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1. Introduction

The purpose of this note is to present some new results,
together with a number of particularly simple and user-
friendly versions of results obtained in recent years
by the author and M. Malisoff, on the uniqueness
of solutions of the Hamilton-Jacobi-Bellman equation
(HJBE) for deterministic finite-dimensional optimal
control problems under non-standard hypotheses. Our
approach is completely control-theoretic and totally self-
contained, using the systematic construction of special
trajectories of various kinds, and not involving any PDE
methods. We will not assume that the Lagrangian is
positive, or that the dynamics is Lipschitz-continuous.

We will consider autonomous Lagrangian
optimization problems involving a state variable x
which takes values in an open subset Ω of Rn, a control
variable u taking values in a control space U , and a
target set T , which is a closed subset of the closure of
Ω disjoint from Ω itself. The dynamics is given by an
ordinary differential equation

ẋ = f(x, u) , (1)
the cost functional to be minimized is

J =
∫ τ+(ξ)

τ−(ξ)

L(ξ(t), η(t)) dt , (2)

(where τ−(ξ), τ+(ξ) are, respectively, the initial
and terminal times of the trajectory ξ), and the
minimization is supposed to be, for each initial state
x ∈ Ω, over the set AΣ̂

x,T of all pairs Ξ = (ξ, ξ0) such
that

(i) Ξ consists of a trajectory ξ of (1) (i.e., a locally
absolutely continuous function ξ that satisfies
ξ̇(t) = f(ξ(t), η(t)) for almost all t) corresponding
to some U -valued control η, and a “running cost”
function ξ0 corresponding to ξ and η (i.e., a
locally absolutely continuous function ξ0 such that
ξ̇0(t) = L(ξ(t), η(t)) for almost all t);

(ii) ξ starts at x, and “ends at the target” in a sense to
be defined precisely later.

We will refer to a pair Ξ = (ξ, ξ0) for which (i) above
holds as an “augmented trajectory” of our system,
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because it really is a trajectory of the “augmented
control system”

ẋ = f(x, u) , ẋ0 = L(x, u) (3)

obtained from (1) by “adding the cost as an extra
variable” in a well known way. We will write J(Ξ),
rather than just J , for the left-hand side of (2), because
it is easy to see that the natural arguments for our
cost functional J are really augmented trajectories, since
(i) one cannot just regard J as a functional of ξ only,
because the integral of (2) involves the control η as well
as ξ, but on the other hand (ii) the cost is completely
determined once we know ξ and a running cost ξ0,
because in that case L(ξ(t), η(t)) = ξ̇0(t).

The infimum V (x) of the costs J(Ξ) of all augmented
trajectories Ξ ∈ AΣ̂

x,T is the value of our problem at

x. (If the set AΣ̂
x,T is itself empty, then of course

V (x) = +∞.) The function V : Ω 7→ R ∪ {−∞,+∞} is
the value function of our problem.

Our goal is to prove uniqueness theorems, showing
that a viscosity solution of the HJBE that satisfies
an appropriate boundary condition is necessarily the
value function. “Uniqueness” is to be understood as
“uniqueness within a class defined by some additional
properties,” such as the class of all functions that are
continuous and bounded below.

We will work with a class of systems which
is sufficiently general to capture some interesting
phenomena not commonly addressed in the
literature, and at the same time restricted enough
to make it possible to prove strong theorems.
In particular, we will asume that the sets
FΣ̂(x,U) = {(f(x, u), L(x, u)) : u ∈ U} are closed
and convex, but will not require them to be compact,
and will instead impose a “local coerciveness” condition,
according to which, locally, an inequality of the form
‖f(x, u)‖r ≤ L(x, u) + C, with C > 0 and r > 1,
holds uniformly with respect to u. We will also require
f(x, u) and L(x, u) to be continuous with respect to
x, with the continuity being uniform with respect to u
locally in x.

On the other hand, we will most definitely not require
that the dynamics f(x, u) be Lipschitz-continuous with
respect to x, since one of the main purposes of this work
is to clarify the exact role of the Lipschitz-continuity
assumptions often made in the viscosity literature. The
answer we will propose is as follows:

(a) Without any Lipschitz-continuity hypotheses, one
can prove, for continuous viscosity solutions V of
the HJBE, an existence theorem for trajectories,
asserting that, starting at every point of x of Ω,
there is a maximally defined “augmented trajectory
of steepest descent,” that is, a maximally defined
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pair Ξ = (ξ, ξ0) defined on a interval I such
that 0 = min I, and having the property that the
inequality

V (ξ(t)) + ξ0(t) ≥ V (ξ(s)) + ξ0(s) (4)

holds whenever s, t ∈ I and s ≤ t. (This is Theorem
6.1 below.)

(b) As a trivial corollary of the existence of steepest
descent trajectories (applied to −V and −L),
we get the existence of “DPI trajectories”
(where “DPI” is an acronym for “Dynamic
Programming Inequality”), i.e., augmented
trajectories Ξ = (ξ, ξ0) along which the inequality

V (ξ(t)) + ξ0(t) ≤ V (ξ(s)) + ξ0(s) (5)

(that is, the exact opposite of (4)) is satisfied.

(c) The existence result of (b) says that for every
“sufficiently nice” (e.g., piecewise constant) control
η there exists a trajectory of η with the given initial
condition along which the DPI holds. This is
almost, but not quite, what is needed to prove that
V is bounded above by the value function.

(d) The gap between the existence result for DPI
trajectories and what would actually be needed
to prove that V is bounded above by the value
function is that to achieve the latter goal one needs
the DPI to hold for all trajectories, and it is not
enough to have just one DPI trajectory for every
intial condition and every control.

(e) The gap described in (d) clearly does not exist when
there is uniqueness of trajectories for every given
control and initial condition.

(f) In particular, the gap does not exist when, for
every admissible control η, the corresponding time-
varying vector field (x, t) 7→ f(x, η(t)) satisfies a
Lipschitz-Carathéodory condition that guarantees
uniqueness of trajectories.

(g) Naturally, the Lipschitz-Carathéodory condition
can be replaced by weaker conditions that
guarantee uniqueness, such as the requirement that
a bound
〈f(x, η(t))− f(y, η(t)), x− y〉 ≤ k(t)‖x− y‖2 , (6)

with k integrable, hold locally.

(h) Even more generally, the only property that
really matters is that, if we pick a sequence
{ηj}j=1 of piecewise constant controls such that
our augmented trajectory Ξ can be approximated
by augmented trajectories Ξj corresponding to the
ηj—with, say, the same initial condition—then the
Ξj converge to Ξ uniformly no matter how the Ξj
are chosen. We call such trajectories “uniquely
limiting,” and use this concept in the statement of
our main theorem.

The following important issues will not be discussed
here:

(1) Whether the value function itself satisfies the
conditions of our main theorem, i.e., whether it is
a continuous viscosity solution of the HJBE and
whether it is bounded below.

(2) What happens when the sets F (x,U) are not
closed and convex. (This would require considering
relaxed controls, and using trajectories for which
the steepest descent property holds approximately
rather than exactly. It turns out to be
possible to extend our results under fairly general
conditions, provided our system has appropriate
local controllability properties.)

Remark 1.1 The approach followed here owes a great
deal to the book [11] by A.I. Subbotin. We point out,
however, that Subbotin considers viscosity solutions
of PDEs of the form F (x, u(x), Du(x)) = 0, where
the Hamiltonian F (x, u, p) is required to be globally
Lipschitz with respect to the momentum variable p
(cf. Equation (2.2) in page 9 of [11]). A somewhat
weaker hypothesis is also considered later, in which the
Lipschitz requirement is replaced by the condition that
for any Λ > 0 there exists a positive constant µ(Λ) such
that the estimate

|F (x, z, s)− F (x, z, p)| ≤ µ(Λ)(1 + ‖s− p‖)
holds for all s ∈ Rn such that ‖s‖ ≤ Λ and all
p ∈ Rn (cf. page 37 of [11]). In particular, even with
the weakened requirements, these hypotheses are not
sufficient to cover, for example, coercive problems of
the kind discussed here, such as linear quadratic optimal
control. (For example, for the optimal control problem
of minimizing the integral 1

2

∫
(x2 + u2), with a scalar

state x and a scalar control u, and dynamics ẋ = u, the
function F is given by F (x, z, p) = 1

2 (p2−x2). Therefore
F (x, z, s) − F (x, z, p) = 1

2 (s2 − p2) = 1
2 (s + p)(s − p),

and for the desired estimate to be satisfied the sum s+p
would have to be bounded by a constant µ(Λ) for all
s ∈ Rn such that ‖s‖ ≤ Λ and all p ∈ Rn, and such a
bound obviously does not hold. ♦

2. The main theorem

If n is a positive integer, an n-dimensional control
system is a triple Σ = (Ω, U, f) such that Ω (the state
space of Σ) is an open subset of Rn, U (the control space
of Σ) is a nonempty set, and f (the dynamics of Σ) is a
map Ω× U 3 (x, u) 7→ f(x, u) ∈ Rn.

An n-dimensional augmented control system is a
4-tuple Σ̂ = (Ω, U, f, L) such that Σ = (Ω, U, f, L) is
an n-dimensional control system and L (the Lagrangian
of Σ̂) is a map Ω × U 3 (x, u) 7→ L(x, u) ∈ R. (In
that case, the state space, control space, and dynamics
of Σ are also called the state space, control space, and
dynamics of Σ̂.)

An augmented control system Σ̂ = (Ω, U, f, L) is
continuous if the maps Ω 3 x 7→ f(x, u) ∈ Rn and
Ω 3 x 7→ L(x, u) ∈ R are continuous for each fixed
u. We call Σ̂ uniformly continuous on a subset S of Ω
if there exists a function ω : ]0,∞[7→ [0,∞] such that
lims↓0 ω(s) = 0, having the property that

‖f(x, u)− f(y, u)‖+ |L(x, u)− L(y, u)| ≤ ω(‖x− y‖)
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whenever x, y ∈ S and u ∈ U . We call Σ̂ locally
uniformly continuous if it is uniformly continuous on
every compact subset of Ω, and globally uniformly
continuous if it is uniformly continuous on Ω. We
say that Σ̂ is Lipschitz continuous if the maps
Ω 3 x 7→ f(x, u) ∈ Rn and Ω 3 x 7→ L(x, u) ∈ R
are Lipschitz continuous for each fixed u. We call Σ̂
uniformly Lipschitz continuous on a subset S of Ω if
there exists a positive constant C such that

‖f(x, u)− f(y, u)‖+ |L(x, u)− L(y, u)| ≤ C‖x− y‖

whenever x, y ∈ S and u ∈ U . We call Σ̂
locally uniformly Lipschitz continuous if it is uniformly
Lipschitz continuous on every compact subset of Ω, and
globally uniformly Lipschitz continuous if it is uniformly
Lipschitz continuous on Ω.

Remark 2.1 Naturally, the concepts of continuity,
uniform continuity, Lipschitz continuity, and uniform
Lipschitz continuity, also make sense for a control
system Σ = (Ω, U, f), by taking the same definitions
given above and omitting the parts that refer to L.
In order to avoid having to make a similar remark
for other concepts to be introduced in the future, we
adopt the convention that any concept X that we define
for an augmented control system Σ̂ = (Ω, U, f, L) is
automatically understood to apply to a control system
Σ = (Ω, U, f), in the sense that “X of Σ” means “X of
the augmented system Σ̂ = (Ω, U, f, 0).” ♦

The augmented control system Σ̂ = (Ω, U, f, L) is
coercive on a subset S of Ω if there exist real constants
r, A, C, such that A > 0, C > 0, r > 1, and
‖f(x, u)‖r ≤ AL(x, u) + C for all x ∈ S , u ∈ U . (7)

We call Σ̂ locally coercive if it is coercive on every
compact subset of Ω, and globally coercive if it is coercive
on Ω.

Remark 2.2 If Σ̂ is coercive on a set S, then it is
always possible to choose C, r, such that C > 0, r > 1,
and (7) holds with A = 1. Indeed, let A, C, r be such
that A > 0, C > 0, r > 1, and (7) holds. Pick ρ such
that 1 < ρ < r, and lets = ρ

r−ρ . Let x ∈ Ω, u ∈ U .
Then, if ‖f(x, u)‖r−ρ > A, we have

‖f(x, u)‖ρ =
‖f(x, u)‖r

‖f(x, u)‖r−ρ

≤ A−1(AL(x, u) + C)

= L(x, u) +
C

A

≤ L(x, u) +
C

A
+As ,

while on the other hand, if ‖f(x, u)‖r−ρ ≤ A, we find
that

‖f(x, u)‖ρ = (‖f(x, u)‖r−ρ)s

≤ As

≤ A−1‖f(x, u)‖r +As

≤ A−1(AL(x, u) + C) +As

= L(x, u) +
C

A
+As.

Hence (7) holds if r, C, A are replaced by ρ, C
A + As,

and 1. ♦

For an augmented control system Σ̂ = (Ω, U, f, L), we
define a map FΣ̂ : Ω×U 7→ Rn+1 (called the augmented
dynamics of Σ̂) by letting FΣ̂(x, u) = (f(x, u), L(x, u))
for x ∈ Ω, u ∈ U . We say that Σ̂ satisfies the convexity
and upper semicontinuity condition if, for each x ∈ Ω,

FΣ̂(x, U) =
⋂
ε>0

co
( ⋃

{FΣ̂(x′, U) : ‖x′−x‖ ≤ ε}
)
, (8)

where “co” stands for “closed convex hull,” and
FΣ̂(x,U)def= {(f(x, u), L(x, u)) : u ∈ U}.

Remark 2.3 If Σ̂ = (Ω, U, f, L) is locally uniformly
continuous, then Σ̂ satisfies the convexity and upper
semicontinuity condition if and only if the set FΣ̂(x, U)
is closed and convex for every x ∈ Ω. Indeed, the
“only if” assertion is trivial, since the right-hand side
of (8) is obviously closed and convex. To prove the
“if” part, we fix x ∈ Ω and assume that FΣ̂(x,U) is
closed and convex. We choose a δ such that δ > 0 and
Bδ(x)

def= {x′ ∈ Rn : ‖x′ − x‖ ≤ δ} ⊆ Ω and a func-
tion ω :]0,∞[7→ [0,∞] such that lims↓0 ω(s) = 0 and
‖FΣ̂(y, u)−FΣ̂(z, u)‖ ≤ ω(‖y−z‖) whenever u ∈ U and
y, z ∈ Bδ(x). We then pick

v ∈
⋂
ε>0

co
( ⋃

{FΣ̂(x′, U) : ‖x′ − x‖ ≤ ε}
)

and prove that v ∈ FΣ̂(x,U). We let εk = 2−k, and

use the fact that v ∈ co
( ⋃

{FΣ̂(′, U) : ‖x′ − x‖ ≤ εk}
)

to find, for each sufficiently large k, a member vk
of the convex hull of

⋃
{FΣ̂(x′, U) : ‖x′ − x‖ ≤ εk}

such that ‖v − vk‖ < εk. We then write
vk =

∑n+1
j=0 αk,jFΣ̂(xk,j , uk,j), where the xk,j belong to

Ω and satisfy ‖xk,j −x‖ ≤ εk, the uk,j belong to U , and
the αk,j are nonnegative and satisfy

∑n+1
j=0 αk,j = 1.

Then ‖FΣ̂(x, uk,j) − FΣ̂(x, uk,j)‖ ≤ ω(εk). Therefore,
if we let wk =

∑n+1
j=0 αk,jFΣ̂(x, uk,j), we have

‖wk − vk‖ ≤ ω(εk). Hence wk → v as k → ∞.
Since FΣ̂(x,U) is convex, the wk belong to FΣ̂(x, U).
Since FΣ̂(x, U) is closed, v ∈ FΣ̂(x, U), and the proof is
complete. ♦

A target for an augmented control system
Σ̂ = (Ω, U, f, L) is a closed subset T of Rn such
that T ⊆ Closure Ω and T ∩ Ω = ∅.

A trajectory of Σ̂ = (Ω, U, f, L) is a locally absolutely
continuous curve

I 3 t 7→ ξ(t) ∈ Ω , (9)
defined on a nonempty subinterval I of R, having the
property that ξ̇(t) ∈ f(ξ(t), U) for almost every t ∈ I.
An augmented trajectory of Σ̂ is a locally absolutely
continuous curve

I 3 t 7→ Ξ(t) = (ξ(t), ξ0(t)) ∈ Ω× R , (10)
defined on a subinterval I of R, having the property that
Ξ̇(t) ∈ FΣ̂(ξ(t), U) for almost every t ∈ I.

The initial time, or starting time of a trajectory ξ
(resp. an augmented trajectory Ξ = (ξ, ξ0)) with domain
I is the time τ−(ξ)def= min I (resp. τ−(Ξ)def= min I)), if
the minimum exists, i.e., if I is bounded below and
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its infimum belongs to I. If the initial time of ξ

(resp. Ξ) exists, then (i) the point x−(ξ)def= ξ(τ−(ξ))
(resp. x−(Ξ)def= ξ(τ−(Ξ))) is the starting point, or initial
point, of ξ (resp. Ξ), and (ii) the ordered pair
∂−(ξ)def=(τ−(ξ), x−(ξ)) (resp. ∂−(Ξ)def=(τ−(Ξ), x−(Ξ)))
is the initial condition of ξ (resp. Ξ). If ∂−(ξ) = (t, x)
(resp. ∂−(Ξ) = (t, x)), we say that ξ (resp. Ξ) starts at
x at time t.

If T is a target for Σ̂ = (Ω, U, f, L), then a trajectory
ξ or augmented trajectory Ξ = (ξ, ξ0) with domain I
ends at T if the limit

ξ(↑)def= lim
t↑sup I

ξ(t)

exists and belongs to T .
For each x ∈ Ω, we let AΣ̂

x,T be the set of all
augmented trajectories Ξ = (ξ, ξ0) of Σ̂ such that

(i) ∂−(Ξ) = (0, x),

(ii) ξ0(0) = 0,

(iii) Ξ ends at the target,

(iv) the limit ξ0(↑)
def= limt↑sup domain Ξ ξ0(t) exists.

If Ξ = (ξ, ξ0) ∈ AΣ̂
x,T then the cost of Ξ is the number

J(Ξ)def= ξ0(↑) . (11)

The value function of the optimal control problem
defined by Σ̂ and the target T is the function
VΣ̂
T : Ω ∪ T 7→ R ∪ {−∞,+∞} given by

VΣ̂
T (x) =

{
inf{J(Ξ) : Ξ ∈ AΣ̂

x,T } if x ∈ Ω
0 if x ∈ T .

If V : Ω 7→ R is a function, then an augmented
trajectory of Σ̂ of steepest descent with respect to V is
an augmented trajectory Ξ = (ξ, ξ0) of Σ̂ such that

ξ0(s) + V (ξ(s)) ≥ ξ0(t) + V (ξ(t))
whenever s, t ∈ domainΞ and s ≤ t . (12)

We use SDΣ̂,V to denote the set of all augmented
trajectories of Σ̂ of steepest descent with respect to V ,
and SDΣ̂,V,x to denote the set of all Ξ ∈ SDΣ̂,V such
that ∂−(Ξ) = (0, x).

If x ∈ Ω, a maximal augmented trajectory of Σ̂ from
x of steepest descent with respect to V is a Ξ ∈ SDΣ̂,V,x

that cannot be extended to a Ξ̃ ∈ SDΣ̂,V,x defined on
an interval which is strictly larger that the domain of
Ξ. We use MSDΣ̂,V,x to denote the set of all maximal
augmented trajectories of Σ̂ from x of steepest descent
with respect to V .

Remark 2.4 We have set up our definitions in such a
way that the notion of “maximal augmented trajectory
of steepest descent” always means “maximal within the
class SDΣ̂,V,x of augmented trajectories Ξ of steepest
descent with initial condition ∂−(Ξ) = (0, x), for a
fixed x ∈ Ω.” (In other words, there is no such thing
as a “maximal augmented trajectory;” there are only
“maximal augmented trajectories from a given point

x.”) Since all the members of SDΣ̂,V,x start at time
0 at the point x, the only way that a Ξ ∈ SDΣ̂,V,x,
defined on an interval I (that necessarily starts at time
0), could fail to belong to MSDΣ̂,V,x, would be for Ξ
to be “extendable to the right,” that is, such that there
exists an extension Ξ̃ ∈ SDΣ̂,V,x which is defined on
an interval Ĩ that also starts at 0 and is strictly larger
than I. Naturally, it may also happen that Ξ can be
extended on the left, to an augmented trajectory Ξ̂ of
steepest descent defined on an interval Î = ]-ε, 0]∪ I for
some positive ε. But such an extension will of course no
longer start at time 0, so its existence does not affect
the possibility that Ξ might belong to MSDΣ̂,V,x. ♦

Definition 2.5 . If Ω is an open subset of Rn, and
ξ :I 7→Ω is a curve, we say that ξ is right-unbounded if
(i) the interval I is open on the right (that is, if

τ = sup I, then either (a) τ = +∞ or (b) τ is finite
and does not belong to I),

and
(ii) if τ is finite, then for every compact subset K of

Ω there exists a τK such that 0 ≤ τK < τ and
ξ(t) /∈ K whenever τK < t < τ .

(Equivalently, condition (ii) asserts that
limt↑τ ξ(t) = ∞Ω, where ∞Ω is the point at infinity of
the one-point compactification of Ω.) ♦

The following observation is completely trivial given
our definitions, but we state it explicitly as a separate
result for future reference. We emphasize that this
trivial result is valid under no technical hypotheses
whatsoever on Σ̂ or V . The reader is warned that the
result is not a true “existence theorem” for trajectories
of steepest descent, even though at first sight it may
appear to be, because the member Ξ of MSDΣ̂,V,x

whose existence it asserts could very well turn out
to be the trivial trajectory Ξtrivx , where Ξtrivx is the
map Ξ : {0} 7→ Ω× R such that Ξ(0) = (x, 0). The
true “existence theorem,” yielding the existence of
a nontrivial maximal trajectory of steepest descent
and, in fact, asserting the stronger conclusion that
every maximal trajectory of steepest descent is right-
unbounded in the sense of Definition 2.5. This will
be proved later (cf. Theorem (6.1) and, naturally, will
depend on our technical hypotheses on Σ̂ and V .

Proposition 2.6 If Σ̂ = (Ω, U, f, L) is an augmented
control system, V : Ω 7→ R is a function, and
x ∈ Ω, then the set MSDΣ̂,V,x of maximal augmented
trajectories of Σ̂ from x of steepest descent with respect
to V is nonempty.

Proof. Fix x. Let Z be the set of all pairs (I,Ξ)
such that I is a subinterval of [0,∞[, 0 ∈ I, and
Ξ = (ξ, ξ0) : I 7→ Ω× R is an augmented trajectory of
Σ̂ which is of steepest descent with respect to V and
such that ξ(0) = x. We partially order Z by stipulating
that, if (Ii,Ξi) ∈ Z for i = 1, 2, then (I1,Ξ1) � (I2,Ξ2)
iff I1 ⊆ I2 and Ξ1 is the restriction of Ξ2 to I1.

It is clear that Z 6= ∅, because the pair
({0},Ξtrivx )—where Ξtrivx is the map defined above,
in the paragraph preceding the statement of our
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proposition—belongs to Z. If Z is a totally ordered
subset of Z, we show that Z has an upper bound (I∗,Ξ∗)
in Z. This conclusion is trivial if Z = ∅, for in that
case we can take (I∗,Ξ∗) = ({0},Ξtrivx ). Assume that
Z 6= ∅. Let I∗ be the union of the intervals I for all the
members (I,Ξ) of Z. Then I∗ is obviously a subinterval
of [0,∞[, and 0 ∈ I. If t ∈ I∗, we define Ξ∗(t) = Ξ(t),
where (I,Ξ) is any member of Z such that t ∈ I. Write
Ξ∗ = (ξ∗, ξ0,∗). Then Ξ∗ is obviously well defined, and
is an augmented trajectory of Σ̂ such that ξ∗(0) = x.
If t ∈ I∗, then we can pick (I,Ξ) ∈ Z such that t ∈ I,
and then Ξ∗(s) = Ξ(s) for all s ∈ I, and in particular
for all s ∈ [0, t], since [0, t] ⊆ I. Furthemore, if we
write Ξ = (ξ, ξ0), then the fact that Ξ ∈ SDΣ̂,V implies
that V (x) ≥ ξ0(t) + V (ξ(t)) = ξ0,∗(t) + V (ξ∗(t)). Since
t is an arbitrary member of I∗, we have shown that
Ξ∗ ∈ SDΣ̂,V . Therefore (I∗, ξ∗) ∈ Z. Furthermore,
it is clear that (I∗,Ξ∗) is an upper bound for Z. So we
have shown that every totally ordered subset of Z has an
upper bound, and that Z 6= ∅. Therefore Zorn’s Lemma
implies that Z has a maximal element (I∗,Ξ∗). Clearly,
such a maximal element is a member of MSDΣ̂,V,x, and
our proof is complete. ♦

An augmented arc is an augmented trajectory whose
domain is a compact interval. If Ξ = (ξ, ξ0) is an
augmented arc with domain [a, b], then an improvement
of Ξ is an augmented arc Ξ′ = (ξ′, ξ′0), with domain
[a′, b′], such that ξ′(a′) = ξ(a), ξ′(b′) = ξ(b), and
ξ′0(b

′)− ξ′0(a
′) ≤ ξ0(b)− ξ0(a).

If Σ̂ = (Ω, U, f, L) is an augmented control system,
then an augmented arc Ξ = (ξ, ξ0) of Σ̂ with domain
[a, b] is uniquely limiting if there exists a sequence
{ηj}∞j=1 of piecewise constant functions ηj : [a, b] 7→ U
such that

(*) if {Ξj}∞j=1 is an arbitrary sequence of maximally
defined augmented trajectories of Σ̂ such that
a ∈ domain(Ξj) and Ξj(a) = Ξ(a) for every j,
then [a, b] ⊆ domain(Ξj) if j is large enough, and
Ξj → Ξ uniformly on [a, b] as j →∞.

Example 2.7 Suppose Ξ = (ξ, ξ0) is an augmented arc
of Σ̂ with domain [a, b] such that

(#) there exist a positive number δ, a function
η : [a, b] 7→ U , and a function ϕ : [a, b] 7→ [0,∞],
such that

(i) Ξ̇(t) =
(
f(x, η(t)), L(x, η(t))

)
for almost

every t ∈ [a, b],

(ii) the map t 7→
(
f(x, η(t)), L(x, η(t))

)
, on the

compact set

Ix
def= {t : a ≤ t ≤ b ∧ ‖x− ξ(t)‖ ≤ δ},

is measurable for each x ∈ Ω,

(iii) the map x 7→
(
f(x, η(t)), L(x, η(t))

)
, on the

compact set

It
def= {x ∈ Ω : ‖x− ξ(t)‖ ≤ δ},

is measurable for each t ∈ [a, b],

(iv) ϕ is integrable,
(v) the inequality〈

f(x, η(t))−f(x′, η(t)), x−x′
〉
≤ ϕ(t)‖x−x′‖2

holds whenever t ∈ [a, b], ‖x − ξ(t)‖ ≤ δ, and
‖x′ − ξ(t)‖ ≤ δ,

(vi) the inequality |L(x, η(t))| ≤ ϕ(t) holds
whenever t ∈ [a, b] and ‖x− ξ(t)‖ ≤ δ.

Then Ξ is uniquely limiting. The proof is essentially as
follows. By dividing [a, b] into small intervals, we can
assume that there is a fixed compact ball B such that
B ⊆ Ω, ξ is entirely contained in the interior of B, and
the bound of (v) holds whenever t ∈ [a, b] and x, x′ ∈ B.
We then write Fu(x) = (f(x, u, L(x, u)) for each x ∈ B,
u ∈ U , and observe that the set F = {F η(t) : t ∈ [a, b]}
is a subset of the separable Banach space C0(B,Rn+1).
Then [a, b] 3 t 7→ F η(t) is an L1 C0(B,Rn+1)-valued
map. Therefore one can approximate this map in L1

by piecewise constant F-valued maps. In other words,
one can find a sequence {ηj}∞j=1 of piecewise constant
G-valued functions (where G = {η(t) : t ∈ [a, b]}), and
integrable functions kj : [a, b] 7→ [0,+∞], such that

‖f(x, η(t))−f(x, ηj(t))‖+|L(x, η(t))−L(x, ηj(t))|≤kj(t)

whenever a ≤ t ≤ b, x ∈ B, and j ∈ N, and
limj→∞

∫ b
a
kj(t) dt = 0. Then, if a ≤ c ≤ d ≤ b, and

ζ : [c, d] 7→ B, θ : [c, d] 7→ B, are trajectories of η, ηj ,
respectively, Gronwall’s inequality yields the bound

‖ζ(t)− θ(t)‖ ≤ e
∫ b

a
ϕ(s)ds

(
‖kj‖L1 + ‖ζ(c)− θ(c)‖

)
if t ∈ [c, d]. If we apply this with c = a and ζ = ξ,
letting θ be any trajectory ξj of ηj starting at ξ(a) at
time a, and defined on some subinterval [a, d] of [a, b],
we see that, as long as j is large enough, the maximum
of the ‖ξ(t) − ξj(t)‖ is bounded by a small constant.
This guarantees that ξj actually exists on the whole
interval [a, b], and then the Gronwall bound implies
that ξj → ξ uniformly as j → ∞. Then the integrals∫ t
a
L(ξj(s), ηj(s)) ds differ from

∫ t
a
L(ξj(s), η(s)) ds by

less than ‖kj‖L1 , in view of the bound

|L(x, η(t))− L(x, ηj(t))| ≤ kj(t) ,

and
∫ t
a
L(ξj(s), η(s)) ds→

∫ t
a
L(ξ(s), η(s)) ds as j →∞,

because L(ξj(s), η(s)) → L(ξ(s), η(s)) for each s, and
|L(ξj(s), η(s))| ≤ ϕ(s). ♦

An augmented trajectory Ξ = (ξ, ξ0) with domain I is
locally uniquely limiting if for every compact subinterval
I ′ of I the restriction of Ξ to I ′ is uniquely limiting.

An augmented trajectory Ξ = (ξ, ξ0) with domain I is
almost uniquely limiting if there exists a finite subset B
of I such that the restriction of Ξ to every subinterval
of I\B is locally uniquely limiting.

If Ω is an open subset of Rn, we say that a function
V : Ω 7→ R satisfies the inequality

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} ≥ 0 (13)
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on Ω in the viscosity sense if

(V+) whenever x ∈ Ω and p ∈ Rn is a
subdifferential of V at x, it follows that

sup{−〈p, f(x, u)〉 − L(x, u) : u ∈ U} ≥ 0 .

(We recall that, if Ω is open in Rn, then a subdifferential
of a function V : Ω 7→ R at a point x̄ ∈ Ω is a vector
p ∈ Rn such that

lim inf
x→x̄

V (x)− V (x̄)− p · (x− x̄)
‖x− x̄‖

≥ 0 . )

Similarly, we say that V satisfies the inequality

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} ≤ 0 (14)

on Ω in the viscosity sense if

(V−) whenever x ∈ Ω and p ∈ Rn is a
superdifferential of V at x, it follows that

sup{−〈p, f(x, u)〉 − L(x, u) : u ∈ U} ≤ 0 .

(A superdifferential of V at x∗ is a vector p such that
−p is a subdifferential of −V at x∗.)

We say that V satisfies the equation

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} = 0 (15)

on Ω in the viscosity sense if it satisfies (13) and (14) in
the viscosity sense.

Remark 2.8 The definition of “viscosity solution”
given here is known to be equivalent to the more
common one involving test functions, cf. [1]. ♦

Our main result is the following theorem:

Theorem 2.9 Let Σ̂ = (Ω, U, f, L) be an augmented
control system, let T be a target for Σ̂, and let
V : Ω ∪ T 7→ R be a function. Assume that

(1) Σ̂ is locally uniformly continuous, locally coercive,
and such that FΣ̂(x, U) is closed and convex for
every x ∈ Ω.

(2) V is continuous.

(3) V satisfies (15) on Ω in the viscosity sense.

(4) V vanishes on T .

(5) Every augmented arc has an almost locally uniquely
limiting improvement.

(6) Whenever x ∈ Ω, Ξ = (ξ, ξ0) ∈ MSDΣ̂,V,x, and ξ

is right-unbounded, it follows that Ξ ∈ AΣ̂
x,T .

Then V ≡ VΣ̂
T .

Remark 2.10 Condition (6) was essentially introduced
by M. Malisoff, cf. especially [9]. ♦

3. Examples

Example 3.1 (Linear-quadratic optimal control.)
Consider the standard linear-quadratic optimal control
problem, in which x, u take values in Rn, Rm,
respectively, the dynamical law is

ẋ = Ax+Bu , (16)
the Lagrangian is given by

L(x, u) = x†Rx+ u†Su ,

the square matrices R, S are strictly positive definite,
and the pair (A,B) is stabilizable. We take the target
set T to consist of the origin of Rn. (In order to satisfy
the condition that FΣ̂(x,U) is convex for every x ∈ Ω,
we add a new scalar nonnegative control variable v,
in such a way that the dynamical law (16) remains
unchanged but the Lagrangian L is replaced by L̃, where
L̃(x, u, v)def=L(x, u) + v.) The crucial technical issue
here is the fact that the Lagrangian is not bounded
away from zero. The hypotheses of our main theorem
(including the coerciveness, which follows from the
positive definiteness of S) are easily verified as long as
V is bounded below. The only nontrivial point is the
verification of condition (6). To prove that this holds,
let Ξ : [0, τ [ 7→ Rn × R be a right-unbounded maximal
trajectory of steepest descent with respect to V that
does not end at the target, and write Ξ = (ξ, ξ0) in
the usual way. Then τ has to be infinite, because if
τ was finite then the boundedness of the cost (arising
from the fact that Ξ = (ξ, ξ0) is of steepest descent
and V is bounded below) would trivially imply an L2

bound on the control, from which it would follow that
Ξ can be extended to the closed interval [0, τ ], and
then the assumption that Ξ does not end at the target
would enable us to use Proposition 2.6 and Theorem 6.1
(applied with Ω = Rn\{0}) to extend Ξ even further,
contradicting maximality. So τ is infinite. On the other
hand, the fact that V is bounded below and Ξ is of
steepest descent implies that the integral∫ ∞

0

(
ξ(t)†Rξ(t) + η(t)†Sη(t)

)
dt

is finite, if η is an open-loop control that generates Ξ.
But then ξ and η are square-integrable, so the condition
that ξ̇ = Aξ+Bη implies that ξ is square-integrable and
has a square-integrable derivative, and then Barbalat’s
lemma implies that ξ ends at the target, as desired. ♦

Example 3.2 (Fuller’s problem, cf., e.g., [13].) This
is the optimal control problem for the dynamical law

ẋ = y ,

ẏ = u ,

with control constraint −1 ≤ u ≤ 1. The target
set T consists of the origin of R2. The Lagragian
is L(x, y, u) = x2. The crucial technical issue here
is the fact that the Lagrangian is not bounded away
from zero, and in fact has a whole line of zeros. The
hypotheses of our main theorem are easily verified as
long as V is bounded below. The only nontrivial point
is the verification of condition (6). To prove that this
holds, let Ξ : [0, τ [ 7→ R3 be a right-unbounded maximal
trajectory of steepest descent with respect to V that
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does not end at the target, and write Ξ = (ξ, ξ0) in
the usual way. Then τ has to be infinite, because if τ
was finite then the boundedness of the control would
trivially imply that Ξ can be extended to the closed
interval [0, τ ], and then the assumption that Ξ does not
end at the target enables us to use Proposition 2.6 and
Theorem 6.1 (applied with Ω = R2\{(0, 0)}) to extend Ξ
even further, contradicting maximality. So τ is infinite.
On the other hand, the fact that V is bounded below
and Ξ is of steepest descent implies that the integral∫∞
0
x(t)2dt is finite, if we write ξ(t) = (x(t), y(t)). But

then x(·) is a square-integrable function on [0,∞ [ whose
second derivative is bounded. By a straightforward
generalization of Barbalat’s lemma, this implies that
both x(·) and y(·) go to zero, i.e., that ξ ends at the
target, as desired. ♦

Example 3.3 (The reflected brachistochrone problem.)
This is the minimum time problem for the dynamical
law

ẋ = u
√
|y| ,

ẏ = v
√
|y| ,

with control constraint u2 + v2 ≤ 1. The target set T
consists of a single point B ∈ R2. The crucial technical
issue here is the fact that the dynamical law is not
Lipschitz-continuous with respect to the state. The
hypotheses of our main theorem are easily verified. The
only nontrivial point is the verification of condition (5).
To prove that this holds, we pick an arbitrary integral
arc ξ : [a, b] 7→ R2, and observe that either (i) ξ(t)
never belongs to the x axis X = {(x, y) ∈ R2 : y = 0} or
(ii) there exist t−, t+ ∈ [a, b] such that t− ≤ t+, ξ(t) /∈ X
whenever a ≤ t < t− or t+ > t ≤ b, ξ(t−) ∈ X, and
ξ(t+) ∈ X. If (i) holds, then ξ satisfies the conditions of
Example 2.7, so ξ is uniquely limiting. If (ii) holds and
t+ = t−, then the restriction of ξ to each of the intervals
[a, t− [+,, ] t+, b], is locally uniquely limiting, so ξ is
almost locally uniquely limiting. Finally, if (ii) holds
and t+ < t−, then the restriction ξ̃ of ξ to the interval
[t−, t+] is such that the set S = {t ∈ [a, b] : ξ(t) /∈ X} is
the union of a finite or countable infinite collection I
of pairwise disjoint relatively open subintervals of [a, b].
If I ∈ I, then the restriction ξ̃I of ξ̃ to I is entirely
contained in the open upper half-plane or in the open
lower half-plane. By reflecting ξ̃I with respect to X,
if necessary, we may assume that ξ̃I is entirely con-
tained in the open upper half-plane for every I ∈ I.
Then ξ̃ is a trajectory of our system entirely contained
in the closed upper half-plane. It is well known that
the problem in the closed upper half-plane H+ is the
famous “brachistochrone problem,” whose time-optimal
trajectories ζ : [α, β] 7→ H+ are cycloids such that ζ(t)
is an interior point of H+ whenever α < t < β. It
follows that we can always replace ξ̃ by a cycloid ζ,
thereby obtaining an almost locally uniquely limiting
improvement of ξ. ♦

Example 3.4 (An example with a continuous
non-Lipschitz dynamics where uniqueness fails.)
Let ϕ : [0, 1] 7→ R be a nonnegative continuous function
such that (a) the set {x ∈ [0, 1] : ϕ(x) = 0} is exactly
the Cantor set, and (b)

∫ 1

0
dx
ϕ(x) <∞. (For example, we

may take ϕ to be given by ϕ(x) = dist(x,C)ρ, where

C is the Cantor set and ρ is a positive number such
that ρ < 1 − log

3
2. An explicit calculation shows that∫ 1

0
dx
ϕ(x) = (1 − ρ)−12ρ

∑∞
j=1 θ

j , where θ = 2
3 × 3ρ. Our

choice of ρ guarantees that θ < 1, so the integral is
finite.) Extend ϕ to a function defined on R by making
it periodic of period 1. Then consider the optimal
control problem on R whose dynamics is ẋ = uϕ(x),
|u| ≤ 1, and where the goal is to reach the origin
in minimum time. It is easy to see that the optimal
trajectory from each point x exists and is obtained
by “moving towards the target as fast as possible.”
Precisely, this means the we use the control u = −1
as long as we are to the right of the origin, and we
use u = 1 if we are to the left. This, however, does
not suffice to specify the optimal trajectories, because
of the lack of uniqueness of solutions. The complete
specification of the optimal trajectories is as follows.
Suppose x̄ < 0. Define a function τ : [x̄, 0] 7→ R by
letting τ(x) =

∫ x
x̄

dy
ϕ(y) . Then τ is aboslutely continuous,

strictly increasing, and such that τ(x̄) = 0. Therefore
τ maps the interval [x̄, 0] homeomorphically onto the
interval [0, τ(0)]. Let ξ be the inverse function, so ξ
maps [0, τ(0)] homeomorphically onto [x̄, 0]. Then ξ is
absolutely continuous, and ξ̇(t) = ϕ(ξ(t)) for almost all
t ∈ [0, τ(0)]. So ξ is a trajectory of our system which
goes from x̄ to 0 in time τ(0), and it is easy to see that
ξ is the optimal trajectory from x̄ to 0. It follows that
optimal time to go from x̄ to 0 is τ(0), that is,

∫ 0

x̄
dy
ϕ(y) .

A similar contruction applies when x̄ > 0. Then the
value function V̄ for our problem is given by

V̄ (x) =
∫ max(x,0)

min(x,0)

dy

ϕ(y)
.

The HJBE for our problem is
|V ′(x)|ϕ(x)− 1 = 0 . (17)

The function V̄ is a solution of this equation on R\{0}
in the viscosity sense. (This follows from the fact
that, for problems such as this one, the value function
is automatically a viscosity solution of the HJBE. In
addition, one can also verify this directly. Let O be the
set of points where ϕ(x) > 0. Then on O the func-
tion V̄ is smooth, and its derivative is 1

ϕ when x < 0,
and − 1

ϕ when x > 0, so (17) holds. At points x where
ϕ(x) = 0, the viscosity solution requirements say that
−1 ≥ 0 whenever p is a subdifferential of V̄ at x, and
−1 ≤ 0 whenever p is a superdifferential of V̄ at x. The
second condition is trivially true. To verify the first
condition, we need to show that it is satisfied vacuously,
i.e., that there are no subdifferentials of V̄ at x. But this
easy. Suppose, say, that x < 0. The difference quotient
1
h (V (x+ h)− V (x)) is equal, if h > 0, to − 1

h

∫ x+h
x

dy
ϕ(y) ,

which is bounded above by ζ(h) = − 1
max{ϕ(y):y∈[x,x+h]} .

Since ϕ(x) = 0, ζ(h) goes to −∞ as h→ 0. This shows
that the right derivative of V̄ at x is equal to ∞, from
which it follows easily that there exist no subdifferentials
of V̄ at x. A similar argument shows that if x > 0 the
left derivative of V̄ at x is equal to +∞, from which it
follows once again that there are no subdifferentials of
V̄ at x.

We now show that there exist nonnegative continuous
functions V̂ : R 7→ R other than V̄ that satisfy the HJBE
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on R\{0} and are such that V̂ (0) = 0. To see this,
we let W be a continuous monotonically nondecreasing
real-valued function on [0,∞ [ such that (a) W (0) = 0,
(b) W is constant on each connected component of the
set {x : x > 0 ∧ ϕ(x) > 0}, and (c) W (x) < W (y)
whenever 0 ≤ x < y and the interval [x, y] contains a
zero of ϕ. (Such a function is easily constructed using
the well known Cantor function.) We then extend W
to all of R by defining W (x) = W (−x) when x < 0.
Using W , we define V̂ = V̄ +W . Then V̂ is continuous,
V̂ (0) = 0, and V̂ (x) > V̄ (x) whenever x 6= 0. Let us
show that V̂ is also a solution of the HJBE for our
problem on R\{0}. Near points x such that ϕ(x) > 0,
the functions V̄ and V̂ differ by a constant, so the
fact that V̄ satisfies the HJBE implies that the same
is true for V̂ . If x 6= 0 but ϕ(x) = 0, the viscosity
solution requirements say that −1 ≥ 0 whenever p is
a subdifferential of V̂ at x, and −1 ≤ 0 whenever p
is a superdifferential of V̂ at x, and the second one
of these conditions is trivially true. As for the first
condition, if x < 0 then we have already shown that
the right derivative of V̄ at x is equal to ∞, and this
clearly implies that the right derivative of V̂ at x is
equal to ∞ as well, since V̂ = V̄ + W and W is
monotonically nonincreasing near x. Hence there exist
no subdifferentials of V̂ at x. A similar argument applies
if x > 0, and we conclude that first one of the viscosity
requirements is satisfied vacuously.

It follows that for our example the value function is
not the unique continuous nonnegative function that
vanishes at the target and satisfies the HJBE. In the
example, the reason for the failure of uniqueness is easy
to understand, and clearly related to the non-uniqueness
of trajectories. Notice that the spurious value function
V̂ is bounded below by the true value function, so what
goes wrong is the other inequality, which is related to the
dynamic programming inequality (DPI). And, indeed,
the DPI fails, and this makes it impossible to draw the
conclusion that V̂ ≤ V̄ . Furthermore, the failure of
the DPI happens exactly as described in our general
analysis: given any control u(·) and any initial condition
x0, it is easy to construct a maximal trajectory ξ for
u(·) starting at x0 along which the DPI for V̂ holds.
(It suffices to follow the only possible trajectory for u(·)
as long as ϕ 6= 0, and stopping at x̄ and staying there
for ever as soon as we reach the first point x̄ where ϕ
vanishes.) This ξ is not, however, the only trajectory
for u(·) starting at x0. And the fact that the DPI holds
along ξ does not imply that that the DPI holds for
every trajectory for u(·) that starts at x0. (Indeed, if
for example x0 < 0 and u(t) ≡ 1, then in addition to
the ξ given by our construction we could also consider
ξopt, the optimal trajectory described earlier. The DPI
for V̂ clearly fails along ξopt, because if it was true it
would imply that V̂ (x0) ≤ V̄ (x0), whereas we know that
V̂ (x0) > V̄ (x0).) ♦

4. The main technical lemma

Let Σ̂ = (Ω, U, f, L) be an augmented control system.
For every x ∈ Ω and every positive number δ such
that dist(x,Rn\Ω) > δ, we let Φδ,Σ̂(x) be the closed
convex hull of all the vectors FΣ̂(x′, u), for all pairs

(x′, u) such that x′ ∈ Ω, ‖x′ − x‖ ≤ δ, and u ∈ U .
Then Φδ,Σ̂(x) is a closed convex subset of Rn+1. Clearly,
Φδ,Σ̂(x) ⊆ Φδ′,Σ̂(x) whenever 0 < δ ≤ δ′.

Let V : Ω 7→ R̄ be a real-valued function, and let
x∗ ∈ Ω. We say that V satisfies the infinitesimal steepest
descent condition for Σ̂ at x∗ if
(ISD) there exist sequences {xj}∞j=1, {vj}∞j=1, {λj}∞j=1,

{hj}∞j=1, {γj}∞j=1 in Ω, Rn, R, R, and R,
respectively, such that

(1) hj > 0, γj > 0, (vj , λj) ∈ FΣ̂(x∗, U), and
‖xj − x∗ − hjvj‖ ≤ hjγj for all j,

(2) hj ↓ 0, xj → x∗, and γj ↓ 0 as j →∞,

and

(3) V (xj) ≤ V (x∗)− hjλj + hjγj for all j.

We say that V satisfies the weak infinitesimal steepest
descent condition for Σ̂ at x∗ if

(WISD) there exist sequences {xj}∞j=1, {vj}∞j=1,
{λj}∞j=1, {hj}∞j=1, {δj}∞j=1, {γj}∞j=1 in Ω,
Rn, R, R, R, and R, respectively, such that
(1) hj > 0, δj > 0, γj > 0,

(vj , λj) ∈ Φδj ,Σ̂
(x∗), ‖xj − x∗‖ ≤ δj,

and ‖xj − x∗ − hjvj‖ ≤ hjγj for all j,
(2) hj ↓ 0, δj ↓ 0, and γj ↓ 0 as j →∞,
and
(3) V (xj) ≤ V (x∗)−hjλj+hjγj for all j.

We say that V satisfies (13) on Ω in the ISD sense if V
satisfies the infinitesimal steepest descent condition for
Σ̂ at x for every x ∈ Ω. We say that V satisfies (13) on
Ω in the WISD sense if V satisfies the weak infinitesimal
steepest descent condition for Σ̂ at x for every x ∈ Ω.

Theorem 4.1 Let Σ̂ = (Ω, U, f, L) be an n-dimensional
augmented control system and let V : Ω 7→ R be a
continuous function. Then

(1) Condition (WISD) holds at every point x∗ ∈ Ω
where (ISD) holds. In particular, if V satisfies (13)
on Ω in the ISD sense then V satisfies (13) on Ω
in the WISD sense.

(2) If Σ̂ is locally uniformly continuous and such that
FΣ̂(x,U) is convex for every x ∈ Ω, then (ISD)
holds at every point x∗ where (WISD) holds, and
in particular if V satisfies (13) on Ω in the WISD
sense then V satisfies (13) on Ω in the ISD sense.

(3) If Σ̂ is locally coercive, and and such that FΣ̂(x, U)
is closed and convex for every x ∈ Ω, then

(3.i) if V satisfies (13) on Ω in the ISD sense then
V satisfies (13) on Ω in the viscosity sense;

(3.ii) if V satisfies (13) on Ω in the viscosity sense
it follows that if V satisfies (13) on Ω in the
WISD sense.

In particular, if Σ̂ is locally uniformly continuous, locally
coercive, and such that FΣ̂(x, U) is closed and convex for
every x ∈ Ω, then the three concepts of solution of (13)
on Ω (viscosity, ISD, and WISD) are equivalent.
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Proof. We first prove (1). We assume that V x∗ is a
point of Ω where (ISD) holds, and prove that (WISD) is
true as well. Let {xj}∞j=1, {vj}∞j=1, {λj}∞j=1, {hj}∞j=1,
{γj}∞j=1 be sequences that satisfy the properties of
(ISD). Define δj = ‖xj − x∗‖. Then all the conclusions
of (WISD) are true, so (WISD) holds, and (1) is proved.

Next, we prove (2). We assume that Σ̂ is locally
uniformly continuous and (WISD) holds at a point
x∗ ∈ Ω, and prove that (ISD) holds at x∗ as well. To
do this, we pick sequences {xj}∞j=1, {vj}∞j=1, {λj}∞j=1,
{hj}∞j=1, {δj}∞j=1, {γj}∞j=1 with the properties specified
in (WISD). We pick δ such that

Bδ(x∗) = {x ∈ Rn : ‖x− x∗‖ ≤ δ} ⊆ Ω ,

and a function ω : ] 0,+∞[ 7→ [0,+∞] such that
lims↓0 ω(s) = 0 and

‖f(x, u)− f(x′, u)‖+ |L(x, u)− L(x′, u)| ≤ ω(‖x− x′‖)
whenever x, x′ ∈ Bδ(x∗). We then pass to a
subsequence, if necessary, and assume that δj ≤ δ for
all j. We use the fact that (vj , λj) ∈ Φδj ,Σ̂

(x∗) to

find a (wj , `j) of the form
∑n+1
k=0 αj,kFΣ̂(xj,k, uj,k) such

that αj,k ≥ 0,
∑n+1
k=0 αj,k = 1, ‖xj,k − x∗‖ ≤ δj , and

‖wj − vj‖+ |`j − λj | ≤ 2−j . We then define

ṽj =
n+1∑
k=0

αj,kf(x∗, uj,k) ,

λ̃j =
n+1∑
k=0

αj,kL(x∗, uj,k) ,

and conclude that ‖ṽj − wj‖ ≤ ω(δj) and
‖λ̃j − `j‖ ≤ ω(δj). We then let

γ̃j = γj + 2−j + ω(δj) ,
so γ̃j → 0 as j → ∞. It is then
clear that ‖xj = x∗ − hj ṽj‖ ≤ hj γ̃j and
V (xj) ≤ V (x∗)− hλ̃j + hj γ̃j for all j. Finally,
we have (ṽj , λ̃j) =

∑n+1
k=0 αj,kFΣ̂(x∗, uj,k), so

(ṽj , λ̃j) ∈ FΣ̂(x∗, U), since FΣ̂(x∗, U) is convex.
This completes the proof that (WISD) implies (ISD).

We now turn to the proof of (3), for which purpose we
assume that Σ̂ is locally coercive and such that FΣ̂(x,U)
is closed and convex for every x ∈ Ω. To prove (3.i), we
assume in addition that V satisfies (13) on Ω in the
ISD sense, and show that V satisfies (13) on Ω in the
viscosity sense. To prove this, we pick x∗ ∈ Ω and a
subdifferential p of V at x∗, and show that

sup{−p · f(x∗, u)− L(x∗, u) : u ∈ U} ≥ 0 . (18)

Using (ISD), we pick sequences {xj}∞j=1, {vj}∞j=1,
{λj}∞j=1, {hj}∞j=1, {γj}∞j=1 in Ω, Rn, R, R, and
R, respectively, such that hj > 0, γj > 0,
(vj , λj) ∈ FΣ̂(x∗, U), ‖xj − x∗ − hjvj‖ ≤ hjγj , and
V (xj) ≤ V (x∗)− hjλj + hjγj for all j, and hj ↓ 0,
xj → x∗, and γj ↓ 0 as j → ∞. Let
J = {j : xj = x∗}. Then for j ∈ J the inequality
‖xj − x∗ − hjvj‖ ≤ hjγj implies ‖vj‖ ≤ γj , so
limj→∞,j∈J vj = 0. On the other hand, the inequality

V (xj) ≤ V (x∗)− hjλj + hjγj implies hjλj ≤ hjγj , i.e.,
λj ≤ γj . Since the sequence {λj}∞j=1 is bounded
below (for example, because the local coercivity implies
a bound λj ≥ ‖vj‖r − C), we may assume, after
replacing J by a smaller infinite set, if necessary, that
λ = limj→∞,j∈J λj exists. Since λj ≤ γj , λ must
be ≤ 0. Furthermore, the vector (0, λ) is a limit
of vectors (vj , λj) ∈ FΣ̂(x∗), so (0, λ) ∈ FΣ̂(x∗, U),
since FΣ̂(x∗, U) is closed. Hence there exists ū ∈ U
such that f(x∗, ū) = 0 and L(x∗, ū) ≤ 0. But then
−p · f(x∗, ū)− L(x∗, ū) ≥ 0, so (18) holds.

We now consider the case when the set J is finite. In
this case, after passing to a subsequence, if necessary,
we may assume that J is empty, i.e., that xj 6= x∗ for
all j. Since p is a subdifferential of V at x∗, we have

lim inf
x→x∗,x 6=x∗

V (x)− V (x∗)− p · (x− x∗)
‖x− x∗‖

≥ 0 . (19)

Since the xj converge to x∗ and are different from x∗,
(19) implies

lim inf
j→∞

V (xj)− V (x∗)− p · (xj − x∗)
‖xj − x∗‖

≥ 0 . (20)

Since V (xj) ≤ V (x∗)− hjλj + hjγj , (20) implies

lim inf
j→∞

−hjλj + hjγj − p · (xj − x∗)
‖xj − x∗‖

≥ 0 . (21)

Now, xj − x∗ = xj − x∗ − hjvj + hjvj = hj(wj + vj),
where wj = h−1

j (xj − x∗ − hjvj). Hence

lim inf
j→∞

−λj + γj − p · (wj + vj)
‖wj + vj‖

≥ 0 . (22)

Hence, given a positive ε there exists a j(ε) such that
−λj+γj−p·(wj+vj) ≥ −ε‖wj+vj‖ whenever j ≥ j(ε) .
Therefore

−λj − p · vj ≥ −ε‖vj‖ − ε‖wj‖+ p ·wj − γj if j ≥ j(ε) .

Since wj → 0, there is—for each ε—a j′(ε) such that

−λj − p · vj ≥ −ε‖vj‖ − ε whenever j ≥ j′(ε) . (23)

The coercivity bound yields ‖vj‖r ≤ λj + C, so
−λj ≤ −‖vj‖r + C. Hence

−‖vj‖r + C − p · vj ≥ −ε‖vj‖ − ε whenever j ≥ j′(ε) ,
so

−‖vj‖r + ε‖vj‖+ ‖p‖.‖vj‖ ≥ −ε− C if j ≥ j′(ε) . (24)

Now, if the sequence {‖vj‖}∞j=1 was unbounded, then
we could pick an infinite subset J of N such that
‖vj‖ → +∞ as j → ∞ via values in J . But then,
taking for example ε = 1, we would contradict (24),
because the number −‖vj‖r + ‖vj‖ + ‖p‖.‖vj‖ is equal

to −‖vj‖r
(
1− (1 + ‖p‖)‖vj‖1−r

)
, which goes to −∞

as j → ∞ via values in J . Therefore the sequence
{‖vj‖}∞j=1 is bounded. Pick a constant K such that
‖vj‖ ≤ K for all j. Then, for each ε, if uε is such that
vj′(ε) = f(x∗, uε) and λj′(ε) = L(x∗, uε), (23) implies

−p · f(x∗, uε)− L(x∗, uε) ≥ −ε(K + 1) .
Hence

sup{−p · f(x∗, u)− L(x∗, u) : u ∈ U} ≥ −ε(K + 1) .
Since ε is arbitrary, we see that (18) holds. This
concludes the proof of (3.i).
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We now proceed to proving (3.ii). We assume that V
satisfies (13) on Ω in the viscosity sense, pick an x∗ ∈ Ω,
and prove that condition (WISD) holds. We do this by
assuming that the sequences whose existence is asserted
by (WISD) do not exist and deriving a contradiction.
We will assume, as we clearly may without loss of
generality, that x∗ = 0 and V (x∗) = 0, i.e., V (0) = 0.
In particular, this implies of course that 0 ∈ Ω.

Since (WISD) is not satisfied, there must exist a γ̄
such that 0 < γ̄,

{x ∈ Rn : ‖x‖ ≤ γ̄} ⊆ Ω , (25)
and

V (h(v + v′)) + hλ > hγ̄ (26)
whenever 0 < h ≤ γ̄, (v, λ) ∈ Φγ̄,Σ̂(0), h‖v + v′‖ ≤ γ̄,
and ‖v′‖ ≤ γ̄. (Indeed, if γ̄ did not exist, then for
each sufficiently large natural number j we could define
γj = 2−j , and find hj , vj , λj , v′j , xj , such that
0 < hj ≤ γj , (vj , λj) ∈ Φγj ,Σ̂

(0), hj‖vj + v′j‖ ≤ γj ,
‖v′j‖ ≤ γj , and V (hj(vj + v′j)) + hjλj ≤ γjhj . But
then, if we take xj = hj(vj + v′j), δj = γj , the sequence
{(xj , vj , λj , hj , δj , γj)}∞j=1 satisfies conditions (1), (2)
and (3) of (WISD), contradicting the fact that V does
not satisfy (WISD).)

By making γ̄ smaller, if necessary, we can assume that
there exist real numbers C, r, such that C > 0, r > 1
and ‖f(x, u)‖r ≤ L(x, u) + C whenever ‖x‖ ≤ γ̄ and
u ∈ U . It then follows, if we let

ψ(v, λ) = ‖v‖r − λ− C for (v, λ) ∈ Rn × R ,
that
ψ(w) ≤ 0 whenever w = F (x, u) , ‖x‖ ≤ γ̄, u ∈ U . (27)
Since ψ is convex, the inequality ψ(w) ≤ 0 holds when-
ever w ∈ Φγ̄,Σ̂(0), and then

‖v‖r ≤ λ+ C whenever (v, λ) ∈ Φγ̄,Σ̂(0) . (28)
If (v, λ) ∈ Φγ̄,Σ̂(0), v′ ∈ Rn, and ‖v′‖ ≤ γ̄, then the
inequality (α+β)r ≤ 2r(αr +βr), valid for nonnegative
α, β, implies

‖v + v′‖r ≤ (‖v‖+ ‖v′‖)r

≤ 2r(‖v‖r + ‖v′‖r)
≤ 2r(λ+ C + γ̄r) .

Pick r̃ such that 1 < r̃ < r. Let A = 2
r

r−r̃ Then
‖v + v′‖r̃ = ‖v + v′‖r̃−r · ‖v + v′‖r

≤ Ar̃−r‖v + v′‖r

≤ Ar̃−r2r(λ+ C + γ̄r)
= 2−r2r(λ+ C + γ̄r)
= λ+ C + γ̄r

if ‖v+v′‖ ≥ A. On the other hand, if ‖v+v′‖ ≤ A, then
‖v + v′‖r̃ ≤ Ar̃ ≤ ‖v‖r + Ar̃ ≤ λ + C + Ar̃. Therefore,
if we let C̃ = C + max(Ar̃, γ̄r), and then relabel r̃, C̃ as
our new r and C, we have shown that(

(v, λ) ∈ Φγ̄,Σ̂(0) ∧ v′ ∈ Rn ∧ ‖v′‖ ≤ γ̄
)

⇒ ‖v + v′‖r ≤ λ+ C . (29)
For 0 < δ ≤ γ̄, we define

Ξδ(0)def=
{

(v + v′, λ+ λ′) :

(v, λ) ∈ Φδ,Σ̂(0), v′ ∈ Rn , ‖v′‖ ≤ γ̄ , λ′ ∈ R , λ′ ≥ 0
}
.

Then

(a) If 0 < δ ≤ γ̄, then Ξδ(0) is a closed, convex,
nonempty subset of Rn+1

(The fact that Ξδ(0) is nonempty follows because
FΣ̂(0, U) ⊆ Φδ,Σ̂(0) ⊆ Ξδ(0), and FΣ̂(0, U) 6= ∅ because
U 6= ∅. The fact that Ξδ(0) is closed follows because, if
a sequence {(vj + v′j , λj + λ′j)}∞j=1 with the property
that (vj , λj) ∈ Φδ,Σ̂(0), v′j ∈ Rn, ‖v′j‖ ≤ γ̄ ∈ Rn,
λ′j ≥ 0 converges to a limit (v̂, λ̂), then the sequence
{v′j}∞j=1 is bounded, so we may assume after passing
to a subsequence that limj→∞ v′j = v′ exists, and then
of course ‖v′‖ ≤ γ̄ ∈ Rn, and limj→∞ vj = v exists
as well, since vj + v′j → v̂, and then v̂ = v + v′.
Furthermore, the bound ‖vj‖r ≤ λj + C implies that
λj ≥ ‖vj‖r − C ≥ −C, so

λ′j = (λj + λ′j)− λj ≤ (λj + λ′j) + C .

Hence the sequence {λ′j}∞j=1 is bounded above, because
{λj + λ′j}∞j=1 is convergent. Since λ′j ≥ 0, the sequence
{λ′j}∞j=1 is bounded, so we may assume it is convergent
to a limit λ′, after passing to a subsequence. Clearly,
then, λ′ ≥ 0, and the limit limj→∞ λj = λ exists as well,
and satisfies λ̂ = λ+ λ′. Since (v, λ) = limj→∞(vj , λj),
(vj , λj) ∈ Φδ,Σ̂(0), and Φδ,Σ̂(0) is closed, we see that
(v, λ) ∈ Φδ,Σ̂(0). Since ‖v′‖ ≤ γ̄ ∈ Rn, and λ′ ≥ 0,
we see that (v̂, λ̂) ∈ Ξδ(0). The convexity of Ξδ(0) is
trivial.)

Let Λ = {0} × [γ̄,+∞ [ , so Λ ⊆ Rn+1. We let Ψδ(0)
be the convex hull of Λ ∪ Ξδ(0). We show that

(b) If 0 < δ ≤ γ̄ then Ψδ(0) is a nonempty closed
convex subset of Rn+1.

(c) There exist real numbers r, C such that r > 1 and
‖v‖r ≤ λ+ C whenever (v, λ) ∈ Ψγ̄(0) . (30)

(d) The inequality
V (hv) + hλ ≥ hγ̄ (31)

holds whenever 0 < h ≤ γ̄, (v, λ) ∈ Ψγ̄(0), and
h‖v‖ ≤ γ̄.

(e) (0, `) /∈ Ψγ̄(0) whenever ` < γ̄

We will prove the above assertions in order, except for
the statement that Ψδ(0) is closed if 0 < δ ≤ γ̄, which
will be proved last.

The fact that Ψδ(0) is convex is trivial, and the
fact that Ψδ(0) is nonempty follows from (a), because
Ξδ(0) ⊆ Ψδ(0).

To prove (c), we choose r, C such that r > 1, C > 0,
and (29) holds, and observe that (29) trivially implies
that the inequality ‖v‖r ≤ λ + C is true whenever
(v, λ) ∈ Ξγ̄(0). Since C > 0, the inequality is also
true whenever (v, λ) ∈ Λ. Hence ‖v‖r ≤ λ + C
whenever (v, λ) ∈ Ξγ̄(0) ∪ Λ, from which it follows that
‖v‖r ≤ λ+C whenever (v, λ) ∈ Ψδ(0), since the function
(v, λ) 7→ ‖v‖r − λ− C is convex.

To prove (d), we observe that (26) trivially implies
that V (hv) + hλ > hγ̄ whenever (v, λ) ∈ Ξγ̄(0),
0 < h ≤ h̄, and h‖v‖ ≤ γ̄. (Indeed, if (v, λ) ∈ Ξγ̄(0),
0 < h ≤ h̄, and h‖v‖ ≤ γ̄, then (v, λ) = (v̄, λ̄) + (v′, λ′),
with (v̄, λ̄) ∈ Φγ̄,Σ̂(0), v′ ∈ Rn, ‖v′‖ ≤ γ̄, λ′ ∈ R, and
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λ′ ≥ 0. Then we can apply (26), with v̄, λ̄ in the roles
of v, λ, and conclude that V (h(v̄ + v′)) + hλ̄ > hγ̄,
since h‖v̄ + v′‖ ≤ γ̄. Therefore V (hv) + hλ̄ > hγ̄, and
then a fortiori V (hv) + hλ > hγ̄, since λ = λ̄ + λ′

and λ′ ≥ 0.) Assume that (v, λ) ∈ Ψγ̄(0). Then
we can write (v, λ) = α(v′, λ′) + (1 − α)(0, `), with
(v′, λ′) ∈ Ξγ̄(0), ` ≥ γ̄, and 0 ≤ α ≤ 1. Let h be such
that 0 < h ≤ γ̄ and h‖v‖ ≤ γ̄. If α = 0, then hv = 0
and λ = ` ≥ γ̄, so V (hv) + hλ = V (0) + h` = h` ≥ hγ̄.
If α > 0, define h̃ = αh. Then 0 < h̃ ≤ γ̄ and
h̃‖v′‖ = αh‖v′‖ = h‖v‖ ≤ γ̄, since v = αv′. Therefore
V (h̃v′) + h̃λ′ ≥ h̃γ̄, since (v′, λ′) ∈ Ψγ̄(0). On the other
hand, (1− α)h` ≥ (1− α)hγ̄, since ` ≥ γ̄. Therefore

V (hv) + hλ = V (hαv′) + hαλ′ + h(1− α)`

= V (h̃v′) + h̃λ′ + h(1− α)`

≥ h̃γ̄ + h(1− α)γ̄
= hαγ̄ + h(1− α)γ̄
= hγ̄ ,

completing the proof of (d).
Statement (e) now follows easily: if (0, `) ∈ Ψγ̄(0),

then we can apply (d) taking h = γ̄, v = 0, λ = `, and
conclude that γ̄` ≥ γ̄2, so that ` ≥ γ̄.

We now prove that Ψδ(0) is closed if 0 < δ ≤ γ̄.
Let {wj}∞j=1 be a sequence of points of Ψδ(0) that
converges to a limit w ∈ Rn+1. We will show that
w ∈ Ψδ(0). Let wj = αj(vj , λj) + (1 − αj)(0, `j),
where (vj , λj) ∈ Ξδ(0), `j ≥ γ̄, and 0 ≤ αj ≤ 1. Let
w = (v, λ). By passing to a subsequence, if necessary,
we may assume that the αj converge to a limit α̂. If the
sequence {(vj , λj)} is bounded, then we may pass to a
subsequence and assume that (v̂, λ̂) = limj→∞(vj , λj)
exists. Then (v̂, λ̂) ∈ Ξδ(0). Furthermore, the limit
limj→∞ αj(vj , λj) exists, so µ = limj→∞(1 − αj)`j ex-
ists as well, and µ ≥ 0. Clearly, w = α̂(v̂, λ̂) + (0, µ). If
α̂ = 1, then w = (v̂, λ̂) + (0, µ), so w ∈ Ξδ(0)—and a
fortiori w ∈ Ψδ(0)—because (v̂, λ̂) ∈ Ξδ(0) and µ ≥ 0.
If α̂ < 1, then ` = limj→∞ `j exists and satisfies ` = µ

1−α̂
and ` ≥ γ̄. Then w = α̂(v̂, λ̂) + (1− α̂)(0, `), and (v̂, λ̂),
(0, `), belong to Ξδ(0) and Λ, respectively, so w ∈ Ψδ(0).
Now suppose that the sequence {(vj , λj)} is unbounded.
Then (30) implies that {λj} is unbounded. Since the λj
are bounded below, we may assume, after passing to a
subsequence, that λj → +∞ as j → ∞. On the other
hand, αjvj → v and αjλj + (1− αj)`j → λ. Since both
sequences {αjλj}, {(1 − αj)`j} are bounded below, we
may pass to a subsequence and assume that the limits
µ = limj→∞(1− αj)`j and ν = limj→∞ αjλj exist. But
then

αj‖vj‖ ≤ αj(λj + C)1/r = αjλ
1/r
j

(
1 +

C

λj

)1/r

= αjλjλ
1/r−1
j

(
1 +

C

λj

)1/r

−→
j→∞ 0 ,

since λj −→j→∞ + ∞, αjλj −→j→∞ ν, and r > 1. Then
v = limj→∞ αjvj = 0. This implies, in particular, that
γ̄αj‖vj‖ ≤ γ̄ if j is large enough. So we can apply
(d) with h = γ̄αj and (vj , λj) in the role of (v, λ), and

conclude that V (γ̄αjvj) + γ̄αjλj ≥ γ̄αj γ̄. On the other
hand, (1−αj)`j ≥ (1−αj)γ̄, because `j ≥ γ̄. Therefore

V (γ̄αjvj)+γ̄αjλj+γ̄(1−αj)`j ≥ γ̄αj γ̄+γ̄(1−αj)γ̄ = γ̄2

for large enough j. If we let j → ∞, and use the facts
that αjvj −→j→∞ 0, V is continuous, and V (0) = 0, we find
that γ̄λ = limj→∞(γ̄αjλj + γ̄(1−αj)`j) ≥ γ̄2, so λ ≥ γ̄.
Therefore w = (0, λ) and λ ≥ γ̄, so w ∈ Λ and then
w ∈ Ψδ(0).

We have now completed the proofs of (b), (c), (d) and
(e). Let w∗ be the member of Ψγ̄(0) such that

‖w∗‖ ≤ ‖w‖ whenever w ∈ Ψγ̄(0) .

(The existence and uniqueness of w∗ follows from
the fact that Ψγ̄(0) is closed and convex.) Since
(0, 0) /∈ Ψγ̄(0), it follows that w∗ 6= (0, 0). Furthermore,
the inequality

〈w∗, w〉 ≥ ‖w∗‖2 (32)

holds whenever w ∈ Ψγ̄(0), because if w ∈ Ψγ̄(0) then
‖w∗ + t(w − w∗)‖2 ≥ ‖w∗‖2 whenever 0 ≤ t ≤ 1, since
w∗ + t(w − w∗) ∈ Ψγ̄(0) for such t, and then

‖w∗‖2 + t2‖w − w∗‖2 + 2t〈w∗, w − w∗〉 ≥ ‖w∗‖2 ,

so t2‖w − w∗‖2 + 2t〈w∗, w − w∗〉 ≥ 0, which implies
t‖w − w∗‖2 + 2〈w∗, w − w∗〉 ≥ 0 if 0 < t ≤ 1, and then
〈w∗, w − w∗〉 ≥ 0 (since we can let t ↓ 0), so (32) holds.

We now let Q be the set of all vectors q ∈ Rn+1 such
that q = hw for some h,w such that h ∈ [0,∞[ and
w ∈ Ψγ̄(0). We will show that

(f) Q is a closed convex cone such that Q\{(0, 0)} 6= ∅.

(g) 〈w∗, q〉 ≥ 0 for all q ∈ Q and 〈w∗, q〉 > 0 for all
q ∈ Q\{(0, 0)}.

(h) there exist real constants κ−, κ+, such that
0 < κ− ≤ κ+ and κ−‖q‖ ≤ 〈w∗, q〉 ≤ κ+‖q‖
whenever q ∈ Q.

Indeed, Q is obviously a convex cone. The fact that
Q\{(0, 0)} 6= ∅ follows because Ψγ̄(0) ⊆ Q, Ψγ̄(0) 6= ∅,
and (0, 0) /∈ Ψγ̄(0). To show that Q is closed, we
pick a sequence {qj}∞j=1of points of Q that converges
to a limit q ∈ Rn+1, and show that q ∈ Q. Write
qj = hjwj , hj ≥ 0, wj ∈ Ψγ̄(0). If q = (0, 0) then
q ∈ Q, so we may assume that q 6= (0, 0) and that
qj 6= (0, 0) for all j. Then hj 6= 0 as well. If the
sequence {wj}∞j=1 is bounded, then we may pass to
a subsequence and assume that the wj converge to a
limit w, which must belong to Ψγ̄(0) because Ψγ̄(0)
is closed. In particular, w and the wj are 6= (0, 0).

But then hj = ‖qj‖
‖wj‖ −→j→∞

‖q‖
‖w‖

def=h. Therefore q = hw,
so q ∈ Q. Now suppose that the sequence {wj}∞j=1

is unbounded. Write wj = (vj , λj), and use (c) to
conclude that ‖vj‖r ≤ λj + C for all j. Then the
sequence {λj}∞j=1 is unbounded, and we may assume,
after passing to a subsequence, that λj −→

j→∞ + ∞.
Since q = limj→∞(hjvj , hjλj), the sequence {hjλj}∞j=1

converges to a finite limit µ, so hj −→
j→∞ 0. Then
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hj‖vj‖ ≤ hj(λj + C)1/r = hjλjλ
1
r−1
j

(
1 + C

λj

)1/r

−→
j→∞ 0.

So hjvj −→j→∞ 0. Therefore q = (0, µ), so q = h(0, γ̄),
where h = µ

γ̄ . Since µ ≥ 0 and (0, γ̄) ∈ Ψγ̄(0), it is now
clear that q ∈ Q. This completes the proof of (f).

The fact that 〈w∗, q〉 ≥ 0 for all q ∈ Q follows
trivially from the definition of Q, because if q ∈ Q then
q = hw for some w ∈ Ψγ̄(0) and some nonnegative h,
so 〈w∗, q〉 = h〈w∗, w〉 ≥ h‖w∗‖2 ≥ 0. Furthermore,
if q 6= (0, 0) then h 6= 0, so h > 0, and then
〈w∗, q〉 ≥ h‖w∗‖2 > 0, since w∗ 6= 0. This proves (g).

Let K = {q ∈ Q : ‖q‖ = 1}. Then K is compact,
so the continuous function K 3 q 7→ 〈w∗, q〉 ∈ R
attains a minimum value κ− and a maximum value κ+
on K. Clearly, κ− > 0, because 〈w∗, q〉 > 0 for all
q ∈ K. Furthermore, κ−‖q‖ ≤ 〈w∗, q〉 ≤ κ+‖q‖ for all
q ∈ Q, because the inequalities hold when ‖q‖ = 1 and
involve functions of q that are positively homogeneous
of degree 1. This proves (h).

Next, we define a function σ : Q 7→ R by letting σ(q)
be, if q ∈ Q, the largest h ∈ R such that q = hw for
some w ∈ Ψγ̄(0). (The existence of such a largest h is
trivial if q = 0, for in that case the only possible value
of h is 0, since (0, 0) /∈ Ψγ̄(0). If q ∈ Q and q 6= 0, let
H = {h ∈ R : h > 0, h−1q ∈ Ψγ̄(0)}. Then H must be
bounded, for otherwise (0, 0) would be a limit of points
of Ψγ̄(0), and then (0, 0) would have to belong to Ψγ̄(0).
If h = sup H, then the fact that Ψγ̄(0) is closed implies
that h ∈ H, so σ(q) exists and is equal to h.) We prove
the following properties of σ.

(i) σ is strictly positive on Q\{(0, 0)}.
(j) σ is positively homogeneous of degree 1 (that is,

σ(rq) = rσ(q) whenever q ∈ Q and r ≥ 0).
(k) There exists a constant κ ∈ R such that

σ(q) ≤ κ‖q‖ whenever q ∈ Q.

Statements (i) and (j) are immediate consequences
of the definition of σ. To prove (k), we assume it
is not true, and find a sequence {qm}∞m=1 of points
of Q such that σ(qm) > m‖qm‖ for all m. We then
write qm = σ(qm)wm, with wm ∈ Ψγ̄(0), and use (j)
to conclude that σ(wm) = 1 and σ(wm) > m‖wm‖ for
all m. Then ‖wm‖ < 1

m , so wm → (0, 0) as m → ∞.
Since wm ∈ Ψγ̄(0), and Ψγ̄(0) is closed, we conclude
that (0, 0) ∈ Ψγ̄(0), contradicting (e). This completes
the proof of (k).

Next, we define

γ∗
def=

γ̄

max(1, κ)

Q∗ def=
{
q ∈ Q : ‖q‖ ≤ γ∗

}
.

Then Q∗ is a convex, compact subset of Rn+1 such that
(0, 0) ∈ Q∗ but Q∗ contains at least one point other than
(0, 0) (because of (f)). In addition, if q = (x, x0) ∈ Q∗,
then ‖x‖ ≤ γ∗ ≤ γ̄, so (25) tells us that x ∈ Ω, and then
q ∈ Ω× R. Hence Q∗ ⊆ Ω× R.

We then define a function W : Ω× R 7→ R by letting
W (x, x0) = V (x) + x0 for (x, x0) ∈ Ω × R, and ob-
serve that W (q) is defined whenever q ∈ Q∗, because
Q∗ ⊆ Ω× R.

We then claim that

W (q) ≥ γ̄σ(q) whenever q ∈ Q∗ . (33)

To prove (33), we first observe that the inequality is
clearly true if q = 0. Let us pick q ∈ Q∗\{0} and
write q = hw, where h = σ(q) and w = (v, λ) ∈ Ψγ̄(0).
Then 0 < h, since q 6= 0, and h ≤ γ̄, because
σ(q) ≤ κ‖q‖ ≤ κγ∗ ≤ γ̄. Furthermore, ‖q‖ ≤ γ̄ (because
γ∗ ≤ γ̄), and q = (hv, hλ), so h‖v‖ ≤ γ̄. It then fol-
lows from (26) that W (q) = V (hv) + hλ ≥ hγ̄ = γ̄σ(q),
completing the proof of (33).

It follows from (33) and (i) that

W (q) > 0 whenever q ∈ Q∗\{(0, 0)} . (34)

Now fix a number ρ such that 0 < ρ ≤ κ−γ
∗, and

define

Q# = {q ∈ Q∗ : 〈w∗, q〉 ≥ ρ} . (35)

If q is any member of Q such that ‖q‖ = γ∗, then
q ∈ Q∗, and in addition 〈w∗, q〉 ≥ κ−‖q‖ = κ−γ

∗ ≥ ρ,
so q ∈ Q#. Hence Q# is nonempty, and it is clear
that Q# is compact and convex. If q ∈ Q#, then
q ∈ Q∗\{(0, 0)}, so W (q) > 0. It follows that µ̄ > 0,
if we let µ̄ = min{W (q) : q ∈ Q#}. Since W (0, 0) =
0, we may pick a µ such that 0 < µ < µ̄, and use
the Clarke-Ledyaev mean value theorem (cf. [4, 5, 6])
to conclude that if β is any positive number, and
we use Nβ to denote the β-neighborhood of the

set N0
def= {hq : q ∈ Q#, 0 ≤ h ≤ 1}, then there exists a

subdifferential (π, π0) of W at some point q# belonging
to Nβ such that

〈(π, π0), q〉 > µ for all q ∈ Q# . (36)

Write q# = (x#, x#
0 ). Then, if we write q = (x, x0) for

q near q# , we have

lim inf
q→q#

W (q)−W (q#)−π · (x−x#)−π0(x0−x#
0 )

‖x−x#‖+|x0 − x#
0 |

≥0.

Taking q = (x, x#
0 ), this implies

lim inf
x→x#

V (x)− V (x#)− π · (x− x#)
‖x− x#‖

≥ 0 ,

so π is a subdifferential of V at x#.
Taking q = (x#, x0), we get

lim inf
x0→x#

0

x0 − x#
0 − π0(x0 − x#

0 )

|x0 − x#
0 |

≥ 0 ,

so π0 = 1.
Now, if u ∈ U , and we let w = (f(x#, u), L(x#, u)),

then w ∈ Φγ̄,Σ̂(0), so w ∈ Q. Let q = γ∗w
‖w‖ .

Then ‖q‖ = γ∗, so q ∈ Q∗. Furthermore,
〈w∗, q〉 ≥ κ−‖q‖ = κ−γ

∗ ≥ ρ, so q ∈ Q#. Therefore

〈(π, π0), q〉 > µ , (37)

that is,

γ∗

‖w‖

(
〈π, f(x#, u)〉+ L(x#, u)

)
> µ . (38)
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Therefore

〈π, f(x#, u)〉+ L(x#, u) >
‖w‖µ
γ∗

≥ ‖w∗‖µ
γ∗

, (39)

so

−〈π, f(x#, u)〉 − L(x#, u) < −‖w
∗‖µ
γ∗

. (40)

Since (40) is true for every u ∈ U , we can conclude that

sup
{
−〈π, f(x#, u)〉−L(x#, u) : u ∈ U

}
≤ ‖w∗‖µ

γ∗
< 0 .

(41)

But π is a subdifferential of V at x#, and then (41)
contradicts the fact that V is a solution of (13) on Ω in
the viscosity sense. This contradiction establishes (3.ii)
and completes our proof. ♦

5. The compactness theorem.

If Σ̂ = (Ω, U, f, L) is an augmented control system, and
ε is a positive number, an ε-approximate augmented
trajectory of Σ̂ is a locally absolutely continuous
curve I 3 t 7→ Ξ(t) = (ξ(t), ξ0(t)) ∈ Rn+1 having the
property that there exists a measurable function
I 3 t 7→ v(t) ∈ Rn such that

(1) ‖v(t)‖ ≤ ε for almost all t ∈ I,

(2) Ξ̇(t)− (v(t), 0) ∈ FΣ̂(ξ(t), U) for almost all t ∈ I.

Remark 5.1 Roughly speaking, an ε-approximate
augmented trajectory of Σ̂ is an augmented trajectory
of the “ε-extended system” Σ̂ε = (Ω, Uε, fε, Lε)
whose control space Uε is the Cartesian product
U × {v ∈ Rn : ‖v‖ ≤ ε}, and whose dynamics fε and
Lagrangian Lε are given by

fε(x, u, v) = f(x, u) + v , Lε(x, u, v) = L(x, u) .

More precisely, a curve Ξ = (ξ, ξ0) : I 7→ Rn+1 is an
ε-approximate augmented trajectory of Σ̂ if
and only if Ξ is locally absolutely continuous
and there exist functions I 3 t 7→ η(t) ∈ U ,
I 3 t 7→ v(t) ∈ {v ∈ Rn : ‖v‖ ≤ ε} such that v is
measurable and Ξ̇(t) ∈ FΣ̂ε(ξ(t), Uε) for almost every
t ∈ I. The definition of an augmented trajectory of
Σ̂ε is exactly the same, except that in that case the
requirement that v be measurable is omitted. ♦

Theorem 5.2 Let Σ̂ = (Ω, U, f, L) be an n-dimensional
locally uniformly continuous, locally coercive augmented
control system such that FΣ̂(x, U) is closed and convex
for every x ∈ Ω. Let K be a compact subset of Ω, let T be
a positive time, and let k ∈ R. Let {εj}∞j=1 be a sequence
of positive numbers such that εj → 0 as j → ∞, and
let Ξj = (ξj , ξj0) be, for each j, an εj-approximate
augmented trajectory of Σ̂, defined on the interval [0, T ],
such that ξj(t) ∈ K for all t ∈ [0, T ], ξj0(0) = 0, and
ξj0(T ) ≤ k. Then there exist a subsequence {Ξj(k)}∞k=1

of the sequence {Ξj}∞j=1 and an augmented trajectory
Ξ∞ = (ξ∞, ξ∞0 ) of Σ̂ = (Ω, U, f, L) such that

(i) ξ∞0 (0) = 0,

(ii) the sequence {ξj(k)}∞k=1 converges uniformly to ξ∞,
and

(iii) lim infk→∞ inf
{
∆j(k),∞(t, s) : 0 ≤ s ≤ t ≤ T

}
≥ 0,

where, if j, j′ ∈ N ∪ {+∞}, we define

∆j,j′(t, s)def=(ξj0(t)− ξj0(s))− (ξj
′

0 (t)− ξj
′

0 (s)) . (42)

Proof. Pick constants r, C, such that r > 1, C > 0, and
‖f(x, u)‖r ≤ L(x, u) + C whenever x ∈ K, u ∈ U , and
a function ω : ] 0,+∞ [ 7→ [0,+∞] such that lims↓0 ω(s)
and ‖FΣ̂(x, u) − FΣ̂(x′, u)‖ ≤ ω(s) whenever x, x′ ∈ K
and ‖x − x′‖ ≤ s. Choose, for each j, a measurable
function vj : [0, T ] 7→ Rn and a function ηj : [0, T ] 7→ U

such that ‖v(t)‖ ≤ εj , ξ̇j(t) = f(ξj(t), ηj(t)) + v(t), and
ξ̇j0(t) = L(ξj(s), ηj(s)) for almost all t ∈ [0, T ].

Let C ′ = 2r(C+εr). Then for each j the coerciveness
condition implies the inequality

‖ξ̇j(t)‖r ≤ 2rL(ξj(t), ηj(t)) + C ′ for almost all t ,

because
‖ξ̇j(t)‖r = ‖f(ξj(t), ηj(t)) + v(t)‖r

≤
(
‖f(ξj(t), ηj(t))‖+ ‖v(t)‖

)r
≤ 2r‖f(ξj(t), ηj(t))‖r + 2r‖v(t)‖r

≤ 2r(L(ξj(t), ηj(t)) + C) + 2rεr

= 2rL(ξj(t), ηj(t)) + C ′ .

from which it follows that
∫ T
0
‖ξ̇j(t)‖rdt ≤ 2rk + C ′T .

Then the sequence {ξ̇j(t)}∞j=1 is uniformly bounded in
Lr, so we may assume, after passing to a subsequence
if necessary, that the weak Lr-limit ζ =w-limj→∞ ξ̇j

exists. Then the ξj converge uniformly as j → ∞ to
a limit ξ∞ such that ξ∞(t) − ξ∞(s) =

∫ t
s
ζ(r) dr for all

s, t ∈ [0, T ]. After passing to a subsequence once more,
if necessary, we assume that

‖ξj(t)− ξ∞(t)‖ ≤ 2−j for all j ∈ N , t ∈ [0, T ] . (43)

Let θj(t) = ξ̇j0(t) + C. Then the θj are nonnegative,
because ξ̇j0(t) = L(ξj(t), ηj(t)) ≥ −C. Furthermore, the
sequence {θj}∞j=1 is bounded in L1([0, T ],R), because

‖θj‖L1 =
∫ T

0

θj(t) dt

=
∫ T

0

(ξ̇j0(t) + C) dt

≤ k + CT .

The space L1([0, T ],R) can be embedded in the usual
way in C0([0, T ],R)† (the dual of C0([0, T ],R)), which
is the space of finite Borel measures on [0, T ], by means
of the map ψ 7→ µψ that assigns to each function
ψ ∈ L1([0, T ],R) the Borel measure µψ such that

µψ(ϕ) =
∫ T

0

ψ(t)ϕ(t)dt for every ϕ ∈ C0([0, T ],R) .
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Then we may assume, after passing to a subsequence
for a third time, if necessary, that the weak* limit µ∞ of
the measures µjdef=µθj defined by the θj exists as j →∞.
The measure µ∞ then has a decomposition

µ∞ = µ∞,ac + µ∞,at + µ∞,sing

into the sum of an absolutely continuous part, an atomic
part, and a singular part. Since the measure µ∞ is
positive, because it is a limit of positive measures, the
three components µ∞,ac, µ∞,at, µ∞,sing are positive as
well. Let θ∞ be the Radon-Nikodym derivative of µ∞,
so θ∞ is an integrable function on [0, T ] such that

µ∞,ac(ϕ) =
∫ T

0

θ∞(t)ϕ(t) dt for ϕ ∈ C0([0, T ],R) .

Define

ξ∞0 (t) = −Ct+
∫ t

0

θ∞(s)ds (44)

and then set Ξ∞ = (ξ∞, ξ∞0 ).

We will show that Ξ∞ is an augmented trajectory
of the system Σ̂. To see this, we observe first of
all that by construction the functions ξ∞ : [0, T ] 7→ Rn
and ξ∞0 : [0, T ] 7→ R are absolutely continuous, and their
derivatives at t are equal to ζ(t) and θ∞(t), respectively,
for all t in a subset G of [0, T ] such that [0, T ]\G
has measure zero. Let A be the set of atoms of
µ∞,at, and let B be a subset of [0, T ] of Lebesgue
measure zero such that µ∞,sing([0, T ]\B) = 0. Then
the set G′ = G\(A ∪B ∪ {T}) has measure T and
µ∞,at(G′) = µ∞,sing(G′) = 0. Let G′′ be the set of
points of density of G′ that are Lebesgue points of ζ
and θ∞, so G′′ has measure T as well. (Recall that a
Lebesgue point of a scalar- or vector-valued integrable
function σ defined on an interval [a, b] is a point
t ∈ ] a, b [ such that limh↓0

1
h

∫ t+h
t−h ‖σ(s)− σ(t)‖ ds = 0.)

Let t ∈ G′′, and fix an h such that 0 < h < T − t.
Let Et,h = [t, t+ h] ∩G′, so the Lebesgue measure
|Et,h| of Et,h satisfies limh↓0 h

−1|Et,h| = 1. Using
the facts that the Borel measure µ∞,at + µ∞,sing is
regular and (µ∞,at + µ∞,sing)(Et,h) = 0, we can
find a relatively open subset Ũt,h of [0, T ] such that
Et,h ⊆ Ũt,h and (µ∞,at + µ∞,sing)(Ũt,h) ≤ h2. We then
let Ut,h = Ũt,h∩ ] t, t+ h [ , so Ut,h is an open subset of
R, Ut,h ⊆ ] t, t + h [ , and (µ∞,at + µ∞,sing)(Ut,h) ≤ h2.
Using the regularity of Lebesgue measure we can
find a compact subset Kt,h of Et,h\{t, t + h}
such that |Kt,h| ≥ |Et,h| − h2. Then of course
limh↓0 h

−1|Kt,h| = 1, and Kt,h ⊆ Ut,h for each h. Let
ϕ̃t,h(s) = dist(s,R\Ut,h), so ϕ̃t,h : R 7→ R is continuous,
ϕ̃t,h(s) = 0 whenever s /∈ Ut,h, and ϕ̃t,h(s) > 0 whenever
s ∈ Kt,h. If we let

βt,h = min{ϕ̃t,h(s) : s ∈ Kt,h} ,
ϕ̂t,h(s) = min(ϕ̃t,h(s), βt,h) ,

ϕt,h(s) = β−1
t,h ϕ̂t,h(s) ,

then ϕt,h is a continuous real-valued function on R such
that 0 ≤ ϕt,h(s) ≤ 1 for all s, ϕt,h(s) = 1 for all s ∈ Kt,h,
and ϕt,h(s) = 0 for all s ∈ R\Ut,h. In particular,
ϕt,h(s) = 0 whenever s /∈ ] t, t+ h [ .

Let at,h =
∫ t+h
t

ϕt,h(s) ds =
∫ +∞
−∞ ϕt,h(s) ds. Then

|Et,h| − h2 ≤ at,h ≤ h ,

from which it follows that

lim
h↓0

at,h
h

= 1 .

Let ψt,h = a−1
t,hϕt,h. Then∫ t+h

t

ψt,h(s) ds = 1 .

If h > 0, write

δj(h) = 2−j + h1/ρ(2r|k|+ C ′T )1/r .
Then, if s ∈ [t, t+ h], we have

‖ξj(s)− ξ∞(t)‖
≤ ‖ξj(t)− ξ∞(t)‖+ ‖ξj(s)− ξj(t)‖

≤ 2−j +
∫ s

t

‖ξ̇j(τ)‖ dt

≤ 2−j + (s− t)1/ρ
( ∫ s

t

‖ξ̇j(τ)‖r dt
)1/r

≤ 2−j + h1/ρ
( ∫ T

0

‖ξ̇j(τ)‖r dt
)1/r

≤ 2−j + h1/ρ
( ∫ T

0

(2rL(ξj(τ), ηj(τ)) + C ′) dτ
)1/r

≤ 2−j + h1/ρ(2r|k|+ C ′T )1/r

= δj(h) .

For almost all s ∈ [t, t + h], the derivative Ξ̇j(s) exists
and is equal to FΣ̂(ξj(s), ηj(s)) + (vj(s), 0). Hence

‖ Ξ̇j(s)− FΣ̂(ξ∞(t), ηj(s))‖ ≤ ω(δj(h)) + εj ,

from which it follows that
dist(Ξ̇j(s), FΣ̂(ξ∞(t), U) ≤ ω(δj(h)) + εj .

Therefore the average

Ajt,h =
∫ t+h

t

ψt,h(s)Ξ̇j(s) ds =
∫ T

0

ψt,h(s)Ξ̇j(s) ds

also satisfies
dist(Ajt,h, FΣ̂(ξ∞(t), U) ≤ ω(δj(h)) + εj , (45)

because FΣ̂(ξ∞(t), U) is closed and convex. As j →∞,
the vector functions ξ̇j converge weakly in Lr to ζ, so∫ t+h

t

ψt,h(s)ξ̇j(s) ds →
∫ t+h

t

ψt,h(s)ζ(s) ds

=
∫ t+h

t

ψt,h(s)ξ̇∞(s) ds

as j → ∞, j ∈ J . The integral
∫ t+h
t

ψt,h(s)ξ̇∞(s) ds
satisfies∫ t+h

t

ψt,h(s)ξ̇∞(s) ds =
∫ t+h

t

ψt,h(s)ξ̇∞(t) ds+ Et,h

= ξ̇∞(t) + Et,h

where

Et,h =
∫ t+h

t

ψt,h(s)(ξ̇∞(s)− ξ̇∞(t)) ds ,
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and we have used the fact that
∫ t+h
t

ψt,h(s) ds = 1.
The error term Et,h satisfies

|Et,h| ≤ max
{
ψt,h(s) : s ∈ [0, T ]

}
×

∫ t+h

t

‖ξ̇∞(s)− ξ̇∞(t)‖ ds

= ha−1
t,hÊt,h

= αt,hÊt,h ,
where αt,h = ha−1

t,h, so αt,h → 1 as h ↓ 0, and

Êt,h =
1
h

∫ t+h

t

‖ξ̇∞(s)− ξ̇∞(t)‖ ds .

Then

lim sup
j→∞,j∈J

∥∥∥∫ t+h

t

ψt,h(s)ξ̇j(s) ds− ξ̇∞(t)
∥∥∥

≤ αt,hÊt,h . (46)
To analyze the behavior of the integrals

Ijt,h
def=

∫ t+h

t

ψt,h(s)ξ̇
j
0(s) ds ,

we write ξ̇j0(s) = θj(s)− C, so

Ijt,h = −Ch+
∫ t+h

t

ψt,h(s)θj(s) ds

= −Ch+
∫ T

0

ψt,h(s)θj(s) ds

= −Ch+
∫

[0,T ]

ψt,hdµ
j .

Hence

Ijt,h → −Ch+
∫

[0,T ]

ψt,h(s) dµ∞(s) as j →∞ . (47)

Write∫
[0,T ]

ψt,h(s) dµ∞(s) =
∫ T

0

ψt,h(s)θ∞(s) ds

+
∫

[0,T ]

ψt,h(s) dµ̂∞(s) ,

where µ̂∞ = µ∞,at + µ∞,sing. Since ξ̇∞0 (s) = θj(s)−C,
(47) implies

Ijt,h →
∫

[0,T ]

ψt,h(s)ξ̇∞0 (s) ds

+
∫

[0,T ]

ψt,h(s) dµ̂∞(s) as j →∞ . (48)

The integral
∫
[0,T ]

ψt,h(s) dµ̂∞(s) that occcurs in (48)
is a nonnegative number, and is bounded above by
max{ψt,h(s) : s ∈ [0, T ]} times µ̂∞(Ut,h), since ψt,h
vanishes outside Ut,h. Therefore

0 ≤
∫

[0,T ]

ψt,h(s) dµ̂∞(s) ≤ h2a−1
t,h = hαt,h , (49)

On the other hand, the integral
∫
[0,T ]

ψt,h(s)ξ̇∞0 (s) ds
satisfies∫

[0,T ]

ψt,h(s)ξ̇∞0 (s) ds =
∫ t+h

t

ψt,h(s)ξ̇∞0 (s) ds

= ξ̇∞0 (t)) ds+ Et,h

= ξ̇∞0 (t) + Et,h , (50)

where

Et,h =
∫ t+h

t

ψt,h(s)(ξ̇∞0 (s)− ξ̇∞0 (t)) ds ,

and we have used the fact that
∫ t+h
t

ψt,h(s) ds = 1.
The error term Et,h satisfies

|Et,h| ≤ max
{
ψt,h(s) : s ∈ [0, T ]

}
×

∫ t+h

t

|ξ̇∞0 (s)− ξ̇∞0 (t)| ds

= ha−1
t,hÊt,h

= αt,hÊt,h ,

where

Êt,h =
1
h

∫ t+h

t

|ξ̇∞0 (s)− ξ̇∞0 (t)| ds .

It follows from (48), (49), (50), and the bound
|Et,h| ≤ αt,hÊt,h, that

lim sup
j→∞,j∈J

∣∣∣Ijt,h − ξ̇∞0 (t)
∣∣∣ ≤ αt,h(h+ Êt,h) . (51)

If we now combine (46) and (51), we find that

lim sup
j→∞,j∈J

∥∥∥Ajt,h−Ξ̇∞(t)
∥∥∥≤αt,h(h+Êt,h+Et,h). (52)

Then (45) implies that

dist(Ξ̇∞(t), FΣ̂(ξ∞(t)))

≤αt,h(h+Êt,h+Et,h)+lim sup
j→∞

(ω(δj(h))+εj) .

Hence, given any j∗, we have

dist(Ξ̇∞(t), FΣ̂(ξ∞(t)))

≤αt,h(h+Êt,h+Et,h)+sup{ω(δj(h))+εj : j ≥ j∗} .
Given any positive number β, we can find a positive
γ such that ω(s) < β whenever 0 < s ≤ γ, and then
find j∗, h∗ such that δj(h) ≤ γ whenever j ≥ j∗ and
0 < h ≤ h∗, and εj < β whenever j ≥ j∗. Then we can
pick h such that 0 < h ≤ h∗, and αt,h(h+Êt,h+Et,h) < β.
Then

dist(Ξ̇∞(t), FΣ̂(ξ∞(t))) < 3β .

Since β was arbitrary, we conclude that
dist(Ξ̇∞(t), FΣ̂(ξ∞(t))) = 0, so Ξ̇∞(t) ∈ FΣ̂(ξ∞(t)),
because FΣ̂(ξ∞(t)) is closed. Since this is true for
almost all t ∈ [0, T ], and Ξ∞ is absolutely continuous,
we have shown that Ξ∞ is an augmented trajectory of
Σ̂.

By construction, the ξj converge uniformly to ξ∞.
Also, it is clear from (44) that ξ∞0 (0) = 0. To conclude
our proof, we have to show that

lim inf j→∞ inf
{
∆j,∞(t, s) :0≤s≤ t≤T

}
≥0 , (53)

where ∆j,∞(t, s) is the quantity defined in (42). Suppose
that lim infj→∞ inf

{
∆j,∞(t, s) :0≤s≤ t≤T

}
<0. Pick

a number β such that β > 0 and

lim inf
j→∞

inf
{
∆j,∞(t, s) :0≤s≤ t≤T

}
≤ −3β .
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Then there exists a subsequence {Ξj(k)}∞k=1 of {Ξj}∞j=1

such that inf
{
∆j,∞(t, s) :0≤s≤ t≤T

}
≤ −2β for all k.

We can then choose, for each k, members sk and tk of
[0, T ] such that sk ≤ tk and(
ξ
j(k)
0 (tk)−ξj(k)0 (sk)

)
−

(
ξ∞0 (tk)−ξ∞0 (sk)

)
≤ −β . (54)

By passing to a subsequence, if necessary, we may
assume that the sk and the tk converge to limits s, t.
Clearly, then, s ≤ t.

If s = t, then

ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk) =

∫ tk

sk

ξ̇
j(k)
0 (v) dv

=
∫ tk

sk

(
θj(k)(v)− C) dv

≥ −C(tk − sk) ,
so the fact that limk→∞(ξ∞0 (tk) − ξ∞0 (sk)) = 0 implies
the inequalities

lim inf
k→∞

((
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
−

(
ξ∞0 (tk)− ξ∞0 (sk)

))
= lim inf

k→∞

(
ξ
j(k)
0 (tk)−ξj(k)0 (sk)

)
− lim
k→∞

(
ξ∞0 (tk)−ξ∞0 (sk)

)
= lim inf

k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
≥ lim inf

k→∞
(−C(tk − sk))

= lim
k→∞

(−C(tk − sk))

= 0 ,
which clearly contradict (54).

Now assume that s < t. Fix a positive number γ such
that 2γ < t−s, and let Φs,t,γ be the set of all continuous
nonnegative functions ϕ : R 7→ R that vanish outside the
interval [s+ γ, t− γ] and are such that ϕ(v) ≤ 1 for all
v ∈ R. Then

lim inf
k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
= lim inf

k→∞

∫ tk

sk

ξ̇
j(k)
0 (v) dv

= lim inf
k→∞

∫ tk

sk

(θj(k)(v)− C) dv

= lim inf
k→∞

(
− C(tk − sk) +

∫ tk

sk

θj(k)(v) dv
)

= −C(t− s) + lim inf
k→∞

∫ tk

sk

θj(k)(v) dv

≥ −C(t− s) + lim inf
k→∞

∫ tk

sk

ϕ(v)θj(k)(v) dv

= −C(t− s) + lim inf
k→∞

∫
[0,T ]

ϕ(v)dµj(k)(v)

= −C(t− s) + lim
k→∞

∫
[0,T ]

ϕ(v)dµj(k)(v)

= −C(t− s) +
∫

[0,T ]

ϕ(v)dµ∞(v)

≥ −C(t− s) +
∫

[0,T ]

ϕ(v)dµ∞,ac(v)

= −C(t− s) +
∫ t

s

ϕ(v)θ∞(v) dv

=
∫ t

s

ϕ(v)(θ∞(v)− C) dv

=
∫ t

s

ϕ(v)ξ̇∞0 (v) dv ,

where, for the first inequality, we have used the fact that
[s+γ, t−γ] ⊆ [sk, tk] when k is large enough. Therefore

lim inf
k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
≥

∫ t

s

ϕ(v)ξ̇∞0 (v) dv

for every ϕ ∈ Φs,t,γ . Hence

lim inf
k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
≥ sup

{∫ t

s

ϕ(v)ξ̇∞0 (v) dv : ϕ ∈ Φs,t,γ
}

=
∫ t−γ

s+γ

ξ̇∞0 (v) dv

= ξ∞0 (t− γ)− ξ∞0 (s+ γ) .

Since γ is arbitrary, we can let γ ↓ 0, and conclude that

lim inf
k→∞

(
ξ
j(k)
0 (tk)− ξ

j(k)
0 (sk)

)
≥ ξ∞0 (t)− ξ∞0 (s)

= lim
k→∞

(
ξ∞0 (tk)− ξ∞0 (sk)

)
,

so

lim inf
k→∞

((
ξ
j(k)
0 (tk)−ξj(k)0 (sk)

)
−

(
ξ∞0 (tk)−ξ∞0 (sk)

))
≥ 0 ,

contradicting (54). This completes the proof of (53). ♦

6. Trajectories of steepest descent.

We recall from §2 that MSDΣ̂,V,x denotes the set
of all maximal augmented trajectories of Σ̂ from x
of steepest descent with respect to V and that, as
explained in Proposition 2.6 and the remarks preceding
its statement, MSDΣ̂,V,x is always nonempty for trivial
reasons, because the trivial trajectory Ξtrivx always
belongs to SDΣ̂,V,x, and once we know that SDΣ̂,V,x 6= ∅
it follows immediately from Zorn’s Lemma that SDΣ̂,V,x

must have a maximal element.
The truly nontrivial and useful result is the statement

that maximal steepest descent trajectories not only exist
but are “large,” in the sense that they are “right-
unbounded.” Precisely, if ξ : I 7→ Ω is a curve, we say
that ξ is right-unbounded if (i) the interval I is open on
the right (that is, if τ = sup I, then either (a) τ = +∞
or (b) τ is finite and does not belong to I), and (ii) if τ
is finite, then for every compact subset K of Ω there ex-
ists a τK such that 0 ≤ τK < τ and ξ(t) /∈ K whenever
τK < t < τ . (Equivalently, condition (ii) asserts that
limt↑τ ξ(t) = ∞Ω, where ∞Ω is the point at infinity of
the one-point compactification of Ω.)
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Theorem 6.1 Let Σ̂ = (Ω, U, f, L) be a locally coercive,
locally uniformly continuous augmented control system
such that FΣ̂(x,U) is closed and convex for every x ∈ Ω.
Let V : Ω 7→ R be a continuous function that satisfies
(13) on Ω in the viscosity sense. Let x∗ ∈ Ω, and let
Ξ = (ξ, ξ0) be a maximal augmented trajectory of Σ̂ from
x∗ of steepest descent with respect to V , defined on an
interval I. Then ξ is right-unbounded.

Proof. We assume that the conclusion is not true and
derive a contradiction. Pick a Ξ = (ξ, ξ0) ∈MSDΣ̂,V,x∗
that violates the conclusion. This means, to begin
with, that Ξ is defined on a bounded interval I, and,
in addition, this interval is either of the form [0, τ ],
with 0 ≤ τ < +∞ (the “right-closed case”), or of
the form [0, τ [ , with 0 < τ < +∞ (the “right-open
case”). Furthermore, in the right-open case there exist
a compact subset K of Ω and a sequence {tj}∞j=1 such
that tj ∈ I and ξ(tj) ∈ K for all j, and limj→∞ tj = τ .
In order to treat the right-open and right-closed cases
together, we also choose a compact subset K of Ω and a
sequence {tj}∞j=1 in I in the right-closed case, subject to
the only requirements that ξ(t) ∈ K for all t ∈ [0, τ ] and
tj → τ as j → ∞. (For example, we could just choose
K = {ξ(t) : 0 ≤ t ≤ τ}, tj = τ for all j.) Then in both
cases the tj belong to I and converge to τ , and the ξ(tj)
belong to K. In addition, we pick a function η : I 7→ U
such that Ξ̇(t) = F (ξ(t), η(t)) for almost all t ∈ I.

Fix a positive number δ such that the compact set
Kδ = {x ∈ Rn : dist(x,K)‖ ≤ δ}

is contained in Ω. Then use the fact that Σ̂ is locally
coercive to choose r, C such that r > 1, C > 0, and
‖f(x, u)‖r ≤ L(x, u) + C̃ for all x ∈ Kδ, u ∈ U . Let

V̄ = max{|V (x)| : x ∈ Kδ} .

If ρ = r
r−1 , so that 1

r + 1
ρ = 1, and we define

δ̄(σ)def=2
(
σ1/ρ(2|V̄ |+ (C + 1)σ)1/r + σ

)
,

then δ̄(σ) goes to zero as σ ↓ 0. Therefore we can pick
σ such that δ̄(σ) < δ.

Now suppose that we are in the right-open case.
Given any j, the point xj = ξ(tj) belongs to K. Let

Sj =
{
t ∈ I : t ≥ tj ∧ (∀s)

(
(tj ≤ s ≤ t) ⇒ ξ(s) ∈ Kδ

)}
.

Then Sj is a subinterval of I, whose left endpoint is tj .

If t, t′ ∈ Sj , and t′ ≤ t, then the steepest descent
property of Ξ implies that

ξ0(t) + V (ξ(t)) ≤ ξ0(t′) + V (ξ(t′)) ,

so
ξ0(t)− ξ0(t′) ≤ V (ξ(t))− V (ξ(t′)) ≤ 2|V̄ | ,

since both ξ(t) and ξ(t′) belong to Kδ. Furthermore,
the inequality

‖f(ξ(s), η(s))‖r ≤ L(ξ(s), η(s)) + C

is true for all s ∈ Sj , since ξ(s) ∈ Kδ for all such s.
Therefore

‖ξ(t)− ξ(t′)‖

=
∥∥∥∫ t

t′
ξ̇(s) ds

∥∥∥
≤

∫ t

t′
‖ξ̇(s)‖ ds

=
∫ t

t′
‖f(ξ(s), η(s))‖ ds

≤ (t− t′)1/ρ
( ∫ t

t′
‖f(ξ(s), η(s))‖r ds

)1/r

≤ (t− t′)1/ρ
( ∫ t

t′
(L(ξ(s), η(s)) + C) ds

)1/r

= (t− t′)1/ρ(C(t− t′) + ξ0(t)− ξ0(t′))1/r

= (t− t′)1/ρ(C(t− t′) + 2|V̄ |))1/r

≤ 1
2
δ̄(t− t′) .

Now pick j so large that τ−tj < σ, and apply the above
inequality with t′ = tj . Then

‖ξ(t)− ξ(tj)‖ ≤
1
2
δ̄(σ) ≤ 1

2
δ for all t ∈ Sj . (55)

Hence, if we let t̄ = sup Sj , it is impossible that t̄ < τ ,
because if t̄ < τ then t̄ ∈ I, and (55) implies that
‖ξ(t̄)− ξ(tj)‖ ≤ 1

2δ, from which it follows, by continuity,
that there exists a positive α such that ‖ξ(t)−ξ(tj)‖ < δ
for t̄ ≤ t ≤ t̄ + α; but then ξ(t) ∈ Kδ if t̄ ≤ t ≤ t̄ + α,
since ξ(t) ∈ K; therefore t̄ + α ∈ Sj , contradicting the
definition of t̄.

Therefore t̄ = τ , and this implies that Sj = [tj , τ [ ,
so ξ(t) ∈ Kδ for all t ∈ [tj , τ [ . Then the bound
L(ξ(s), η(s)) +C ≥ ‖f(ξ(s), η(s))‖r holds for almost all
s ∈ [tj , τ [ , showing in particular that the function

[tj , τ [3 s 7→ ψ(s)def=L(ξ(s), η(s)) + C

which is measurable because L(ξ(s), η(s)) = ξ̇0(s), is
nonnegative. Hence, to prove that ψ is Lebesgue-
integrable on [tj , τ [ , it suffices to show that the integrals∫ t
tj

(L(ξ(s), η(s)) + C) ds, for tj ≤ t < τ , are bounded
above by a fixed constant. But, if tj ≤ t < τ , then∫ t

tj

(L(ξ(s), η(s)) + C) ds = ξ0(t)− ξ0(tj) + C(t− tj)

≤ 2|V |+ Cσ .

Therefore ψ is Lebesgue-integrable on [tj , τ [ , and
then ξ̇0 is also Lebesgue-integrable on [tj , τ [ , because
ξ̇0 = ψ − C. Since ξ̇0 is Lebesgue-integrable on [0, tj ], we
conclude that ξ̇0 is Lebesgue-integrable on [0, τ [ . Hence
the limit x#

0 = limt↑τ ξ0(t) exists, and the extended
function ξ#0 : [0, τ ] 7→ R defined by ξ#0 (t) = ξ0(t) if
0 ≤ t < τ , ξ#0 (τ) = x#

0 , is absolutely continuous.
In addition, the bound

‖ξ̇(s)‖r = ‖f(ξ(s), η(s)‖r ≤ L(ξ(s), η(s)) + C = ψ(s) ,
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valid on [tj , τ [ , shows that ξ̇ in Lr on [sj , τ [ , so a
fortiori ξ̇ is Lebesgue-integrable on [sj , τ [ , and then
the limit x# = limt↑τ ξ(t) exists and belongs to Kδ

(because x# = lim`→∞ ξ(t`) and the ξ(t`) belong to
Kδ), and the extended function ξ# : [0, τ ] 7→ Ω defined
by ξ#(t) = ξ(t) if 0 ≤ t < τ , ξ#(τ) = x#

0 , is absolutely
continuous.

Hence we have constructed an absolutely continuous
extension Ξ# = (ξ#, ξ#0 ) of Ξ to the closed interval
[0, τ ]. Clearly, Ξ# is also an augmented trajectory of
Σ̂ starting at x∗ at time 0, and the fact that Ξ is of
steepest descent with respect to V and V is continuous
implies that Ξ# is of steepest descent with respect to V
as well. Therefore Ξ is not maximal, because we have
constructed an extension to a strictly larger interval. It
follows that the “right-open case” cannot arise at all.

We now analyze the right-closed case, and show that
it cannot arise either. We do this by constructing an
extension Ξ# of Ξ to a Ξ# ∈MSDΣ̂,V,x∗

defined on the
interval [0, τ + σ]. This will, of course, contradict the
assumed maximality of Ξ, and conclude our proof.

To construct Ξ#, we construct ε-approximate
augmented trajectories Ξε : [τ, τ + σ] 7→ Ω × R of Σ̂
that are “ε-approximately of steepest descent,” and such
that Ξε(τ) = Ξ(τ). We then pass to the limit as ε ↓ 0,
using the compactness theorem (5.2), and get an exact
augmented trajectory Ξ̃ : [τ, τ + σ] 7→ Ω × R of Σ̂ such
that Ξ̃(τ) = Ξ(τ), which is exactly of steepest descent.

Write x# = ξ(τ), x#
0 = ξ0(τ). Fix an ε such that

0 < ε < 1. Let Zε be the set of all triples (I ′,Ξ′, S′)
such that

(1) I ′ is a subinterval of [τ, τ + σ] such that τ ∈ I ′,

(2) Ξ′ = (ξ′, ξ′0) : I ′ 7→ Kδ × R is an ε-approximate
augmented trajectory of Σ̂,

(3) Ξ′(τ) = (x#, x#
0 ),

(4) S′ is a strongly ε-dense subset of I ′ such
that ξ′0(s) + V (ξ′(s)) + ε(t− s) ≥ ξ′0(t) + V (ξ′(t))
for all s, t ∈ S′ such that s ≤ t.

(We say that a subset S of an interval J is strongly
ε-dense if for every t ∈ J there exist s, s′ ∈ S such that
s ≤ t ≤ s′ and s′ − s ≤ ε.)

We partially order Zε by stipulating
that, if (Ii,Ξi, Si) ∈ Zε for i = 1, 2, then
(I1,Ξ1, S1) � (I2,Ξ2, S2) iff I1 ⊆ I2, Ξ1 is the
restriction of Ξ2 to I1, and S1 = S2 ∩ I1.

It is clear that Zε 6= ∅, because the triple
({τ},Ξx#,τ , {τ})—where Ξx#,τ is the map
Ξ : {τ} 7→ Ω× R such that Ξ(τ) = (x#, ξ0(τ))—
belongs to Zε. If Z is a totally ordered subset of Zε,
we show that Z has an upper bound (I ′∗,Ξ

′
∗, S

′
∗) in

Zε. This conclusion is trivial if Z = ∅, for in that case
we can take (I ′∗,Ξ

′
∗, S

′
∗) = ({τ},Ξx#,τ , {τ}). Assume

that Z 6= ∅. Let I ′∗ be the union of the intervals I ′ for
all the members (I ′,Ξ′, S′) of Z. Then I ′∗ is clearly
a subinterval of [τ, τ + σ], and τ ∈ I ′. If t ∈ I ′∗, we
define Ξ′∗(t) = Ξ′(t), where (I ′,Ξ′, S′) is any member
of Z such that t ∈ I. Write Ξ′∗ = (ξ′∗, ξ

′
0,∗). Then

Ξ′∗ is obviously well defined, and is an ε-approximate
augmented trajectory of Σ̂ such that ξ′∗(τ) = x# and
ξ′0,∗(τ) = x#

0 . We then let

S′∗ =
⋃

(I′,Ξ′,S′)∈Z

S′ . (56)

We want to prove that the triple (I ′∗,Ξ
′
∗, S

′
∗) is an

upper bound for Z in Zε. If we show that

(I ′∗,Ξ
′
∗, S

′
∗) ∈ Zε , (57)

then the fact that (I ′∗,Ξ
′
∗, S

′
∗) is an upper bound for Z

is immediate, so all we really need is to prove (57).
It is evident that the triple (I ′∗,Ξ

′
∗, S

′
∗) satisfies the

first three of the four conditions in the definition of Zε.
Let us show that it satisfies the fourth one as well. If
t ∈ I ′∗, we can find (I ′′,Ξ′′, S′′) ∈ Z such that t ∈ I ′′.
Since S′′ is a strongly ε-dense subset of I ′′, there exist
s1, s2 ∈ S′′ such that s1 ≤ t ≤ s2 and s2− s1 ≤ ε. Then
s1 and s2 belong to S′∗, and this establishes that S′∗ is a
strongly ε-dense subset of I ′∗. Now, if s1, s2 are members
of S′∗ such that s1 ≤ s2, then we can find (using the fact
that Z is totally ordered) a member (I ′,Ξ′, S′) of Z
such that s1 and s2 belong to I ′. It then follows easily
that s1 and s2 must belong to S′. Then, if we write
Ξ′ = (ξ′, ξ′0), the fact that s1 ∈ S′, s2 ∈ S′, s1 ≤ s2, and
(I ′,Ξ′, S′) ∈ Zε, imply that

ξ′0(s1) + V (ξ′(s1)) + ε(s2 − s1) ≥ ξ′0(s2) + V (ξ′(s2)) .
Hence

ξ′0,∗(s1) + V (ξ′∗(s1)) + ε(s2− s1) ≥ ξ′0,∗(s2) + V (ξ′∗(s2)) .

Since this is true for any two members s1, s2 of S′∗ such
that s1 ≤ s2, we conclude that the fourth condition
holds as well, and the proof of (57) is complete.

We have shown that every totally ordered subset of
Zε has an upper bound in Zε. Therefore Zorn’s Lemma
implies that Zε has a maximal element (I ′,Ξ′, S′). We
claim that I ′ = [τ, τ + σ]. Suppose this was not true.
Then either

(A) I ′ = [τ, ζ [ for some ζ such that τ < ζ ≤ τ + σ,

or

(B) I ′ = [τ, ζ] for some ζ such that τ ≤ ζ < τ + σ.

We shall exclude both possibilities.

Write Ξ′ = (ξ′, ξ′0). Let Bε = {v ∈ Rn : ‖v‖ ≤ ε}. Let
I ′ 3 t 7→ (η′(t), v(t)) ∈ U × Bε be a function such
that the function v(·) is measurable, and the equalities
ξ̇′(t) = f(ξ′(t), η′(t)) + v(t) and ξ̇′0(t) = L(ξ′(t), η′(t))
hold for almost all t ∈ I ′.

Let t ∈ I ′. Then there must exist a t̄ ∈ S′ such
that t̄ ≥ t. Also, τ must belong to S′, because τ is the
leftmost point of I ′. Then

ξ′0(τ) + V (ξ′(τ)) + ε(t− τ) ≥ ξ′0(t̄) + V (ξ′(t̄)) ,
so (since ε < 1)

ξ′0(t̄)− ξ′0(τ) ≤ ε(t− τ) + V (ξ′(τ))− V (ξ′(t̄))
≤ 2|V̄ |+ σ .
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We then have (using the fact that ‖v(s)‖ < 1, which is
true because ε < 1),∫ t

τ

‖ξ̇′(s)‖ds

=
∫ t

τ

‖f(ξ′(s), η′(s)) + v(s)‖ds

≤
∫ t̄

τ

‖f(ξ′(s), η′(s)) + v(s)‖ds

≤
∫ t̄

τ

‖f(ξ′(s), η′(s))‖ds+
∫ t̄

τ

‖v(s))‖ds

≤ (t̄− τ)1/ρ
( ∫ t̄

τ

‖f(ξ′(s), η′(s))‖rds
)1/r

+ t̄− τ

≤ σ1/ρ
( ∫ t̄

τ

(
L(ξ′(s), η′(s)) + C

)
ds

)1/r

+ σ

≤ σ1/ρ
(
ξ′0(t̄)− ξ′0(τ) + C(t̄− τ)

)1/r

+ σ

≤ σ1/ρ
(
2|V̄ |+ σ + Cσ

)1/r + σ

=
1
2
δ̄(σ)

≤ 1
2
δ .

Also, if we let θ(s) = ξ̇′0(s) + C = L(ξ′(s), η′(s)) + C,
then θ is nonnegative and∫ t

τ

θ(s)ds ≤
∫ t̄

τ

θ(s)ds

= ξ′0(t̄)− ξ′0(τ) + C(t̄− τ)
≤ 2|V̄ |+ (C + 1)σ .

Since t is an arbitrary member of I ′, the above
inequalities imply that the functions ξ̇′ and θ are
integrable on I ′. Since I ′ is bounded, ξ̇′ is integrable
as well. This implies, in particular, that the limits
limt↑τ+ζ ξ

′(t) and limt↑τ+ζ ξ
′
0(t) exist. Hence, if

(A) holds, we can extend Ξ′ to the closed interval
Ĩ ′

def= [τ, τ + ζ], and the result is a curve Ξ̃′ in Rn+1 which
is obviously an ε-approximate augmented trajectory of
Σ̂. If we then define S̃′ = S′ ∪ {τ + ζ}, then S̃′

is a strongly ε-dense subset of Ĩ ′. Now, if s1, s2 are
members of S̃′ such that s1 ≤ s2 we have to prove that
ξ̃′0(s1) + V (ξ̃′(s1)) + ε(s2 − s1) ≥ ξ̃′0(s2) + V (ξ̃′(s2)).
This is clearly true if s2 < τ + ζ or if s1 = s2. So
the only remaining case for us to consider is when
s1 < s2 = τ + ζ. But in that case we can take a
sequence {v`}∞`=1 of points of I ′ such that v` ↑ τ + ζ
as ` → ∞, and v` > s1 for all `. Then we can pick,
for each `, a w` ∈ S′ such that v` ≤ w`. On the
other hand, s1 ∈ S′, since s1 < τ + ζ. Therefore
ξ̃′0(s1) + V (ξ̃′(s1)) + ε(w` − s1) ≥ ξ̃′0(w`) + V (ξ̃′(w`))
for all `. If we let ` → ∞ and use the continuity of ξ̃′0
and V , we find that

ξ̃′0(s1) + V (ξ̃′(s1)) + ε(s2 − s1) ≥ ξ̃′0(s2) + V (ξ̃′(s2)) ,

as desired. This completes the proof that the extension
(Ĩ ′, Ξ̃′, S̃′) of (I ′,Ξ′, S′) is also in Zε, a fact that of

course contradicts the maximality of (I ′,Ξ′, S′) if (A)
holds. We have thus derived a contradiction from the
assumption that (A) is true. Hence (A) is excluded.

We are thus left with Case (B), that is, the possibility
that I ′ = [τ, τ + ζ] and ζ < σ. We now proceed to
exclude this case. The integral calculation done above
shows that ∫ τ+ζ

τ

‖ξ̇′(t)‖dt ≤ δ

2
,

so

‖ξ′(τ + ζ)− ξ′(τ)‖ ≤ δ

2
. (58)

Since ξ′(τ) ∈ K, (58) implies that, if q = ξ′(τ + ζ),
then dist(q,K) ≤ δ

2 . In particular, q is an interior
point of Kδ. Using Theorem 4.1, we construct sequences
{xj}∞j=1, {vj}∞j=1, {λj}∞j=1, {hj}∞j=1, {γj}∞j=1 in Ω, Rn,
R, R, and R, respectively, such that

(1) the inequalities
hj > 0 ,
γj > 0 ,

‖xj − q − hjvj‖ ≤ hjγj ,

V (xj) ≤ V (q)− hjλj + hjγj ,

hold for all j,

(2) (vj , λj) ∈ FΣ̂(q, U) for all j,

(3) hj ↓ 0, γj ↓ 0, and xj → q as j →∞.

We let (vj , λj) = FΣ̂(q, uj), uj ∈ U , and write
ṽj = h−1

j (xj − q), so that

‖ṽj − vj‖ ≤ γj . (59)

Choose j so large that the following conditions are
fulfilled:

hj < ε , (60)

γj <
ε

2
, (61)

‖xj − q‖ < β , (62)

where β is a positive number such that β < δ
2 and

ω(β) < ε
2 .

Then

hj‖ṽj‖ ≤ ‖xj − q‖ ≤ β ≤ δ

2
.

Define a new trajectory ξ# : I# 7→ Rn, where

I#def= [τ, τ + ζ + hj ] ,
by letting

ξ#(s) =
{
ξ′(s) if τ ≤ s ≤ τ + ζ ,
q+(s−τ−ζ)ṽj if τ + ζ ≤ s ≤ τ + ζ + hj ,

and augment it by defining

ξ#0 (s) ={
ξ′0(s) if τ≤s≤τ+ζ ,
q0+

∫ s
τ+ζ

L(ξ#(v), uj) dv if τ+ζ≤s≤τ+ζ+hj ,
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where q0 = ξ′0(τ + ζ). Let Ξ# = (ξ#, ξ#0 ). Then Ξ#

is clearly absolutely continuous, and its restriction to
[τ, τ + ζ] is an ε-approximate augmented trajectory of
Σ̂. If s belongs to [τ + ζ, τ + ζ + hj ], then

‖ξ#(s)− q‖ ≤ hj‖ṽj‖ ≤
δ

2
.

Therefore ξ#(s) ∈ Kδ. Then

Ξ̇#(s) = (vj , L(ξ#(s), uj))

= (f(q, uj), L(ξ#(s), uj))

= FΣ̂(ξ#(s), uj) + (wj(s), 0) ,

where

wj(s) = f(q, uj)− f(ξ#(s), uj) .
Since

‖ξ#(s)− q‖ ≤ hj‖vj‖ ≤ β ,

we have

‖wj(s)‖ ≤ ω(β) ≤ ε .

Therefore Ξ# is an ε-approximate augmented trajectory
of Σ̂.

Clearly, ξ#(τ + ζ + hj) = xj . Therefore,

V (ξ#(τ + ζ + hj))
= V (xj)
≤ V (q)− hjλj + hjγj

= V (ξ#(τ + ζ))− hjL(q, uj) + hjγj

= V (ξ#(τ + ζ))−
∫ τ+ζ+hj

τ+ζ

L(ξ#(v), uj) dv

−
∫ τ+ζ+hj

τ+ζ

(
L(q, uj)− L(ξ#(v), uj)

)
dv + hjγj

= V (ξ#(τ + ζ)) + ξ#0 (τ + ζ)− ξ#0 (τ + ζ + hj) + E ,
where

E = −
∫ τ+ζ+hj

τ+ζ

(
L(q, uj)− L(ξ#(v), uj)

)
dv + hjγj .

Then
E ≤ hjω(β) + hjγj ≤ εhj .

Therefore

V (ξ#(τ + ζ + hj)) ≤
V (ξ#(τ + ζ)) + ξ#0 (τ + ζ)− ξ#0 (τ + ζ + hj) + εhjE ,

that is,
V (ξ#(τ + ζ)) + ξ#0 (τ + ζ) + εhj

≥ V (ξ#(τ + ζ + hj)) + ξ#0 (τ + ζ + hj) . (63)
This last inequality implies that, if we define

S# = S′ ∪ {τ + ζ + hj} ,
then we can easily show that S# is a strongly ε-dense
subset of I# such that

V (ξ#(s1)) + ξ#0 (s1) + ε(s2 − s1)

≥ V (ξ#(s2)) + ξ#0 (s2) (64)

whenever s1, s2 ∈ S# and s2 ≥ s1. The strong ε-density
follows because S′ is a strongly ε-dense subset of I ′ and
hj < ε, since τ + ζ necessarily belongs to S′. Inequality
(64) is clearly true if s1 = s2 or both s1 and s2 belong
to S′. To verify that it holds in the remaining case, that
is, when s1 ∈ S′ and s2 = τ + ζ + hj , if suffices to use
once again the fact that τ + ζ ∈ S′, so

V (ξ#(s1)) + ξ#0 (s1) + ε(τ + ζ − s1)

≥ V (ξ#(τ + ζ) + ξ#0 (τ + ζ) . (65)

If we add (63) and (65), and cancel the sum
V (ξ#(τ + ζ)) + ξ#0 (τ + ζ) that appears on both sides of
the result, we get

V (ξ#(s1)) + ξ#0 (s1) + ε(τ + ζ + hj − s1)

≥ V (ξ#(τ + ζ + hj)) + ξ#0 (τ + ζ + hj) , (66)
that is,

V (ξ#(s1)) + ξ#0 (s1) + ε(s2 − s1)

≥ V (ξ#(s2)) + ξ#0 (s2) . (67)

It then follows that (I#,Ξ#, S#) belongs to
Zε. Since (I ′,Ξ′, S′) � (I#,Ξ#, S#) but
(I ′,Ξ′, S′) 6= (I#,Ξ#, S#), we have arrived at a
contradiction, which this time has arisen from the
assumption that (B) holds. Hence (B) is excluded as
well.

It now follows that I ′ = [τ, τ + σ]. In other words,
we have shown that there exists an ε-approximate
augmented trajectory Ξε = (ξε, ξ0,ε) of Σ̂ which is
defined on [τ, τ +σ], and is such that there is a strongly
ε-dense subset Sε of [τ, τ + σ] having the property that

V (ξε(s1))+ξ0,ε(s1)+ε(s2−s1)≥V (ξε(s2))+ξ0,ε(s2) (68)
whenever s1, s2 ∈ Sε and s1 ≤ s2.

Clearly, the points τ , τ + σ must belong to Sε. If we
aplly (68) with s1 = τ , s2 = τ + σ, we find the bound

ξ0,ε(τ + σ)− ξ0,ε(τ) ≤ 2|V̄ |+ σ .

Therefore, if {εj}∞j=1 is a sequence of positive num-
bers that converges to 0, we can apply Theorem (5.2)
with T = σ and Ξj = (ξj , ξj0) = (ξ̌εj , ξ̌0,εj ), where
ξ̌εj (s) = ξεj (s+ τ) and ξ̌0,εj (s) = ξ0,εj (s+ τ)− ξ0,εj (τ)
for s ∈ [0, σ. Then, after passing to a subsequence, we
may assume that there exists an augmented trajectory
Ξ∞ = (ξ∞, ξ∞0 ) of Σ̂ such that
(i) ξ∞0 (τ) = 0,

(ii) the sequence {ξj}∞j=1 converges uniformly to ξ∞,
and

(iii) lim infj→∞ inf
{
∆j,∞(t, s) : 0 ≤ s ≤ t ≤ T

}
≥ 0,

where, if j, j′ ∈ N ∪ {+∞}, we define ∆j,j′ as in
(42).

We now show that Ξ∞ is an augmented trajectory of
steepest descent of Σ̂ from x# with respect to V . For
this purpose, we pick s1, s2 ∈ [0, σ] such that s1 ≤ s2,
and prove that

V (ξ∞(s1)) + ξ∞0 (s1) ≥ V (ξ∞(s2)) + ξ∞0 (s2) . (69)
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For this purpose we pick, for each sufficiently large j,
points sj1, s

j
2 in Sεj

such that

sj1 ≤ s1 + τ ≤ s1 + εj < sj2 − εj ≤ s2 + τ ≤ sj2 .

(We assume that s1 < s2, because (69) is trivially true
if s1 = s2.)

Then

V (ξεj
(sj1))− V (ξεj

(sj2)) + εj(s
j
2 − sj1)

≥ ξ0,εj
(sj2)− ξ0,εj

(sj1) , (70)

that is,

V (ξj(sj1 − τ))− V (ξj(sj2 − τ)) + εj(s
j
2 − sj1)

≥ ξj0(s
j
2 − τ)− ξj0(s

j
1 − τ)

= ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ) + ∆j,∞(sj2 − τ, sj1 − τ)

≥ ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ)

+ inf{∆j,∞(t, s) : 0 ≤ s ≤ t ≤ σ}
Then

V (ξ∞(s1))− V (ξ∞(s2))

= lim
j→∞

(
V (ξj(sj1−τ))−V (ξj(sj2−τ))+εj(s

j
2−s

j
1)

)
≥ lim inf

j→∞

(
ξj0(s

j
2 − τ)− ξj0(s

j
1 − τ)

)
= lim inf

j→∞

(
ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ)

+∆j,∞(sj2 − τ, sj1 − τ)
)

≥ lim inf
j→∞

(
ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ)

+ inf{∆j,∞(t, s) : 0 ≤ s ≤ t ≤ σ}
)

= lim
j→∞

(
ξ∞0 (sj2 − τ)− ξ∞0 (sj1 − τ)

)
+ lim inf

j→∞

(
inf{∆j,∞(t, s) : 0 ≤ s ≤ t ≤ σ}

)
= ξ∞0 (s2)− ξ∞0 (s1)

+ lim inf
j→∞

(
inf{∆j,∞(t, s) : 0 ≤ s ≤ t ≤ σ}

)
≥ ξ∞0 (s2)− ξ∞0 (s1) .

We have thus proved (69), thereby establishing that Ξ∞

is an augmented trajectory of Σ̂ from x# of steepest
descent with respect to V . If we now concatenate Ξ and
Ξ∞ in the obvious way, by defining

ξ#(s) =
{
ξ(s) if 0 ≤ s ≤ τ ,
ξ∞(s− τ) if τ ≤ s ≤ τ + σ ,

ξ#0 (s) =
{
ξ0(s) if 0 ≤ s ≤ τ ,
ξ∞0 (s− τ) + ξ0(τ) if τ ≤ s ≤ τ + σ ,

then Ξ# is an augmented trajectory of Σ̂ from x∗ of
steepest descent with respect to V , defined on [0, τ +σ].
This contradicts the maximality of Ξ, and concludes our
proof. ♦

7. The dynamic programming inequality.

Theorem 7.1 Let Ω be an open subset of Rn, and let
f : Ω 7→ Rn, L : Ω 7→ R be continuous maps. Let
V : Ω 7→ R be a continuous function that satisfies

−∇V (x) · f(x)− L(x) ≤ 0 (71)

on Ω in the viscosity sense. Then for every x∗ ∈ Ω
there exists a curve ξ in Ω, defined on an interval I that
contains 0, such that

(1) ξ is an integral curve of f (that is, ξ is locally
absolutely continuous and ξ̇(t) = f(ξ(t)) for almost
every t ∈ I, from which it follows that ξ is
continuously differentiable and ξ̇(t) = f(ξ(t)) for
every t ∈ I),

(2) ξ(0) = x∗,

(3) V (ξ(s)) ≤ V (ξ(t))+
∫ t
s
L(ξ(v)) dv whenever s, t ∈ I

and s ≤ t,

(4) ξ is right-unbounded.

Proof. Let U be a set consisting of a single point ū. Let
Σ̃ be the augmented control system (Ω, U, f̃ , L̃), where
f̃(x, ū) = f(x), L̃(x, ū) = −L(x). Then Σ̃ satisfies all
the hypotheses of Theorem 6.1.

Let V = −V . We claim that V satisfies
sup{−∇V(x) · f̃(x, u)− L̃(x, u) : u ∈ U} ≥ 0

in the viscosity sense. To prove this, we have to pick a
point x ∈ Ω and a subdifferential p of V at x, and show
that

sup{−p · f̃(x, u)− L̃(x, u) : u ∈ U} ≥ 0 ,
i.e., that

−p · f(x) + L(x) ≥ 0 . (72)

But, if p is a subdifferential of −V at x, and we let
π = −p, then it follows that π is a superdifferential of
V at x. Since V satisfies (71) in the viscosity sense,
this implies that −π · f(x) − L(x) ≤ 0. But then
p · f(x)− L(x) ≤ 0, so −p · f(x) + L(x) ≥ 0, and (72)
has been proved.

We can therefore apply the trivial Proposition 2.6
to the augmented system Σ̃ and the function V,
and conclude that there exists a maximal augmented
trajectory Ξ = (ξ, ξ0) of Σ̃ from x∗ of steepest descent
with respect to V, and then use the nontrivial Theorem
6.1 to conclude that ξ is right-unbounded. The fact
that ξ is a trajectory of Σ̃ means, of course, that ξ is an
integral curve of f . The steepest descent condition says
that

V(ξ(s)) ≥ V(ξ(t)) +
∫ t

s

(−L(ξ(v))) dv

whenever 0 ≤ s ≤ t < τ . But this says precisely that

V (ξ(s)) ≤ V (ξ(t)) +
∫ t

s

L(ξ(v)) dv

whenever 0 ≤ s ≤ t < τ . Hence ξ satisfies all the desired
properties, and our proof is complete. ♦

The following result is then a trivial corollary of
Theorem 7.1.
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Theorem 7.2 Let Σ̂ = (Ω, U, f, L) be an
n-dimensional augmented system such that the map
Ω 3 x 7→ (f(x, u), L(x, u) is continuous for each u ∈ U .
Let V : Ω 7→ R be a continuous function that satisfies
(14) on Ω in the viscosity sense. Then for every x∗ ∈ Ω
and every piecewise constant function η : [0,∞ [ 7→ U
there exists a curve ξ : I 7→ Ω, defined on a subinterval
I of [0,∞ [ , such that

(1) 0 ∈ I and ξ(0) = x∗,

(2) ξ is a trajectory for the control η (that is, ξ is locally
absolutely continuous and ξ̇(t) = f(ξ(t), η(t)) for
almost every t ∈ I)

(3) V (ξ(s)) ≤ V (ξ(t)) +
∫ t
s
L(ξ(v), η(v)) dv whenever

s, t ∈ I and s ≤ t,

(4) ξ is right-unbounded. ♦

Theorem 7.2 has the following immediate
consequence.

Theorem 7.3 Let Σ̂ = (Ω, U, f, L) be an
n-dimensional augmented system such that the map
Ω 3 x 7→ (f(x, u), L(x, u) is continuous for each u ∈ U .
Let V : Ω 7→ R be a continuous function that satisfies
(14) on Ω in the viscosity sense. Let Ξ(ξ, ξ0) : I 7→ Ω×R
be a locally uniquely limiting augmented trajectory of
Σ̂. Then the dynamic programming inequality

V (ξ(s)) ≤ V (ξ(t)) + ξ0(t)− ξ0(s)
holds for all s, t ∈ I such that s ≤ t. ♦

8. Proof of Theorem 2.9

According to Theorem 7.3, the dynamic programming
inequality holds along every almost locally uniquely
limiting augmented trajectory. The hypothesis that
every augmented arc has an almost locally uniquely
limiting improvement then implies that the dynamic
programming inequality holds along every augmented
trajectory. If we apply the inequality to an augmented
arc Ξ that starts at a point x and ends at the target,
and use the fact that V = 0 on the target, we find that
V (x) ≤ J(Ξ). Hence V is bounded above by the value
function VΣ̂

T .
To prove that V ≥ VΣ̂

T , we pick x ∈ Ω and use
Proposition 2.6 to conclude that there exists a maximal
augmented trajectory Ξ = (ξ, ξ0) of Σ̃ from x of steepest
descent with respect to V, and then use Theorem 6.1 to
conclude that ξ is right-unbounded. We then invoke
our hypotheses to conclude that Ξ ends at the target.
Then V (x) ≥ J(Ξ), so V is bounded below by the value
function, and our proof is complete. ♦
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