23)

The coercivity bound yields ‖vj‖r ≤ λj + C, so −λj ≤ −‖vj‖r + C. Hence

−‖vj‖r + C − p · vj ≥ −ε‖vj‖ − ε whenever j ≥ j′(ε) ,

so

−‖vj‖r + ε‖vj‖+ ‖p‖.‖vj‖ ≥ −ε− C if j ≥ j′(ε) . (24)

Now, if the sequence {‖vj‖}∞j=1 was unbounded, then we could pick an infinite subset J of N such that ‖vj‖ → +∞
as j → ∞ via values in J . But then, taking for example ε = 1, we would contradict (24), because the number
−‖vj‖r + ‖vj‖ + ‖p‖.‖vj‖ is equal to −‖vj‖r

(
1− (1 + ‖p‖)‖vj‖1−r

)
, which goes to −∞ as j → ∞ via values in J .

Therefore the sequence {‖vj‖}∞j=1 is bounded. Pick a constant K such that ‖vj‖ ≤ K for all j. Then, for each ε, if
uε is such that vj′(ε) = f(x∗, uε) and λj′(ε) = L(x∗, uε), (23) implies

−p · f(x∗, uε)− L(x∗, uε) ≥ −ε(K + 1) .
Hence

sup{−p · f(x∗, u)− L(x∗, u) : u ∈ U} ≥ −ε(K + 1) .

Since ε is arbitrary, we see that (18) holds. This concludes the proof of (3.i).

We now proceed to proving (3.ii). We assume that V satisfies (13) on Ω in the viscosity sense, pick an x∗ ∈ Ω,
and prove that condition (WISD) holds. We do this by assuming that the sequences whose existence is asserted by
(WISD) do not exist and deriving a contradiction. We will assume, as we clearly may without loss of generality,
that x∗ = 0 and V (x∗) = 0, i.e., V (0) = 0. In particular, this implies of course that 0 ∈ Ω.

Since (WISD) is not satisfied, there must exist a γ̄ such that 0 < γ̄,
{x ∈ Rn : ‖x‖ ≤ γ̄} ⊆ Ω , (25)

and
V (h(v + v′)) + hλ > hγ̄ (26)

whenever 0 < h ≤ γ̄, (v, λ) ∈ Φγ̄,Σ̂(0), h‖v + v′‖ ≤ γ̄, and ‖v′‖ ≤ γ̄. (Indeed, if γ̄ did not exist, then for each
sufficiently large natural number j we could define γj = 2−j , and find hj , vj , λj , v′j , xj , such that 0 < hj ≤
γj , (vj , λj) ∈ Φγj ,Σ̂

(0), hj‖vj + v′j‖ ≤ γj , ‖v′j‖ ≤ γj , and V (hj(vj + v′j)) + hjλj ≤ γjhj . But then, if we take
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xj = hj(vj + v′j), δj = γj , the sequence {(xj , vj , λj , hj , δj , γj)}∞j=1 satisfies conditions (1), (2) and (3) of (WISD),
contradicting the fact that V does not satisfy (WISD).)

By making γ̄ smaller, if necessary, we can assume that there exist real numbers C, r, such that C > 0, r > 1 and
‖f(x, u)‖r ≤ L(x, u) + C whenever ‖x‖ ≤ γ̄ and u ∈ U . It then follows, if we let

ψ(v, λ) = ‖v‖r − λ− C for (v, λ) ∈ Rn × R ,

that
ψ(w) ≤ 0 whenever w = F (x, u) , ‖x‖ ≤ γ̄, u ∈ U . (27)

Since ψ is convex, the inequality ψ(w) ≤ 0 holds whenever w ∈ Φγ̄,Σ̂(0), and then

‖v‖r ≤ λ+ C whenever (v, λ) ∈ Φγ̄,Σ̂(0) . (28)

If (v, λ) ∈ Φγ̄,Σ̂(0), v′ ∈ Rn, and ‖v′‖ ≤ γ̄, then the inequality (α + β)r ≤ 2r(αr + βr), valid for nonnegative α, β,
implies

‖v + v′‖r ≤ (‖v‖+ ‖v′‖)r ≤ 2r(‖v‖r + ‖v′‖r) ≤ 2r(λ+ C + γ̄r) .

Pick r̃ such that 1 < r̃ < r. Let A = 2
r

r−r̃ Then
‖v + v′‖r̃ = ‖v + v′‖r̃−r · ‖v + v′‖r ≤ Ar̃−r‖v + v′‖r ≤ Ar̃−r2r(λ+ C + γ̄r) = 2−r2r(λ+ C + γ̄r) = λ+ C + γ̄r

if ‖v + v′‖ ≥ A. On the other hand, if ‖v + v′‖ ≤ A, then ‖v + v′‖r̃ ≤ Ar̃ ≤ ‖v‖r + Ar̃ ≤ λ+ C + Ar̃. Therefore, if
we let C̃ = C + max(Ar̃, γ̄r), and then relabel r̃, C̃ as our new r and C, we have shown that(

(v, λ) ∈ Φγ̄,Σ̂(0) ∧ v′ ∈ Rn ∧ ‖v′‖ ≤ γ̄
)
⇒ ‖v + v′‖r ≤ λ+ C . (29)

For 0 < δ ≤ γ̄, we define

Ξδ(0)def=
{

(v + v′, λ+ λ′) : (v, λ) ∈ Φδ,Σ̂(0), v′ ∈ Rn , ‖v′‖ ≤ γ̄ , λ′ ∈ R , λ′ ≥ 0
}
.

Then

(a) If 0 < δ ≤ γ̄, then Ξδ(0) is a closed, convex, nonempty subset of Rn+1

(The fact that Ξδ(0) is nonempty follows because FΣ̂(0, U) ⊆ Φδ,Σ̂(0) ⊆ Ξδ(0), and FΣ̂(0, U) 6= ∅ because U 6= ∅. The
fact that Ξδ(0) is closed follows because, if a sequence {(vj+v′j , λj+λ′j)}∞j=1 with the property that (vj , λj) ∈ Φδ,Σ̂(0),
v′j ∈ Rn, ‖v′j‖ ≤ γ̄ ∈ Rn, λ′j ≥ 0 converges to a limit (v̂, λ̂), then the sequence {v′j}∞j=1 is bounded, so we may assume
after passing to a subsequence that limj→∞ v′j = v′ exists, and then of course ‖v′‖ ≤ γ̄ ∈ Rn, and limj→∞ vj = v
exists as well, since vj + v′j → v̂, and then v̂ = v + v′. Furthermore, the bound ‖vj‖r ≤ λj + C implies that
λj ≥ ‖vj‖r − C ≥ −C, so

λ′j = (λj + λ′j)− λj ≤ (λj + λ′j) + C .

Hence the sequence {λ′j}∞j=1 is bounded above, because {λj + λ′j}∞j=1 is convergent. Since λ′j ≥ 0, the sequence
{λ′j}∞j=1 is bounded, so we may assume it is convergent to a limit λ′, after passing to a subsequence. Clearly,
then, λ′ ≥ 0, and the limit limj→∞ λj = λ exists as well, and satisfies λ̂ = λ + λ′. Since (v, λ) = limj→∞(vj , λj),
(vj , λj) ∈ Φδ,Σ̂(0), and Φδ,Σ̂(0) is closed, we see that (v, λ) ∈ Φδ,Σ̂(0). Since ‖v′‖ ≤ γ̄ ∈ Rn, and λ′ ≥ 0, we see that
(v̂, λ̂) ∈ Ξδ(0). The convexity of Ξδ(0) is trivial.)

Let Λ = {0} × [γ̄,+∞ [ , so Λ ⊆ Rn+1. We let Ψδ(0) be the convex hull of Λ ∪ Ξδ(0). We show that

(b) If 0 < δ ≤ γ̄ then Ψδ(0) is a nonempty closed convex subset of Rn+1.

(c) There exist real numbers r, C such that r > 1 and
‖v‖r ≤ λ+ C whenever (v, λ) ∈ Ψγ̄(0) . (30)

(d) The inequality
V (hv) + hλ ≥ hγ̄ (31)

holds whenever 0 < h ≤ γ̄, (v, λ) ∈ Ψγ̄(0), and h‖v‖ ≤ γ̄.

(e) (0, `) /∈ Ψγ̄(0) whenever ` < γ̄

We will prove the above assertions in order, except for the statement that Ψδ(0) is closed if 0 < δ ≤ γ̄, which will
be proved last.

The fact that Ψδ(0) is convex is trivial, and the fact that Ψδ(0) is nonempty follows from (a), because Ξδ(0) ⊆
Ψδ(0).

To prove (c), we choose r, C such that r > 1, C > 0, and (29) holds, and observe that (29) trivially implies that
the inequality ‖v‖r ≤ λ + C is true whenever (v, λ) ∈ Ξγ̄(0). Since C > 0, the inequality is also true whenever
(v, λ) ∈ Λ. Hence ‖v‖r ≤ λ + C whenever (v, λ) ∈ Ξγ̄(0) ∪ Λ, from which it follows that ‖v‖r ≤ λ + C whenever
(v, λ) ∈ Ψδ(0), since the function (v, λ) 7→ ‖v‖r − λ− C is convex.
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To prove (d), we observe that (26) trivially implies that V (hv)+hλ > hγ̄ whenever (v, λ) ∈ Ξγ̄(0), 0 < h ≤ h̄, and
h‖v‖ ≤ γ̄. (Indeed, if (v, λ) ∈ Ξγ̄(0), 0 < h ≤ h̄, and h‖v‖ ≤ γ̄, then (v, λ) = (v̄, λ̄) + (v′, λ′), with (v̄, λ̄) ∈ Φγ̄,Σ̂(0),
v′ ∈ Rn, ‖v′‖ ≤ γ̄, λ′ ∈ R, and λ′ ≥ 0. Then we can apply (26), with v̄, λ̄ in the roles of v, λ, and conclude that
V (h(v̄ + v′)) + hλ̄ > hγ̄, since h‖v̄ + v′‖ ≤ γ̄. Therefore V (hv) + hλ̄ > hγ̄, and then a fortiori V (hv) + hλ > hγ̄,
since λ = λ̄ + λ′ and λ′ ≥ 0.) Assume that (v, λ) ∈ Ψγ̄(0). Then we can write (v, λ) = α(v′, λ′) + (1 − α)(0, `),
with (v′, λ′) ∈ Ξγ̄(0), ` ≥ γ̄, and 0 ≤ α ≤ 1. Let h be such that 0 < h ≤ γ̄ and h‖v‖ ≤ γ̄. If α = 0, then
hv = 0 and λ = ` ≥ γ̄, so V (hv) + hλ = V (0) + h` = h` ≥ hγ̄. If α > 0, define h̃ = αh. Then 0 < h̃ ≤ γ̄ and
h̃‖v′‖ = αh‖v′‖ = h‖v‖ ≤ γ̄, since v = αv′. Therefore V (h̃v′) + h̃λ′ ≥ h̃γ̄, since (v′, λ′) ∈ Ψγ̄(0). On the other hand,
(1− α)h` ≥ (1− α)hγ̄, since ` ≥ γ̄. Therefore

V (hv) + hλ = V (hαv′) + hαλ′ + h(1− α)` = V (h̃v′) + h̃λ′ + h(1− α)` ≥ h̃γ̄ + h(1− α)γ̄ = hαγ̄ + h(1− α)γ̄ = hγ̄ ,

completing the proof of (d).
Statement (e) now follows easily: if (0, `) ∈ Ψγ̄(0), then we can apply (d) taking h = γ̄, v = 0, λ = `, and conclude

that γ̄` ≥ γ̄2, so that ` ≥ γ̄.
We now prove that Ψδ(0) is closed if 0 < δ ≤ γ̄. Let {wj}∞j=1 be a sequence of points of Ψδ(0) that converges

to a limit w ∈ Rn+1. We will show that w ∈ Ψδ(0). Let wj = αj(vj , λj) + (1 − αj)(0, `j), where (vj , λj) ∈ Ξδ(0),
`j ≥ γ̄, and 0 ≤ αj ≤ 1. Let w = (v, λ). By passing to a subsequence, if necessary, we may assume that the
αj converge to a limit α̂. If the sequence {(vj , λj)} is bounded, then we may pass to a subsequence and assume
that (v̂, λ̂) = limj→∞(vj , λj) exists. Then (v̂, λ̂) ∈ Ξδ(0). Furthermore, the limit limj→∞ αj(vj , λj) exists, so
µ = limj→∞(1− αj)`j exists as well, and µ ≥ 0. Clearly, w = α̂(v̂, λ̂) + (0, µ). If α̂ = 1, then w = (v̂, λ̂) + (0, µ), so
w ∈ Ξδ(0)—and a fortiori w ∈ Ψδ(0)—because (v̂, λ̂) ∈ Ξδ(0) and µ ≥ 0. If α̂ < 1, then ` = limj→∞ `j exists and
satisfies ` = µ

1−α̂ and ` ≥ γ̄. Then w = α̂(v̂, λ̂) + (1− α̂)(0, `), and (v̂, λ̂), (0, `), belong to Ξδ(0) and Λ, respectively,
so w ∈ Ψδ(0). Now suppose that the sequence {(vj , λj)} is unbounded. Then (30) implies that {λj} is unbounded.
Since the λj are bounded below, we may assume, after passing to a subsequence, that λj → +∞ as j →∞. On the
other hand, αjvj → v and αjλj +(1−αj)`j → λ. Since both sequences {αjλj}, {(1−αj)`j} are bounded below, we
may pass to a subsequence and assume that the limits µ = limj→∞(1−αj)`j and ν = limj→∞ αjλj exist. But then

αj‖vj‖ ≤ αj(λj + C)1/r = αjλ
1/r
j

(
1 +

C

λj

)1/r

= αjλjλ
1/r−1
j

(
1 +

C

λj

)1/r

−→
j→∞ 0 ,

since λj −→j→∞ + ∞, αjλj −→j→∞ ν, and r > 1. Then v = limj→∞ αjvj = 0. This implies, in particular, that
γ̄αj‖vj‖ ≤ γ̄ if j is large enough. So we can apply (d) with h = γ̄αj and (vj , λj) in the role of (v, λ), and conclude
that V (γ̄αjvj) + γ̄αjλj ≥ γ̄αj γ̄. On the other hand, (1− αj)`j ≥ (1− αj)γ̄, because `j ≥ γ̄. Therefore

V (γ̄αjvj) + γ̄αjλj + γ̄(1− αj)`j ≥ γ̄αj γ̄ + γ̄(1− αj)γ̄ = γ̄2

for large enough j. If we let j →∞, and use the facts that αjvj −→j→∞ 0, V is continuous, and V (0) = 0, we find that
γ̄λ = limj→∞(γ̄αjλj + γ̄(1− αj)`j) ≥ γ̄2, so λ ≥ γ̄. Therefore w = (0, λ) and λ ≥ γ̄, so w ∈ Λ and then w ∈ Ψδ(0).

We have now completed the proofs of (b), (c), (d) and (e). Let w∗ be the member of Ψγ̄(0) such that

‖w∗‖ ≤ ‖w‖ whenever w ∈ Ψγ̄(0) .

(The existence and uniqueness of w∗ follows from the fact that Ψγ̄(0) is closed and convex.) Since (0, 0) /∈ Ψγ̄(0), it
follows that w∗ 6= (0, 0). Furthermore, the inequality

〈w∗, w〉 ≥ ‖w∗‖2 (32)

holds whenever w ∈ Ψγ̄(0), because if w ∈ Ψγ̄(0) then ‖w∗ + t(w − w∗)‖2 ≥ ‖w∗‖2 whenever 0 ≤ t ≤ 1, since
w∗ + t(w − w∗) ∈ Ψγ̄(0) for such t, and then

‖w∗‖2 + t2‖w − w∗‖2 + 2t〈w∗, w − w∗〉 ≥ ‖w∗‖2 ,

so t2‖w − w∗‖2 + 2t〈w∗, w − w∗〉 ≥ 0, which implies t‖w − w∗‖2 + 2〈w∗, w − w∗〉 ≥ 0 if 0 < t ≤ 1, and then
〈w∗, w − w∗〉 ≥ 0 (since we can let t ↓ 0), so (32) holds.

We now let Q be the set of all vectors q ∈ Rn+1 such that q = hw for some h,w such that h ∈ [0,∞[ and
w ∈ Ψγ̄(0). We will show that

(f) Q is a closed convex cone such that Q\{(0, 0)} 6= ∅.

(g) 〈w∗, q〉 ≥ 0 for all q ∈ Q and 〈w∗, q〉 > 0 for all q ∈ Q\{(0, 0)}.

(h) there exist real constants κ−, κ+, such that 0 < κ− ≤ κ+ and κ−‖q‖ ≤ 〈w∗, q〉 ≤ κ+‖q‖ whenever q ∈ Q.
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Indeed, Q is obviously a convex cone. The fact that Q\{(0, 0)} 6= ∅ follows because Ψγ̄(0) ⊆ Q, Ψγ̄(0) 6= ∅, and
(0, 0) /∈ Ψγ̄(0). To show that Q is closed, we pick a sequence {qj}∞j=1of points of Q that converges to a limit
q ∈ Rn+1, and show that q ∈ Q. Write qj = hjwj , hj ≥ 0, wj ∈ Ψγ̄(0). If q = (0, 0) then q ∈ Q, so we may assume
that q 6= (0, 0) and that qj 6= (0, 0) for all j. Then hj 6= 0 as well. If the sequence {wj}∞j=1 is bounded, then we
may pass to a subsequence and assume that the wj converge to a limit w, which must belong to Ψγ̄(0) because

Ψγ̄(0) is closed. In particular, w and the wj are 6= (0, 0). But then hj = ‖qj‖
‖wj‖ −→j→∞

‖q‖
‖w‖

def=h. Therefore q = hw,
so q ∈ Q. Now suppose that the sequence {wj}∞j=1 is unbounded. Write wj = (vj , λj), and use (c) to conclude
that ‖vj‖r ≤ λj + C for all j. Then the sequence {λj}∞j=1 is unbounded, and we may assume, after passing to a
subsequence, that λj −→j→∞ +∞. Since q = limj→∞(hjvj , hjλj), the sequence {hjλj}∞j=1 converges to a finite limit

µ, so hj −→j→∞ 0. Then hj‖vj‖ ≤ hj(λj + C)1/r = hjλjλ
1
r−1
j

(
1 + C

λj

)1/r

−→
j→∞ 0. So hjvj −→j→∞ 0. Therefore q = (0, µ),

so q = h(0, γ̄), where h = µ
γ̄ . Since µ ≥ 0 and (0, γ̄) ∈ Ψγ̄(0), it is now clear that q ∈ Q. This completes the proof

of (f).
The fact that 〈w∗, q〉 ≥ 0 for all q ∈ Q follows trivially from the definition of Q, because if q ∈ Q then q = hw

for some w ∈ Ψγ̄(0) and some nonnegative h, so 〈w∗, q〉 = h〈w∗, w〉 ≥ h‖w∗‖2 ≥ 0. Furthermore, if q 6= (0, 0) then
h 6= 0, so h > 0, and then 〈w∗, q〉 ≥ h‖w∗‖2 > 0, since w∗ 6= 0. This proves (g).

Let K = {q ∈ Q : ‖q‖ = 1}. Then K is compact, so the continuous function K 3 q 7→ 〈w∗, q〉 ∈ R attains a
minimum value κ− and a maximum value κ+ on K. Clearly, κ− > 0, because 〈w∗, q〉 > 0 for all q ∈ K. Furthermore,
κ−‖q‖ ≤ 〈w∗, q〉 ≤ κ+‖q‖ for all q ∈ Q, because the inequalities hold when ‖q‖ = 1 and involve functions of q that
are positively homogeneous of degree 1. This proves (h).

Next, we define a function σ : Q 7→ R by letting σ(q) be, if q ∈ Q, the largest h ∈ R such that q = hw for some
w ∈ Ψγ̄(0). (The existence of such a largest h is trivial if q = 0, for in that case the only possible value of h is 0,
since (0, 0) /∈ Ψγ̄(0). If q ∈ Q and q 6= 0, let H = {h ∈ R : h > 0, h−1q ∈ Ψγ̄(0)}. Then H must be bounded, for
otherwise (0, 0) would be a limit of points of Ψγ̄(0), and then (0, 0) would have to belong to Ψγ̄(0). If h = sup H,
then the fact that Ψγ̄(0) is closed implies that h ∈ H, so σ(q) exists and is equal to h.) We prove the following
properties of σ.

(i) σ is strictly positive on Q\{(0, 0)}.
(j) σ is positively homogeneous of degree 1 (that is, σ(rq) = rσ(q) whenever q ∈ Q and r ≥ 0).

(k) There exists a constant κ ∈ R such that σ(q) ≤ κ‖q‖ whenever q ∈ Q.

Statements (i) and (j) are immediate consequences of the definition of σ. To prove (k), we assume it is not true,
and find a sequence {qm}∞m=1 of points of Q such that σ(qm) > m‖qm‖ for all m. We then write qm = σ(qm)wm,
with wm ∈ Ψγ̄(0), and use (j) to conclude that σ(wm) = 1 and σ(wm) > m‖wm‖ for all m. Then ‖wm‖ < 1

m , so
wm → (0, 0) as m→∞. Since wm ∈ Ψγ̄(0), and Ψγ̄(0) is closed, we conclude that (0, 0) ∈ Ψγ̄(0), contradicting (e).
This completes the proof of (k).

Next, we define

γ∗
def=

γ̄

max(1, κ)
, Q∗def=

{
q ∈ Q : ‖q‖ ≤ γ∗

}
.

Then Q∗ is a convex, compact subset of Rn+1 such that (0, 0) ∈ Q∗ but Q∗ contains at least one point other than
(0, 0) (because of (f)). In addition, if q = (x, x0) ∈ Q∗, then ‖x‖ ≤ γ∗ ≤ γ̄, so (25) tells us that x ∈ Ω, and then
q ∈ Ω× R. Hence Q∗ ⊆ Ω× R.

We then define a function W : Ω×R 7→ R by letting W (x, x0) = V (x) + x0 for (x, x0) ∈ Ω×R, and observe that
W (q) is defined whenever q ∈ Q∗, because Q∗ ⊆ Ω× R.

We then claim that

W (q) ≥ γ̄σ(q) whenever q ∈ Q∗ . (33)

To prove (33), we first observe that the inequality is clearly true if q = 0. Let us pick q ∈ Q∗\{0} and write q = hw,
where h = σ(q) and w = (v, λ) ∈ Ψγ̄(0). Then 0 < h, since q 6= 0, and h ≤ γ̄, because σ(q) ≤ κ‖q‖ ≤ κγ∗ ≤ γ̄.
Furthermore, ‖q‖ ≤ γ̄ (because γ∗ ≤ γ̄), and q = (hv, hλ), so h‖v‖ ≤ γ̄. It then follows from (26) that W (q) =
V (hv) + hλ ≥ hγ̄ = γ̄σ(q), completing the proof of (33).

It follows from (33) and (i) that

W (q) > 0 whenever q ∈ Q∗\{(0, 0)} . (34)

Now fix a number ρ such that 0 < ρ ≤ κ−γ
∗, and define

Q# = {q ∈ Q∗ : 〈w∗, q〉 ≥ ρ} . (35)
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If q is any member of Q such that ‖q‖ = γ∗, then q ∈ Q∗, and in addition 〈w∗, q〉 ≥ κ−‖q‖ = κ−γ
∗ ≥ ρ, so q ∈ Q#.

Hence Q# is nonempty, and it is clear that Q# is compact and convex. If q ∈ Q#, then q ∈ Q∗\{(0, 0)}, so W (q) > 0.
It follows that µ̄ > 0, if we let µ̄ = min{W (q) : q ∈ Q#}. Since W (0, 0) = 0, we may pick a µ such that 0 < µ < µ̄,
and use the Clarke-Ledyaev mean value theorem (cf. [4, 5, 6]) to conclude that if β is any positive number, and we
use Nβ to denote the β-neighborhood of the set N0

def= {hq : q ∈ Q#, 0 ≤ h ≤ 1}, then there exists a subdifferential
(π, π0) of W at some point q# belonging to Nβ such that

〈(π, π0), q〉 > µ for all q ∈ Q# . (36)

Write q# = (x#, x#
0 ). Then, if we write q = (x, x0) for q near q# , we have

lim inf
q→q#

W (q)−W (q#)−π · (x−x#)−π0(x0−x#
0 )

‖x−x#‖+|x0 − x#
0 |

≥0.

Taking q = (x, x#
0 ), this implies

lim inf
x→x#

V (x)− V (x#)− π · (x− x#)
‖x− x#‖

≥ 0 ,

so π is a subdifferential of V at x#.
Taking q = (x#, x0), we get

lim inf
x0→x#

0

x0 − x#
0 − π0(x0 − x#

0 )

|x0 − x#
0 |

≥ 0 ,

so π0 = 1.
Now, if u ∈ U , and we let w = (f(x#, u), L(x#, u)), then w ∈ Φγ̄,Σ̂(0), so w ∈ Q. Let q = γ∗w

‖w‖ . Then ‖q‖ = γ∗,
so q ∈ Q∗. Furthermore, 〈w∗, q〉 ≥ κ−‖q‖ = κ−γ

∗ ≥ ρ, so q ∈ Q#. Therefore

〈(π, π0), q〉 > µ , (37)

that is,

γ∗

‖w‖

(
〈π, f(x#, u)〉+ L(x#, u)

)
> µ . (38)

Therefore

〈π, f(x#, u)〉+ L(x#, u) >
‖w‖µ
γ∗

≥ ‖w∗‖µ
γ∗

, (39)

so

−〈π, f(x#, u)〉 − L(x#, u) < −‖w
∗‖µ
γ∗

. (40)

Since (40) is true for every u ∈ U , we can conclude that

sup
{
− 〈π, f(x#, u)〉 − L(x#, u) : u ∈ U

}
≤ ‖w∗‖µ

γ∗
< 0 . (41)

But π is a subdifferential of V at x#, and then (41) contradicts the fact that V is a solution of (13) on Ω in the
viscosity sense. This contradiction establishes (3.ii) and completes our proof. ♦

5. The compactness theorem.

If Σ̂ = (Ω, U, f, L) is an augmented control system, and ε is a positive number, an ε-approximate augmented trajectory
of Σ̂ is a locally absolutely continuous curve I 3 t 7→ Ξ(t) = (ξ(t), ξ0(t)) ∈ Rn+1 having the property that there exists
a measurable function I 3 t 7→ v(t) ∈ Rn such that

(1) ‖v(t)‖ ≤ ε for almost all t ∈ I,

(2) Ξ̇(t)− (v(t), 0) ∈ FΣ̂(ξ(t), U) for almost all t ∈ I.
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Remark 5.1 Roughly speaking, an ε-approximate augmented trajectory of Σ̂ is an augmented trajectory of the
“ε-extended system” Σ̂ε = (Ω, Uε, fε, Lε) whose control space Uε is the Cartesian product U × {v ∈ Rn : ‖v‖ ≤ ε},
and whose dynamics fε and Lagrangian Lε are given by

fε(x, u, v) = f(x, u) + v , Lε(x, u, v) = L(x, u) .

More precisely, a curve Ξ = (ξ, ξ0) : I 7→ Rn+1 is an ε-approximate augmented trajectory of Σ̂ if and only if Ξ is
locally absolutely continuous and there exist functions I 3 t 7→ η(t) ∈ U , I 3 t 7→ v(t) ∈ {v ∈ Rn : ‖v‖ ≤ ε} such that
v is measurable and Ξ̇(t) ∈ FΣ̂ε(ξ(t), Uε) for almost every t ∈ I. The definition of an augmented trajectory of Σ̂ε is
exactly the same, except that in that case the requirement that v be measurable is omitted. ♦

Theorem 5.2 Let Σ̂ = (Ω, U, f, L) be an n-dimensional locally uniformly continuous, locally coercive augmented
control system such that FΣ̂(x, U) is closed and convex for every x ∈ Ω. Let K be a compact subset of Ω, let T be
a positive time, and let k ∈ R. Let {εj}∞j=1 be a sequence of positive numbers such that εj → 0 as j → ∞, and let
Ξj = (ξj , ξj0) be, for each j, an εj-approximate augmented trajectory of Σ̂, defined on the interval [0, T ], such that
ξj(t) ∈ K for all t ∈ [0, T ], ξj0(0) = 0, and ξj0(T ) ≤ k. Then there exist a subsequence {Ξj(k)}∞k=1 of the sequence
{Ξj}∞j=1 and an augmented trajectory Ξ∞ = (ξ∞, ξ∞0 ) of Σ̂ = (Ω, U, f, L) such that

(i) ξ∞0 (0) = 0,

(ii) the sequence {ξj(k)}∞k=1 converges uniformly to ξ∞, and

(iii) lim infk→∞ inf
{
∆j(k),∞(t, s) :0≤s≤ t≤T

}
≥0, where, if j, j′ ∈ N ∪ {+∞}, we define

∆j,j′(t, s)def=(ξj0(t)− ξj0(s))− (ξj
′

0 (t)− ξj
′

0 (s)) . (42)

Proof. Pick constants r, C, such that r > 1, C > 0, and ‖f(x, u)‖r ≤ L(x, u) + C whenever x ∈ K, u ∈ U , and
a function ω : ] 0,+∞ [ 7→ [0,+∞] such that lims↓0 ω(s) and ‖FΣ̂(x, u) − FΣ̂(x′, u)‖ ≤ ω(s) whenever x, x′ ∈ K and
‖x − x′‖ ≤ s. Choose, for each j, a measurable function vj : [0, T ] 7→ Rn and a function ηj : [0, T ] 7→ U such that
‖v(t)‖ ≤ εj , ξ̇j(t) = f(ξj(t), ηj(t)) + v(t), and ξ̇j0(t) = L(ξj(s), ηj(s)) for almost all t ∈ [0, T ].

Let C ′ = 2r(C + εr). Then for each j the coerciveness condition implies the inequality

‖ξ̇j(t)‖r ≤ 2rL(ξj(t), ηj(t)) + C ′ for almost all t ,

because
‖ξ̇j(t)‖r = ‖f(ξj(t), ηj(t)) + v(t)‖r

≤
(
‖f(ξj(t), ηj(t))‖+ ‖v(t)‖

)r
≤ 2r‖f(ξj(t), ηj(t))‖r + 2r‖v(t)‖r

≤ 2r(L(ξj(t), ηj(t)) + C) + 2rεr

= 2rL(ξj(t), ηj(t)) + C ′ ,

from which it follows that
∫ T
0
‖ξ̇j(t)‖rdt ≤ 2rk+C ′T . Then the sequence {ξ̇j(t)}∞j=1 is uniformly bounded in Lr, so

we may assume, after passing to a subsequence if necessary, that the weak Lr-limit ζ =w-limj→∞ ξ̇j exists. Then
the ξj converge uniformly as j → ∞ to a limit ξ∞ such that ξ∞(t) − ξ∞(s) =

∫ t
s
ζ(r) dr for all s, t ∈ [0, T ]. After

passing to a subsequence once more, if necessary, we assume that

‖ξj(t)− ξ∞(t)‖ ≤ 2−j for all j ∈ N , t ∈ [0, T ] . (43)

Let θj(t) = ξ̇j0(t)+C. Then the θj are nonnegative, because ξ̇j0(t) = L(ξj(t), ηj(t)) ≥ −C. Furthermore, the sequence
{θj}∞j=1 is bounded in L1([0, T ],R), because

‖θj‖L1 =
∫ T

0

θj(t) dt =
∫ T

0

(ξ̇j0(t) + C) dt ≤ k + CT .

The space L1([0, T ],R) can be embedded in the usual way in C0([0, T ],R)† (the dual of C0([0, T ],R)), which is the
space of finite Borel measures on [0, T ], by means of the map ψ 7→ µψ that assigns to each function ψ ∈ L1([0, T ],R)
the Borel measure µψ such that

µψ(ϕ) =
∫ T

0

ψ(t)ϕ(t)dt for every ϕ ∈ C0([0, T ],R) .
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Then we may assume, after passing to a subsequence for a third time, if necessary, that the weak* limit µ∞ of
the measures µjdef=µθj defined by the θj exists as j →∞. The measure µ∞ then has a decomposition

µ∞ = µ∞,ac + µ∞,at + µ∞,sing

into the sum of an absolutely continuous part, an atomic part, and a singular part. Since the measure µ∞ is positive,
because it is a limit of positive measures, the three components µ∞,ac, µ∞,at, µ∞,sing are positive as well. Let θ∞
be the Radon-Nikodym derivative of µ∞, so θ∞ is an integrable function on [0, T ] such that

µ∞,ac(ϕ) =
∫ T

0

θ∞(t)ϕ(t) dt for ϕ ∈ C0([0, T ],R) .

Define

ξ∞0 (t) = −Ct+
∫ t

0

θ∞(s)ds (44)

and then set Ξ∞ = (ξ∞, ξ∞0 ).

We will show that Ξ∞ is an augmented trajectory of the system Σ̂. To see this, we observe first of all that
by construction the functions ξ∞ : [0, T ] 7→ Rn and ξ∞0 : [0, T ] 7→ R are absolutely continuous, and their derivatives
at t are equal to ζ(t) and θ∞(t), respectively, for all t in a subset G of [0, T ] such that [0, T ]\G has measure
zero. Let A be the set of atoms of µ∞,at, and let B be a subset of [0, T ] of Lebesgue measure zero such that
µ∞,sing([0, T ]\B) = 0. Then the set G′ = G\(A ∪B ∪ {T}) has measure T and µ∞,at(G′) = µ∞,sing(G′) = 0. Let
G′′ be the set of points of density of G′ that are Lebesgue points of ζ and θ∞, so G′′ has measure T as well.
(Recall that a Lebesgue point of a scalar- or vector-valued integrable function σ defined on an interval [a, b] is a
point t ∈ ] a, b [ such that limh↓0

1
h

∫ t+h
t−h ‖σ(s)− σ(t)‖ ds = 0.) Let t ∈ G′′, and fix an h such that 0 < h < T − t. Let

Et,h = [t, t+ h] ∩G′, so the Lebesgue measure |Et,h| of Et,h satisfies limh↓0 h
−1|Et,h| = 1. Using the facts that the

Borel measure µ∞,at + µ∞,sing is regular and (µ∞,at + µ∞,sing)(Et,h) = 0, we can find a relatively open subset Ũt,h
of [0, T ] such that Et,h ⊆ Ũt,h and (µ∞,at + µ∞,sing)(Ũt,h) ≤ h2. We then let Ut,h = Ũt,h∩ ] t, t+ h [ , so Ut,h is an
open subset of R, Ut,h ⊆ ] t, t+ h [ , and (µ∞,at + µ∞,sing)(Ut,h) ≤ h2. Using the regularity of Lebesgue measure we
can find a compact subset Kt,h of Et,h\{t, t+h} such that |Kt,h| ≥ |Et,h| − h2. Then of course limh↓0 h

−1|Kt,h| = 1,
and Kt,h ⊆ Ut,h for each h. Let ϕ̃t,h(s) = dist(s,R\Ut,h), so ϕ̃t,h : R 7→ R is continuous, ϕ̃t,h(s) = 0 whenever
s /∈ Ut,h, and ϕ̃t,h(s) > 0 whenever s ∈ Kt,h. If we let

βt,h = min{ϕ̃t,h(s) : s ∈ Kt,h} ,
ϕ̂t,h(s) = min(ϕ̃t,h(s), βt,h) ,

ϕt,h(s) = β−1
t,h ϕ̂t,h(s) ,

then ϕt,h is a continuous real-valued function on R such that 0 ≤ ϕt,h(s) ≤ 1 for all s, ϕt,h(s) = 1 for all s ∈ Kt,h,
and ϕt,h(s) = 0 for all s ∈ R\Ut,h. In particular, ϕt,h(s) = 0 whenever s /∈ ] t, t+ h [ .

Let at,h =
∫ t+h
t

ϕt,h(s) ds =
∫ +∞
−∞ ϕt,h(s) ds. Then

|Et,h| − h2 ≤ at,h ≤ h ,
from which it follows that

lim
h↓0

at,h
h

= 1 .

Let ψt,h = a−1
t,hϕt,h. Then ∫ t+h

t

ψt,h(s) ds = 1 .

If h > 0, write
δj(h) = 2−j + h1/ρ(2r|k|+ C ′T )1/r .

Then, if s ∈ [t, t+ h], we have
‖ξj(s)− ξ∞(t)‖ ≤ ‖ξj(t)− ξ∞(t)‖+ ‖ξj(s)− ξj(t)‖

≤ 2−j +
∫ s

t

‖ξ̇j(τ)‖ dt

≤ 2−j + (s− t)1/ρ
( ∫ s

t

‖ξ̇j(τ)‖r dt
)1/r

≤ 2−j + h1/ρ
( ∫ T

0

‖ξ̇j(τ)‖r dt
)1/r

≤ 2−j + h1/ρ
( ∫ T

0

(2rL(ξj(τ), ηj(τ)) + C ′) dτ
)1/r

≤ 2−j + h1/ρ(2r|k|+ C ′T )1/r

= δj(h) .
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For almost all s ∈ [t, t+ h], the derivative Ξ̇j(s) exists and is equal to FΣ̂(ξj(s), ηj(s)) + (vj(s), 0). Hence

‖ Ξ̇j(s)− FΣ̂(ξ∞(t), ηj(s))‖ ≤ ω(δj(h)) + εj ,

from which it follows that
dist(Ξ̇j(s), FΣ̂(ξ∞(t), U) ≤ ω(δj(h)) + εj .

Therefore the average

Ajt,h =
∫ t+h

t

ψt,h(s)Ξ̇j(s) ds =
∫ T

0

ψt,h(s)Ξ̇j(s) ds

also satisfies
dist(Ajt,h, FΣ̂(ξ∞(t), U) ≤ ω(δj(h)) + εj , (45)

because FΣ̂(ξ∞(t), U) is closed and convex. As j →∞, the vector functions ξ̇j converge weakly in Lr to ζ, so∫ t+h

t

ψt,h(s)ξ̇j(s) ds→
∫ t+h

t

ψt,h(s)ζ(s) ds =
∫ t+h

t

ψt,h(s)ξ̇∞(s) ds

as j →∞, j ∈ J . The integral
∫ t+h
t

ψt,h(s)ξ̇∞(s) ds satisfies∫ t+h

t

ψt,h(s)ξ̇∞(s) ds =
∫ t+h

t

ψt,h(s)ξ̇∞(t) ds+ Et,h = ξ̇∞(t) + Et,h ,

where

Et,h =
∫ t+h

t

ψt,h(s)(ξ̇∞(s)− ξ̇∞(t)) ds ,

and we have used the fact that
∫ t+h
t

ψt,h(s) ds = 1.
The error term Et,h satisfies

|Et,h| ≤ max
{
ψt,h(s) : s ∈ [0, T ]

}
×

∫ t+h

t

‖ξ̇∞(s)− ξ̇∞(t)‖ ds = ha−1
t,hÊt,h = αt,hÊt,h ,

where αt,h = ha−1
t,h, so αt,h → 1 as h ↓ 0, and Êt,h = 1

h

∫ t+h
t

‖ξ̇∞(s)− ξ̇∞(t)‖ ds . Then

lim sup
j→∞,j∈J

∥∥∥∫ t+h

t

ψt,h(s)ξ̇j(s) ds− ξ̇∞(t)
∥∥∥ ≤ αt,hÊt,h . (46)

To analyze the behavior of the integrals

Ijt,h
def=

∫ t+h

t

ψt,h(s)ξ̇
j
0(s) ds ,

we write ξ̇j0(s) = θj(s)− C, so

Ijt,h = −Ch+
∫ t+h

t

ψt,h(s)θj(s) ds = −Ch+
∫ T

0

ψt,h(s)θj(s) ds = −Ch+
∫

[0,T ]

ψt,hdµ
j .

Hence
Ijt,h → −Ch+

∫
[0,T ]

ψt,h(s) dµ∞(s) as j →∞ . (47)

Write ∫
[0,T ]

ψt,h(s) dµ∞(s) =
∫ T

0

ψt,h(s)θ∞(s) ds+
∫

[0,T ]

ψt,h(s) dµ̂∞(s) ,

where µ̂∞ = µ∞,at + µ∞,sing. Since ξ̇∞0 (s) = θj(s)− C, (47) implies

Ijt,h →
∫

[0,T ]

ψt,h(s)ξ̇∞0 (s) ds+
∫

[0,T ]

ψt,h(s) dµ̂∞(s) as j →∞ . (48)

The integral
∫
[0,T ]

ψt,h(s) dµ̂∞(s) that occcurs in (48) is a nonnegative number, and is bounded above by
max{ψt,h(s) : s ∈ [0, T ]} times µ̂∞(Ut,h), since ψt,h vanishes outside Ut,h. Therefore

0 ≤
∫

[0,T ]

ψt,h(s) dµ̂∞(s) ≤ h2a−1
t,h = hαt,h , (49)

On the other hand, the integral
∫
[0,T ]

ψt,h(s)ξ̇∞0 (s) ds satisfies∫
[0,T ]

ψt,h(s)ξ̇∞0 (s) ds =
∫ t+h

t

ψt,h(s)ξ̇∞0 (s) ds = ξ̇∞0 (t)) ds+ Et,h = ξ̇∞0 (t) + Et,h , (50)
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where

Et,h =
∫ t+h

t

ψt,h(s)(ξ̇∞0 (s)− ξ̇∞0 (t)) ds ,

and we have used the fact that
∫ t+h
t

ψt,h(s) ds = 1.
The error term Et,h satisfies

|Et,h| ≤ max
{
ψt,h(s) : s ∈ [0, T ]

}
×

∫ t+h

t

|ξ̇∞0 (s)− ξ̇∞0 (t)| ds = ha−1
t,hÊt,h = αt,hÊt,h ,

where

Êt,h =
1
h

∫ t+h

t

|ξ̇∞0 (s)− ξ̇∞0 (t)| ds .

It follows from (48), (49), (50), and the bound |Et,h| ≤ αt,hÊt,h, that

lim sup
j→∞,j∈J

∣∣∣Ijt,h − ξ̇∞0 (t)
∣∣∣ ≤ αt,h(h+ Êt,h) . (51)

If we now combine (46) and (51), we find that

lim sup
j→∞,j∈J

∥∥∥Ajt,h−Ξ̇∞(t)
∥∥∥≤αt,h(h+Êt,h+Et,h). (52)

Then (45) implies that

dist(Ξ̇∞(t), FΣ̂(ξ∞(t))) ≤ αt,h(h+Êt,h+Et,h)+lim sup
j→∞

(ω(δj(h))+εj) .

Hence, given any j∗, we have

dist(Ξ̇∞(t), FΣ̂(ξ∞(t))) ≤ αt,h(h+Êt,h+Et,h)+sup{ω(δj(h))+εj : j ≥ j∗} .

Given any positive number β, we can find a positive γ such that ω(s) < β whenever 0 < s ≤ γ, and then find j∗, h∗
such that δj(h) ≤ γ whenever j ≥ j∗ and 0 < h ≤ h∗, and εj < β whenever j ≥ j∗. Then we can pick h such that
0 < h ≤ h∗, and αt,h(h+Êt,h+Et,h) < β. Then dist(Ξ̇∞(t), FΣ̂(ξ∞(t))) < 3β . Since β was arbitrary, we conclude
that dist(Ξ̇∞(t), FΣ̂(ξ∞(t))) = 0, so Ξ̇∞(t) ∈ FΣ̂(ξ∞(t)), because FΣ̂(ξ∞(t)) is closed. Since this is true for almost
all t ∈ [0, T ], and Ξ∞ is absolutely continuous, we have shown that Ξ∞ is an augmented trajectory of Σ̂.

By construction, the ξj converge uniformly to ξ∞. Also, it is clear from (44) that ξ∞0 (0) = 0. To conclude our
proof, we have to show that

lim inf j→∞ inf
{
∆j,∞(t, s) :0≤s≤ t≤T

}
≥0 , (53)

where ∆j,∞(t, s) is the quantity defined in (42). Suppose that lim infj→∞ inf
{
∆j,∞(t, s) :0≤s≤ t≤T

}
<0. Pick a

number β such that β > 0 and lim infj→∞ inf
{
∆j,∞(t, s) : 0≤ s≤ t≤T

}
≤ −3β . Then there exists a subsequence

{Ξj(k)}∞k=1 of {Ξj}∞j=1 such that inf
{
∆j,∞(t, s) : 0≤ s≤ t≤ T

}
≤ −2β for all k. We can then choose, for each k,

members sk and tk of [0, T ] such that sk ≤ tk and(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
−

(
ξ∞0 (tk)− ξ∞0 (sk)

)
≤ −β . (54)

By passing to a subsequence, if necessary, we may assume that the sk and the tk converge to limits s, t. Clearly,
then, s ≤ t.

If s = t, then

ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk) =

∫ tk

sk

ξ̇
j(k)
0 (v) dv =

∫ tk

sk

(
θj(k)(v)− C) dv ≥ −C(tk − sk) ,

so the fact that limk→∞(ξ∞0 (tk)− ξ∞0 (sk)) = 0 implies the inequalities

lim inf
k→∞

((
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
−

(
ξ∞0 (tk)− ξ∞0 (sk)

))
= lim inf

k→∞

(
ξ
j(k)
0 (tk)−ξj(k)0 (sk)

)
− lim
k→∞

(
ξ∞0 (tk)−ξ∞0 (sk)

)
= lim inf

k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
≥ lim inf

k→∞
(−C(tk − sk))

= lim
k→∞

(−C(tk − sk))

= 0 ,
which clearly contradict (54).
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Now assume that s < t. Fix a positive number γ such that 2γ < t− s, and let Φs,t,γ be the set of all continuous
nonnegative functions ϕ : R 7→ R that vanish outside the interval [s + γ, t − γ] and are such that ϕ(v) ≤ 1 for all
v ∈ R. Then

lim inf
k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
= lim inf

k→∞

∫ tk

sk

ξ̇
j(k)
0 (v) dv

= lim inf
k→∞

∫ tk

sk

(θj(k)(v)− C) dv

= lim inf
k→∞

(
− C(tk − sk) +

∫ tk

sk

θj(k)(v) dv
)

= −C(t− s) + lim inf
k→∞

∫ tk

sk

θj(k)(v) dv

≥ −C(t− s) + lim inf
k→∞

∫ tk

sk

ϕ(v)θj(k)(v) dv

= −C(t− s) + lim inf
k→∞

∫
[0,T ]

ϕ(v)dµj(k)(v)

= −C(t− s) + lim
k→∞

∫
[0,T ]

ϕ(v)dµj(k)(v)

= −C(t− s) +
∫

[0,T ]

ϕ(v)dµ∞(v)

≥ −C(t− s) +
∫

[0,T ]

ϕ(v)dµ∞,ac(v)

= −C(t− s) +
∫ t

s

ϕ(v)θ∞(v) dv

=
∫ t

s

ϕ(v)(θ∞(v)− C) dv

=
∫ t

s

ϕ(v)ξ̇∞0 (v) dv ,

where, for the first inequality, we have used the fact that [s+ γ, t− γ] ⊆ [sk, tk] when k is large enough. Therefore

lim inf
k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
≥

∫ t

s

ϕ(v)ξ̇∞0 (v) dv

for every ϕ ∈ Φs,t,γ . Hence

lim inf
k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
≥ sup

{∫ t

s

ϕ(v)ξ̇∞0 (v) dv : ϕ ∈ Φs,t,γ
}

=
∫ t−γ

s+γ

ξ̇∞0 (v) dv = ξ∞0 (t− γ)− ξ∞0 (s+ γ) .

Since γ is arbitrary, we can let γ ↓ 0, and conclude that

lim inf
k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
≥ ξ∞0 (t)− ξ∞0 (s) = lim

k→∞

(
ξ∞0 (tk)− ξ∞0 (sk)

)
,

so lim infk→∞

((
ξ
j(k)
0 (tk) − ξ

j(k)
0 (sk)

)
−

(
ξ∞0 (tk) − ξ∞0 (sk)

))
≥ 0 , contradicting (54). This completes the proof of

(53). ♦

6. Trajectories of steepest descent.

We recall from §2 that MSDΣ̂,V,x denotes the set of all maximal augmented trajectories of Σ̂ from x of steepest
descent with respect to V and that, as explained in Proposition 2.6 and the remarks preceding its statement,
MSDΣ̂,V,x is always nonempty for trivial reasons, because the trivial trajectory Ξtrivx always belongs to SDΣ̂,V,x,
and once we know that SDΣ̂,V,x 6= ∅ it follows immediately from Zorn’s Lemma that SDΣ̂,V,x must have a maximal
element.

The truly nontrivial and useful result is the statement that maximal steepest descent trajectories not only exist
but are “large,” in the sense that they are “right-unbounded.” Precisely, if ξ : I 7→ Ω is a curve, we say that ξ is
right-unbounded if (i) the interval I is open on the right (that is, if τ = sup I, then either (a) τ = +∞ or (b) τ is
finite and does not belong to I), and (ii) if τ is finite, then for every compact subset K of Ω there exists a τK such
that 0 ≤ τK < τ and ξ(t) /∈ K whenever τK < t < τ . (Equivalently, condition (ii) asserts that limt↑τ ξ(t) = ∞Ω,
where ∞Ω is the point at infinity of the one-point compactification of Ω.)
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Theorem 6.1 Let Σ̂ = (Ω, U, f, L) be a locally coercive, locally uniformly continuous augmented control system such
that FΣ̂(x,U) is closed and convex for every x ∈ Ω. Let V : Ω 7→ R be a continuous function that satisfies (13) on
Ω in the viscosity sense. Let x∗ ∈ Ω, and let Ξ = (ξ, ξ0) be a maximal augmented trajectory of Σ̂ from x∗ of steepest
descent with respect to V , defined on an interval I. Then ξ is right-unbounded.

Proof. We assume that the conclusion is not true and derive a contradiction. Pick a Ξ = (ξ, ξ0) ∈ MSDΣ̂,V,x∗
that violates the conclusion. This means, to begin with, that Ξ is defined on a bounded interval I, and, in addition,
this interval is either of the form [0, τ ], with 0 ≤ τ < +∞ (the “right-closed case”), or of the form [0, τ [ , with
0 < τ < +∞ (the “right-open case”). Furthermore, in the right-open case there exist a compact subset K of Ω and
a sequence {tj}∞j=1 such that tj ∈ I and ξ(tj) ∈ K for all j, and limj→∞ tj = τ . In order to treat the right-open and
right-closed cases together, we also choose a compact subset K of Ω and a sequence {tj}∞j=1 in I in the right-closed
case, subject to the only requirements that ξ(t) ∈ K for all t ∈ [0, τ ] and tj → τ as j →∞. (For example, we could
just choose K = {ξ(t) : 0 ≤ t ≤ τ}, tj = τ for all j.) Then in both cases the tj belong to I and converge to τ , and
the ξ(tj) belong to K. In addition, we pick a function η : I 7→ U such that Ξ̇(t) = F (ξ(t), η(t)) for almost all t ∈ I.

Fix a positive number δ such that the compact set
Kδ = {x ∈ Rn : dist(x,K)‖ ≤ δ}

is contained in Ω. Then use the fact that Σ̂ is locally coercive to choose r, C such that r > 1, C > 0, and
‖f(x, u)‖r ≤ L(x, u) + C̃ for all x ∈ Kδ, u ∈ U . Let

V̄ = max{|V (x)| : x ∈ Kδ} .

If ρ = r
r−1 , so that 1

r + 1
ρ = 1, and we define

δ̄(σ)def=2
(
σ1/ρ(2|V̄ |+ (C + 1)σ)1/r + σ

)
,

then δ̄(σ) goes to zero as σ ↓ 0. Therefore we can pick σ such that δ̄(σ) < δ.
Now suppose that we are in the right-open case. Given any j, the point xj = ξ(tj) belongs to K. Let

Sj =
{
t ∈ I : t ≥ tj ∧ (∀s)

(
(tj ≤ s ≤ t) ⇒ ξ(s) ∈ Kδ

)}
.

Then Sj is a subinterval of I, whose left endpoint is tj .

If t, t′ ∈ Sj , and t′ ≤ t, then the steepest descent property of Ξ implies that

ξ0(t) + V (ξ(t)) ≤ ξ0(t′) + V (ξ(t′)) ,

so
ξ0(t)− ξ0(t′) ≤ V (ξ(t))− V (ξ(t′)) ≤ 2|V̄ | ,

since both ξ(t) and ξ(t′) belong to Kδ. Furthermore, the inequality
‖f(ξ(s), η(s))‖r ≤ L(ξ(s), η(s)) + C

is true for all s ∈ Sj , since ξ(s) ∈ Kδ for all such s. Therefore

‖ξ(t)− ξ(t′)‖ =
∥∥∥∫ t

t′
ξ̇(s) ds

∥∥∥
≤

∫ t

t′
‖ξ̇(s)‖ ds

=
∫ t

t′
‖f(ξ(s), η(s))‖ ds

≤ (t− t′)1/ρ
( ∫ t

t′
‖f(ξ(s), η(s))‖r ds

)1/r

≤ (t− t′)1/ρ
( ∫ t

t′
(L(ξ(s), η(s)) + C) ds

)1/r

= (t− t′)1/ρ(C(t− t′) + ξ0(t)− ξ0(t′))1/r

= (t− t′)1/ρ(C(t− t′) + 2|V̄ |))1/r

≤ 1
2
δ̄(t− t′) .

Now pick j so large that τ − tj < σ, and apply the above inequality with t′ = tj . Then

‖ξ(t)− ξ(tj)‖ ≤
1
2
δ̄(σ) ≤ 1

2
δ for all t ∈ Sj . (55)
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Hence, if we let t̄ = sup Sj , it is impossible that t̄ < τ , because if t̄ < τ then t̄ ∈ I, and (55) implies that
‖ξ(t̄)− ξ(tj)‖ ≤ 1

2δ, from which it follows, by continuity, that there exists a positive α such that ‖ξ(t)− ξ(tj)‖ < δ
for t̄ ≤ t ≤ t̄+α; but then ξ(t) ∈ Kδ if t̄ ≤ t ≤ t̄+α, since ξ(t) ∈ K; therefore t̄+α ∈ Sj , contradicting the definition
of t̄.

Therefore t̄ = τ , and this implies that Sj = [tj , τ [ , so ξ(t) ∈ Kδ for all t ∈ [tj , τ [ . Then the bound

L(ξ(s), η(s)) + C ≥ ‖f(ξ(s), η(s))‖r

holds for almost all s ∈ [tj , τ [ , showing in particular that the function

[tj , τ [3 s 7→ ψ(s)def=L(ξ(s), η(s)) + C

which is measurable because L(ξ(s), η(s)) = ξ̇0(s), is nonnegative. Hence, to prove that ψ is Lebesgue-integrable on
[tj , τ [ , it suffices to show that the integrals

∫ t
tj

(L(ξ(s), η(s)) + C) ds, for tj ≤ t < τ , are bounded above by a fixed
constant. But, if tj ≤ t < τ , then∫ t

tj

(L(ξ(s), η(s)) + C) ds = ξ0(t)− ξ0(tj) + C(t− tj) ≤ 2|V |+ Cσ .

Therefore ψ is Lebesgue-integrable on [tj , τ [ , and then ξ̇0 is also Lebesgue-integrable on [tj , τ [ , because ξ̇0 = ψ − C.
Since ξ̇0 is Lebesgue-integrable on [0, tj ], we conclude that ξ̇0 is Lebesgue-integrable on [0, τ [ . Hence the limit
x#

0 = limt↑τ ξ0(t) exists, and the extended function ξ#0 : [0, τ ] 7→ R defined by ξ#0 (t) = ξ0(t) if 0 ≤ t < τ ,
ξ#0 (τ) = x#

0 , is absolutely continuous.
In addition, the bound

‖ξ̇(s)‖r = ‖f(ξ(s), η(s)‖r ≤ L(ξ(s), η(s)) + C = ψ(s) ,

valid on [tj , τ [ , shows that ξ̇ in Lr on [sj , τ [ , so a fortiori ξ̇ is Lebesgue-integrable on [sj , τ [ , and then the limit
x# = limt↑τ ξ(t) exists and belongs to Kδ (because x# = lim`→∞ ξ(t`) and the ξ(t`) belong to Kδ), and the extended
function ξ# : [0, τ ] 7→ Ω defined by ξ#(t) = ξ(t) if 0 ≤ t < τ , ξ#(τ) = x#

0 , is absolutely continuous.
Hence we have constructed an absolutely continuous extension Ξ# = (ξ#, ξ#0 ) of Ξ to the closed interval [0, τ ].

Clearly, Ξ# is also an augmented trajectory of Σ̂ starting at x∗ at time 0, and the fact that Ξ is of steepest descent
with respect to V and V is continuous implies that Ξ# is of steepest descent with respect to V as well. Therefore Ξ
is not maximal, because we have constructed an extension to a strictly larger interval. It follows that the “right-open
case” cannot arise at all.

We now analyze the right-closed case, and show that it cannot arise either. We do this by constructing an
extension Ξ# of Ξ to a Ξ# ∈ MSDΣ̂,V,x∗

defined on the interval [0, τ + σ]. This will, of course, contradict the
assumed maximality of Ξ, and conclude our proof.

To construct Ξ#, we construct ε-approximate augmented trajectories Ξε : [τ, τ + σ] 7→ Ω × R of Σ̂ that are
“ε-approximately of steepest descent,” and such that Ξε(τ) = Ξ(τ). We then pass to the limit as ε ↓ 0, using the
compactness theorem (5.2), and get an exact augmented trajectory Ξ̃ : [τ, τ+σ] 7→ Ω×R of Σ̂ such that Ξ̃(τ) = Ξ(τ),
which is exactly of steepest descent.

Write x# = ξ(τ), x#
0 = ξ0(τ). Fix an ε such that 0 < ε < 1. Let Zε be the set of all triples (I ′,Ξ′, S′) such that

(1) I ′ is a subinterval of [τ, τ + σ] such that τ ∈ I ′,

(2) Ξ′ = (ξ′, ξ′0) : I ′ 7→ Kδ × R is an ε-approximate augmented trajectory of Σ̂,

(3) Ξ′(τ) = (x#, x#
0 ),

(4) S′ is a strongly ε-dense subset of I ′ such that ξ′0(s) + V (ξ′(s)) + ε(t− s) ≥ ξ′0(t) + V (ξ′(t)) for all s, t ∈ S′ such
that s ≤ t.

(We say that a subset S of an interval J is strongly ε-dense if for every t ∈ J there exist s, s′ ∈ S such that s ≤ t ≤ s′

and s′ − s ≤ ε.)

We partially order Zε by stipulating that, if (Ii,Ξi, Si) ∈ Zε for i = 1, 2, then (I1,Ξ1, S1) � (I2,Ξ2, S2) iff I1 ⊆ I2,
Ξ1 is the restriction of Ξ2 to I1, and S1 = S2 ∩ I1.

It is clear that Zε 6= ∅, because the triple ({τ},Ξx#,τ , {τ})—where Ξx#,τ is the map Ξ : {τ} 7→ Ω× R such that
Ξ(τ) = (x#, ξ0(τ))—belongs to Zε. If Z is a totally ordered subset of Zε, we show that Z has an upper bound
(I ′∗,Ξ

′
∗, S

′
∗) in Zε. This conclusion is trivial if Z = ∅, for in that case we can take (I ′∗,Ξ

′
∗, S

′
∗) = ({τ},Ξx#,τ , {τ}).

Assume that Z 6= ∅. Let I ′∗ be the union of the intervals I ′ for all the members (I ′,Ξ′, S′) of Z. Then I ′∗ is clearly
a subinterval of [τ, τ + σ], and τ ∈ I ′. If t ∈ I ′∗, we define Ξ′

∗(t) = Ξ′(t), where (I ′,Ξ′, S′) is any member of Z such
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that t ∈ I. Write Ξ′
∗ = (ξ′∗, ξ

′
0,∗). Then Ξ′

∗ is obviously well defined, and is an ε-approximate augmented trajectory
of Σ̂ such that ξ′∗(τ) = x# and ξ′0,∗(τ) = x#

0 . We then let

S′∗ =
⋃

(I′,Ξ′,S′)∈Z

S′ . (56)

We want to prove that the triple (I ′∗,Ξ
′
∗, S

′
∗) is an upper bound for Z in Zε. If we show that

(I ′∗,Ξ
′
∗, S

′
∗) ∈ Zε , (57)

then the fact that (I ′∗,Ξ
′
∗, S

′
∗) is an upper bound for Z is immediate, so all we really need is to prove (57).

It is evident that the triple (I ′∗,Ξ
′
∗, S

′
∗) satisfies the first three of the four conditions in the definition of Zε. Let

us show that it satisfies the fourth one as well. If t ∈ I ′∗, we can find (I ′′,Ξ′′, S′′) ∈ Z such that t ∈ I ′′. Since S′′
is a strongly ε-dense subset of I ′′, there exist s1, s2 ∈ S′′ such that s1 ≤ t ≤ s2 and s2 − s1 ≤ ε. Then s1 and s2
belong to S′∗, and this establishes that S′∗ is a strongly ε-dense subset of I ′∗. Now, if s1, s2 are members of S′∗ such
that s1 ≤ s2, then we can find (using the fact that Z is totally ordered) a member (I ′,Ξ′, S′) of Z such that s1 and
s2 belong to I ′. It then follows easily that s1 and s2 must belong to S′. Then, if we write Ξ′ = (ξ′, ξ′0), the fact that
s1 ∈ S′, s2 ∈ S′, s1 ≤ s2, and (I ′,Ξ′, S′) ∈ Zε, imply that

ξ′0(s1) + V (ξ′(s1)) + ε(s2 − s1) ≥ ξ′0(s2) + V (ξ′(s2)) .

Hence

ξ′0,∗(s1) + V (ξ′∗(s1)) + ε(s2 − s1) ≥ ξ′0,∗(s2) + V (ξ′∗(s2)) .

Since this is true for any two members s1, s2 of S′∗ such that s1 ≤ s2, we conclude that the fourth condition holds
as well, and the proof of (57) is complete.

We have shown that every totally ordered subset of Zε has an upper bound in Zε. Therefore Zorn’s Lemma
implies that Zε has a maximal element (I ′,Ξ′, S′). We claim that I ′ = [τ, τ + σ]. Suppose this was not true. Then
either

(A) I ′ = [τ, ζ [ for some ζ such that τ < ζ ≤ τ + σ,

or

(B) I ′ = [τ, ζ] for some ζ such that τ ≤ ζ < τ + σ.

We shall exclude both possibilities.

Write Ξ′ = (ξ′, ξ′0). Let Bε = {v ∈ Rn : ‖v‖ ≤ ε}. Let I ′ 3 t 7→ (η′(t), v(t)) ∈ U × Bε be a function such that the
function v(·) is measurable, and the equalities ξ̇′(t) = f(ξ′(t), η′(t)) + v(t) and ξ̇′0(t) = L(ξ′(t), η′(t)) hold for almost
all t ∈ I ′.

Let t ∈ I ′. Then there must exist a t̄ ∈ S′ such that t̄ ≥ t. Also, τ must belong to S′, because τ is the leftmost
point of I ′. Then

ξ′0(τ) + V (ξ′(τ)) + ε(t− τ) ≥ ξ′0(t̄) + V (ξ′(t̄)) ,

so (since ε < 1)

ξ′0(t̄)− ξ′0(τ) ≤ ε(t− τ) + V (ξ′(τ))− V (ξ′(t̄)) ≤ 2|V̄ |+ σ .

We then have (using the fact that ‖v(s)‖ < 1, which is true because ε < 1),∫ t

τ

‖ξ̇′(s)‖ds =
∫ t

τ

‖f(ξ′(s), η′(s)) + v(s)‖ds

≤
∫ t̄

τ

‖f(ξ′(s), η′(s)) + v(s)‖ds

≤
∫ t̄

τ

‖f(ξ′(s), η′(s))‖ds+
∫ t̄

τ

‖v(s))‖ds

≤ (t̄− τ)1/ρ
( ∫ t̄

τ

‖f(ξ′(s), η′(s))‖rds
)1/r

+ t̄− τ

≤ σ1/ρ
( ∫ t̄

τ

(
L(ξ′(s), η′(s)) + C

)
ds

)1/r

+ σ

≤ σ1/ρ
(
ξ′0(t̄)− ξ′0(τ) + C(t̄− τ)

)1/r

+ σ
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≤ σ1/ρ
(
2|V̄ |+ σ + Cσ

)1/r + σ

=
1
2
δ̄(σ)

≤ 1
2
δ .

Also, if we let θ(s) = ξ̇′0(s) + C = L(ξ′(s), η′(s)) + C, then θ is nonnegative and∫ t

τ

θ(s)ds ≤
∫ t̄

τ

θ(s)ds = ξ′0(t̄)− ξ′0(τ) + C(t̄− τ) ≤ 2|V̄ |+ (C + 1)σ .

Since t is an arbitrary member of I ′, the above inequalities imply that the functions ξ̇′ and θ are integrable
on I ′. Since I ′ is bounded, ξ̇′ is integrable as well. This implies, in particular, that the limits limt↑τ+ζ ξ

′(t) and

limt↑τ+ζ ξ
′
0(t) exist. Hence, if (A) holds, we can extend Ξ′ to the closed interval Ĩ ′def= [τ, τ + ζ], and the result is a

curve Ξ̃′ in Rn+1 which is obviously an ε-approximate augmented trajectory of Σ̂. If we then define S̃′ = S′∪{τ+ζ},
then S̃′ is a strongly ε-dense subset of Ĩ ′. Now, if s1, s2 are members of S̃′ such that s1 ≤ s2 we have to prove that
ξ̃′0(s1) + V (ξ̃′(s1)) + ε(s2 − s1) ≥ ξ̃′0(s2) + V (ξ̃′(s2)). This is clearly true if s2 < τ + ζ or if s1 = s2. So the only
remaining case for us to consider is when s1 < s2 = τ + ζ. But in that case we can take a sequence {v`}∞`=1 of points
of I ′ such that v` ↑ τ + ζ as `→∞, and v` > s1 for all `. Then we can pick, for each `, a w` ∈ S′ such that v` ≤ w`.
On the other hand, s1 ∈ S′, since s1 < τ + ζ. Therefore ξ̃′0(s1) + V (ξ̃′(s1)) + ε(w` − s1) ≥ ξ̃′0(w`) + V (ξ̃′(w`)) for all
`. If we let `→∞ and use the continuity of ξ̃′0 and V , we find that

ξ̃′0(s1) + V (ξ̃′(s1)) + ε(s2 − s1) ≥ ξ̃′0(s2) + V (ξ̃′(s2)) ,

as desired. This completes the proof that the extension (Ĩ ′, Ξ̃′, S̃′) of (I ′,Ξ′, S′) is also in Zε, a fact that of course
contradicts the maximality of (I ′,Ξ′, S′) if (A) holds. We have thus derived a contradiction from the assumption
that (A) is true. Hence (A) is excluded.

We are thus left with Case (B), that is, the possibility that I ′ = [τ, τ + ζ] and ζ < σ. We now proceed to exclude
this case. The integral calculation done above shows that∫ τ+ζ

τ

‖ξ̇′(t)‖dt ≤ δ

2
,

so
‖ξ′(τ + ζ)− ξ′(τ)‖ ≤ δ

2
. (58)

Since ξ′(τ) ∈ K, (58) implies that, if q = ξ′(τ + ζ), then dist(q,K) ≤ δ
2 . In particular, q is an interior point of Kδ.

Using Theorem 4.1, we construct sequences {xj}∞j=1, {vj}∞j=1, {λj}∞j=1, {hj}∞j=1, {γj}∞j=1 in Ω, Rn, R, R, and R,
respectively, such that

(1) the inequalities hj > 0, γj > 0, ‖xj − q − hjvj‖ ≤ hjγj , V (xj) ≤ V (q)− hjλj + hjγj , hold for all j,

(2) (vj , λj) ∈ FΣ̂(q, U) for all j,

(3) hj ↓ 0, γj ↓ 0, and xj → q as j →∞.

We let (vj , λj) = FΣ̂(q, uj), uj ∈ U , and write ṽj = h−1
j (xj − q), so that

‖ṽj − vj‖ ≤ γj . (59)
Choose j so large that the following conditions are fulfilled:

hj < ε , (60)

γj <
ε

2
, (61)

‖xj − q‖ < β , (62)

where β is a positive number such that β < δ
2 and ω(β) < ε

2 .
Then

hj‖ṽj‖ ≤ ‖xj − q‖ ≤ β ≤ δ

2
.

Define a new trajectory ξ# : I# 7→ Rn, where

I#def= [τ, τ + ζ + hj ] ,
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by letting

ξ#(s) =
{
ξ′(s) if τ ≤ s ≤ τ + ζ ,
q+(s−τ−ζ)ṽj if τ + ζ ≤ s ≤ τ + ζ + hj ,

and augment it by defining

ξ#0 (s) ={
ξ′0(s) if τ≤s≤τ+ζ ,
q0+

∫ s
τ+ζ

L(ξ#(v), uj) dv if τ+ζ≤s≤τ+ζ+hj ,

where q0 = ξ′0(τ + ζ). Let Ξ# = (ξ#, ξ#0 ). Then Ξ# is clearly absolutely continuous, and its restriction to [τ, τ + ζ]
is an ε-approximate augmented trajectory of Σ̂. If s belongs to [τ + ζ, τ + ζ + hj ], then

‖ξ#(s)− q‖ ≤ hj‖ṽj‖ ≤
δ

2
.

Therefore ξ#(s) ∈ Kδ. Then

Ξ̇#(s) = (vj , L(ξ#(s), uj)) = (f(q, uj), L(ξ#(s), uj)) = FΣ̂(ξ#(s), uj) + (wj(s), 0) ,

where wj(s) = f(q, uj)− f(ξ#(s), uj) .

Since ‖ξ#(s) − q‖ ≤ hj‖vj‖ ≤ β , we have ‖wj(s)‖ ≤ ω(β) ≤ ε . Therefore Ξ# is an ε-approximate augmented
trajectory of Σ̂.

Clearly, ξ#(τ + ζ + hj) = xj . Therefore,

V (ξ#(τ + ζ + hj)) = V (xj)
≤ V (q)− hjλj + hjγj

= V (ξ#(τ + ζ))− hjL(q, uj) + hjγj

= V (ξ#(τ + ζ))−
∫ τ+ζ+hj

τ+ζ

L(ξ#(v), uj) dv −
∫ τ+ζ+hj

τ+ζ

(
L(q, uj)− L(ξ#(v), uj)

)
dv + hjγj

= V (ξ#(τ + ζ)) + ξ#0 (τ + ζ)− ξ#0 (τ + ζ + hj) + E ,

where E = −
∫ τ+ζ+hj

τ+ζ

(
L(q, uj)− L(ξ#(v), uj)

)
dv + hjγj . Then E ≤ hjω(β) + hjγj ≤ εhj . Therefore

V (ξ#(τ + ζ + hj)) ≤ V (ξ#(τ + ζ)) + ξ#0 (τ + ζ)− ξ#0 (τ + ζ + hj) + εhjE ,

that is,
V (ξ#(τ + ζ)) + ξ#0 (τ + ζ) + εhj ≥ V (ξ#(τ + ζ + hj)) + ξ#0 (τ + ζ + hj) . (63)

This last inequality implies that, if we define S# = S′ ∪{τ + ζ + hj} , then we can easily show that S# is a strongly
ε-dense subset of I# such that

V (ξ#(s1)) + ξ#0 (s1) + ε(s2 − s1) ≥ V (ξ#(s2)) + ξ#0 (s2) (64)

whenever s1, s2 ∈ S# and s2 ≥ s1. The strong ε-density follows because S′ is a strongly ε-dense subset of I ′ and
hj < ε, since τ + ζ necessarily belongs to S′. Inequality (64) is clearly true if s1 = s2 or both s1 and s2 belong to
S′. To verify that it holds in the remaining case, that is, when s1 ∈ S′ and s2 = τ + ζ + hj , if suffices to use once
again the fact that τ + ζ ∈ S′, so

V (ξ#(s1)) + ξ#0 (s1) + ε(τ + ζ − s1) ≥ V (ξ#(τ + ζ) + ξ#0 (τ + ζ) . (65)

If we add (63) and (65), and cancel the sum V (ξ#(τ + ζ)) + ξ#0 (τ + ζ) that appears on both sides of the result, we
get

V (ξ#(s1)) + ξ#0 (s1) + ε(τ + ζ + hj − s1) ≥ V (ξ#(τ + ζ + hj)) + ξ#0 (τ + ζ + hj) , (66)

that is,
V (ξ#(s1)) + ξ#0 (s1) + ε(s2 − s1) ≥ V (ξ#(s2)) + ξ#0 (s2) . (67)

It then follows that (I#,Ξ#, S#) belongs to Zε. Since (I ′,Ξ′, S′) � (I#,Ξ#, S#) but (I ′,Ξ′, S′) 6= (I#,Ξ#, S#),
we have arrived at a contradiction, which this time has arisen from the assumption that (B) holds. Hence (B) is
excluded as well.

It now follows that I ′ = [τ, τ + σ]. In other words, we have shown that there exists an ε-approximate augmented
trajectory Ξε = (ξε, ξ0,ε) of Σ̂ which is defined on [τ, τ + σ], and is such that there is a strongly ε-dense subset Sε of
[τ, τ + σ] having the property that
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V (ξε(s1))+ξ0,ε(s1)+ε(s2−s1)≥V (ξε(s2))+ξ0,ε(s2) (68)

whenever s1, s2 ∈ Sε and s1 ≤ s2.
Clearly, the points τ , τ + σ must belong to Sε. If we aplly (68) with s1 = τ , s2 = τ + σ, we find the bound

ξ0,ε(τ + σ)− ξ0,ε(τ) ≤ 2|V̄ |+ σ .

Therefore, if {εj}∞j=1 is a sequence of positive numbers that converges to 0, we can apply Theorem (5.2) with T = σ

and Ξj = (ξj , ξj0) = (ξ̌εj
, ξ̌0,εj

), where ξ̌εj
(s) = ξεj

(s+ τ) and ξ̌0,εj
(s) = ξ0,εj

(s+ τ)− ξ0,εj
(τ) for s ∈ [0, σ. Then,

after passing to a subsequence, we may assume that there exists an augmented trajectory Ξ∞ = (ξ∞, ξ∞0 ) of Σ̂ such
that

(i) ξ∞0 (τ) = 0,

(ii) the sequence {ξj}∞j=1 converges uniformly to ξ∞, and

(iii) lim infj→∞ inf
{
∆j,∞(t, s) :0≤s≤ t≤T

}
≥0, where, if j, j′ ∈ N ∪ {+∞}, we define ∆j,j′ as in (42).

We now show that Ξ∞ is an augmented trajectory of steepest descent of Σ̂ from x# with respect to V . For this
purpose, we pick s1, s2 ∈ [0, σ] such that s1 ≤ s2, and prove that

V (ξ∞(s1)) + ξ∞0 (s1) ≥ V (ξ∞(s2)) + ξ∞0 (s2) . (69)

For this purpose we pick, for each sufficiently large j, points sj1, s
j
2 in Sεj

such that

sj1 ≤ s1 + τ ≤ s1 + εj < sj2 − εj ≤ s2 + τ ≤ sj2 .

(We assume that s1 < s2, because (69) is trivially true if s1 = s2.) Then

V (ξεj (s
j
1))− V (ξεj (s

j
2)) + εj(s

j
2 − sj1) ≥ ξ0,εj (s

j
2)− ξ0,εj (s

j
1) , (70)

that is,

V (ξj(sj1 − τ))− V (ξj(sj2 − τ)) + εj(s
j
2 − sj1) ≥ ξj0(s

j
2 − τ)− ξj0(s

j
1 − τ)

= ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ) + ∆j,∞(sj2 − τ, sj1 − τ)

≥ ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ) + inf{∆j,∞(t, s) : 0 ≤ s ≤ t ≤ σ}
Then

V (ξ∞(s1))− V (ξ∞(s2)) = lim
j→∞

(
V (ξj(sj1−τ))−V (ξj(sj2−τ))+εj(s

j
2−s

j
1)

)
≥ lim inf

j→∞

(
ξj0(s

j
2 − τ)− ξj0(s

j
1 − τ)

)
= lim inf

j→∞

(
ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ) + ∆j,∞(sj2 − τ, sj1 − τ)

)
≥ lim inf

j→∞

(
ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ) + inf{∆j,∞(t, s) : 0 ≤ s ≤ t ≤ σ}

)
= lim

j→∞

(
ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ)

)
+ lim inf

j→∞

(
inf{∆j,∞(t, s) : 0 ≤ s ≤ t ≤ σ}

)
= ξ∞0 (s2)− ξ∞0 (s1) + lim inf

j→∞

(
inf{∆j,∞(t, s) : 0 ≤ s ≤ t ≤ σ}

)
≥ ξ∞0 (s2)− ξ∞0 (s1) .

We have thus proved (69), thereby establishing that Ξ∞ is an augmented trajectory of Σ̂ from x# of steepest descent
with respect to V . If we now concatenate Ξ and Ξ∞ in the obvious way, by defining

ξ#(s) =
{
ξ(s) if 0 ≤ s ≤ τ ,
ξ∞(s− τ) if τ ≤ s ≤ τ + σ ,

ξ#0 (s) =
{
ξ0(s) if 0 ≤ s ≤ τ ,
ξ∞0 (s− τ) + ξ0(τ) if τ ≤ s ≤ τ + σ ,

then Ξ# is an augmented trajectory of Σ̂ from x∗ of steepest descent with respect to V , defined on [0, τ + σ]. This
contradicts the maximality of Ξ, and concludes our proof. ♦
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7. The dynamic programming inequality.

Theorem 7.1 Let Ω be an open subset of Rn, and let f : Ω 7→ Rn, L : Ω 7→ R be continuous maps. Let V : Ω 7→ R
be a continuous function that satisfies

−∇V (x) · f(x)− L(x) ≤ 0 (71)

on Ω in the viscosity sense. Then for every x∗ ∈ Ω there exists a curve ξ in Ω, defined on an interval I that contains
0, such that

(1) ξ is an integral curve of f (that is, ξ is locally absolutely continuous and ξ̇(t) = f(ξ(t)) for almost every t ∈ I,
from which it follows that ξ is continuously differentiable and ξ̇(t) = f(ξ(t)) for every t ∈ I),

(2) ξ(0) = x∗,

(3) V (ξ(s)) ≤ V (ξ(t)) +
∫ t
s
L(ξ(v)) dv whenever s, t ∈ I and s ≤ t,

(4) ξ is right-unbounded.

Proof. Let U be a set consisting of a single point ū. Let Σ̃ be the augmented control system (Ω, U, f̃ , L̃), where
f̃(x, ū) = f(x), L̃(x, ū) = −L(x). Then Σ̃ satisfies all the hypotheses of Theorem 6.1.

Let V = −V . We claim that V satisfies sup{−∇V(x) · f̃(x, u) − L̃(x, u) : u ∈ U} ≥ 0 in the viscosity sense. To
prove this, we have to pick a point x ∈ Ω and a subdifferential p of V at x, and show that sup{−p · f̃(x, u)− L̃(x, u) :
u ∈ U} ≥ 0 , i.e., that

−p · f(x) + L(x) ≥ 0 . (72)
But, if p is a subdifferential of −V at x, and we let π = −p, then it follows that π is a superdifferential of V at x.
Since V satisfies (71) in the viscosity sense, this implies that −π · f(x)−L(x) ≤ 0. But then p · f(x)− L(x) ≤ 0, so
−p · f(x) + L(x) ≥ 0, and (72) has been proved.

We can therefore apply the trivial Proposition 2.6 to the augmented system Σ̃ and the function V, and conclude
that there exists a maximal augmented trajectory Ξ = (ξ, ξ0) of Σ̃ from x∗ of steepest descent with respect to V,
and then use the nontrivial Theorem 6.1 to conclude that ξ is right-unbounded. The fact that ξ is a trajectory of Σ̃
means, of course, that ξ is an integral curve of f . The steepest descent condition says that

V(ξ(s)) ≥ V(ξ(t)) +
∫ t

s

(−L(ξ(v))) dv

whenever 0 ≤ s ≤ t < τ . But this says precisely that

V (ξ(s)) ≤ V (ξ(t)) +
∫ t

s

L(ξ(v)) dv

whenever 0 ≤ s ≤ t < τ . Hence ξ satisfies all the desired properties, and our proof is complete. ♦
The following result is then a trivial corollary of Theorem 7.1.

Theorem 7.2 Let Σ̂ = (Ω, U, f, L) be an n-dimensional augmented system such that the map
Ω 3 x 7→ (f(x, u), L(x, u) is continuous for each u ∈ U . Let V : Ω 7→ R be a continuous function that satis-
fies (14) on Ω in the viscosity sense. Then for every x∗ ∈ Ω and every piecewise constant function η : [0,∞ [ 7→ U
there exists a curve ξ : I 7→ Ω, defined on a subinterval I of [0,∞ [ , such that

(1) 0 ∈ I and ξ(0) = x∗,

(2) ξ is a trajectory for the control η (that is, ξ is locally absolutely continuous and ξ̇(t) = f(ξ(t), η(t)) for almost
every t ∈ I)

(3) V (ξ(s)) ≤ V (ξ(t)) +
∫ t
s
L(ξ(v), η(v)) dv whenever s, t ∈ I and s ≤ t,

(4) ξ is right-unbounded. ♦

Theorem 7.2 has the following immediate consequence.

Theorem 7.3 Let Σ̂ = (Ω, U, f, L) be an n-dimensional augmented system such that the map
Ω 3 x 7→ (f(x, u), L(x, u) is continuous for each u ∈ U . Let V : Ω 7→ R be a continuous function that satis-
fies (14) on Ω in the viscosity sense. Let Ξ(ξ, ξ0) : I 7→ Ω×R be a locally uniquely limiting augmented trajectory of
Σ̂. Then the dynamic programming inequality

V (ξ(s)) ≤ V (ξ(t)) + ξ0(t)− ξ0(s)
holds for all s, t ∈ I such that s ≤ t. ♦
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8. Proof of Theorem 2.9

According to Theorem 7.3, the dynamic programming inequality holds along every almost locally uniquely limiting
augmented trajectory. The hypothesis that every augmented arc has an almost locally uniquely limiting improvement
then implies that the dynamic programming inequality holds along every augmented trajectory. If we apply the
inequality to an augmented arc Ξ that starts at a point x and ends at the target, and use the fact that V = 0 on
the target, we find that V (x) ≤ J(Ξ). Hence V is bounded above by the value function VΣ̂

T .
To prove that V ≥ VΣ̂

T , we pick x ∈ Ω and use Proposition 2.6 to conclude that there exists a maximal augmented
trajectory Ξ = (ξ, ξ0) of Σ̃ from x of steepest descent with respect to V, and then use Theorem 6.1 to conclude that
ξ is right-unbounded. We then invoke our hypotheses to conclude that Ξ ends at the target. Then V (x) ≥ J(Ξ), so
V is bounded below by the value function, and our proof is complete. ♦
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Boston, 1995.

[12] Sussmann, H.J., “From the Brachystochrone problem to the maximum principle.” in Proc. 35th IEEE CDC,
IEEE, New York, 1996, pp. 1588-1594.

[13] Zelikin, M.I., and V.F. Borisov, Theory of Chattering Control with Applications to Astronautics, Robotics,
Economics, and Engineering. Birkhäuser, Boston, 1994.
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