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Abstract—We present some new results, together with a augmented trajectories, since (i) one cannot just regaad
number of particularly simple and user-friendly versions of g functional of¢ only, because the integral of (2) involves
results obtained in recent years by the author and M. Malisoff, the controly as well ast, but on the other hand (ii) the cost

on the unigueness of solutions of the Hamilton-Jacobi- . letelv det ined K d . t
Bellman equation (HJBE) for deterministic finite-dimensional 'S COMPIElely determined once we n@uand a running cos

optimal control problems under non-standard hypotheses. o, because in that case({(t),n(t)) = £o(t).
Our approach is completely control-theoretic and totally The infimum V' (z) of the costs.J(Z) of all augmented

self-contained, using the systematic construction of special trajectories= € A> . is the value of our problem atr. (If
trajectories of various kinds, and not involving any PDE =T

methods. We donot assume that the Lagrangian is positive, 'AEJ’ is empty, then of C_OU"SQZ(QT) = +OO-) The function
or that the dynamics is Lipschitz-continuous. V:Q— RU{—00,+00} is thevalue function

Our goal is to present uniqueness theorems, showing
. INTRODUCTION that a viscosity solution of the HJBE that satisfies an
We consider autonomousagrangian optimization problems appropriate boundary condition is necessarily the value
involving a state variablex with values in an open subset function. “Uniqueness” is to be understood as “uniqueness
Q2 of R", a control variable u taking values in acontrol  wjthin a class defined by some additional properties,” such as

spaceU, and atarget set7, which is a closed subset of the that of all functions that are continuous and bounded below.
closure of(} disjoint from (2 itself. The dynamics is given e will work with a class of systems which is

by an O.D.E. b= f(z,u) 1) sufficiently general to capture some new and interesting
N T phenomena, and restricted enough to make it possible to
the cost functional to be minimized is prove strong theorems. In particular, we will asume that the
(&) setsFy(z,U) = {(f(x,u), L(z,u)) : v € U} are closed and
J :/ L(&(t),n(t)) dt, (2) convex, but will not require them to be compact, and will

-(©) instead impose the “local coerciveness” condition that locally,
(wherer_(¢), 7, (¢) are the initial and terminal times of the an inequality of the form|f(z,u)|"” < L(z,u) + C, with
trajectory £), and for eachr € Q) the minimization is over C >0 andr > 1, hold uniformly with respect ta.. We also
the setAiT of all pairs= = (§,&p) such that require f(x,u) and L(z, ) to be continuous with respect to
() = consists of a trajecton¢ of (1) (i.e., a locally < uniformly with respect ta: locally in . _
absolutely continuous (LAC) functiog that satisfies ~ On the other hand, we will most definiteot require that
£(t) = F(£(t),n(t)) for almost allt) corresponding to flz,u) be_ Llpsch|tz—c0nt|ngous W|t_h respect 40 since one
someU-valued controly, and a “running cost” function ©f the main purposes of.th|s work is to clarify the exact role
¢, corresponding t& and 7 (i.e., a LAC function&, of the'Llpschltz-contmuny assumptions ofte_n made in the
such thatéy (¢) = L(£(t), n(t)) for almost allt); viscosity literature. The answer we propose is as follows:
(i) ¢ starts atr, and “ends at the target” in a sense to be(a) Without any Lipschitz-continuity hypotheses, one can
defined precisely later. prove, for continuous viscosity solutiomsof the HIBE,

We will call a pairZ = (¢, &) for which (i) above holds an an existence theorem for trajectoriemsserting that,

“augmented trajectory” of our system, because it really is a  Starting at every point of of ©, there is a maximally
trajectory of the “augmented control system” defined “augmented trajectory of steepest descent,” that

. ‘ is, a maximally defined paiE = (¢,&,) defined on a
&= f(x,u), i = L(z,u) 3) interval I such thal) = min I, for which the inequality

V() + &o(t) = V(£(s)) + &o(s) (4)
holds wheneves, ¢t € I ands < t.

As a trivial corollary of the existence of steepest
descent trajectories (applied teVV and —L), we get

obtained from (1) by “adding the cost as an extra variable”

in a well known way. We will write.J(Z), rather than just

J, for the left-hand side of (2), because it is easy to see thdb)

the natural arguments for our cost functionglare really



the existence of “DPI trajectories” (where “DPI” is An n-dimensional augmented control systésma 4-tuple
an acronym for “Dynamic Programming Inequality”), > = (Q,U, f, L) such that¥® = (Q,U, f,L) is an n-
i.e., augmented trajectori€&s= (¢, &) along which the dimensional control system anl (the Lagrangian of )

inequality isamapQ x U > (xz,u) — L(z,u) € R. (In that case, the
V(&) + &o(t) < VI(E(s)) + &ols) (5) state space, control space, and dynamics afe also called
(that is, the exact opposite of (4)) is satisfied. the state space, control space, and dynamics.pf
(c) The existence result of (b) says that for every An augmented control systenx = (Q,U, f L) is

“sufficiently nice” (e.g., piecewise constant) contrpl continuousif the mapsQ > z — f(z,u) € R" and
there exists a trajectory of) with the given initial > z — L(z,u) € R are continuous for each fixed We
condition along which the DPI holdsThis is almost, call > uniformly continuousn a subses of (2 if there exists
but not quite, what is needed to prove thats bounded @ functionw :]0, c0[— [0, 00] such thatlim,|ow(s) = 0,
above by the value function. having the property that

d) The gap between the existence result for DPI trajectories

@ and £\J/vhpat would actually be needed to prove]tlh’at 1f (@, w) = fly, W)l + L@, w) = Ly, w)] < w(llz =)
is bounded above by the value function is that tavheneverz,y € S, u € U. We call & locally uniformly
achieve the latter goal one needs the DPI to holdafbr continuousif it is uniformly continuous on every compact
trajectories, and it is not enough to have just one DRdubset of(), and globally uniformly continuousif it is
trajectory for every intial condition and every control. uniformly continuous orf). We call3: Lipschitz continuoui

(e) The gap described in (d) clearly does not exist whethe maps2 5 = — f(z,u) € R” andQ > 2 — L(z,u) € R
there is uniqueness of trajectories for every given contrelre Lipschitz continuous for each fixed. We call &
and initial condition, and in particular when, for everyuniformly Lipschitz continuousn a subsefS of Q) if there
admissible controly, the corresponding time-varying exists a positive constaid such that
vector field (z,t) — f(x,n(t)) satisfies a Lipschitz-
Caratieodory condition that guarantees uniqueness of I/ (z,u) — f(y, u)l|l + [L(z, u) — L(y,u)| < Cllz —y||

trajectories, or a weaker condition such as a local bour‘ﬂheneverx y e Sanduc U. We call 3 locally uniformly

(f(z,n(t)) = f(y,n(t),z —y) < k(t)|lz —y||*, (6) Lipschitz continuousf it is uniformly Lipschitz continuous
with % integrable. on every compact subset df, and globally uniformly

(h) Even more generally, the only property that really matkiPschitz continuousf it is uniformly Lipschitz continuous
ters is that, if we pick a sequenge, },—, of piecewise " S . _
constant controls such that our augmented trajectory 1h€ augmented control system = (Q,U,f,L) is
= can be approximated by augmented trajectofies CO€rciveon a subsetS of Q if there exist real constants

corresponding to they;—with, say, the same initial 7 4, ¢, such thatd >0, ¢ >0, r > 1, and
condition—then the=; converge to= uniformly no I f(z,w)|" < AL(z,u) + C forallz € S, ue U. (7)
matter how thes; are chosenWe call such trajectories .

“uniquely limiting,” and use this concept in the state-We call X locally coerciveif it is coercive on every compact
ment of our main theorem. subset of(2, andglobally coerciveif it is coercive on(.
Remark 1.1:0ur approach owes a great deal to Remark 2.1:f 3 is coercive on a sef, thenit is always

the book [6] by A.l Subbotin. Subbotin, however,POSsible to choos€’, r, such thatC’ > 0, r > 1, and (7)
only studies viscosity solutions of PDEs of the formholds withA = 1. R %
F(z,u(x), Du(z)) = 0, where the HamiltoniarF'(x, u, p) Eor an augmented control system = (€, U, f, L), we
is required to be globally Lipschitz with respect go(cf. ~ define a mapFy, : @ x U — R™*! (called theaugmented
Equation (2.2) in [6], p. 9). A somewhat weaker hypothesidynamicsof %) by letting F,(z,u) = (f(z, u), L(z,u)) for

is also considered later but, even with the weakened € ©, u € U. We say that: satisfies the convexity and
requirement, the results do not cover, for example, coerciwoper semicontinuity conditioifi, for eachz € €,

problems of the kind discussed here, such as linear quadratic o
optimal control. o Fy(z,U) = ) CO(U{Fi(JU/vU) e =] < 5}) ., (8)
e>0
Il. THE MAIN THEOREM where ‘5" stands for “closed convex hull” and

If n is a positive integer, am-dimensional control system Fi(:mU)déf{(f(a:,u),L(ac,u)) cu e U}

is a tripleX = (2,U, f) such thatQ (the state spaceof Remark 2.2:It is easy to see thaf 3 = (QU, f,L)is
) is an open subset dR™, U (the control spaceof ) locally uniformly continuous, thel satisfies the convexity
is a nonempty set, and (the dynamicsof X) is a map and upper semicontinuity condition iff the s&}(z,U) is
QO xU > (x,u) — flz,u) € R™. closed and convex for everye ().



A targetfor an augmented control systetn— (Q,U, f,L)
is a closed subsel of R™ such thatZ7 C Closure) and
TNn=40.

A trajectoryof & = (Q, U, f, L) is a LAC curve

I>t—E(t)eq 9
defined on a nonempty subintervdl of R, such that
£(t) € f(£(t),U) for almost everyt € I. An augmented
trajectory of ¥ is a LAC curve

I3t E(t) = (€(),&(1) € Q xR, (10)

defined on a subinterval of R, having the property that
E(t) € Fy(£(t),U) for almost everyt € 1.

The initial time, or starting timeof a trajectory¢ (resp.
an augmented trajector® = (£,&p)) with domain[ is the
timer_ (g)déf min [ (resp.r,(E)déf min 1)), if the minimum
exists, i.e., ifl is bounded below and its infimum belongs to
1. If the initial time of £ (resp.Z) exists, then (i) the point
2 (O e(r_(¢)) (resp.z_(E)&¢(r_(2))) is the starting
point, or initial point, of £ (resp.=), and (ii) the ordered pair
0-(O) = (r-(€),7(¢)) (resp.0_(2)=(r_(2),2(2))) s
the initial condition of & (resp.Z). If _(¢) = (¢,z) (resp.

trajectories ofS from = of steepest descent with respect to
V.
Definition 2.3:. If Q is an open subset oR",
&:1—Qis a curve, we say that is right-unboundedf
(i) the intervall is open on the right (that is, if = sup I,
then either (ayr = +oo or (b) 7 is finite and does not
belong tor),

(iiy if 7 is finite, then for every compact subsat of Q
there exists ax such that) < 7 < 7 and&(t) ¢ K
wheneverrig <t < 7. &

The following observation is a completely trivial
consequence of Zorn's lemma, given our definitions, but we
state it explicitly as a separate result for future reference.

Proposition 2.4: If 3 = (Q,U, f,L) is an augmented
control system) : Q — R is a function, andz € 2, then
the setMSDy, of maximal augmented trajectories bf

and

from x of steepest descent with respecfitds nonempty)

An augmented arcis an augmented trajectory whose
domain is a compact interval. IE (&, &) is an
augmented arc with domaifu,b], then animprovement
of Z is an augmented ar&’ (&,&,), with domain

0_(Z)=(t,x)), we say that (resp.E) starts atx at time¢.  [a', V'], that satisfies{’(a”) = £(a), €'(V) §(b), and
If T is a target fors = (Q,U, f, L), then a trajectorg or  £0(0") — &h(a’) < &o(b) — &o(a).
augmented trajectorg = (£, &) with domaini ends at7 If s — (Q,U, f,L) is an augmented control system, then

if the limit £(7) —fhmﬁbulD 15( ) exists and belongs t@.
For eachr € (2, we letA> ; be the set of all augmented

trajectories= = (¢, fo) of isuch that (i)0_(E) = (0, z),

(i) go( ) = 0, (iii) = ends at the target, and (iv) the limit

§O(T) = hmthup domain £ 50( ) exists.
If == (¢,&) € AZ 7 then thecostof =

J(E)Ee(1).

The value function of the optimal control problem
defined by Y and the target7 is the function
VT QUT — RU{—o00,+0o0} given by

is the number

(11)

inf{J(Z):Z€ AL} if z€Q

b3l _
VT(”C)_{O if zeT.

If V: Q+— Ris a function, then an augmented trajectory
2= (& &) of X is said to beof steepest descent with respect

to V if &(s) + V(&(s)) > &o(t) + V(&(t)) whenevers <t
ands, ¢ € domain E. We useSDy, ;, to denote the set of all

augmented trajectories &f of steepest descent with respect

to V, andSDy y, , to denote the set of alf € SDy, ,, such
thatd_ (=) = (0, z).

If x € Q, a maximal augmented trajectory af from z
of steepest descent with respectfois a = € SDs v,
that cannot be extended toZ e 8Dy, y,, defined on an
interval which is strictly larger that the domain & We

use MSDy, |, to denote the set of all maximal augmentedThen= is uniquely limiting.

an augmented ar& = (£,&) of X with domain [a, b]

is uniquely limitingif there exists a sequencfy;}52, of

piecewise constant functiong : [a,b] — U such that

(*) if {E;}32, is an arbitrary sequence of maximally
defined augmented trajectories of such that
a € domain(=Z;) and E;(a) = E(a) for everyj, then
[a,b] C domain(E;) if j is large enough, an&E; — =
uniformly onfa,b] asj — cc.

Example 2.5:Suppose&E = (&, &) is an augmented arc of

3> with domain|[a, b] such that

(#) there exist a positivé € R, a functionn : [a,b] — U,
and an integrable function : [a,b] — [0, oo], such that

(i) Z(t) = (f(m,n(t)),L(x,n(t))) for a. e.t € [, b,
(i) the mapt — (f(x,n(t)),L(x,n(t))) , on the

compact sef, < {t:a <t < bA|lz—£(t)] < 5},
is measurable for each € Q,

- =

(i) the mapz (f(x,n(t)),L(x,n(t))) , on the
compact sef* ™ {z € Q : ||z — £(¢)|| < 6},
is continuouse for eache [a, b],

) (fla,n®) - F@ ne)z—a') < p(t)|o - ')
whenevert < [a,b], ||z — &@)|| < 4, and
l=" = @) <6,

(v) the inequality|L(z,n(t))

t))| < o(t) holds whenever
t € [a,b] and ||z — £(1)]] < 6.

|
¢



An augmented trajectorig = (£,&p) with domain[ is
locally uniguely limitingif for every compact subinterval’
of I the restriction of= to I’ is uniquely limiting.

An augmented trajectory = (£, &) with domainI is almost
uniquely limitingif there exists a finite subsd® of I such
that the restriction oE to every subinterval of \ B is locally
uniquely limiting.

If Q is an open subset oR™, we say that a function
V : Q — R satisfies the inequality

sup{—(VV(z), f(z,u)) — L(z,u) :u e U} >0 (12)
on ) in the viscosity sensé
(V1) wheneverz € Q and p € R" is a

subdifferential oflV at z, it follows that

sup{—(p, f(z,u)) = L(z,u) :u € U} > 0.
(We recall that, ifQ2 is open inR™, then asubdifferentialof

a functionV : Q — R at a pointz € Q2 is a vectorp € R”
such that

Vie) V(@) —p-(x-7)

o — x|

lim inf

>0.)

Similarly, we say thal/ satisfies the inequality

sup{—(VV(z), f(z,u)) — L(z,u) :u € U} <0 (13)
on Q in the viscosity sensié¢
(V_) wheneverz € Q and p € R" is a

superdifferential ofl” at z, it follows that
sup{—(p, f(z,u)) — L(z,u) s u € U} < 0.

(A superdifferentialof V' at z, is a vectorp such that—p is
a subdifferential of~V at x,.)

We say thatl satisfies the equation
sup{—(VV (z), f(z,u)) — L(z,u) :u € U} =0 (14)

on  in the viscosity sensi¢ it satisfies (12) and (13) in the
viscosity sense.
Remark 2.6:The definition of “viscosity solution” given

(5) Every augmented arc has an almost locally uniquely
limiting improvement.
(6) Wheneverr € Q, = = (§,&) € MSDg,,,, and{ is
right-unbounded, it follows thaE € A% ;.
ThenV = V5. ¢
Remark 2.8:Condition (6) was essentially introduced by
M. Malisoff, cf. especially [4].

I1l. EXAMPLES

Example 3.1: (Linear-quadratic optimal control.)
Consider the standard linear-quadratic optimal control
problem, in whichz, v take values irR™, R™, respectively,
the dynamical law is

& = Az + Bu, (15)

the Lagrangian is given by
L(z,u) = 'R + u'Su,

the square matrice®, S are strictly positive definite, and
the pair (A4, B) is stabilizable. We take the target sEtto
consist of the origin ofR™. (In order to satisfy the condition
that Fy,(z,U) is convex for everyz € , we add a new
scalar nonnegative control variablein such a way that the
dynamical law (15) remains unchanged but the Lagrangian
L is replaced byL, where L(z,u,v) ' L(z,u) + v.) The
crucial technical issue here is the fact that the Lagrangian is
not bounded away from zero. The hypotheses of our main
theorem (including the coerciveness, which follows from the
positive definiteness of) are easily verified as long a8 is
bounded below. The only nontrivial point is the verification of
condition (6). To prove that this holds, [&t: [0, 7 [— R" xR

be a right-unbounded maximal trajectory of steepest descent
with respect toV that does not end at the target, and write
E = (£ &) in the usual way. Therm has to be infinite,
because ifr was finite then the boundedness of the cost
(arising from the fact thaE = (£, &) is of steepest descent
andV is bounded below) would trivially imply ai? bound

on the control, from which it would follow thaE can be
extended to the closed intenjal 7], and then the assumption
that = does not end at the target would enable us to extend
= even further, contradicting maximality. Sais infinite. On

the other hand, the fact th&t is bounded below and is of

here is known to be equivalent to the more common ongteepest descent implies that the integral

involving test functions, cf. [1].
Our main result is the following theorem:
Theorem 2.7: Let® = (Q,U, f,L) be an augmented
control system, let7 be a target for &, and let
V :QUT — R be a function. Assume that

(1) s locally uniformly continuous, locally coercive, an

¢

such that Fy(x,U) is closed and convex for every

x e
(2) V is continuous.
(3) V satisfies (14) o2 in the viscosity sense.
(4) V vanishes orf.

/OO (f(t)TRé(t) + n(t)Tsn(t))dt

0
is finite, if n is an open-loop control that generatés But
then ¢ and  are square-integrable, so the condition that

dg = A¢ + Bn implies that¢ is square-integrable and has

a square-integrable derivative, and then Barbalat’s lemma
implies that¢ ends at the target, as desired. &

Example 3.2: (Fuller's problem, cf., e.g., [8]Dhis is the
optimal control problem for the dynamical law

jj:y7 Z):1t7



with control constraint-1 < u < 1. The target sef consists (¢ : [a, ] — H, are cycloids such thaf(¢) is an interior
of the origin of R2. The Lagragian isL(x,y,u) = 2%. The point of H, whenevera < t < §3. It follows that we can
crucial technical issue here is the fact that the Lagrangiaaiways replace by a cycloid¢, thereby obtaining an almost
is not bounded away from zero, and in fact has a whollcally uniquely limiting improvement of. &
line of zeros. The hypotheses of our main theorem are easilyExample 3.4: (An  example with a continuous
verified as long ad/ is bounded below. The only nontrivial non-Lipschitz dynamics where uniqueness faild.gt
point is the verification of condition (6). To prove that thisp : [0,1] — R be a nonnegative continuous function
holds, letZ : [0,7 [— R3 be a right-unbounded maximal such that (a) the sefz € [0,1] : ¢(x) = 0} is exactly
trajectory of steepest descent with respectitahat does the Cantor set, and (bj’o1 fg) < 0. (For example, we
not end at the target, and writ€ = (£,&) in the usual may takey to be given byy(z) = dist(z,C)?, where
way. Thenr has to be infinite, because if was finite then (¢ is the Cantor set ang is a positive number such

the boundedness of the control would trivially imply thatthat p < 1 — log,2. An explicit calculation shows that
= can be extended to the closed inter{@)r], and then ! dz _ (1- p);12p S 94, whered = 2 x 3°. Our
. 0 o(x) j=17" 3
the assumption thaE does not end at the target enablegpgice of ) guarantees that < 1, so the integral is finite.)
us _to_ e_xtencE even further, contradicting ma>§imality. So Extend¢ to a function defined ofR by making it periodic
is infinite. On the other hand, the fact thet is bounded of period 1. Then consider the optimal control problem
bglow andE_ is o_f st.eepest .descent implies that the integrady, R \whose dynamics is = up(z), |u| < 1, and where
Jy~ x(t)?dt is finite, if we write¢(t) = (x(t),y(t)). Butthen e goal is to reach the origin in minimum time. It is easy
x(+) Is a square-integrable function ¢ oo [ whose second 4 see that the optimal trajectory from each painexists
derivative is bounded. By a straightforward generalization of,q is optained by “moving towards the target as fast as
Barbalat's lemma, this implies that both{-) andy(-) go to  possible” Precisely, this means the we use the control
zero, i.e., that ends at the target, as desired. ¢ w4 = —1as long as we are to the right of the origin, and
Example 3.3: (The reflected brachistochrone problemy,e ysey, — 1 if we are to the left. This, however, does not
This is the minimum time problem for the dynamical law gyffice to specify the optimal trajectories, because of the
i = u|y|, lack of uniqueness of solutions. The complete specification
i = v/l of the optimal trajectories is as follows. Suppage< 0.
’ Define a functionr : [z,0] — R by letting 7(z) = [ @‘g).
with control constraint” +v* < 1. The target sef consists Then 7 is aboslutely continuous, strictly increasing, and
of a single pointB € R2. The crucial technical issue here issuch thatr(z) = 0. Thereforer maps the intervalz, 0]
the fact that the dynamical law is not Lipschitz-continuousiomeomorphically onto the intervdd, 7(0)]. Let ¢ be the
with respect to the state. The hypotheses of our main theorgnverse function, sq maps|0, 7(0)] homeomorphically onto
are easily verified. The only nontrivial point is the verification[@o]_ Then¢ is absolutely continuous, an@(t) = p(&(t))
of condition (5). To prove that this holds, we pick an arbitranfor almost allt ¢ [0,7(0)]. So¢ is a trajectory of our system
integral arc¢ : [a,b] — R?, and observe that either ((t) which goes fromz to 0 in time 7(0), and it is easy to see
never belongs to the axis X = {(z,y) € R? : y =0} or that¢ is the optimal trajectory fronx to 0. It follows that
(ii) there existt_, ¢, € [a,b] such thatt_ < t., £(t) ¢ X  optimal time to go fromz to 0 is (0), that is, [* L
whenevera <t <t ort; >t <b &t )€ X,and A similar contruction applies whe@ > 0. Then the ﬁ/éfue
£(ty) € X. If (i) holds, then¢ satisfies the conditions of function V for our problem is given by
Example 2.5, sc€ is uniquely limiting. If (ii) holds and
t, = t_, then the restriction of to each of the intervals V() :/
[a,t_ [+,, ] t+,b], is locally uniquely limiting, sc is almost min(z,0) L)
locally uniquely limiting. Finally, if (i) holds andt <¢_,
then the restrictior¢ of ¢ to the interval[¢t_,t.] is such
that the setS = {t € [a,b] : {(t) ¢ X} is the union of a V' (2)|p(z) —1=0. (16)
finite or countable infinite collectioff of pairwise disjoint
relatively open subintervals ofu,b]. If I € Z, then the The functionV is a solution of this equation ofR\{0}
restriction¢; of ¢ to I is entirely contained in the open upperin the viscosity sense. (This follows from the fact that, for
half-plane or in the open lower half-plane. By reflectifig problems such as this one, the value function is automatically
with respect toX, if necessary, we may assume tlgatis a viscosity solution of the HIBE. In addition, one can also
entirely contained in the open upper half-plane for everyerify this directly. LetO be the set of points wheke(x) >
I € 7. Then¢ is a trajectory of our system entirely containedd. Then on® the functionV is smooth, and its derivative
in the closed upper half-plane. It is well known that thdés 1 whenz < 0, and—% whenz > 0, so (16) holds. At
problem in the closed upper half-pladé, is the famous pointsz wherep(z) = 0, the viscosity solution requirements
“pbrachistochrone problem,” whose time-optimal trajectoriesay that—1 > 0 wheneverp is a subdifferential off” at x,

max(z,0) dy

The HJBE for our problem is



and—1 < 0 wheneve is a superdifferential of” atz. The construct a maximal trajectogyfor u(-) starting atr, along
second condition is trivially true. To verify the first condition, which the DPI forV holds. (It suffices to follow the only
we need to show that it is satisfied vacuously, i.e., that themossible trajectory fou(-) as long asp # 0, and stopping
are no subdifferentials df atz. But this easy. Suppose, say,at z and staying there for ever as soon as we reach the first
thatz < 0. The difference quotienf (V(z + h) — V(x)) is  point z wherey vanishes.) Thig is not, however, the only
equal, ifh > 0, to _% f”h dy_ which is bounded above trajectory foru(-) starting atz,. And the fact that the DPI

1

N 7;1{)Since<p(:c) — 0, ¢(h) goes holds alongt does notimply that that the DPI holds for every

trajectory foru(-) that starts atzy. (Indeed, if for example
xg < 0 andu(t) = 1, then in addition to the& given by
our construction we could also considgy,:, the optimal

by C(h) = T max{p):yElz,a+h ~
to —oo ash — 0. This shows that the right derivative &f at

x is equal toco, from which it follows easily that there exist
no subdifferentials o¥ atz. A similar argument shows that =~ ) ) ~ )
if = > 0 the left derivative of?’ at z is equal to-+oco, from trajectory described earlier. The DPI forclearly fails along

which it follows once again that there are no subdifferentiald'® CUrVeept, because if it was true it would follow that
of V at . V(zg) <V(xzp), whereas we know that (zo) >V (z).) ¢
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