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1. Introduction

This is the second of a series of two papers on generalized
differentiation theories (abbr. GDTs). The first paper
discussed the definition of the GDT concept, presented
several GDTs (the Warga derivate containers, weak
multidifferentials, and generalized differential quotients)
and compared them showing, in particular, that none of
these theories contains all the others.

In this paper, we introduce another concept of
generalized differential—the “path-integral generalized
differential,” abbreviated PIGD—that achieves the de-
sired unification.

2. Preliminaries

If n,m € Z4, a : [0,1] — R™ is a Lipschitz function,
and h : [0,1] — R™*™ ig integrable, we use h * a to
denote the “chronological product” of h and «, that is,
the absolutely continous function g : [0,1] — R™ given
by B(t) = [) h(s) - a(s) ds.

The following lemma says that the chronological
product operation C°([0,1]; R™) x L1([0,1],R™*") >
(a,h) — hxa € C°([0,1]; R™) is jointly continuous,
as long as the function « varies in a uniformly Lipschitz
subset of C°([0,1]; R™). The proof is very simple and
will be omitted.

Lemma 2.1 Let n,m € Zi.  Let {(aj,h;)}532,
be a sequence of members of the product space
S =C%[0,1]; R™) x L([0,1],R™*"™) that converges in
S to a limit (0o, hoo). Assume that the sequence {a;}
is uniformly Lipschitz (that is, there exists a constant
r € R such that ||a;(t) — o (s)|| < 7|t —s| forall j €N
and all t,s € [0,1]). Then

in C°([0,1]; R™) as j— 00.

Let n € Z4, and let S be a subset of R". We write

A(S) to denote the subset of C°([0,1]; R™) consisting
of all absolutely continuous curves « : [0,1] — R™ such
that a(0) = 0 and &(t) € S for almost all ¢ € [0,1].

If S C C°([0,1]; R™), we write 7(S) to denote the set

T(S)déf{a(l) ca € S8}, s0 7(8S) is the set of all terminal
points of curves in S.

The following is then an immediate consequence of
our definitions.

hjxa; — hoo*Oioo

Proposition 2.2 If K is a compact conver subset
of R™, then A(K) is a compact conver subset of

co([0,1]; R™), and T(.A(K)) - K. &
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If m e Z4 and v € R™, we use &, to denote the curve
0,1] 5t —tv < &,(t) e R™. (1)
If
S CR™ and G : A(S)— C°([0,1]; R™*"™) x R™ | (2)
then we can define set-valued maps
I A(S)—C°([0,1]; R™), &g :S—R™,
by letting

Ig(a)

bg(zr) =

{h*a—l—fv:(h,v)eG(a)},
{y € R™ : (3(a, h,v) € Cr(Q))

(a() =2V (hxa)1) +v=y) }.
The following fact is then trivial.

Proposition 2.3 Let n,m € Z,, and let S, G be such
that (2) holds. Then:

1. Do(Zg) = Do(G), so in particular L is everywhere
defined if and only if G is.

2. If G is everywhere defined then ®g is everywhere
defined.

3. If G is single-valued at a particular o € A(S), then
Lq is single-valued at o; in particular, if G is single-
valued and everywhere defined, then Zg is single-
valued and everywhere defined.

Lemma 2.4 Let n,m € Z4, and let S, G be such that
(2) holds. Assume that S is compact and convex. Then:

1. If Gr(Q) is compact, then Gr(Zg) and Gr(®g) are
compact.

2. If G is single-valued, everywhere defined, and
continuous, then Ig is single-valued, everywhere
defined, and continuous.

3. If G is regular, then Zg and @ are regular.

Proof. To prove the first statement, assume that G has
a compact graph. We want to show that Gr(Zg) and
Gr(®¢) are compact.

Let {(aj,53j)}52; be a sequence in Gr(Zg). We
want to extract a subsequence that converges to a limit
(0o, Bo) € Gr(Zg). Since B; € Zg(ey), there exist
(hj,vj) € G(ay) such that 3; = hj * aj + &, for j € N.
Then (aj,h;,v;) € Gr(G). Since Gr(G) is compact,
we may assume, after passing to a subsequence, that
(i) the sequences {;}22,, {h;}32,, converge uniformly
to limits oo, Moo, (i) {vj}32; converges in R™ to a limit
Voo, (1) oo € A(S), and (iv) (heo, Vo) € G(Qoo)-



Let Boo = Moo * Qoo +&u..- Then Boo € Z(too). Lemma
2.4 implies that 3; — (o uniformly as j — oo. So
Gr(Z¢) is compact.

Now (z,y) € Gr(®¢) if and only if there exists a pair
(o, B) € Gr(Zg) such that a(1) = z and 8(1) = y. So
Gr(®¢) is the image of Gr(Zg) under the projection

CO([0,1]; R™) x C°([0,1]; R™) 3
(o, B) — ((1),8(1)) e R" x R™.
Since this projection is continuous, Gr(®g) is compact,
and the proof of the first statement is complete.

If G is single-valued, everywhere defined, and
continuous, then Zgs is single-valued and everywhere
defined and, moreover, the graph Gr(Zg) is compact,
because Gr(G) is compact. This implies that Zg is
continuous, and the second statement is proved.

Finally, let us prove the third statement. Assume
that G is regular. We want to show that Zg and @4 are
regular. This requires that we prove that

(a) the graphs Gr(Zg) and Gr(®¢) are compact,

(b) Zg and ®; can be approximated in the sense of
inward graph convergence by sequences of single-
valued continuous maps.

Part (a) follows from the fact that Gr(G) is compact.
We now prove part (b). Using the regularity
of G, let {G;}32, be a sequence of single-valued,
everywhere defined continuous maps from A(S) to
CO([0,1]; R™*™) x R™ such that G; -5 G as j — oc.
Then the Zg, are single-valued, everywhere defined, and
continuous. )
We show that Zg, BN Ta as j — 0o. Let

0; = sup { dist ((cu,ﬁ)7 Gr(Ig)) (o, B) € Gr(Zg,) } .

We want to show that §; — 0 as j — oco. Assume this
is not true. Then there exists an infinite subset J of N
and a strictly positive number 6 such that ¢; > 26 for
all j € J. We can therefore pick members (a;, ;) of
Gr(Zg,) for j € J such that

dist ((aj,ﬁj), Gr(Ig)> >0 whenever j€J. (3)

If j € J, then 3; € Ig,(a;), so we can pick pairs
(hj,vj) € Gj(ay) such that §; = hj * o + &,,. Since
G; 2%, @, we may assume, after making J smaller, if
necessary, that the limit

(Qoos hoos Vo) = lim
j—00,j€

exists and belongs to Gr(G). Let Boo = hoo * Qoo + o -
Then foo € Zg(0oo). Lemma 2.4 implies that §; — oo
uniformly as j — oo via values in J. But then

(aooa ﬂoo) = j—lolorge‘](ajv ﬂ]) .
Since (oo, Bo) € Gr(Zg), we have shown that
lim ; dist ((aj,ﬂj),Gr(Ig)) =0,

J—o0,j€

(@ hy )

contradicting (3). Therefore §; — 0 as j — oo, and we
have completed the proof that Zs is regular.

We must now show that ®¢ is regular.
x € 5, let o, be the curve given by

ay(t) =tz for te][0,1].

For each

Then a, € A(S), and the map S > z — a, € A(S9) is
continuous. Define

@j(x) = Zgj(ozz)(l) for z€8.
Then ®7 is a continuous map from S to R™. (Continuity
follows because the map Zg, : A(S) — C°([0,1]; R™)
is continuous, and the maps * — «, and § — ((1) are
continuous as well. The continuity of Zg, follows from
Lemma 2.1.)

We now show that & 225 &g Let (z;,v;) € Gr(®7).
We want to extract a subsequence of {(z;,y;)}32, that
converge to a limit (x,y) € Gr(®g). Pick 8 € Zg, (o).
Then

dist( (awj,ﬁj),Gr(IG» —0 as j— oo,

because Zg;, & 7. Since Gr(Zg) is compact we may
assume, after passing to a susequence, that there ex-
ists a pair (a,3) € Gr(Zg) such that a,;, — « and
B; — B. If we let x = (1), then z; — 2. Therefore
Qg, — Qg, 80 @ = a,. Let y = B(1). Then y € ®g(x),
and (z;,y;) — (x,y). So our proof is complete. o

3. The main definition

Ifn€Zy,Cisaconein R", and r €]0,00[, we write
C(r) to denote the set C' NrB™, that is

CrzeC:|z|<r}.

Then C(r) is compact convex if C is a closed convex
cone.

Definition 3.1 Let n,m be nonnegative integers, let
F be a set-valued map from R” to R™, and let C
be a closed convex cone in R™. We say that A is a
path-integral generalized differential of F at (0,0) in
the direction of C, and write A € PIGD(F,C), if
El A is a nonempty compact subset of R™*™ and
2) for every positive real number & there exists a
number R €]0,00[ with the property that for ev-
ery r €]0,R] there exists a regular set-valued map
G : A(C(r)—C°([0,1]; R™*™) x R™ such that

(2a) h(t) € A% and |jv|| < 6r whenever a € A(C(r)),
(h,v) € G(a), t € ]0,1],
(2b) Gr(®g) C Gr(F). &

4. The chain rule

Theorem 4.1 Let ny, ny, n3 be nonnegative integers,
and let F; be, for i = 1,2, set-valued maps from R™ to
R™+1 . Assume that

1. C; is a closed convex cone in R™ fori=1,2,

2. Cy is polyhedral,

3. A; € PIGD(F;,C;) fori=1,2,

4. F1(C1) C Oy,

5. A-Cy C Cy (thatis, L-Cy C Cy for every L € Aq).

Then
A2 OA1 € PIGD(FQ ¢} Fl,Cl) .



Outline of the proof. The crucial point is that, since
the cone C? is polyhedral, it is possible to pick a vector
w € Intg(C2) and a positive constant k such that the
following “error correction property” holds

(ECP) If m € N, uy,...,up, € Cy w €
Co, and uyr + ...+ Uy =w+ w, then there exist
vectors ci,...,cm such that |[ci||+ ...+ |lew] < K,
cit...Aem=w, and the conditions ||c;|| < kllug|
and u; —¢; € Cy hold fori=1,...,m.

(This is not easy to prove, and we will omit the proof
for lack of space.)

We then may—and will—assume, without loss of gen-
erality, that ||w| < 1. We then fix a number p €]0, 00
such that B

Then the vector @ and the number p satisfy
(s>0/\u€S/\Hu|| §s> SutplsweCy. (5)

Write FF = FooFy\, A = Ay o Ay, n = ny, m = ng,
C = (1, and let

S = linear span of Cs in R"2,
IT = the orthogonal projection from R™ to S,
ki = sup{||[L]|:LeA;} for i=1,2.

Then F : R"—R™, and A is a nonempty compact
subset of R"*™,

Fix a positive real number §. We want to find a number
R €]0,00] satisfying Property 2# of Definition 3.1.
Define a function ¥ : [0, 00 [ x[0,00[— [0,00][ by

U(6,,0,) (1+1})(m+25l(1+p*1))52

+(I€2+52>(51 +2(§1(1+p_1(1+123))(/€2+(52). (6)

Then
lim W(dy,02) =0. 7
oo o) (61,02) (7)
We let 01, 02, be positive numbers such that
0
W(dy,02) < 3 (8)

For ¢ = 1,2, using the fact that A; € PIGD(F;, C;),
choose R; €]0,00[ with the property that for every
r; €]0, R;] there exists G; such that

(1) Gi QREG(A(CZ(E)), CO( [O, 1] s R+ X )XRTLiJrl)’
(2) Gr(®g,) C Gr(Fy),

(3) (hi(t),v;) € A% x (6;r;B™+1) whenever t € [0,1],
(e A(Cl(h», and (hi,vi) S Gz(C)
Inequality (8) implies in particular that the inclusion
AS2 o ASt C A° (9)
holds. B
We let 6y = 1 + 251(1 v %), 9 = (1+ kK)o, and
choose R = min ( Ry, % . We then have to show that,

with this choice of R, the property of Definition 3.1 is
satisfied. For this purpose, we pick r € R such that
0 < r < R, and prove the existence of a G satisfying the
conditions of Definition 3.1.

Let vy = r, ro = Or, and observe that 0 < r; < Ry
and 0 < ro < Rs. Pick Gy, G, such that (1)-(2)-(3)
hold. Let w = 2517"1, T = R1T, T = 907"17 so that

ro = (1+k)F. (10)
Let K be the w-neighborhood of Cy(7), that is,
K ={xz eR" : dist(z,Ca(F)) <w}.
It is easy to see tat

To, (A(C1(1)) ) € A(K). ()

We are now ready to begin the long process of defining

the set-valued map
G : A(C(r))—= C°([0,1]; R™*™) x R™.

The first step will be to assign, to each triple («, hi,v1)
such that o € A(C(r)) and (h1,v1) € G1(a), a curve
Bahy v :[0,1] — R™.

Pick o € A(C(r)) = A(C1(r1)), and (h1,v1) € G1(@).
Then Bane € Zg,(a), so (11) implies that
Ba.hy o € A(K). Moreover,

Bohy i (1) € Cs, (12)

because B4 py .0, (1) € ®g, (a(1)) C Fi(a(l)) C Cs.

The second step is to correct the error arising from the
fact that 8 € A(K) rather than in A(C2(7)). For this
purpose we define, whenever « belongs to A(C(r)) and

(h1,v1) € Gi(a), anew curve Yo p, o, € C°([0,1]; R"2)
by letting Ya,h1,01 (t) = H(ﬁa,hhm (ﬂ)“”%tﬁ} fort € [07 1]
We claim that

Ya,h1,01 € 'A<C2(72)> . (13)
To see this, write 8 = Ba.hy,015 Y = Ya,h1,v1, a0d Observe
that v is an absolutely continuous curve, and v(0) = 0.
In addition, for almost all ¢ € [0,1], 4(¢) exists and is
equal to II(3(t)) + “w, and 3(t) € K. Let E be the set
of all t € [0, 1] for which this is true. Then meas(E) = 1.
Moreover,
A(t) € Cao(T) te E. (14)
(Proof. Fix t € E. Since B(t) € K, we can
write 5(15) = by + by, with b; € Cy(F) and [|be]] < w.
Then II(G(t)) = I(b1) + II(by) = by + II(by), since
by € S. Moreover, ||[II(b2)|| < w, because ||b2| < w
and II is an orthogonal projection. Then (5) im-
plies that II(by) + p~tww € Co. Since by € Oy, and
A(t) = by + TI(be) + p~tww, we conclude that §(t) € Cs.
Furthermore,

@l <

whenever

@) + o~ wllwll < 8@+ o w
Ftw+plo= (k1 + 201 + 2p*151)r1
00’[”1 =7.

So 4(t) € Ca(7), and the proof of (14) is complete.)
Therefore (13) holds.

The third step is to make a piecewise linear
approximation of the curves <vq n,.v,, by first choos-
ing a large positive integer N as follows. The fact
that Go is regular implies that the set Ga(A(Ca(r2)))
is compact in C°([0,1]; R"3*"2) x R"™. Let H be
the set of those hy € C9([0,1]; R™*"2) such that

(h2,v2) € G (A(C’g(?“g))) for some vy € R™. Then H is

compact as well. Hence H is uniformly equicontinuous,
so we can choose N € N such that [|ha(t) —ha(s)] < &

IIA |



whenever hy € H, t,s € [0,1], and |t — 5] < F. With
this choice of N, we define

No,hy o1 (t) = (.] - Nt)’ya,hlﬂjl (Nil(.] - 1))
+(Nt +1- j)7a,h1,vl (N_lj) (15)

whenever a € A(C(r)), (h1,v1) € Gi(a), I <t < &,
JEN,1<j<N.
Then g py 0, € CO([0,1]; R™2), and

No,hy 01 (0) = 0, (16)
Nashior (1) = Yoy, (1)

= Bohyw (1) +p 7w

€ Cy+plw. (17)

Moreover, the map 7q,p,,0, is linear on each interval
I; = [N71(j — 1), N~'j]. The derivative 7)o p, v, (t) of

Na,ha oy 18 equal, for ¢ € I;, to ug,hwm" where
U s ng = Nenon (V75 = Na o (N1 = 1)
% .
= N/ji1 Yo hy vy () dt (18)
N
Since Yo pny 0, (£) € Co(7) for almost all ¢, the vectors
uihlyvlﬁj belong to Ca(7) as well. So 7q py 0, (£) € Ca(F)
for almost all ¢ € [0,1], and then (16) implies that
Mo, hy o1 € A(CQ(r’A‘)) . (19)

The fourth step is to take care of the undesirable
fact that 7qn,,, satisfies (17), and produce a
curve whose terminal point is Sa p, ., (1) rather than
Bahy o (1) + p~lww.  For this purpose, we define
~N

u N Then

a,hi,v1,5 Nw “a,h1,v1,5°

N

~N 1Y _
Zua,hl,vl,j = ;6047}11,111(1) +w.
Jj=1

It then follows from (ECP) that there exists an N-tuple

¢ = (¢1,...,¢n) of vectors that satisfies
U vy — G € O (20)
C1+--+cény = w, (21)
el +-+lenll < &, (22)
g1l < Ellagn, v ll 5 (23)
for 5 = 1,...,N. Define ¢; = p 'Nw¢ and

c=(c1,...,¢cn). Then, for j=1,... N,
Uy pyoyg —C € C2 . (29)
cit+-teny = p'Nuww, (25)
el + - +llenl < p7'Nwk, (26)
lejll < Fllug py o (27)

Let pe be the function such that
pe € CU[0,1];R™), (28)
pe(0) = 0, (29)
fie = ¢; on I; for j=1,...,N. (30)
Then

1
1 w
()| dt = — < —
[ el dt = sl 4+ ewl) < 2

and
1 w _
pe(V) = et ten)=Sw. (32)
Define a curve (4, 0,,c by letting
Ca,hl,vl,c(t) = Na,h1,v1 (t) - Mc(t) for te [07 1] . (33)
Then (o by ,v1,c Satisfies
Cahone € C°[0,1]; R™), (34)
Carhr,e(0) = 0, (35)
Canore(l) = Nahye (1) = pe(1)
Bea,hyor (1) - (36)

Moreover, (o ;v ,c is linear on each interval I;, and the
derivative (o py0p,e(t) Of Cahyor,c is equal, for ¢ € I,

to ul ), o, ; — ¢ It follows from (24) that the vectors
v = “o]Y,hl,vl,j — ¢; belong to C>. Moreover, the bound
(27) implies that
logll < (U B)llud y v 4l < (L4 B)F =72

Therefore

Conyon.c € Calry) for ae. tel0,1], (37)
and then (35) implies that

Cashivr,ec € A(Ca(r2)) . (38)

We have now finally succeeded in producing, for each
curve € A(C(r)) and each pair (hy,v1) € Gi(a), a
curve Cohyvr,c € A(Ca(re)) whose terminal point is
exactly B n, 0, (1). Moreover, this curve is “close” to
Ba,h1 v > in the sense that it is close to g, b, 0, , Which is
close to Ya,hy,v;, Which is close to B4 ny v, -

This curve need not be unique, because ¢ may fail to
be unique, so this nonuniqueness will have to be taken
care of. As a first step in that direction, we introduce
the notation Cg p, 4, to refer to the set of all N-tuples
c = (c1,...,cn) that belong to (R"2)Y and satisfy (24),
(25), (26), and (27).

Given a curve a € A(C(r)), a pair (h1,v1) € G1(a),
and a c € Cy p, v, Dick (ha,v2) € G2(Cuhy vy .c)- Define

hg(t) . hl(t) for t € [0, 1] R

vy + (/01 hg(t)dt) -1

/0 ha(t) - (B(t) — C(t)) dt

We let G(a) be the set of all pairs
(Pohy w1, ho,vss Vahyvg,ehaws ), @S« varies  over
A(C(r)), (h1,v1) varies over all members of Gi(a),
c varies over all members of C,p,,, and the pair
(hg,v2) varies over all members of G2(Ca,hy,v1,c)-

With this definition, it is clear that G is a set-
valued map from A(C(r)) to C°([0,1]; R™*") x R™.
Moreover, if (h,v) € G(«) for an o € A(C(r)), then the
following can be verified

hmhl,vl,&hz,vz (t) =

Va,hy,v1,¢,h2,v2 -

(F1) The matrix-valued function h takes values in A°.

(F2) If £ = a(1), 0 = hxa+ &, and z = o(1), then
z € F(z).

(F3) o]l < or.



In view of (F1), (F2) and (F3), our conclusion will fol-
low if we prove that G is regular. To prove the regularity
of G, we express G as a composite of regular maps.

We define

U = C°0,1]; R™=*"),

u = {hleL{:th(t)Hgm—i—él for allte[o,l]},

y = C([0,1];R™),

B = {Bey:(m+20)80)— B <t —s
whenever t,s € [0, 1]},

y o= ®™)Y,

Zz = {ney:nis linear on I forjzl,...,N}7

Z = ZNA(Cy(r),

w = C°[0,1]; R™*"2)

W= {h2€W:||h2(t)||§n2+52 for alltG[O,l]},

Q — CO( [O, 1] : Rmxn ),

X = ACH) xUxR"™,

Xy = ACH)xUXR™ xBxYx Z,

Xy = ACEF)XxUXR™Z xBxYXZxY,

We then let T'y : A(C(r))—> X1 be the set-valued map
that sends o € A(C(r)) to the set {a} x G1(«), so that

I‘l(a):{(a,hl,vl):(hhvl)eGl(a)} if e A(C(r)).

Then
'y € REG(A(C(r)); X1), (39)
because of the identity I'y = (T4(c(r)) X G1) 0 A1, where
Ay A(C(r)) — A(C(r)) x A(C(r)) is the diagonal map
(i.e., the map that sends o € A(C(r)) to the pair (o, a)).
We then let T'; @ X} — X5 be the ordinary map
that sends each triple (a,hi,v1) € X; to the 6-tuple
(aahlavlalg7’y7n) € X27 where ﬂ = hl * a + €U17
~(t) =T1(B(¢)) + ‘%tzf) for ¢ e[0,1], and
(i -1 (2
n(t) = (J Nt)w( I ) +(Nt+1 J)W(N) (40)

whenever 2 <t < 4 jeN and1<j<N.
We then let Fg 1 2 — 5) be the map that sends each
n € Z to the N-tuple

Fg(n) = (u1,..-

Jun) €Y, (41)

where

Uj:N<77(]{/v>—’q<j]:[l>> for j=1,...,N. (42)

Next, we let I's : X5 — X3 be the map that sends each
6-tuple («, hy,v1,3,7,n) to the 7-tuple
Fg(a, hi,v1, ﬂa 7> 77) = (aa hy,v1, 3, Y1, Fg(n)) . (43)
Next, we define Ky = Co(#)", and let K be the set
of all (uq,...,uyn) € Ko such that N(u; + ... 4+ uy) =
wo + %w for some wg € Cs. Then Ko and K are compact

convex subsets of ). ~ ~
We let I‘?L be a continuous retraction from ) onto K,

and define Xy = A(C(r)) xU x R™ x Bx Y x Z x K.

We then let I'y : X35 — X4 be the map that sends each
7-tuple (o, h1,v1,3,7,1,u) to the 7-tuple

F4(a7h17vl7ﬂ7%77711):(04hlaU135577naF2(u)) . (44)

We now define a set-valued map I'? : K— 5)7 by let-

ting T9(u1,...,un) be, if (u,...,uy) € KC, he set of all
N-tuples (¢1,...,cn) that satisfy, for j =1,..., N, the

conditions
u; —c¢; € Cy s (45)
N
cit--+ev = TMW, (46)
Nuwk
el -+ lenll < ——, (47)
el < klluyll (48)

Then T has convex values and a compact graph.

Moreover, (ECP) implies that the values of I'Y are

nonempty. It then follows from Theorem 5.2 of [1] that
I'Y € REG(K;Y). (49)

We then define

X =ACHr) xUXRZ x BxYXx ZxKxY,
and let I's : Xy—~ X5 be the set-valued map that sends
each 7-tuple (o, h1,v1,0,7,1,u) € Xy to the set

F5(aah1,7]1757%777u)
= { (aahlavlaﬂafy,nauac) 1cE Fg(u)} g XS' (50)

Then
F5 = (]IX4 X F5) o AQ, (51)

where Ay @ Xy — Xy x K is the map that
sends a 7-tuple (o, hi,v1,53,7,m7,u) to the 8-tuple
(o, hi,v1, B,7,m,u,u). It follows from (49) and (51)
that I's € REG(X4, X5)

Next, define
Xe=A(Cr) xUXR xBXxYXZXKXYXZEXZ,

and let I's : X5 — A be the ordinary map that sends
each 8-tuple (a, hy,v1,08,7,m,u,¢) € X5 to the 10-tuple

Le(a, hy,v1, 8,7,m,u,¢)
= (avhlvvlaﬁ377nauacvﬂcan - Mc) € Xﬁ .
We now observe that the real linear space Z is finite-
dimensional, and Z is a nonempty compact convex
subset of Z. Let I'Y be a continuous retraction from
Z onto Z. Define
Xr = ACr) xUXR™2 xBXYXEZXKxYXEXZ,
and let I'7 : XAy — X7 be the map that sends each 10-
tuple («, hy,v1,5,7,1,u,c¢,1,¢) € Xg to the 10-tuple
L7(a, b, v, 8,7,m,u,¢, 11, C)
= (o hy, v, Boyous e p IH(O) € X7 (52)
Next, we let T'Q be the set-valued map Z—- W x R™

that sends ¢ € Z to the set Go(¢) C W x R™. Then

I =Gsoou _, where ¢ _ is the inclusion
8 27 Yacea(ran. 2’ A(Ca(r2)) 2

map from Z to A(Cy(ry)). So TY € REG(Z; W x R™).



Define X§ to be the product o
A(C(r) xUXR™ XBXY X ZXKXYXZXZXWXR™,
and let I's : X7—- Xg be the set-valued map that sends
each 10-tuple (o, hy,v1, 3,7,n,u, ¢, u, () € X7 to the set

F8(04,hh”hﬁﬁﬂ%“»@ﬂv@
:{(a7h17vlvﬂ7’yan7u7cauvc)} X G2(§) g XS

= {(047thhﬁa%77711707%(7]12,112)5(h2,U2)€G2(O} -

It is then clear that I's = (]Ly7 X G2> o Az, where

As: X — Xo x Z is the map that sends a 10-tuple
(Oé, hla v1, ﬁ? Y1, ¢, W, C) € X7 to the 11'tuple

(057hh”hﬁa%ﬁv“v&#v(:() € X7 X Z .
Therefore I's € REG(A7; Xg).
Finally, we define an ordinary map I'g : X3 — Q x R™
by letting
FQ(a7 hl) U1, ﬂ7 Y, 1,4, C, [, C7 h2; U2)

1
— vt (/ ha(t)dt) v — (s (8= O)) (1)
0

We have thus defined nine set-valued
maps ['1 EREG(A(C(r)); X1), T2€CO(Xy; X)), T3 €
CO(XQ; Xg), Iy € CO(Xg; X4), I's € REG(X4;X5),
I's € CO(X5; Xg), I'; € CO(XG; /Y7)7 I's €
REG(XﬁXg), Iy € CO(Xg; Q x R™ )

Since G =Tgol'gol'7o0llgol's0l'y0ol'305 0T, it
follows that G is regular, and our proof is complete. <>

5. The open mapping theorem

We now show that path-integral generalized differentials
have the directional open mapping property.

Theorem 5.1 Assume  that n,m € Zy,
F e SYMR",R™), w € R™, C is a polyhedral
conver cone in R™ A belongs to PIGD(F;0,0;C),

and  we(\cp Int(LO). Then  there  exists
a closed conver cone D in R™ such that
w € Int(D), having the property that for every

§ €]0,00] there exists an €(6) €]0,00[ such that
| DN{yeR™: [yl <c(0)} CF(Cn{zeR": 2] <6}) |

Proof.ALet us assume that w # 0. Pick a closed convex
cone D in R™ such that w € Int(D), a compact neigh-
borhood A’ of A such that Q C LC for every L € N,
and a continuous map A’ x D 3 (L,y) — n(L,y) € C
which is positively homogeneous of degree 1 with respect
to y and such that L-n(L,y) =y for all (L,y) € A’ x D.
Pick 0 such that 0 < 6 < ||@|| and the ball {y € R™ :
lly — @|| < 26} is entirely contained in D. Let D be

the smallest closed convex cone that contains the ball
{y e R™: ||y — w|| < 0}. Then D satisfies:

Ollyll ) -
- =y+zeD. (53)
il +0 A
(Indeed, if y = 0 then 2 =0,s0 y+ 2 =0 € D. Assume
that y # 0. Then we can write y = su with s > 0 and
lu— ol < 6. Then Jull < [+ u — ]| < [[@] + 6.

Therefore [[y]| < s(@]|+6), so s < L.

Yy + 2z = su, where & = u + Z. Then

(veDnlzl <

Furthermore,

[ E2
<0+ w||+46),
= <o Do) +o)

-~ _ z _ z
i) = a4 2] < -+ 1]

so ||& — w| < 26, and then y + z € D.)
Let M = sup{ln(L.y)ll : L € Ny € D, [yl < 1.
Then ||n(L,y)|| < M|ly|| whenever L € A’ and y € D.
Fix a ¢ €]0,00[. Let & be such that 0 < ¢ < §,

A C AN, 2M¢§ < W. Then choose R € R such that

R > 0 and a family {G, : 0 < r < R} of regular set-
valued maps Gy = A(C(r))—CO([0,1]; B7* ) x R
such that

(a) h(t) € AY and |jv|]| < &'r whenever a € A(C(r)),
(h,v) € Gr(a), t € [0,1],

(b) Gr(®¢,.) C Gr(F).
By making R smaller, if necessary, we may assume that
R <.

We choose € such that 2Me < R, and show that this
choice of ¢ satisfies our requirements.

Fix y such that 0 < ||ly|| < e. Let p = ||ly||, and choose
r = 2Mp. Then r < R. We will show that there is
an ¢ € C such that ||z|| < ¢ and y € F(z). For this
purpose, it suffices to find a triple («, h,v) € Gr(G,)
such that v + fol h(t) - a(t)dt =y and ||a(1)|| < 6. The
first equality, in turn, will follow if « satisfies

h(t)-a(t)=y—v forae. ¢, (54)
as well as [|a(1)|| < 0. If y—v € D, then (54) will follow
if a(t) = n(h(t),y —v) for a.e. t, ie., if
t

a(t):/ n(h(s),y —v)ds forall t.  (55)

0
Let X be the set-valued map on A(C(r)) that asigns to
each a € A(C(r)) the set X(a) of all paths 5 = B4 p,o for

all (h,v) € Gy(a), where 8o p,,(t) = fot n(h(s),y—v)ds.
Then ¥ is well defined and takes values in A(C(r)).
(Proof. Let a € A(C(r)) and (h,v) € G(«). Then

loll < &' = 28 — 2MF |yl < 72y,

(53) implies that y — v € D. Since h(t) € A* C A’ for
each t, n(h(t),y —v) is defined for each ¢. Since the map
t — n(h(t),y — v) is continuous, B4 5., is well defined.
Moreover, Ba.h,.(t) = n(h(t),y —v) € C. On the other
hand, [|Ba.nv(t)ll = In(h(t),y —v)|| < M|y —v|. But
ly — ol < |lyll + |lv|l < p+ d'r, and this implies that
”/Ba,h,v(t)” < Mp + Md'r. But Mp = ga
know that Md'r < grdigs < 5. S0 [[Bane ()] < 7.
Therefore Bo p.o(t) € C(r). Hence Bo.n.o € A(C(r)).)

It is easy to see that X is regular. Hence X is a regular
map from the compact convex set A(C(r)) to itself. By
the obvious extension of Schauder’s fixed point theorem
to regular maps, ¥ has a fixed point «,. Then, for
some (h,v) € Gr(ay), we have h(t) - & (t) = y — v for
almost all ¢t. Hence if we let 2 = (1), we have y =
v+ fol h(t) - & (t) dt, so that y € @, (), and then y €
F(z). Finally the fact that o € A(C(r)) implies that
lz]| <r=2Mp < 2Me < R < 4. This completes the
proof. &

Therefore

and we
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