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1. Introduction

This is the second of a series of two papers on generalized
differentiation theories (abbr. GDTs). The first paper
discussed the definition of the GDT concept, presented
several GDTs (the Warga derivate containers, weak
multidifferentials, and generalized differential quotients)
and compared them showing, in particular, that none of
these theories contains all the others.

In this paper, we introduce another concept of
generalized differential—the “path-integral generalized
differential,” abbreviated PIGD—that achieves the de-
sired unification.

2. Preliminaries

If n, m ∈ Z+, α : [0, 1] → Rn is a Lipschitz function,
and h : [0, 1] → Rm×n is integrable, we use h ∗ α to
denote the “chronological product” of h and α, that is,
the absolutely continous function β : [0, 1] → Rm given
by β(t) =

∫ t

0
h(s) · α̇(s) ds.

The following lemma says that the chronological
product operation C0( [0, 1] ; Rn ) × L1([0, 1], Rm×n) 3
(α, h) 7→ h ∗ α ∈ C0( [0, 1] ; Rm ) is jointly continuous,
as long as the function α varies in a uniformly Lipschitz
subset of C0( [0, 1] ; Rn ). The proof is very simple and
will be omitted.

Lemma 2.1 Let n, m ∈ Z+. Let {(αj , hj)}∞j=1

be a sequence of members of the product space
S = C0( [0, 1] ; Rn )× L1([0, 1], Rm×n) that converges in
S to a limit (α∞, h∞). Assume that the sequence {αj}
is uniformly Lipschitz (that is, there exists a constant
r ∈ R such that ‖αj(t)− αj(s)‖ ≤ r|t− s| for all j ∈ N
and all t, s ∈ [0, 1]). Then
hj∗αj → h∞∗α∞ in C0( [0, 1] ; Rm ) as j →∞ .♦

Let n ∈ Z+, and let S be a subset of Rn. We write
A(S) to denote the subset of C0( [0, 1] ; Rn ) consisting
of all absolutely continuous curves α : [0, 1] → Rn such
that α(0) = 0 and α̇(t) ∈ S for almost all t ∈ [0, 1] .

If S ⊆ C0( [0, 1] ; Rn ), we write τ(S) to denote the set
τ(S)def= {α(1) : α ∈ S }, so τ(S) is the set of all terminal
points of curves in S.

The following is then an immediate consequence of
our definitions.

Proposition 2.2 If K is a compact convex subset
of Rn, then A(K) is a compact convex subset of
C0( [0, 1] ; Rn ), and τ

(
A(K)

)
= K. ♦
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If m ∈ Z+ and v ∈ Rm, we use ξv to denote the curve

[0, 1] 3 t → tv
def= ξv(t) ∈ Rm . (1)

If
S ⊆ Rn and G : A(S)→→C0( [0, 1] ; Rm×n )× Rm , (2)

then we can define set-valued maps
IG : A(S)→→C0( [0, 1] ; Rm ) , ΦG : S→→Rm ,

by letting

IG(α) =
{

h ∗ α + ξv : (h, v) ∈ G(α)
}

,

ΦG(x) =
{

y ∈ Rm : (∃(α, h, v) ∈ Gr(G) )

( α(1) = x ∨ (h ∗ α)(1) + v = y )
}

.

The following fact is then trivial.

Proposition 2.3 Let n, m ∈ Z+, and let S, G be such
that (2) holds. Then:

1. Do(IG) = Do(G), so in particular IG is everywhere
defined if and only if G is.

2. If G is everywhere defined then ΦG is everywhere
defined.

3. If G is single-valued at a particular α ∈ A(S), then
IG is single-valued at α; in particular, if G is single-
valued and everywhere defined, then IG is single-
valued and everywhere defined. ♦

Lemma 2.4 Let n, m ∈ Z+, and let S, G be such that
(2) holds. Assume that S is compact and convex. Then:

1. If Gr(G) is compact, then Gr(IG) and Gr(ΦG) are
compact.

2. If G is single-valued, everywhere defined, and
continuous, then IG is single-valued, everywhere
defined, and continuous.

3. If G is regular, then IG and ΦG are regular.

Proof. To prove the first statement, assume that G has
a compact graph. We want to show that Gr(IG) and
Gr(ΦG) are compact.

Let {(αj , βj)}∞j=1 be a sequence in Gr(IG). We
want to extract a subsequence that converges to a limit
(α∞, β∞) ∈ Gr(IG). Since βj ∈ IG(αj), there exist
(hj , vj) ∈ G(αj) such that βj = hj ∗ αj + ξvj

for j ∈ N.
Then (αj , hj , vj) ∈ Gr(G). Since Gr(G) is compact,
we may assume, after passing to a subsequence, that
(i) the sequences {αj}∞j=1, {hj}∞j=1, converge uniformly
to limits α∞, h∞, (ii) {vj}∞j=1 converges in Rm to a limit
v∞, (iii) α∞ ∈ A(S), and (iv) (h∞, v∞) ∈ G(α∞).
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Let β∞ = h∞ ∗α∞+ ξv∞ . Then β∞ ∈ IG(α∞). Lemma
2.4 implies that βj → β∞ uniformly as j → ∞. So
Gr(IG) is compact.

Now (x, y) ∈ Gr(ΦG) if and only if there exists a pair
(α, β) ∈ Gr(IG) such that α(1) = x and β(1) = y. So
Gr(ΦG) is the image of Gr(IG) under the projection

C0( [0, 1] ; Rn )× C0( [0, 1] ; Rm ) 3
(α, β) → (α(1), β(1)) ∈ Rn × Rm .

Since this projection is continuous, Gr(ΦG) is compact,
and the proof of the first statement is complete.

If G is single-valued, everywhere defined, and
continuous, then IG is single-valued and everywhere
defined and, moreover, the graph Gr(IG) is compact,
because Gr(G) is compact. This implies that IG is
continuous, and the second statement is proved.

Finally, let us prove the third statement. Assume
that G is regular. We want to show that IG and ΦG are
regular. This requires that we prove that

(a) the graphs Gr(IG) and Gr(ΦG) are compact,

(b) IG and ΦG can be approximated in the sense of
inward graph convergence by sequences of single-
valued continuous maps.

Part (a) follows from the fact that Gr(G) is compact.
We now prove part (b). Using the regularity
of G, let {Gj}∞j=1 be a sequence of single-valued,
everywhere defined continuous maps from A(S) to

C0( [0, 1] ; Rm×n )×Rm such that Gj
igr−→ G as j →∞.

Then the IGj
are single-valued, everywhere defined, and

continuous.
We show that IGj

igr−→ IG as j →∞. Let

δj = sup
{

dist
(
(α, β),Gr(IG)

)
: (α, β) ∈ Gr(IGj

)
}

.

We want to show that δj → 0 as j → ∞. Assume this
is not true. Then there exists an infinite subset J of N
and a strictly positive number θ such that δj ≥ 2θ for
all j ∈ J . We can therefore pick members (αj , βj) of
Gr(IGj

) for j ∈ J such that

dist
(
(αj , βj),Gr(IG)

)
≥ θ whenever j ∈ J . (3)

If j ∈ J , then βj ∈ IGj
(αj), so we can pick pairs

(hj , vj) ∈ Gj(αj) such that βj = hj ∗ αj + ξvj . Since

Gj
igr−→ G, we may assume, after making J smaller, if

necessary, that the limit
(α∞, h∞, v∞) = lim

j→∞,j∈J
(αj , hj , vj)

exists and belongs to Gr(G). Let β∞ = h∞ ∗α∞ + ξv∞ .
Then β∞ ∈ IG(α∞). Lemma 2.4 implies that βj → β∞
uniformly as j →∞ via values in J . But then

(α∞, β∞) = lim
j→∞,j∈J

(αj , βj) .

Since (α∞, β∞) ∈ Gr(IG), we have shown that

lim
j→∞,j∈J

dist
(
(αj , βj),Gr(IG)

)
= 0 ,

contradicting (3). Therefore δj → 0 as j → ∞, and we
have completed the proof that IG is regular.

We must now show that ΦG is regular. For each
x ∈ S, let αx be the curve given by

αx(t) = tx for t ∈ [0, 1] .

Then αx ∈ A(S), and the map S 3 x → αx ∈ A(S) is
continuous. Define

Φj(x) = IGj
(αx)(1) for x ∈ S .

Then Φj is a continuous map from S to Rm. (Continuity
follows because the map IGj

: A(S) → C0( [0, 1] ; Rm )
is continuous, and the maps x → αx and β → β(1) are
continuous as well. The continuity of IGj follows from
Lemma 2.1.)

We now show that Φj igr−→ ΦG. Let (xj , yj) ∈ Gr(Φj).
We want to extract a subsequence of {(xj , yj)}∞j=1 that
converge to a limit (x, y) ∈ Gr(ΦG). Pick βj ∈ IGj

(αxj
).

Then
dist

(
(αxj

, βj),Gr(IG)
)
→ 0 as j →∞ ,

because IGj

igr−→ IG. Since Gr(IG) is compact we may
assume, after passing to a susequence, that there ex-
ists a pair (α, β) ∈ Gr(IG) such that αxj → α and
βj → β. If we let x = α(1), then xj → x. Therefore
αxj

→ αx, so α = αx. Let y = β(1). Then y ∈ ΦG(x),
and (xj , yj) → (x, y). So our proof is complete. ♦

3. The main definition

If n ∈ Z+, C is a cone in Rn, and r ∈ ] 0,∞ [ , we write
C(r) to denote the set C ∩ rB̄n, that is

C(r)def= {x ∈ C : ‖x‖ ≤ r } .
Then C(r) is compact convex if C is a closed convex
cone.

Definition 3.1 Let n, m be nonnegative integers, let
F be a set-valued map from Rn to Rm, and let C
be a closed convex cone in Rn. We say that Λ is a
path-integral generalized differential of F at (0, 0) in
the direction of C, and write Λ ∈ PIGD(F,C), if
(1) Λ is a nonempty compact subset of Rm×n, and
(2) for every positive real number δ there exists a
number R ∈ ] 0,∞ [ with the property that for ev-
ery r ∈ ] 0, R] there exists a regular set-valued map
G : A(C(r))→→C0( [0, 1] ; Rm×n )× Rm such that

(2a) h(t) ∈ Λδ and ‖v‖ ≤ δr whenever α ∈ A(C(r)),
(h, v) ∈ G(α), t ∈ [0, 1],

(2b) Gr(ΦG) ⊆ Gr(F ). ♦

4. The chain rule

Theorem 4.1 Let n1, n2, n3 be nonnegative integers,
and let Fi be, for i = 1, 2, set-valued maps from Rni to
Rni+1 . Assume that

1. Ci is a closed convex cone in Rni for i = 1, 2,

2. C2 is polyhedral,

3. Λi ∈ PIGD(Fi, Ci) for i = 1, 2,

4. F1(C1) ⊆ C2,

5. Λ1 ·C1 ⊆ C2 (that is, L·C1 ⊆ C2 for every L ∈ Λ1).

Then
Λ2 ◦ Λ1 ∈ PIGD(F2 ◦ F1, C1) .
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Outline of the proof. The crucial point is that, since
the cone C2 is polyhedral, it is possible to pick a vector
w̄ ∈ IntS(C2) and a positive constant k̄ such that the
following “error correction property” holds

(ECP) If m ∈ N, u1, . . . , um ∈ C2, w ∈
C2, and u1 + . . . + um = w + w̄, then there exist
vectors c1, . . . , cm such that ‖c1‖+ . . .+ ‖cm‖ ≤ k̄,
c1+. . .+cm = w̄, and the conditions ‖ci‖ ≤ k̄‖ui‖
and ui − ci ∈ C2 hold for i = 1, . . . ,m .

(This is not easy to prove, and we will omit the proof
for lack of space.)

We then may—and will—assume, without loss of gen-
erality, that ‖w̄‖ ≤ 1. We then fix a number ρ ∈ ] 0,∞ [
such that

w̄ + ρB̄n2 ⊆ C2 . (4)

Then the vector w̄ and the number ρ satisfy(
s > 0 ∧ u ∈ S ∧ ‖u‖ ≤ s

)
⇒ u + ρ−1sw̄ ∈ C2 . (5)

Write F = F2 ◦ F1, Λ = Λ2 ◦ Λ1, n = n1, m = n3,
C = C1, and let

S = linear span of C2 in Rn2 ,

Π = the orthogonal projection from Rn2 to S ,

κi = sup{ ‖L‖ : L ∈ Λi } for i = 1, 2 .

Then F : Rn→→Rm, and Λ is a nonempty compact
subset of Rm×n.

Fix a positive real number δ. We want to find a number
R ∈ ] 0,∞ [ satisfying Property 2# of Definition 3.1.

Define a function Ψ : [0,∞ [×[0,∞ [→ [0,∞ [ by

Ψ(δ1, δ2)
def= (1 + k̄)

(
κ1 + 2δ1(1 + ρ−1)

)
δ2

+(κ2 + δ2)δ1 + 2δ1

(
1 + ρ−1(1 + k̄)

)
(κ2 + δ2) . (6)

Then
lim

(δ1,δ2)→(0,0)
Ψ(δ1, δ2) = 0 . (7)

We let δ1, δ2, be positive numbers such that

Ψ(δ1, δ2) ≤
δ

2
. (8)

For i = 1, 2, using the fact that Λi ∈ PIGD(Fi, Ci),
choose Ri ∈ ] 0,∞ [ with the property that for every
ri ∈ ] 0, Ri] there exists Gi such that

(1) Gi∈REG(A(Ci(ri));C0( [0, 1] ; Rni+1×ni )×Rni+1),

(2) Gr(ΦGi) ⊆ Gr(Fi) ,

(3) (hi(t), vi) ∈ Λδi
i × (δiriB̄ni+1) whenever t ∈ [0, 1],

ζ ∈ A(Ci(ri)), and (hi, vi) ∈ Gi(ζ).

Inequality (8) implies in particular that the inclusion

Λδ2
2 ◦ Λδ1

1 ⊆ Λδ (9)
holds.

We let θ0 = κ1 + 2δ1

(
1 + 1

ρ

)
, θ = (1 + k̄)θ0, and

choose R = min
(

R1,
R2
θ

)
. We then have to show that,

with this choice of R, the property of Definition 3.1 is
satisfied. For this purpose, we pick r ∈ R such that
0 < r ≤ R, and prove the existence of a G satisfying the
conditions of Definition 3.1.

Let r1 = r, r2 = θr, and observe that 0 < r1 ≤ R1
and 0 < r2 ≤ R2. Pick G1, G2, such that (1)-(2)-(3)
hold. Let ω = 2δ1r1, r̃ = κ1r, r̂ = θ0r1, so that

r2 = (1 + k̄)r̂ . (10)
Let K be the ω-neighborhood of C2(r̃), that is,

K = {x ∈ Rn2 : dist(x,C2(r̃)) ≤ ω } .

It is easy to see tat

IG1

(
A(C1(r1))

)
⊆ A(K) . (11)

We are now ready to begin the long process of defining
the set-valued map

G : A(C(r))→→C0( [0, 1] ; Rm×n )× Rm .

The first step will be to assign, to each triple (α, h1, v1)
such that α ∈ A(C(r)) and (h1, v1) ∈ G1(α), a curve
βα,h1,v1 : [0, 1] → Rn2 .

Pick α ∈ A(C(r)) = A(C1(r1)), and (h1, v1) ∈ G1(α).
Then βα,h1,v1 ∈ IG1(α), so (11) implies that
βα,h1,v1 ∈ A(K). Moreover,

βα,h1,v1(1) ∈ C2 , (12)
because βα,h1,v1(1) ∈ ΦG1(α(1)) ⊆ F1(α(1)) ⊆ C2.

The second step is to correct the error arising from the
fact that β ∈ A(K) rather than in A(C2(r̃)). For this
purpose we define, whenever α belongs to A(C(r)) and
(h1, v1) ∈ G1(α), a new curve γα,h1,v1 ∈ C0( [0, 1] ; Rn2 )
by letting γα,h1,v1(t) = Π(βα,h1,v1(t))+

ωt
ρ w̄ for t ∈ [0, 1].

We claim that
γα,h1,v1 ∈ A(C2(r̂)) . (13)

To see this, write β = βα,h1,v1 , γ = γα,h1,v1 , and observe
that γ is an absolutely continuous curve, and γ(0) = 0.
In addition, for almost all t ∈ [0, 1], γ̇(t) exists and is
equal to Π(β̇(t)) + ω

ρ w̄, and β̇(t) ∈ K. Let E be the set
of all t ∈ [0, 1] for which this is true. Then meas(E) = 1.
Moreover,

γ̇(t) ∈ C2(r̂) whenever t ∈ E . (14)

(Proof. Fix t ∈ E. Since β̇(t) ∈ K, we can
write β̇(t) = b1 + b2, with b1 ∈ C2(r̃) and ‖b2‖ ≤ ω.
Then Π(β̇(t)) = Π(b1) + Π(b2) = b1 + Π(b2), since
b1 ∈ S. Moreover, ‖Π(b2)‖ ≤ ω, because ‖b2‖ ≤ ω
and Π is an orthogonal projection. Then (5) im-
plies that Π(b2) + ρ−1ωw̄ ∈ C2. Since b1 ∈ C2, and
γ̇(t) = b1 + Π(b2) + ρ−1ωw̄, we conclude that γ̇(t) ∈ C2.
Furthermore,

‖γ̇(t)‖ ≤ ‖Π(β̇(t))‖+ ρ−1ω‖w̄‖ ≤ ‖β̇(t)‖+ ρ−1ω

≤ r̃ + ω + ρ−1ω = (κ1 + 2δ1 + 2ρ−1δ1)r1

= θ0r1 = r̂ .

So γ̇(t) ∈ C2(r̂), and the proof of (14) is complete.)
Therefore (13) holds.

The third step is to make a piecewise linear
approximation of the curves γα,h1,v1 , by first choos-
ing a large positive integer N as follows. The fact
that G2 is regular implies that the set G2(A(C2(r2)))
is compact in C0( [0, 1] ; Rn3×n2 ) × Rn3 . Let H be
the set of those h2 ∈ C0( [0, 1] ; Rn3×n2 ) such that
(h2, v2) ∈ G2

(
A(C2(r2))

)
for some v2 ∈ Rn3 . Then H is

compact as well. Hence H is uniformly equicontinuous,
so we can choose N ∈ N such that ‖h2(t)−h2(s)‖ ≤ δ

4θ0
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whenever h2 ∈ H, t, s ∈ [0, 1], and |t − s| ≤ 1
N . With

this choice of N , we define

ηα,h1,v1(t) = (j −Nt)γα,h1,v1(N
−1(j − 1))

+(Nt + 1− j)γα,h1,v1(N
−1j) (15)

whenever α ∈ A(C(r)), (h1, v1) ∈ G1(α), j−1
N ≤ t ≤ j

N ,
j ∈ N, 1 ≤ j ≤ N .

Then ηα,h1,v1 ∈ C0( [0, 1] ; Rn2 ), and

ηα,h1,v1(0) = 0 , (16)
ηα,h1,v1(1) = γα,h1,v1(1)

= βα,h1,v1(1) + ρ−1ωw̄

∈ C2 + ρ−1ω . (17)
Moreover, the map ηα,h1,v1 is linear on each interval
Ij = [N−1(j − 1), N−1j ]. The derivative η̇α,h1,v1(t) of
ηα,h1,v1 is equal, for t ∈ Ij , to uN

α,h1,v1,j , where

uN
α,h1,v1,j = Nγα,h1,v1(N

−1j)−Nγα,h1,v1(N
−1(j − 1))

= N

∫ j
N

j−1
N

γ̇α,h1,v1(t) dt . (18)

Since γ̇α,h1,v1(t) ∈ C2(r̂) for almost all t, the vectors
uN

α,h1,v1,j belong to C2(r̂) as well. So η̇α,h1,v1(t) ∈ C2(r̂)
for almost all t ∈ [0, 1], and then (16) implies that

ηα,h1,v1 ∈ A(C2(r̂)) . (19)
The fourth step is to take care of the undesirable

fact that ηα,h1,v1 satisfies (17), and produce a
curve whose terminal point is βα,h1,v1(1) rather than
βα,h1,v1(1) + ρ−1ωw̄. For this purpose, we define
ũN

α,h1,v1,j = ρ
Nω uN

α,h1,v1,j . Then

N∑
j=1

ũN
α,h1,v1,j =

ρ

ω
βα,h1,v1(1) + w̄ .

It then follows from (ECP) that there exists an N -tuple
c̃ = (c̃1, . . . , c̃N ) of vectors that satisfies

ũN
α,h1,v1,j − c̃j ∈ C2 (20)

c̃1 + · · ·+ c̃N = w̄ , (21)
‖c̃1‖+ · · ·+ ‖c̃N‖ ≤ k̄ , (22)

‖c̃j‖ ≤ k̄‖ũN
α,h1,v1,j‖ , (23)

for j = 1, . . . , N . Define cj = ρ−1Nωc̃j and
c = (c1, . . . , cN ). Then, for j = 1, . . . , N ,

uN
α,h1,v1,j − cj ∈ C2 , (24)

c1 + · · ·+ cN = ρ−1Nωw̄ , (25)
‖c1‖+ · · ·+ ‖cN‖ ≤ ρ−1Nωk̄ , (26)

‖cj‖ ≤ k̄‖uN
α,h1,v1,j‖ . (27)

Let µc be the function such that

µc ∈ C0( [0, 1] ; Rn2 ) , (28)
µc(0) = 0 , (29)

µ̇c ≡ cj on Ij for j = 1, . . . , N . (30)
Then∫ 1

0

‖µ̇c(t)‖ dt =
1
N

( ‖c1‖+ · · ·+ ‖cN‖ ) ≤ ωk̄

ρ
(31)

and
µc(1) =

1
N

( c1 + · · ·+ cN ) =
ω

ρ
w̄ . (32)

Define a curve ζα,h1,v1,c by letting

ζα,h1,v1,c(t) = ηα,h1,v1(t)− µc(t) for t ∈ [0, 1] . (33)
Then ζα,h1,v1,c satisfies

ζα,h1,v1,c ∈ C0( [0, 1] ; Rn2 ) , (34)
ζα,h1,v1,c(0) = 0 , (35)
ζα,h1,v1,c(1) = ηα,h1,v1(1)− µc(1)

= βα,h1,v1(1) . (36)
Moreover, ζα,h1,v1,c is linear on each interval Ij , and the
derivative ζ̇α,h1,v1,c(t) of ζα,h1,v1,c is equal, for t ∈ Ij ,
to uN

α,h1,v1,j − cj . It follows from (24) that the vectors
vj = uN

α,h1,v1,j − cj belong to C2. Moreover, the bound
(27) implies that

‖vj‖ ≤ (1 + k̄)‖uN
α,h1,v1,j‖ ≤ (1 + k̄)r̂ = r2 .

Therefore
ζ̇α,h1,v1,c ∈ C2(r2) for a.e. t ∈ [0, 1] , (37)

and then (35) implies that
ζα,h1,v1,c ∈ A(C2(r2)) . (38)

We have now finally succeeded in producing, for each
curve α ∈ A(C(r)) and each pair (h1, v1) ∈ G1(α), a
curve ζα,h1,v1,c ∈ A(C2(r2)) whose terminal point is
exactly βα,h1,v1(1). Moreover, this curve is “close” to
βα,h1,v1 , in the sense that it is close to ηα,h1,v1 , which is
close to γα,h1,v1 , which is close to βα,h1,v1 .

This curve need not be unique, because c may fail to
be unique, so this nonuniqueness will have to be taken
care of. As a first step in that direction, we introduce
the notation Cα,h1,v1 to refer to the set of all N -tuples
c = (c1, . . . , cN ) that belong to (Rn2)N and satisfy (24),
(25), (26), and (27).

Given a curve α ∈ A(C(r)), a pair (h1, v1) ∈ G1(α),
and a c ∈ Cα,h1,v1 , pick (h2, v2) ∈ G2(ζα,h1,v1,c). Define

hα,h1,v1,c,h2,v2(t) = h2(t) · h1(t) for t ∈ [0, 1] ,

vα,h1,v1,c,h2,v2 = v2 +
(∫ 1

0

h2(t) dt
)
· v1

−
∫ 1

0

h2(t) · (β̇(t)− ζ̇(t)) dt .

We let G(α) be the set of all pairs
(hα,h1,v1,c,h2,v2 , vα,h1,v1,c,h2,v2), as α varies over
A(C(r)), (h1, v1) varies over all members of G1(α),
c varies over all members of Cα,h1,v1 , and the pair
(h2, v2) varies over all members of G2(ζα,h1,v1,c).

With this definition, it is clear that G is a set-
valued map from A(C(r)) to C0( [0, 1] ; Rm×n ) × Rm.
Moreover, if (h, v) ∈ G(α) for an α ∈ A(C(r)), then the
following can be verified

(F1) The matrix-valued function h takes values in Λδ.

(F2) If x = α(1), σ = h ∗ α + ξv, and z = σ(1), then
z ∈ F (x).

(F3) ‖v‖ ≤ δr.
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In view of (F1), (F2) and (F3), our conclusion will fol-
low if we prove that G is regular. To prove the regularity
of G, we express G as a composite of regular maps.

We define
U = C0( [0, 1] ; Rn2×n ) ,

Û =
{

h1 ∈ U : ‖h1(t)‖ ≤ κ1 + δ1 for all t ∈ [0, 1]
}

,

Y = C0( [0, 1] ; Rn2 ) ,

B =
{

β ∈ Y : (κ1 + 2δ1)‖β(t)− β(s)‖ ≤ |t− s|

whenever t, s ∈ [0, 1]
}

,

Ỹ = (Rn2)N ,

Z =
{

η ∈ Y : η is linear on Ij for j = 1, . . . , N
}

,

Z̃ = Z ∩A(C2(r2)) ,

W = C0( [0, 1] ; Rm×n2 ) ,

Ŵ =
{

h2 ∈ W : ‖h2(t)‖ ≤ κ2 + δ2 for all t ∈ [0, 1]
}

,

Q = C0( [0, 1] ; Rm×n ) ,

X1 = A(C(r))× Û × Rn2 ,

X2 = A(C(r))× Û × Rn2 × B × Y × Z ,

X3 = A(C(r))× Û × Rn2 × B × Y × Z × Ỹ ,

We then let Γ1 : A(C(r))→→X1 be the set-valued map
that sends α ∈ A(C(r)) to the set {α} ×G1(α), so that

Γ1(α)=
{

(α, h1, v1) : (h1, v1)∈G1(α)
}

if α∈A(C(r)).

Then
Γ1 ∈ REG(A(C(r));X1) , (39)

because of the identity Γ1 = ( I1A(C(r))×G1)◦∆1, where
∆1 : A(C(r)) → A(C(r))×A(C(r)) is the diagonal map
(i.e., the map that sends α ∈ A(C(r)) to the pair (α, α)).

We then let Γ2 : X1 → X2 be the ordinary map
that sends each triple (α, h1, v1) ∈ X1 to the 6-tuple
(α, h1, v1, β, γ, η) ∈ X2, where β = h1 ∗ α + ξv1 ,
γ(t) = Π(β(t)) + ωt

ρ w̄ for t ∈ [0, 1], and

η(t) = (j −Nt)γ
(j − 1

N

)
+ (Nt + 1− j)γ

( j

N

)
(40)

whenever j−1
N ≤ t ≤ j

N , j ∈ N, and 1 ≤ j ≤ N .
We then let Γ0

3 : Z → Ỹ be the map that sends each
η ∈ Z to the N -tuple

Γ0
3(η) = (u1, . . . , uN ) ∈ Ỹ , (41)

where

uj = N

(
η
( j

N

)
− η
(j − 1

N

))
for j = 1, . . . , N . (42)

Next, we let Γ3 : X2 → X3 be the map that sends each
6-tuple (α, h1, v1, β, γ, η) to the 7-tuple

Γ3(α, h1, v1, β, γ, η) = (α, h1, v1, β, γ, η, Γ0
3(η)) . (43)

Next, we define K̃0 = C2(r̂)N , and let K̃ be the set
of all (u1, . . . , uN ) ∈ K̃0 such that N(u1 + . . . + uN ) =
w0+ ω

ρ w̄ for some w0 ∈ C2. Then K̃0 and K̃ are compact
convex subsets of Ỹ.

We let Γ0
4 be a continuous retraction from Ỹ onto K̃,

and define X4 = A(C(r))× Û ×Rn2 ×B×Y ×Z × K̃.

We then let Γ4 : X3 → X4 be the map that sends each
7-tuple (α, h1, v1, β, γ, η,u) to the 7-tuple

Γ4(α, h1, v1, β, γ, η,u)=(α, h1, v1, β, γ, η, Γ0
4(u)) . (44)

We now define a set-valued map Γ0
5 : K̃→→Ỹ, by let-

ting Γ0
5(u1, . . . , uN ) be, if (u1, . . . , uN ) ∈ K̃, he set of all

N -tuples (c1, . . . , cN ) that satisfy, for j = 1, . . . , N , the
conditions

uj − cj ∈ C2 , (45)

c1 + · · ·+ cN =
Nω

ρ
w̄ , (46)

‖c1‖+ · · ·+ ‖cN‖ ≤ Nωk̄

ρ
, (47)

‖cj‖ ≤ k̄‖uj‖ . (48)

Then Γ0
5 has convex values and a compact graph.

Moreover, (ECP) implies that the values of Γ0
5 are

nonempty. It then follows from Theorem 5.2 of [1] that

Γ0
5 ∈ REG(K̃; Ỹ) . (49)

We then define
X5 = A(C(r))× Û × Rn2 × B × Y × Z × K̃ × Ỹ ,

and let Γ5 : X4→→X5 be the set-valued map that sends
each 7-tuple (α, h1, v1, β, γ, η,u) ∈ X4 to the set

Γ5(α, h1, v1, β, γ, η,u)

=
{

(α, h1, v1, β, γ, η,u, c) : c ∈ Γ0
5(u)

}
⊆ X5 . (50)

Then
Γ5 =

(
I1X4 × Γ5

)
◦∆2 , (51)

where ∆2 : X4 → X4 × K̃ is the map that
sends a 7-tuple (α, h1, v1, β, γ, η,u) to the 8-tuple
(α, h1, v1, β, γ, η,u,u). It follows from (49) and (51)
that Γ5 ∈ REG(X4;X5).

Next, define

X6 = A(C(r))×Û ×Rn2 ×B×Y ×Z ×K̃× Ỹ ×Z ×Z ,

and let Γ6 : X5 → X6 be the ordinary map that sends
each 8-tuple (α, h1, v1, β, γ, η,u, c) ∈ X5 to the 10-tuple

Γ6(α, h1, v1, β, γ, η,u, c)
= (α, h1, v1, β, γ, η,u, c, µc, η − µc) ∈ X6 .

We now observe that the real linear space Z is finite-
dimensional, and Z̃ is a nonempty compact convex
subset of Z. Let Γ0

7 be a continuous retraction from
Z onto Z̃. Define
X7 = A(C(r))×Û ×Rn2 ×B×Y ×Z ×K̃× Ỹ ×Z ×Z̃ ,

and let Γ7 : X6 → X7 be the map that sends each 10-
tuple (α, h1, v1, β, γ, η,u, c, µ, ζ) ∈ X6 to the 10-tuple

Γ7(α, h, v, β, γ, η,u, c, µ, ζ)
= (α, h1, v1, β, γ, η,u, c, µ,Γ0

7(ζ)) ∈ X7 . (52)

Next, we let Γ0
8 be the set-valued map Z̃→→Ŵ × Rm

that sends ζ ∈ Z̃ to the set G2(ζ) ⊆ Ŵ × Rm. Then
Γ0

8 = G2 ◦ ι
A(C2(r2)),Z̃

, where ι
A(C2(r2)),Z̃

is the inclusion

map from Z̃ to A(C2(r2)). So Γ0
8 ∈ REG(Z̃; Ŵ × Rm).
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Define X8 to be the product
A(C(r))×Û×Rn2×B×Y×Z×K̃×Ỹ×Z×Z̃×Ŵ×Rm,
and let Γ8 : X7→→X8 be the set-valued map that sends
each 10-tuple (α, h1, v1, β, γ, η,u, c, µ, ζ) ∈ X7 to the set
Γ8(α, h1, v1, β, γ, η,u, c, µ, ζ)

=
{

(α, h1, v1, β, γ, η,u, c, µ, ζ)
}
×G2(ζ) ⊆ X8

=
{

(α, h1, v1, β, γ, η,u, c, µ, ζ, h2, v2) : (h2, v2)∈G2(ζ)
}

.

It is then clear that Γ8 =
(

I1X7 × G2

)
◦ ∆3, where

∆3 : X7 → X7 × Z̃ is the map that sends a 10-tuple
(α, h1, v1, β, γ, η,u, c, µ, ζ) ∈ X7 to the 11-tuple

(α, h1, v1, β, γ, η,u, c, µ, ζ, ζ) ∈ X7 × Z̃ .
Therefore Γ8 ∈ REG(X7;X8).

Finally, we define an ordinary map Γ9 : X8 → Q×Rm

by letting
Γ9(α, h1, v1, β, γ, η,u, c, µ, ζ, h2, v2)

= v2 +
(∫ 1

0

h2(t) dt
)
· v1 −

(
h2 ∗ (β − ζ)

)
(1) .

We have thus defined nine set-valued
maps Γ1∈REG(A(C(r));X1), Γ2∈C0(X1 ; X2 ), Γ3 ∈
C0(X2 ; X3 ), Γ4 ∈ C0(X3 ; X4 ), Γ5 ∈ REG(X4;X5),
Γ6 ∈ C0(X5 ; X6 ), Γ7 ∈ C0(X6 ; X7 ), Γ8 ∈
REG(X7;X8), Γ9 ∈ C0(X8 ; Q× Rm ).

Since G = Γ9 ◦ Γ8 ◦ Γ7 ◦ Γ6 ◦ Γ5 ◦ Γ4 ◦ Γ3 ◦ Γ2 ◦ Γ1, it
follows that G is regular, and our proof is complete. ♦

5. The open mapping theorem

We now show that path-integral generalized differentials
have the directional open mapping property.

Theorem 5.1 Assume that n, m ∈ Z+,
F ∈ SVM(Rn, Rm), w̄ ∈ Rm, C is a polyhedral
convex cone in Rn, Λ belongs to PIGD(F ; 0, 0;C),
and w̄∈

⋂
L∈Λ Int(LC). Then there exists

a closed convex cone D in Rm such that
w̄ ∈ Int(D), having the property that for every
δ ∈]0,∞[ there exists an ε(δ) ∈]0,∞[ such that
D∩{y∈Rm :‖y‖≤ε(δ)}⊆F (C∩{x∈Rn :‖x‖≤δ}) .

Proof. Let us assume that w̄ 6= 0. Pick a closed convex
cone D̂ in Rn such that w̄ ∈ Int(D̂), a compact neigh-
borhood Λ′ of Λ such that D̂ ⊆ LC for every L ∈ Λ′,
and a continuous map Λ′ × D̂ 3 (L, y) 7→ η(L, y) ∈ C
which is positively homogeneous of degree 1 with respect
to y and such that L ·η(L, y) = y for all (L, y) ∈ Λ′× D̂.
Pick θ such that 0 < θ < ‖w̄‖ and the ball {y ∈ Rm :
‖y − w̄‖ ≤ 2θ} is entirely contained in D̂. Let D be
the smallest closed convex cone that contains the ball
{y ∈ Rm : ‖y − w̄‖ ≤ θ}. Then D satisfies:(

y ∈ D ∧ ‖z‖ ≤ θ‖y‖
‖w̄‖+ θ

)
⇒ y + z ∈ D̂ . (53)

(Indeed, if y = 0 then z = 0, so y + z = 0 ∈ D̂. Assume
that y 6= 0. Then we can write y = su with s > 0 and
‖u − w̄‖ ≤ θ. Then ‖u‖ ≤ ‖w̄‖ + ‖u − w̄‖ ≤ ‖w̄‖ + θ.
Therefore ‖y‖ ≤ s(‖w̄‖+θ), so s ≤ ‖y‖

‖w̄‖+θ . Furthermore,
y + z = sũ, where ũ = u + z

s . Then

‖ũ−w̄‖ = ‖u−w̄+
z

s
‖ ≤ ‖u−w̄‖+‖z‖

s
≤ θ+

‖z‖
‖y‖

(‖w̄‖+θ) ,

so ‖ũ− w̄‖ ≤ 2θ, and then y + z ∈ D̂.)
Let M = sup{‖η(L, y)‖ : L ∈ Λ′, y ∈ D̂, ‖y‖ ≤ 1}.

Then ‖η(L, y)‖ ≤ M‖y‖ whenever L ∈ Λ′ and y ∈ D̂.
Fix a δ ∈]0,∞[. Let δ′ be such that 0 < δ′ ≤ δ,

Λδ′ ⊆ Λ′, 2Mδ′ ≤ θ
‖w̄‖+θ . Then choose R ∈ R such that

R > 0 and a family {Gr : 0 < r ≤ R} of regular set-
valued maps Gr : A(C(r))→→C0( [0, 1] ; Rm×n ) × Rm

such that

(a) h(t) ∈ Λδ′ and ‖v‖ ≤ δ′r whenever α ∈ A(C(r)),
(h, v) ∈ Gr(α), t ∈ [0, 1],

(b) Gr(ΦGr
) ⊆ Gr(F ).

By making R smaller, if necessary, we may assume that
R ≤ δ.

We choose ε such that 2Mε < R, and show that this
choice of ε satisfies our requirements.

Fix y such that 0 < ‖y‖ ≤ ε. Let ρ = ‖y‖, and choose
r = 2Mρ. Then r < R. We will show that there is
an x ∈ C such that ‖x‖ ≤ δ and y ∈ F (x). For this
purpose, it suffices to find a triple (α, h, v) ∈ Gr(Gr)
such that v +

∫ 1

0
h(t) · α̇(t) dt = y and ‖α(1)‖ ≤ δ. The

first equality, in turn, will follow if α satisfies
h(t) · α̇(t) = y − v for a.e. t , (54)

as well as ‖α(1)‖ ≤ δ. If y−v ∈ D, then (54) will follow
if α̇(t) = η(h(t), y − v) for a.e. t, i.e., if

α(t) =
∫ t

0

η(h(s), y − v) ds for all t . (55)

Let Σ be the set-valued map on A(C(r)) that asigns to
each α ∈ A(C(r)) the set Σ(α) of all paths β = βα,h,v for
all (h, v) ∈ Gr(α), where βα,h,v(t) =

∫ t

0
η(h(s), y−v) ds.

Then Σ is well defined and takes values in A(C(r)).
(Proof. Let α ∈ A(C(r)) and (h, v) ∈ Gr(α). Then
‖v‖ ≤ δ′r = 2Mδ′ρ = 2Mδ′‖y‖ ≤ θ‖y‖

‖w̄‖+θ . Therefore

(53) implies that y − v ∈ D̂. Since h(t) ∈ Λδ′ ⊆ Λ′ for
each t, η(h(t), y−v) is defined for each t. Since the map
t 7→ η(h(t), y − v) is continuous, βα,h,v is well defined.
Moreover, β̇α,h,v(t) = η(h(t), y − v) ∈ C. On the other
hand, ‖β̇α,h,v(t)‖ = ‖η(h(t), y − v)‖ ≤ M‖y − v‖. But
‖y − v‖ ≤ ‖y‖ + ‖v‖ ≤ ρ + δ′r, and this implies that
‖β̇α,h,v(t)‖ ≤ Mρ + Mδ′r. But Mρ = r

2 , and we
know that Mδ′r ≤ θr

2(‖w̄‖+θ) < r
2 . So ‖β̇α,h,v(t)‖ ≤ r.

Therefore β̇α,h,v(t) ∈ C(r). Hence βα,h,v ∈ A(C(r)).)
It is easy to see that Σ is regular. Hence Σ is a regular

map from the compact convex set A(C(r)) to itself. By
the obvious extension of Schauder’s fixed point theorem
to regular maps, Σ has a fixed point α∗. Then, for
some (h, v) ∈ Gr(α∗), we have h(t) · α̇∗(t) = y − v for
almost all t. Hence if we let x = α(1), we have y =
v +

∫ 1

0
h(t) · α̇∗(t) dt, so that y ∈ ΦGr (x), and then y ∈

F (x). Finally the fact that α ∈ A(C(r)) implies that
‖x‖ ≤ r = 2Mρ ≤ 2Mε < R ≤ δ. This completes the
proof. ♦
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