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Abstract— We present some new results, together with a
number of particularly simple and user-friendly versions of
results obtained in recent years by the author and M. Malisoff,
on the uniqueness of solutions of the Hamilton-Jacobi-
Bellman equation (HJBE) for deterministic finite-dimensional
optimal control problems under non-standard hypotheses.
Our approach is completely control-theoretic and totally
self-contained, using the systematic construction of special
trajectories of various kinds, and not involving any PDE
methods. We donot assume that the Lagrangian is positive,
or that the dynamics is Lipschitz-continuous.

I. INTRODUCTION

We consider autonomousLagrangian optimization problems
involving a state variablex with values in an open subset
Ω of Rn, a control variable u taking values in acontrol
spaceU , and atarget setT , which is a closed subset of the
closure ofΩ disjoint from Ω itself. The dynamics is given
by an O.D.E.

ẋ = f(x, u) , (1)

the cost functional to be minimized is

J =
∫ τ+(ξ)

τ−(ξ)

L(ξ(t), η(t)) dt , (2)

(whereτ−(ξ), τ+(ξ) are the initial and terminal times of the
trajectory ξ), and for eachx ∈ Ω the minimization is over
the setAΣ̂

x,T of all pairsΞ = (ξ, ξ0) such that

(i) Ξ consists of a trajectoryξ of (1) (i.e., a locally
absolutely continuous (LAC) functionξ that satisfies
ξ̇(t) = f(ξ(t), η(t)) for almost all t) corresponding to
someU -valued controlη, and a “running cost” function
ξ0 corresponding toξ and η (i.e., a LAC functionξ0
such thatξ̇0(t) = L(ξ(t), η(t)) for almost allt);

(ii) ξ starts atx, and “ends at the target” in a sense to be
defined precisely later.

We will call a pairΞ = (ξ, ξ0) for which (i) above holds an
“augmented trajectory” of our system, because it really is a
trajectory of the “augmented control system”

ẋ = f(x, u) , ẋ0 = L(x, u) (3)

obtained from (1) by “adding the cost as an extra variable”
in a well known way. We will writeJ(Ξ), rather than just
J , for the left-hand side of (2), because it is easy to see that
the natural arguments for our cost functionalJ are really

augmented trajectories, since (i) one cannot just regardJ as
a functional ofξ only, because the integral of (2) involves
the controlη as well asξ, but on the other hand (ii) the cost
is completely determined once we knowξ and a running cost
ξ0, because in that caseL(ξ(t), η(t)) = ξ̇0(t).

The infimum V (x) of the costsJ(Ξ) of all augmented
trajectoriesΞ ∈ AΣ̂

x,T is the value of our problem atx. (If

AΣ̂
x,T is empty, then of courseV (x) = +∞.) The function

V : Ω 7→ R ∪ {−∞,+∞} is thevalue function.
Our goal is to present uniqueness theorems, showing

that a viscosity solution of the HJBE that satisfies an
appropriate boundary condition is necessarily the value
function. “Uniqueness” is to be understood as “uniqueness
within a class defined by some additional properties,” such as
that of all functions that are continuous and bounded below.

We will work with a class of systems which is
sufficiently general to capture some new and interesting
phenomena, and restricted enough to make it possible to
prove strong theorems. In particular, we will asume that the
setsFΣ̂(x,U) = {(f(x, u), L(x, u)) : u ∈ U} are closed and
convex, but will not require them to be compact, and will
instead impose the “local coerciveness” condition that locally,
an inequality of the form‖f(x, u)‖r ≤ L(x, u) + C, with
C > 0 andr > 1, hold uniformly with respect tou. We also
requiref(x, u) andL(x, u) to be continuous with respect to
x, uniformly with respect tou locally in x.

On the other hand, we will most definitelynot require that
f(x, u) be Lipschitz-continuous with respect tox, since one
of the main purposes of this work is to clarify the exact role
of the Lipschitz-continuity assumptions often made in the
viscosity literature. The answer we propose is as follows:

(a) Without any Lipschitz-continuity hypotheses, one can
prove, for continuous viscosity solutionsV of the HJBE,
an existence theorem for trajectories, asserting that,
starting at every point ofx of Ω, there is a maximally
defined “augmented trajectory of steepest descent,” that
is, a maximally defined pairΞ = (ξ, ξ0) defined on a
intervalI such that0 = min I, for which the inequality

V (ξ(t)) + ξ0(t) ≥ V (ξ(s)) + ξ0(s) (4)
holds whenevers, t ∈ I ands ≤ t.

(b) As a trivial corollary of the existence of steepest
descent trajectories (applied to−V and −L), we get



the existence of “DPI trajectories” (where “DPI” is
an acronym for “Dynamic Programming Inequality”),
i.e., augmented trajectoriesΞ = (ξ, ξ0) along which the
inequality

V (ξ(t)) + ξ0(t) ≤ V (ξ(s)) + ξ0(s) (5)

(that is, the exact opposite of (4)) is satisfied.
(c) The existence result of (b) says that for every

“sufficiently nice” (e.g., piecewise constant) controlη
there exists a trajectory ofη with the given initial
condition along which the DPI holds. This is almost,
but not quite, what is needed to prove thatV is bounded
above by the value function.

(d) The gap between the existence result for DPI trajectories
and what would actually be needed to prove thatV
is bounded above by the value function is that to
achieve the latter goal one needs the DPI to hold forall
trajectories, and it is not enough to have just one DPI
trajectory for every intial condition and every control.

(e) The gap described in (d) clearly does not exist when
there is uniqueness of trajectories for every given control
and initial condition, and in particular when, for every
admissible controlη, the corresponding time-varying
vector field (x, t) 7→ f(x, η(t)) satisfies a Lipschitz-
Carath́eodory condition that guarantees uniqueness of
trajectories, or a weaker condition such as a local bound

〈f(x, η(t))− f(y, η(t)), x− y〉 ≤ k(t)‖x− y‖2 , (6)

with k integrable.
(h) Even more generally, the only property that really mat-

ters is that, if we pick a sequence{ηj}j=1 of piecewise
constant controls such that our augmented trajectory
Ξ can be approximated by augmented trajectoriesΞj
corresponding to theηj—with, say, the same initial
condition—then theΞj converge toΞ uniformly no
matter how theΞj are chosen. We call such trajectories
“uniquely limiting,” and use this concept in the state-
ment of our main theorem.

Remark 1.1:Our approach owes a great deal to
the book [6] by A.I. Subbotin. Subbotin, however,
only studies viscosity solutions of PDEs of the form
F (x, u(x), Du(x)) = 0, where the HamiltonianF (x, u, p)
is required to be globally Lipschitz with respect top (cf.
Equation (2.2) in [6], p. 9). A somewhat weaker hypothesis
is also considered later but, even with the weakened
requirement, the results do not cover, for example, coercive
problems of the kind discussed here, such as linear quadratic
optimal control. ♦

II. T HE MAIN THEOREM

If n is a positive integer, ann-dimensional control system
is a triple Σ = (Ω, U, f) such thatΩ (the state spaceof
Σ) is an open subset ofRn, U (the control spaceof Σ)
is a nonempty set, andf (the dynamicsof Σ) is a map
Ω× U 3 (x, u) 7→ f(x, u) ∈ Rn.

An n-dimensional augmented control systemis a 4-tuple
Σ̂ = (Ω, U, f, L) such thatΣ = (Ω, U, f, L) is an n-
dimensional control system andL (the Lagrangian of Σ̂)
is a mapΩ × U 3 (x, u) 7→ L(x, u) ∈ R. (In that case, the
state space, control space, and dynamics ofΣ are also called
the state space, control space, and dynamics ofΣ̂.)

An augmented control system̂Σ = (Ω, U, f, L) is
continuous if the maps Ω 3 x 7→ f(x, u) ∈ R

n and
Ω 3 x 7→ L(x, u) ∈ R are continuous for each fixedu. We
call Σ̂ uniformly continuouson a subsetS of Ω if there exists
a functionω : ]0,∞[7→ [0,∞] such thatlims↓0 ω(s) = 0,
having the property that

‖f(x, u)− f(y, u)‖+ |L(x, u)− L(y, u)| ≤ ω(‖x− y‖)

wheneverx, y ∈ S, u ∈ U . We call Σ̂ locally uniformly
continuousif it is uniformly continuous on every compact
subset of Ω, and globally uniformly continuousif it is
uniformly continuous onΩ. We callΣ̂ Lipschitz continuousif
the mapsΩ 3 x 7→ f(x, u) ∈ Rn andΩ 3 x 7→ L(x, u) ∈ R
are Lipschitz continuous for each fixedu. We call Σ̂
uniformly Lipschitz continuouson a subsetS of Ω if there
exists a positive constantC such that

‖f(x, u)− f(y, u)‖+ |L(x, u)− L(y, u)| ≤ C‖x− y‖

wheneverx, y ∈ S andu ∈ U . We call Σ̂ locally uniformly
Lipschitz continuousif it is uniformly Lipschitz continuous
on every compact subset ofΩ, and globally uniformly
Lipschitz continuousif it is uniformly Lipschitz continuous
on Ω.

The augmented control system̂Σ = (Ω, U, f, L) is
coercive on a subsetS of Ω if there exist real constants
r, A, C, such thatA > 0, C > 0, r > 1, and

‖f(x, u)‖r ≤ AL(x, u) + C for all x ∈ S , u ∈ U . (7)

We call Σ̂ locally coerciveif it is coercive on every compact
subset ofΩ, andglobally coerciveif it is coercive onΩ.

Remark 2.1:If Σ̂ is coercive on a setS, then it is always
possible to chooseC, r, such thatC > 0, r > 1, and (7)
holds withA = 1. ♦

For an augmented control system̂Σ = (Ω, U, f, L), we
define a mapFΣ̂ : Ω × U 7→ R

n+1 (called theaugmented
dynamicsof Σ̂) by lettingFΣ̂(x, u) = (f(x, u), L(x, u)) for
x ∈ Ω, u ∈ U . We say thatΣ̂ satisfies the convexity and
upper semicontinuity conditionif, for eachx ∈ Ω,

FΣ̂(x, U) =
⋂
ε>0

co
(⋃
{FΣ̂(x′, U) : ‖x′ − x‖ ≤ ε}

)
, (8)

where “co” stands for “closed convex hull,” and
FΣ̂(x, U)def= {(f(x, u), L(x, u)) : u ∈ U}.

Remark 2.2:It is easy to see thatif Σ̂ = (Ω, U, f, L) is
locally uniformly continuous, then̂Σ satisfies the convexity
and upper semicontinuity condition iff the setFΣ̂(x,U) is
closed and convex for everyx ∈ Ω. ♦



A targetfor an augmented control system̂Σ = (Ω, U, f, L)
is a closed subsetT of Rn such thatT ⊆ Closure Ω and
T ∩ Ω = ∅.

A trajectory of Σ̂ = (Ω, U, f, L) is a LAC curve

I 3 t 7→ ξ(t) ∈ Ω , (9)
defined on a nonempty subintervalI of R, such that
ξ̇(t) ∈ f(ξ(t), U) for almost everyt ∈ I. An augmented
trajectory of Σ̂ is a LAC curve

I 3 t 7→ Ξ(t) = (ξ(t), ξ0(t)) ∈ Ω× R , (10)

defined on a subintervalI of R, having the property that
Ξ̇(t) ∈ FΣ̂(ξ(t), U) for almost everyt ∈ I.

The initial time, or starting timeof a trajectoryξ (resp.
an augmented trajectoryΞ = (ξ, ξ0)) with domainI is the

time τ−(ξ)def= min I (resp.τ−(Ξ)def= min I)), if the minimum
exists, i.e., ifI is bounded below and its infimum belongs to
I. If the initial time of ξ (resp.Ξ) exists, then (i) the point
x−(ξ)def= ξ(τ−(ξ)) (resp.x−(Ξ)def= ξ(τ−(Ξ))) is the starting
point, or initial point, of ξ (resp.Ξ), and (ii) the ordered pair
∂−(ξ)def= (τ−(ξ), x−(ξ)) (resp. ∂−(Ξ)def= (τ−(Ξ), x−(Ξ))) is
the initial condition of ξ (resp.Ξ). If ∂−(ξ) = (t, x) (resp.
∂−(Ξ)=(t, x)), we say thatξ (resp.Ξ) starts atx at time t.

If T is a target forΣ̂ = (Ω, U, f, L), then a trajectoryξ or
augmented trajectoryΞ = (ξ, ξ0) with domainI ends atT
if the limit ξ(↑)def= limt↑sup I ξ(t) exists and belongs toT .

For eachx ∈ Ω, we letAΣ̂
x,T be the set of all augmented

trajectoriesΞ = (ξ, ξ0) of Σ̂ such that (i)∂−(Ξ) = (0, x),
(ii) ξ0(0) = 0, (iii) Ξ ends at the target, and (iv) the limit

ξ0(↑)def= limt↑sup domain Ξ ξ0(t) exists.
If Ξ = (ξ, ξ0) ∈ AΣ̂

x,T then thecostof Ξ is the number

J(Ξ)def= ξ0(↑) . (11)

The value function of the optimal control problem
defined by Σ̂ and the target T is the function
VΣ̂
T : Ω ∪ T 7→ R ∪ {−∞,+∞} given by

VΣ̂
T (x) =

{
inf{J(Ξ) : Ξ ∈ AΣ̂

x,T } if x ∈ Ω
0 if x ∈ T .

If V : Ω 7→ R is a function, then an augmented trajectory
Ξ = (ξ, ξ0) of Σ̂ is said to beof steepest descent with respect
to V if ξ0(s) + V (ξ(s)) ≥ ξ0(t) + V (ξ(t)) whenevers ≤ t
ands, t ∈ domain Ξ. We useSDΣ̂,V to denote the set of all

augmented trajectories of̂Σ of steepest descent with respect
to V , andSDΣ̂,V,x to denote the set of allΞ ∈ SDΣ̂,V such
that ∂−(Ξ) = (0, x).

If x ∈ Ω, a maximal augmented trajectory of̂Σ from x
of steepest descent with respect toV is a Ξ ∈ SDΣ̂,V,x

that cannot be extended to ãΞ ∈ SDΣ̂,V,x defined on an
interval which is strictly larger that the domain ofΞ. We
useMSDΣ̂,V,x to denote the set of all maximal augmented

trajectories ofΣ̂ from x of steepest descent with respect to
V .

Definition 2.3: . If Ω is an open subset ofRn, and
ξ :I 7→Ω is a curve, we say thatξ is right-unboundedif

(i) the intervalI is open on the right (that is, ifτ = sup I,
then either (a)τ = +∞ or (b) τ is finite and does not
belong toI),

(ii) if τ is finite, then for every compact subsetK of Ω
there exists aτK such that0 ≤ τK < τ and ξ(t) /∈ K
wheneverτK < t < τ . ♦

The following observation is a completely trivial
consequence of Zorn’s lemma, given our definitions, but we
state it explicitly as a separate result for future reference.

Proposition 2.4: If Σ̂ = (Ω, U, f, L) is an augmented
control system,V : Ω 7→ R is a function, andx ∈ Ω, then
the setMSDΣ̂,V,x of maximal augmented trajectories ofΣ̂
from x of steepest descent with respect toV is nonempty.♦

An augmented arcis an augmented trajectory whose
domain is a compact interval. IfΞ = (ξ, ξ0) is an
augmented arc with domain[a, b], then an improvement
of Ξ is an augmented arcΞ′ = (ξ′, ξ′0), with domain
[a′, b′], that satisfiesξ′(a′) = ξ(a), ξ′(b′) = ξ(b), and
ξ′0(b′)− ξ′0(a′) ≤ ξ0(b)− ξ0(a).

If Σ̂ = (Ω, U, f, L) is an augmented control system, then
an augmented arcΞ = (ξ, ξ0) of Σ̂ with domain [a, b]
is uniquely limiting if there exists a sequence{ηj}∞j=1 of
piecewise constant functionsηj : [a, b] 7→ U such that

(*) if {Ξj}∞j=1 is an arbitrary sequence of maximally
defined augmented trajectories of̂Σ such that
a ∈ domain(Ξj) and Ξj(a) = Ξ(a) for every j, then
[a, b] ⊆ domain(Ξj) if j is large enough, andΞj → Ξ
uniformly on[a, b] as j →∞.

Example 2.5:SupposeΞ = (ξ, ξ0) is an augmented arc of
Σ̂ with domain[a, b] such that

(#) there exist a positiveδ ∈ R, a functionη : [a, b] 7→ U ,
and an integrable functionϕ : [a, b] 7→ [0,∞], such that

(i) Ξ̇(t) =
(
f(x, η(t)), L(x, η(t))

)
for a. e.t ∈ [a, b],

(ii) the map t 7→
(
f(x, η(t)), L(x, η(t))

)
, on the

compact setIx
def= {t : a ≤ t ≤ b∧ ‖x− ξ(t)‖ ≤ δ},

is measurable for eachx ∈ Ω,
(iii) the map x 7→

(
f(x, η(t)), L(x, η(t))

)
, on the

compact setIt
def= {x ∈ Ω : ‖x− ξ(t)‖ ≤ δ},

is continuouse for eacht ∈ [a, b],
(iv)

〈
f(x, η(t))− f(x′, η(t)), x− x′

〉
≤ ϕ(t)‖x− x′‖2

whenever t ∈ [a, b], ‖x − ξ(t)‖ ≤ δ, and
‖x′ − ξ(t)‖ ≤ δ,

(v) the inequality|L(x, η(t))| ≤ ϕ(t) holds whenever
t ∈ [a, b] and ‖x− ξ(t)‖ ≤ δ.

ThenΞ is uniquely limiting. ♦



An augmented trajectoryΞ = (ξ, ξ0) with domain I is
locally uniquely limitingif for every compact subintervalI ′

of I the restriction ofΞ to I ′ is uniquely limiting.

An augmented trajectoryΞ = (ξ, ξ0) with domainI is almost
uniquely limiting if there exists a finite subsetB of I such
that the restriction ofΞ to every subinterval ofI\B is locally
uniquely limiting.

If Ω is an open subset ofRn, we say that a function
V : Ω 7→ R satisfies the inequality

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} ≥ 0 (12)

on Ω in the viscosity senseif

(V+) whenever x ∈ Ω and p ∈ R
n is a

subdifferential ofV at x, it follows that

sup{−〈p, f(x, u)〉 − L(x, u) : u ∈ U} ≥ 0 .

(We recall that, ifΩ is open inRn, then asubdifferentialof
a functionV : Ω 7→ R at a pointx̄ ∈ Ω is a vectorp ∈ Rn
such that

lim inf
x→x̄

V (x)− V (x̄)− p · (x− x̄)
‖x− x̄‖

≥ 0 . )

Similarly, we say thatV satisfies the inequality

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} ≤ 0 (13)

on Ω in the viscosity senseif

(V−) whenever x ∈ Ω and p ∈ R
n is a

superdifferential ofV at x, it follows that
sup{−〈p, f(x, u)〉 − L(x, u) : u ∈ U} ≤ 0 .

(A superdifferentialof V at x∗ is a vectorp such that−p is
a subdifferential of−V at x∗.)

We say thatV satisfies the equation

sup{−〈∇V (x), f(x, u)〉 − L(x, u) : u ∈ U} = 0 (14)

on Ω in the viscosity senseif it satisfies (12) and (13) in the
viscosity sense.

Remark 2.6:The definition of “viscosity solution” given
here is known to be equivalent to the more common one
involving test functions, cf. [1]. ♦

Our main result is the following theorem:
Theorem 2.7: LetΣ̂ = (Ω, U, f, L) be an augmented

control system, let T be a target for Σ̂, and let
V : Ω ∪ T 7→ R be a function. Assume that

(1) Σ̂ is locally uniformly continuous, locally coercive, and
such thatFΣ̂(x,U) is closed and convex for every
x ∈ Ω.

(2) V is continuous.
(3) V satisfies (14) onΩ in the viscosity sense.
(4) V vanishes onT .

(5) Every augmented arc has an almost locally uniquely
limiting improvement.

(6) Wheneverx ∈ Ω, Ξ = (ξ, ξ0) ∈ MSDΣ̂,V,x, and ξ is

right-unbounded, it follows thatΞ ∈ AΣ̂
x,T .

ThenV ≡ VΣ̂
T . ♦

Remark 2.8:Condition (6) was essentially introduced by
M. Malisoff, cf. especially [4]. ♦

III. E XAMPLES

Example 3.1: (Linear-quadratic optimal control.)
Consider the standard linear-quadratic optimal control
problem, in whichx, u take values inRn, Rm, respectively,
the dynamical law is

ẋ = Ax+Bu , (15)

the Lagrangian is given by

L(x, u) = x†Rx+ u†Su ,

the square matricesR, S are strictly positive definite, and
the pair (A,B) is stabilizable. We take the target setT to
consist of the origin ofRn. (In order to satisfy the condition
that FΣ̂(x,U) is convex for everyx ∈ Ω, we add a new
scalar nonnegative control variablev, in such a way that the
dynamical law (15) remains unchanged but the Lagrangian
L is replaced byL̃, where L̃(x, u, v)def=L(x, u) + v.) The
crucial technical issue here is the fact that the Lagrangian is
not bounded away from zero. The hypotheses of our main
theorem (including the coerciveness, which follows from the
positive definiteness ofS) are easily verified as long asV is
bounded below. The only nontrivial point is the verification of
condition (6). To prove that this holds, letΞ : [0, τ [ 7→ R

n×R
be a right-unbounded maximal trajectory of steepest descent
with respect toV that does not end at the target, and write
Ξ = (ξ, ξ0) in the usual way. Thenτ has to be infinite,
because ifτ was finite then the boundedness of the cost
(arising from the fact thatΞ = (ξ, ξ0) is of steepest descent
andV is bounded below) would trivially imply anL2 bound
on the control, from which it would follow thatΞ can be
extended to the closed interval[0, τ ], and then the assumption
that Ξ does not end at the target would enable us to extend
Ξ even further, contradicting maximality. Soτ is infinite. On
the other hand, the fact thatV is bounded below andΞ is of
steepest descent implies that the integral∫ ∞

0

(
ξ(t)†Rξ(t) + η(t)†Sη(t)

)
dt

is finite, if η is an open-loop control that generatesΞ. But
then ξ and η are square-integrable, so the condition that
ξ̇ = Aξ +Bη implies that ξ is square-integrable and has
a square-integrable derivative, and then Barbalat’s lemma
implies thatξ ends at the target, as desired. ♦

Example 3.2: (Fuller’s problem, cf., e.g., [8].)This is the
optimal control problem for the dynamical law

ẋ = y , ẏ = u ,



with control constraint−1 ≤ u ≤ 1. The target setT consists
of the origin ofR2. The Lagragian isL(x, y, u) = x2. The
crucial technical issue here is the fact that the Lagrangian
is not bounded away from zero, and in fact has a whole
line of zeros. The hypotheses of our main theorem are easily
verified as long asV is bounded below. The only nontrivial
point is the verification of condition (6). To prove that this
holds, let Ξ : [0, τ [ 7→ R

3 be a right-unbounded maximal
trajectory of steepest descent with respect toV that does
not end at the target, and writeΞ = (ξ, ξ0) in the usual
way. Thenτ has to be infinite, because ifτ was finite then
the boundedness of the control would trivially imply that
Ξ can be extended to the closed interval[0, τ ], and then
the assumption thatΞ does not end at the target enables
us to extendΞ even further, contradicting maximality. Soτ
is infinite. On the other hand, the fact thatV is bounded
below andΞ is of steepest descent implies that the integral∫∞

0
x(t)2dt is finite, if we writeξ(t) = (x(t), y(t)). But then

x(·) is a square-integrable function on[0,∞ [ whose second
derivative is bounded. By a straightforward generalization of
Barbalat’s lemma, this implies that bothx(·) andy(·) go to
zero, i.e., thatξ ends at the target, as desired. ♦

Example 3.3: (The reflected brachistochrone problem.)
This is the minimum time problem for the dynamical law

ẋ = u
√
|y| ,

ẏ = v
√
|y| ,

with control constraintu2 +v2 ≤ 1. The target setT consists
of a single pointB ∈ R2. The crucial technical issue here is
the fact that the dynamical law is not Lipschitz-continuous
with respect to the state. The hypotheses of our main theorem
are easily verified. The only nontrivial point is the verification
of condition (5). To prove that this holds, we pick an arbitrary
integral arcξ : [a, b] 7→ R

2, and observe that either (i)ξ(t)
never belongs to thex axis X = {(x, y) ∈ R2 : y = 0} or
(ii) there existt−, t+ ∈ [a, b] such thatt− ≤ t+, ξ(t) /∈ X
whenevera ≤ t < t− or t+ > t ≤ b, ξ(t−) ∈ X, and
ξ(t+) ∈ X. If (i) holds, thenξ satisfies the conditions of
Example 2.5, soξ is uniquely limiting. If (ii) holds and
t+ = t−, then the restriction ofξ to each of the intervals
[a, t− [+,, ] t+, b], is locally uniquely limiting, soξ is almost
locally uniquely limiting. Finally, if (ii) holds andt+ < t−,
then the restrictioñξ of ξ to the interval [t−, t+] is such
that the setS = {t ∈ [a, b] : ξ(t) /∈ X} is the union of a
finite or countable infinite collectionI of pairwise disjoint
relatively open subintervals of[a, b]. If I ∈ I, then the
restrictionξ̃I of ξ̃ to I is entirely contained in the open upper
half-plane or in the open lower half-plane. By reflectingξ̃I
with respect toX, if necessary, we may assume thatξ̃I is
entirely contained in the open upper half-plane for every
I ∈ I. Thenξ̃ is a trajectory of our system entirely contained
in the closed upper half-plane. It is well known that the
problem in the closed upper half-planeH+ is the famous
“brachistochrone problem,” whose time-optimal trajectories

ζ : [α, β] 7→ H+ are cycloids such thatζ(t) is an interior
point of H+ wheneverα < t < β. It follows that we can
always replacẽξ by a cycloidζ, thereby obtaining an almost
locally uniquely limiting improvement ofξ. ♦

Example 3.4: (An example with a continuous
non-Lipschitz dynamics where uniqueness fails.)Let
ϕ : [0, 1] 7→ R be a nonnegative continuous function
such that (a) the set{x ∈ [0, 1] : ϕ(x) = 0} is exactly
the Cantor set, and (b)

∫ 1

0
dx
ϕ(x) < ∞. (For example, we

may takeϕ to be given byϕ(x) = dist(x,C)ρ, where
C is the Cantor set andρ is a positive number such
that ρ < 1 − log

3
2. An explicit calculation shows that∫ 1

0
dx
ϕ(x) = (1 − ρ)−12ρ

∑∞
j=1 θ

j , whereθ = 2
3 × 3ρ. Our

choice ofρ guarantees thatθ < 1, so the integral is finite.)
Extendϕ to a function defined onR by making it periodic
of period 1. Then consider the optimal control problem
on R whose dynamics iṡx = uϕ(x), |u| ≤ 1, and where
the goal is to reach the origin in minimum time. It is easy
to see that the optimal trajectory from each pointx exists
and is obtained by “moving towards the target as fast as
possible.” Precisely, this means the we use the control
u = −1 as long as we are to the right of the origin, and
we useu = 1 if we are to the left. This, however, does not
suffice to specify the optimal trajectories, because of the
lack of uniqueness of solutions. The complete specification
of the optimal trajectories is as follows. Supposex̄ < 0.
Define a functionτ : [x̄, 0] 7→ R by letting τ(x) =

∫ x
x̄

dy
ϕ(y) .

Then τ is aboslutely continuous, strictly increasing, and
such thatτ(x̄) = 0. Thereforeτ maps the interval[x̄, 0]
homeomorphically onto the interval[0, τ(0)]. Let ξ be the
inverse function, soξ maps[0, τ(0)] homeomorphically onto
[x̄, 0]. Then ξ is absolutely continuous, anḋξ(t) = ϕ(ξ(t))
for almost allt ∈ [0, τ(0)]. Soξ is a trajectory of our system
which goes fromx̄ to 0 in time τ(0), and it is easy to see
that ξ is the optimal trajectory from̄x to 0. It follows that
optimal time to go fromx̄ to 0 is τ(0), that is,

∫ 0

x̄
dy
ϕ(y) .

A similar contruction applies when̄x > 0. Then the value
function V̄ for our problem is given by

V̄ (x) =
∫ max(x,0)

min(x,0)

dy

ϕ(y)
.

The HJBE for our problem is

|V ′(x)|ϕ(x)− 1 = 0 . (16)

The function V̄ is a solution of this equation onR\{0}
in the viscosity sense. (This follows from the fact that, for
problems such as this one, the value function is automatically
a viscosity solution of the HJBE. In addition, one can also
verify this directly. LetO be the set of points whereϕ(x) >
0. Then onO the functionV̄ is smooth, and its derivative
is 1

ϕ whenx < 0, and− 1
ϕ whenx > 0, so (16) holds. At

pointsx whereϕ(x) = 0, the viscosity solution requirements
say that−1 ≥ 0 wheneverp is a subdifferential ofV̄ at x,



and−1 ≤ 0 wheneverp is a superdifferential of̄V at x. The
second condition is trivially true. To verify the first condition,
we need to show that it is satisfied vacuously, i.e., that there
are no subdifferentials of̄V atx. But this easy. Suppose, say,
that x < 0. The difference quotient1h (V (x+ h)− V (x)) is
equal, if h > 0, to − 1

h

∫ x+h

x
dy
ϕ(y) , which is bounded above

by ζ(h) = − 1
max{ϕ(y):y∈[x,x+h]} . Sinceϕ(x) = 0, ζ(h) goes

to−∞ ash→ 0. This shows that the right derivative of̄V at
x is equal to∞, from which it follows easily that there exist
no subdifferentials of̄V at x. A similar argument shows that
if x > 0 the left derivative ofV̄ at x is equal to+∞, from
which it follows once again that there are no subdifferentials
of V̄ at x.

We now show that there exist nonnegative continuous
functions V̂ : R 7→ R other than V̄ that satisfy the
HJBE on R\{0} and are such that̂V (0) = 0. To see
this, we letW be a continuous monotonically nondecreasing
real-valued function on[0,∞ [ such that (a)W (0) = 0,
(b) W is constant on each connected component of the set
{x : x > 0 ∧ ϕ(x) > 0}, and (c)W (x) < W (y) whenever
0 ≤ x < y and the interval[x, y] contains a zero of
ϕ. (Such a function is easily constructed using the well
known Cantor function.) We then extendW to all of R
by definingW (x) = W (−x) when x < 0. Using W , we
define V̂ = V̄ + W . Then V̂ is continuous,V̂ (0) = 0, and
V̂ (x) > V̄ (x) wheneverx 6= 0. Let us show that̂V is also
a solution of the HJBE for our problem onR\{0}. Near
pointsx such thatϕ(x) > 0, the functionsV̄ and V̂ differ
by a constant, so the fact thatV̄ satisfies the HJBE implies
that the same is true for̂V . If x 6= 0 but ϕ(x) = 0, the
viscosity solution requirements say that−1 ≥ 0 wheneverp
is a subdifferential ofV̂ at x, and−1 ≤ 0 wheneverp is
a superdifferential of̂V at x, and the second one of these
conditions is trivially true. As for the first condition, ifx < 0
then we have already shown that the right derivative ofV̄ atx
is equal to∞, and this clearly implies that the right derivative
of V̂ at x is equal to∞ as well, sinceV̂ = V̄ + W and
W is monotonically nonincreasing nearx. Hence there exist
no subdifferentials ofV̂ at x. A similar argument applies
if x > 0, and we conclude that first one of the viscosity
requirements is satisfied vacuously.

It follows that for our example the value function is not the
unique continuous nonnegative function that vanishes at the
target and satisfies the HJBE. In the example, the reason for
the failure of uniqueness is easy to understand, and clearly
related to the non-uniqueness of trajectories. Notice that the
spurious value function̂V is bounded below by the true value
function, so what goes wrong is the other inequality, which is
related to the dynamic programming inequality (DPI). And,
indeed, the DPI fails, and this makes it impossible to draw the
conclusion that̂V ≤ V̄ . Furthermore, the failure of the DPI
happens exactly as described in our general analysis: given
any controlu(·) and any initial conditionx0, it is easy to

construct a maximal trajectoryξ for u(·) starting atx0 along
which the DPI forV̂ holds. (It suffices to follow the only
possible trajectory foru(·) as long asϕ 6= 0, and stopping
at x̄ and staying there for ever as soon as we reach the first
point x̄ whereϕ vanishes.) Thisξ is not, however, the only
trajectory foru(·) starting atx0. And the fact that the DPI
holds alongξ does not imply that that the DPI holds for every
trajectory foru(·) that starts atx0. (Indeed, if for example
x0 < 0 and u(t) ≡ 1, then in addition to theξ given by
our construction we could also considerξopt, the optimal
trajectory described earlier. The DPI forV̂ clearly fails along
the curveξopt, because if it was true it would follow that
V̂ (x0)≤ V̄ (x0), whereas we know that̂V (x0)>V̄ (x0).) ♦
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