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1. Introduction

This is the second of a series of two papers on generalized
differentiation theories (abbr. GDTs). The first paper
discussed the definition of the GDT concept, presented
several GDTs (the Warga derivate containers, weak
multidifferentials, and generalized differential quotients)
and compared them showing, in particular, that none of
these theories contains all the others.

In this paper, we introduce another concept of
generalized differential—the “path-integral generalized
differential,” abbreviated PIGD—that achieves the de-
sired unification.

2. Preliminaries

If n,m ∈ Z+, α : [0, 1] → Rn is a Lipschitz function,
and h : [0, 1] → Rm×n is integrable, we use h ∗ α to
denote the “chronological product” of h and α, that is,
the absolutely continous function β : [0, 1] → Rm given
by β(t) =

∫ t

0
h(s) · α̇(s) ds.

The following lemma says that the chronological
product operation C0( [0, 1] ; Rn ) × L1([0, 1],Rm×n) 3
(α, h) 7→ h ∗ α ∈ C0( [0, 1] ; Rm ) is jointly continuous,
as long as the function α varies in a uniformly Lipschitz
subset of C0( [0, 1] ; Rn ). The proof is very simple and
will be omitted.

Lemma 2.1 Let n,m ∈ Z+. Let {(αj , hj)}∞j=1

be a sequence of members of the product space
S = C0( [0, 1] ; Rn )× L1([0, 1],Rm×n) that converges in
S to a limit (α∞, h∞). Assume that the sequence {αj}
is uniformly Lipschitz (that is, there exists a constant
r ∈ R such that ‖αj(t)− αj(s)‖ ≤ r|t− s| for all j ∈ N
and all t, s ∈ [0, 1]). Then
hj∗αj → h∞∗α∞ in C0( [0, 1] ; Rm ) as j →∞ .♦

Let n ∈ Z+, and let S be a subset of Rn. We write
A(S) to denote the subset of C0( [0, 1] ; Rn ) consisting
of all absolutely continuous curves α : [0, 1] → Rn such
that α(0) = 0 and α̇(t) ∈ S for almost all t ∈ [0, 1] .

If S ⊆ C0( [0, 1] ; Rn ), we write τ(S) to denote the set
τ(S)def= {α(1) : α ∈ S }, so τ(S) is the set of all terminal
points of curves in S.

The following is then an immediate consequence of
our definitions.

Proposition 2.2 If K is a compact convex subset
of Rn, then A(K) is a compact convex subset of
C0( [0, 1] ; Rn ), and τ

(
A(K)

)
= K. ♦
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If m ∈ Z+ and v ∈ Rm, we use ξv to denote the curve

[0, 1] 3 t→ tv
def= ξv(t) ∈ Rm . (1)

If
S ⊆ Rn and G : A(S)→→C0( [0, 1] ; Rm×n )× Rm , (2)

then we can define set-valued maps
IG : A(S)→→C0( [0, 1] ; Rm ) , ΦG : S→→Rm ,

by letting

IG(α) =
{
h ∗ α+ ξv : (h, v) ∈ G(α)

}
,

ΦG(x) =
{
y ∈ Rm : (∃(α, h, v) ∈ Gr(G) )

(α(1) = x ∨ (h ∗ α)(1) + v = y )
}
.

The following fact is then trivial.

Proposition 2.3 Let n,m ∈ Z+, and let S, G be such
that (2) holds. Then:

1. Do(IG) = Do(G), so in particular IG is everywhere
defined if and only if G is.

2. If G is everywhere defined then ΦG is everywhere
defined.

3. If G is single-valued at a particular α ∈ A(S), then
IG is single-valued at α; in particular, if G is single-
valued and everywhere defined, then IG is single-
valued and everywhere defined. ♦

Lemma 2.4 Let n,m ∈ Z+, and let S, G be such that
(2) holds. Assume that S is compact and convex. Then:

1. If Gr(G) is compact, then Gr(IG) and Gr(ΦG) are
compact.

2. If G is single-valued, everywhere defined, and
continuous, then IG is single-valued, everywhere
defined, and continuous.

3. If G is regular, then IG and ΦG are regular.

Proof. To prove the first statement, assume that G has
a compact graph. We want to show that Gr(IG) and
Gr(ΦG) are compact.

Let {(αj , βj)}∞j=1 be a sequence in Gr(IG). We
want to extract a subsequence that converges to a limit
(α∞, β∞) ∈ Gr(IG). Since βj ∈ IG(αj), there exist
(hj , vj) ∈ G(αj) such that βj = hj ∗ αj + ξvj

for j ∈ N.
Then (αj , hj , vj) ∈ Gr(G). Since Gr(G) is compact,
we may assume, after passing to a subsequence, that
(i) the sequences {αj}∞j=1, {hj}∞j=1, converge uniformly
to limits α∞, h∞, (ii) {vj}∞j=1 converges in Rm to a limit
v∞, (iii) α∞ ∈ A(S), and (iv) (h∞, v∞) ∈ G(α∞).
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Let β∞ = h∞ ∗α∞+ ξv∞ . Then β∞ ∈ IG(α∞). Lemma
2.4 implies that βj → β∞ uniformly as j → ∞. So
Gr(IG) is compact.

Now (x, y) ∈ Gr(ΦG) if and only if there exists a pair
(α, β) ∈ Gr(IG) such that α(1) = x and β(1) = y. So
Gr(ΦG) is the image of Gr(IG) under the projection

C0( [0, 1] ; Rn )× C0( [0, 1] ; Rm ) 3
(α, β) → (α(1), β(1)) ∈ Rn × Rm .

Since this projection is continuous, Gr(ΦG) is compact,
and the proof of the first statement is complete.

If G is single-valued, everywhere defined, and
continuous, then IG is single-valued and everywhere
defined and, moreover, the graph Gr(IG) is compact,
because Gr(G) is compact. This implies that IG is
continuous, and the second statement is proved.

Finally, let us prove the third statement. Assume
that G is regular. We want to show that IG and ΦG are
regular. This requires that we prove that

(a) the graphs Gr(IG) and Gr(ΦG) are compact,

(b) IG and ΦG can be approximated in the sense of
inward graph convergence by sequences of single-
valued continuous maps.

Part (a) follows from the fact that Gr(G) is compact.
We now prove part (b). Using the regularity
of G, let {Gj}∞j=1 be a sequence of single-valued,
everywhere defined continuous maps from A(S) to

C0( [0, 1] ; Rm×n )×Rm such that Gj
igr−→ G as j →∞.

Then the IGj
are single-valued, everywhere defined, and

continuous.
We show that IGj

igr−→ IG as j →∞. Let

δj = sup
{

dist
(
(α, β),Gr(IG)

)
: (α, β) ∈ Gr(IGj

)
}
.

We want to show that δj → 0 as j → ∞. Assume this
is not true. Then there exists an infinite subset J of N
and a strictly positive number θ such that δj ≥ 2θ for
all j ∈ J . We can therefore pick members (αj , βj) of
Gr(IGj

) for j ∈ J such that

dist
(
(αj , βj),Gr(IG)

)
≥ θ whenever j ∈ J . (3)

If j ∈ J , then βj ∈ IGj
(αj), so we can pick pairs

(hj , vj) ∈ Gj(αj) such that βj = hj ∗ αj + ξvj . Since

Gj
igr−→ G, we may assume, after making J smaller, if

necessary, that the limit
(α∞, h∞, v∞) = lim

j→∞,j∈J
(αj , hj , vj)

exists and belongs to Gr(G). Let β∞ = h∞ ∗α∞ + ξv∞ .
Then β∞ ∈ IG(α∞). Lemma 2.4 implies that βj → β∞
uniformly as j →∞ via values in J . But then

(α∞, β∞) = lim
j→∞,j∈J

(αj , βj) .

Since (α∞, β∞) ∈ Gr(IG), we have shown that

lim
j→∞,j∈J

dist
(
(αj , βj),Gr(IG)

)
= 0 ,

contradicting (3). Therefore δj → 0 as j → ∞, and we
have completed the proof that IG is regular.

We must now show that ΦG is regular. For each
x ∈ S, let αx be the curve given by

αx(t) = tx for t ∈ [0, 1] .

Then αx ∈ A(S), and the map S 3 x → αx ∈ A(S) is
continuous. Define

Φj(x) = IGj (αx)(1) for x ∈ S .
Then Φj is a continuous map from S to Rm. (Continuity
follows because the map IGj : A(S) → C0( [0, 1] ; Rm )
is continuous, and the maps x → αx and β → β(1) are
continuous as well. The continuity of IGj

follows from
Lemma 2.1.)

We now show that Φj igr−→ ΦG. Let (xj , yj) ∈ Gr(Φj).
We want to extract a subsequence of {(xj , yj)}∞j=1 that
converge to a limit (x, y) ∈ Gr(ΦG). Pick βj ∈ IGj

(αxj
).

Then
dist

(
(αxj

, βj),Gr(IG)
)
→ 0 as j →∞ ,

because IGj

igr−→ IG. Since Gr(IG) is compact we may
assume, after passing to a susequence, that there ex-
ists a pair (α, β) ∈ Gr(IG) such that αxj

→ α and
βj → β. If we let x = α(1), then xj → x. Therefore
αxj

→ αx, so α = αx. Let y = β(1). Then y ∈ ΦG(x),
and (xj , yj) → (x, y). So our proof is complete. ♦

3. The main definition

If n ∈ Z+, C is a cone in Rn, and r ∈ ] 0,∞ [ , we write
C(r) to denote the set C ∩ rB̄n, that is

C(r)def= {x ∈ C : ‖x‖ ≤ r } .
Then C(r) is compact convex if C is a closed convex
cone.

Definition 3.1 Let n,m be nonnegative integers, let
F be a set-valued map from Rn to Rm, and let C
be a closed convex cone in Rn. We say that Λ is a
path-integral generalized differential of F at (0, 0) in
the direction of C, and write Λ ∈ PIGD(F,C), if
(1) Λ is a nonempty compact subset of Rm×n, and
(2) for every positive real number δ there exists a
number R ∈ ] 0,∞ [ with the property that for ev-
ery r ∈ ] 0, R] there exists a regular set-valued map
G : A(C(r))→→C0( [0, 1] ; Rm×n )× Rm such that

(2a) h(t) ∈ Λδ and ‖v‖ ≤ δr whenever α ∈ A(C(r)),
(h, v) ∈ G(α), t ∈ [0, 1],

(2b) Gr(ΦG) ⊆ Gr(F ). ♦

4. The chain rule

Theorem 4.1 Let n1, n2, n3 be nonnegative integers,
and let Fi be, for i = 1, 2, set-valued maps from Rni to
Rni+1 . Assume that

1. Ci is a closed convex cone in Rni for i = 1, 2,

2. C2 is polyhedral,

3. Λi ∈ PIGD(Fi, Ci) for i = 1, 2,

4. F1(C1) ⊆ C2,

and

5. Λ1 ·C1 ⊆ C2 (that is, L·C1 ⊆ C2 for every L ∈ Λ1).

Then
Λ2 ◦ Λ1 ∈ PIGD(F2 ◦ F1, C1) .
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Proof. The crucial point is that, since the cone C2 is
polyhedral, it is possible to pick a vector w̄ ∈ IntS(C2)
and a positive constant k̄ such that the following “error
correction property” holds

(ECP) If m ∈ N, u1, . . . , um ∈ C2, w ∈
C2, and u1 + . . .+ um = w + w̄, then there exist
vectors c1, . . . , cm such that ‖c1‖+ . . .+ ‖cm‖ ≤ k̄,
c1+. . .+cm = w̄, and the conditions ‖ci‖ ≤ k̄‖ui‖
and ui − ci ∈ C2 hold for i = 1, . . . ,m .

(This follows from Theorem 6.7.)
We then may—and will—assume, without loss of gen-

erality, that ‖w̄‖ ≤ 1. We then fix a number ρ ∈ ] 0,∞ [
such that

w̄ + ρB̄n2 ⊆ C2 . (4)

Then the vector w̄ and the number ρ satisfy(
s > 0 ∧ u ∈ S ∧ ‖u‖ ≤ s

)
⇒ u+ ρ−1sw̄ ∈ C2 . (5)

(Indeed, let y = ρ
su. Then ‖y‖ ≤ ρ. Therefore (4)

implies y + w̄ ∈ C2. Since u + s
ρ w̄ = s

ρ (y + w̄), and C2

is a cone, u+ s
ρ w̄ ∈ C2, as stated.)

Write F = F2 ◦ F1, Λ = Λ2 ◦ Λ1, n = n1, m = n3,
C = C1, and let
S = linear span of C2 in Rn2 ,

Π = the orthogonal projection from Rn2 to S ,

κi = sup{ ‖L‖ : L ∈ Λi } for i = 1, 2 .
Then F : Rn→→Rm, and Λ is a nonempty compact
subset of Rm×n.

Fix a positive real number δ. We want to find a number
R ∈ ] 0,∞ [ satisfying Property 2# of Definition 3.1.

Define a function Ψ : [0,∞ [×[0,∞ [→ [0,∞ [ by

Ψ(δ1, δ2)
def= (1 + k̄)

(
κ1 + 2δ1(1 + ρ−1)

)
δ2

+(κ2 + δ2)δ1 + 2δ1
(
1 + ρ−1(1 + k̄)

)
(κ2 + δ2) . (6)

Then
lim

(δ1,δ2)→(0,0)
Ψ(δ1, δ2) = 0 . (7)

We let δ1, δ2, be positive numbers such that

Ψ(δ1, δ2) ≤
δ

2
. (8)

For i = 1, 2, using the fact that Λi ∈ PIGD(Fi, Ci),
choose Ri ∈ ] 0,∞ [ with the property that for every
ri ∈ ] 0, Ri] there exists Gi such that

(1) Gi∈REG(A(Ci(ri));C0( [0, 1] ; Rni+1×ni )×Rni+1),

(2) Gr(ΦGi
) ⊆ Gr(Fi) ,

(3) (hi(t), vi) ∈ Λδi
i × (δiriB̄ni+1) whenever t ∈ [0, 1],

ζ ∈ A(Ci(ri)), and (hi, vi) ∈ Gi(ζ).

Inequality (8) implies in particular that the inclusion

Λδ2
2 ◦ Λδ1

1 ⊆ Λδ (9)

holds. (Proof. If Li ∈ Λδi
i for i = 1, 2, and L = L2 ◦ L1,

then we can write Li = L0
i + Ei, where L0

i ∈ Λi and
‖Ei‖ ≤ δi. Let L0 = L0

2 ◦ L0
1, so L0 ∈ Λ. Then

L = L0 + E, where E = L0
2 ◦E1 +E2 ◦L0

1 +E2 ◦E1, so
‖E‖ ≤ κ2δ1 + δ2κ1 + δ2δ1 .

It follows easily from (8) that
κ2δ1 + δ2κ1 + δ2δ1 ≤ δ . (10)

Therefore ‖E‖ ≤ δ, showing that L ∈ Λδ, as stated.)
We let

θ0 = κ1 + 2δ1
(
1 +

1
ρ

)
, θ = (1 + k̄)θ0 ,

and choose
R = min

(
R1,

R2

θ

)
.

We then have to show that, with this choice of R, the
property of Definition 3.1 is satisfied. For this purpose,
we pick r ∈ R such that 0 < r ≤ R, and prove the
existence of a G satisfying the conditions of Definition
3.1.

Let
r1 = r ,

r2 = θr ,

and observe that 0 < r1 ≤ R1 and 0 < r2 ≤ R2. Pick
G1, G2, such that (1)-(2)-(3) hold.

Let
ω = 2δ1r1 ,
r̃ = κ1r ,

r̂ = θ0r1 ,

so that
r2 = (1 + k̄)r̂ . (11)

Let K be the ω-neighborhood of C2(r̃), that is,
K = {x ∈ Rn2 : dist(x,C2(r̃)) ≤ ω } .

We claim that

IG1

(
A(C1(r1))

)
⊆ A(K) . (12)

To see this, let β ∈ IG1

(
A(C1(r1))

)
. Pick

α ∈ A(C1(r1)) such that β ∈ IG1(α). Then choose
(h1, v1) ∈ G1(α) such that β = h1 ∗ α + ξv1 . It is clear
that β(0) = 0, and β is absolutely continuous. So (12)
will be proved if we show that β̇(t) ∈ K for almost all
t ∈ [0, 1].

Let E be a subset of [0, 1] such that meas(E) = 1,
having the property that for every t ∈ E

(I) the derivative α̇(t) exists and belongs to C1(r1),

(II) β̇(t) exists and is equal to h1(t) · α̇(t) + v1.

Let t ∈ E. Since h1(t) ∈ Λδ1
1 , we can write h1(t) = L+L̃,

with L ∈ Λ1 and ‖L̃‖ ≤ δ1. Then

β̇(t) = L · α̇(t) + L̃ · α̇(t) + v1 ,

and
‖L̃ · α̇(t) + v1‖ ≤ 2δ1r1 = ω .

We now use the hypothesis that Λ1C1 ⊆ C2 to conclude
that L · α̇(t) ∈ C2. Moreover, ‖L · α̇(t)‖ ≤ κ1r1 = r̃.
Therefore L · α̇(t) ∈ C2(r̃). It then follows that

dist( β̇(t), C2(r̃) ) ≤ ω . (13)

So β̇(t) ∈ K. Since this is true for all t ∈ E, we have
shown that β̇(t) ∈ K for almost all t, completing the
proof of (12).
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We are now ready to begin the long process of defining
the set-valued map

G : A(C(r))→→C0( [0, 1] ; Rm×n )× Rm .

The first step will be to assign, to each triple (α, h1, v1)
such that α ∈ A(C(r)) and (h1, v1) ∈ G1(α), a curve
βα,h1,v1 : [0, 1] → Rn2 .

Pick α ∈ A(C(r)) = A(C1(r1)), and (h1, v1) ∈ G1(α).
Let

βα,h1,v1

def= h1 ∗ α+ ξv1 .

Let βα,h1,v1

def= h1 ∗ α + ξv1 . Then βα,h1,v1 ∈ IG1(α), so
(12) implies that βα,h1,v1 ∈ A(K). Moreover,

βα,h1,v1(1) ∈ C2 , (14)
because

βα,h1,v1(1) ∈ ΦG1(α(1)) ⊆ F1(α(1)) ⊆ C2 .

The second step is to correct the error arising from the
fact that β ∈ A(K) rather than in A(C2(r̃)). For this
purpose we define, whenever α belongs to A(C(r)) and
(h1, v1) ∈ G1(α), a new curve γα,h1,v1 ∈ C0( [0, 1] ; Rn2 )
by letting γα,h1,v1(t) = Π(βα,h1,v1(t))+

ωt
ρ w̄ for t ∈ [0, 1].

We claim that
γα,h1,v1 ∈ A(C2(r̂)) . (15)

To see this, write β = βα,h1,v1 , γ = γα,h1,v1 , and observe
that γ is an absolutely continuous curve, and γ(0) = 0.
In addition, for almost all t ∈ [0, 1], γ̇(t) exists and is
equal to Π(β̇(t)) + ω

ρ w̄, and β̇(t) ∈ K. Let E be the set
of all t ∈ [0, 1] for which this is true. Then meas(E) = 1.
Moreover,

γ̇(t) ∈ C2(r̂) whenever t ∈ E . (16)

(Proof. Fix t ∈ E. Since β̇(t) ∈ K, we can
write β̇(t) = b1 + b2, with b1 ∈ C2(r̃) and ‖b2‖ ≤ ω.
Then Π(β̇(t)) = Π(b1) + Π(b2) = b1 + Π(b2), since
b1 ∈ S. Moreover, ‖Π(b2)‖ ≤ ω, because ‖b2‖ ≤ ω
and Π is an orthogonal projection. Then (5) im-
plies that Π(b2) + ρ−1ωw̄ ∈ C2. Since b1 ∈ C2, and
γ̇(t) = b1 + Π(b2) + ρ−1ωw̄, we conclude that γ̇(t) ∈ C2.
Furthermore,

‖γ̇(t)‖ ≤ ‖Π(β̇(t))‖+ ρ−1ω‖w̄‖ ≤ ‖β̇(t)‖+ ρ−1ω

≤ r̃ + ω + ρ−1ω = (κ1 + 2δ1 + 2ρ−1δ1)r1
= θ0r1 = r̂ .

So γ̇(t) ∈ C2(r̂), and the proof of (16) is complete.)
Therefore (15) holds.

The third step is to make a piecewise linear
approximation of the curves γα,h1,v1 , by first choos-
ing a large positive integer N as follows. The fact
that G2 is regular implies that the set G2(A(C2(r2)))
is compact in C0( [0, 1] ; Rn3×n2 ) × Rn3 . Let H be
the set of those h2 ∈ C0( [0, 1] ; Rn3×n2 ) such that
(h2, v2) ∈ G2

(
A(C2(r2))

)
for some v2 ∈ Rn3 . ThenH is

compact as well. Hence H is uniformly equicontinuous,
so we can choose N ∈ N such that ‖h2(t)−h2(s)‖ ≤ δ

4θ0

whenever h2 ∈ H, t, s ∈ [0, 1], and |t − s| ≤ 1
N . With

this choice of N , we define
ηα,h1,v1(t) = (j −Nt)γα,h1,v1(N

−1(j − 1))

+(Nt+ 1− j)γα,h1,v1(N
−1j) (17)

whenever α ∈ A(C(r)), (h1, v1) ∈ G1(α), j−1
N ≤ t ≤ j

N ,
j ∈ N, 1 ≤ j ≤ N .

Then ηα,h1,v1 ∈ C0( [0, 1] ; Rn2 ), and

ηα,h1,v1(0) = 0 , (18)
ηα,h1,v1(1) = γα,h1,v1(1)

= βα,h1,v1(1) + ρ−1ωw̄

∈ C2 + ρ−1ω . (19)
Moreover, the map ηα,h1,v1 is linear on each interval
Ij = [N−1(j − 1), N−1j ]. The derivative η̇α,h1,v1(t) of
ηα,h1,v1 is equal, for t ∈ Ij , to uN

α,h1,v1,j , where

uN
α,h1,v1,j = Nγα,h1,v1(N

−1j)−Nγα,h1,v1(N
−1(j − 1))

= N

∫ j
N

j−1
N

γ̇α,h1,v1(t) dt . (20)

Since γ̇α,h1,v1(t) ∈ C2(r̂) for almost all t, the vectors
uN

α,h1,v1,j belong to C2(r̂) as well. So η̇α,h1,v1(t) ∈ C2(r̂)
for almost all t ∈ [0, 1], and then (18) implies that

ηα,h1,v1 ∈ A(C2(r̂)) . (21)
The fourth step is to take care of the undesirable

fact that ηα,h1,v1 satisfies (19), and produce a
curve whose terminal point is βα,h1,v1(1) rather than
βα,h1,v1(1) + ρ−1ωw̄. For this purpose, we define
ũN

α,h1,v1,j = ρ
Nωu

N
α,h1,v1,j . Then

N∑
j=1

ũN
α,h1,v1,j =

ρ

ω
βα,h1,v1(1) + w̄ .

It then follows from (ECP) that there exists an N -tuple
c̃ = (c̃1, . . . , c̃N ) of vectors that satisfies

ũN
α,h1,v1,j − c̃j ∈ C2 (22)

c̃1 + · · ·+ c̃N = w̄ , (23)
‖c̃1‖+ · · ·+ ‖c̃N‖ ≤ k̄ , (24)

‖c̃j‖ ≤ k̄‖ũN
α,h1,v1,j‖ , (25)

for j = 1, . . . , N . Define cj = ρ−1Nωc̃j and
c = (c1, . . . , cN ). Then, for j = 1, . . . , N ,

uN
α,h1,v1,j − cj ∈ C2 , (26)

c1 + · · ·+ cN = ρ−1Nωw̄ , (27)
‖c1‖+ · · ·+ ‖cN‖ ≤ ρ−1Nωk̄ , (28)

‖cj‖ ≤ k̄‖uN
α,h1,v1,j‖ . (29)

Let µc be the function such that

µc ∈ C0( [0, 1] ; Rn2 ) , (30)
µc(0) = 0 , (31)
µ̇c ≡ cj on Ij for j = 1, . . . , N . (32)

Then∫ 1

0

‖µ̇c(t)‖ dt =
1
N

( ‖c1‖+ · · ·+ ‖cN‖ ) ≤ ωk̄

ρ
(33)

and
µc(1) =

1
N

( c1 + · · ·+ cN ) =
ω

ρ
w̄ . (34)

Define a curve ζα,h1,v1,c by letting

ζα,h1,v1,c(t) = ηα,h1,v1(t)− µc(t) for t ∈ [0, 1] . (35)
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Then ζα,h1,v1,c satisfies

ζα,h1,v1,c ∈ C0( [0, 1] ; Rn2 ) , (36)
ζα,h1,v1,c(0) = 0 , (37)
ζα,h1,v1,c(1) = ηα,h1,v1(1)− µc(1)

= βα,h1,v1(1) . (38)
Moreover, ζα,h1,v1,c is linear on each interval Ij , and the
derivative ζ̇α,h1,v1,c(t) of ζα,h1,v1,c is equal, for t ∈ Ij ,
to uN

α,h1,v1,j − cj . It follows from (26) that the vectors
vj = uN

α,h1,v1,j − cj belong to C2. Moreover, the bound
(29) implies that

‖vj‖ ≤ (1 + k̄)‖uN
α,h1,v1,j‖ ≤ (1 + k̄)r̂ = r2 .

Therefore
ζ̇α,h1,v1,c ∈ C2(r2) for a.e. t ∈ [0, 1] , (39)

and then (37) implies that
ζα,h1,v1,c ∈ A(C2(r2)) . (40)

We have now finally succeeded in producing, for each
curve α ∈ A(C(r)) and each pair (h1, v1) ∈ G1(α), a
curve ζα,h1,v1,c ∈ A(C2(r2)) whose terminal point is
exactly βα,h1,v1(1). Moreover, this curve is “close” to
βα,h1,v1 , in the sense that it is close to ηα,h1,v1 , which is
close to γα,h1,v1 , which is close to βα,h1,v1 .

This curve need not be unique, because c may fail to
be unique, so this nonuniqueness will have to be taken
care of. As a first step in that direction, we introduce
the notation Cα,h1,v1 to refer to the set of all N -tuples
c = (c1, . . . , cN ) that belong to (Rn2)N and satisfy (26),
(27), (28), and (29).

Given a curve α ∈ A(C(r)), a pair (h1, v1) ∈ G1(α),
and a c ∈ Cα,h1,v1 , pick (h2, v2) ∈ G2(ζα,h1,v1,c). Define

hα,h1,v1,c,h2,v2(t) = h2(t) · h1(t) for t ∈ [0, 1] ,

vα,h1,v1,c,h2,v2 = v2 +
(∫ 1

0

h2(t) dt
)
· v1

−
∫ 1

0

h2(t) · (β̇(t)− ζ̇(t)) dt .

We let G(α) be the set of all pairs
(hα,h1,v1,c,h2,v2 , vα,h1,v1,c,h2,v2), as α varies over
A(C(r)), (h1, v1) varies over all members of G1(α),
c varies over all members of Cα,h1,v1 , and the pair
(h2, v2) varies over all members of G2(ζα,h1,v1,c).

With this definition, it is clear that G is a set-
valued map from A(C(r)) to C0( [0, 1] ; Rm×n ) × Rm.
Moreover, if (h, v) ∈ G(α) for an α ∈ A(C(r)), then the
following three facts are true.

(F1) The matrix-valued function h takes values in Λδ.

(F2) If x = α(1), σ = h ∗ α + ξv, and z = σ(1), then
z ∈ F (x).

(F3) ‖v‖ ≤ δr.

Proof of (F1). Write
(h, v) = (hα,h1,v1,c,h2,v2 , vα,h1,v1,c,h2,v2) . (41)

Then, if t ∈ [0, 1], (9) implies that h2(t) · h1(t) ∈ Λδ,
since h1(t) ∈ Λδ1

1 and h2(t) ∈ Λδ2
2 .

Proof of (F2). Write β = βα,h1,v1 , γ = γα,h1,v1 ,
η = ηα,h1,v1 , ζ = ζα,h1,v1,c, λ = β − ζ, y = β(1) = ζ(1),
ν = h2 ∗ ζ + ξv2 .

Then y ∈ ΦG1(x), because β ∈ IG1(α), so
β(1) ∈ ΦG1(x). Therefore y belongs to F1(x), because
Gr(ΦG1) ⊆ Gr(F1). Now, z =

∫ 1

0
h(t) · α̇(t) dt+ v, so

z =
∫ 1

0

h2(t) · h1(t) · α̇(t) dt+
∫ 1

0

(h2(t) · v1) dt+ v2

−
∫ 1

0

h2(t) · λ̇(t) dt

=
∫ 1

0

h2(t) ·
(
h1(t) · α̇(t) + v1

)
dt+ v2

−
∫ 1

0

h2(t) · λ̇(t) dt

=
∫ 1

0

h2(t) · β̇(t) dt+ v2

−
∫ 1

0

h2(t) · (β̇(t)− ζ̇(t)) dt

=
∫ 1

0

h2(t) · ζ̇(t) dt+ v2

= ν(1) .
But ν ∈ IG2(ζ), because ν = h2 ∗ ζ + ξv2 and
(h2, v2) ∈ G2(ζ). Therefore

z = ν(1) ∈ ΦG2(ζ(1)) = ΦG2(y) .
Hence z belongs to F2(y), because Gr(ΦG2) ⊆ Gr(F2).
Since y ∈ F1(x) and z ∈ F2(y), the conclusion that
z ∈ F (x) follows.

Proof of (F3). Using the notations introduced above,
we have

v = v2 +
(∫ 1

0

h2(t) dt
)
· v1 +

∫ 1

0

h2(t) · λ̇(t) dt , (42)

so
‖v‖ ≤ δ2r2 + (κ2 + δ2)δ1r1 + E

≤
(
θδ2 + (κ2 + δ2)δ1

)
r + E , (43)

where

E =

∥∥∥∥∥
∫ 1

0

h2(t) · λ̇(t) dt

∥∥∥∥∥ . (44)

To estimate E, we write
λ = (β − β∗) + (β∗ − γ) + (γ − η) + (η − ζ) (45)

where β∗ = Π◦β. Then β̇∗ = Π◦ β̇, because Π is linear.
It follows from (13) that

‖β̇(t)− β̇∗(t)‖ ≤ ω for a.e. t ∈ [0, 1] ,
and then∥∥∥∫ 1

0

h2(t) · (β̇(t)− β̇∗(t)) dt
∥∥∥ ≤ (κ2 + δ2)ω

= 2δ1(κ2 + δ2)r . (46)

The function β̇∗ − γ̇ has a constant value, equal to
ω
ρ w̄. Therefore∥∥∥∫ 1

0

h2(t) · (β̇∗(t)− γ̇(t)) dt
∥∥∥≤ ρ−1(κ2 + δ2)ω‖w̄‖

≤ 2ρ−1δ1(κ2+δ2)r . (47)
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The function η − ζ is µc. Then (33) implies the bound∥∥∥∫ 1

0

h2(t) · (η̇(t)− ζ̇(t)) dt
∥∥∥≤ ρ−1k̄(κ2 + δ2)ω

≤ 2ρ−1δ1k̄(κ2+δ2)r . (48)
Finally, we have to estimate the integral

σ =
∫ 1

0
h2(t) · (γ̇(t)− η̇(t)) dt. Let ĥ2 be the piecewise

constant function on [0, 1] whose value on each interval
Ij is equal to h2( j−1

N ). Then

σ =
∫ 1

0

(h2(t)− ĥ2(t)) · (γ̇(t)− η̇(t)) dt

+
∫ 1

0

ĥ2(t) · (γ̇(t)− η̇(t)) dt .

Since γ and η belong to A(C2(r̂)), the estimate
‖γ̇(t)− η̇(t)‖ ≤ 2r̂ (49)

is true for almost all t. Our choice of N implies the
estimate

‖h2(t)− ĥ2(t)‖ ≤
δ

4θ0
=
δr

4r̂
. (50)

Then (49) and (50) imply∥∥∥∥∥
∫ 1

0

(h2(t)− ĥ2(t)) · (γ̇(t)− η̇(t)) dt

∥∥∥∥∥ ≤ δr

2
. (51)

Finally, ∫ 1

0

ĥ2(t) · (γ̇(t)− η̇(t)) dt = 0 , (52)

because ĥ2 is constant on each interval Ij , and η̇ is also
constant on Ij , and equal to the average of γ̇ over Ij .

If we combine (43), (44), (45), (46), (47), (48), (51),
and (52), we end up with the bound

‖v‖ ≤
(
ψ̄ +

δ

2

)
r , (53)

where

ψ̄ = θδ2 + (κ2 + δ2)δ1 + 2δ1

(
1 +

1 + k̄

ρ

)
(κ2 + δ2)

= (1 + k̄)

(
κ1 + 2δ1

(
1 +

1
ρ

))
δ2 + (κ2 + δ2)δ1

+2δ1

(
1 +

1 + k̄

ρ

)
(κ2 + δ2)

= Ψ(δ1, δ2)

≤ δ

2
.

The proof of (F3) is thus complete.
In view of (F1), (F2) and (F3), our conclusion will fol-

low if we prove that G is regular. To prove the regularity
of G, we express G as a composite of regular maps.

We define
U = C0( [0, 1] ; Rn2×n ) ,

Û =
{
h1 ∈ U : ‖h1(t)‖ ≤ κ1 + δ1 for all t ∈ [0, 1]

}
,

Y = C0( [0, 1] ; Rn2 ) ,

B =
{
β ∈ Y : (κ1 + 2δ1)‖β(t)− β(s)‖ ≤ |t− s|

whenever t, s ∈ [0, 1]
}
,

Ỹ = (Rn2)N ,

Z =
{
η ∈ Y : η is linear on Ij for j = 1, . . . , N

}
,

Z̃ = Z ∩A(C2(r2)) ,
W = C0( [0, 1] ; Rm×n2 ) ,

Ŵ =
{
h2 ∈ W : ‖h2(t)‖ ≤ κ2 + δ2 for all t ∈ [0, 1]

}
,

Q = C0( [0, 1] ; Rm×n ) ,

X1 = A(C(r))× Û × Rn2 ,

X2 = A(C(r))× Û × Rn2 × B × Y × Z ,
X3 = A(C(r))× Û × Rn2 × B × Y × Z × Ỹ ,
We then let Γ1 : A(C(r))→→X1 be the set-valued map
that sends α ∈ A(C(r)) to the set {α} ×G1(α), so that

Γ1(α)=
{

(α, h1, v1) : (h1, v1)∈G1(α)
}

if α∈A(C(r)).

Then
Γ1 ∈ REG(A(C(r));X1) , (54)

because of the identity Γ1 = ( I1A(C(r))×G1)◦∆1, where
∆1 : A(C(r)) → A(C(r))×A(C(r)) is the diagonal map
(i.e., the map that sends α ∈ A(C(r)) to the pair (α, α)).

We then let Γ2 : X1 → X2 be the ordinary map that
sends each triple (α, h1, v1) ∈ X1 to the 6-tuple

(α, h1, v1, β, γ, η) ∈ X2 ,

where
β = h1 ∗ α+ ξv1 ,

γ(t) = Π(β(t)) +
ωt

ρ
w̄ for t ∈ [0, 1] ,

and

η(t) = (j −Nt)γ
(j − 1

N

)
+ (Nt+ 1− j)γ

( j
N

)
(55)

whenever j−1
N ≤ t ≤ j

N , j ∈ N, and 1 ≤ j ≤ N .
We then let Γ0

3 : Z → Ỹ be the map that sends each
η ∈ Z to the N -tuple

Γ0
3(η) = (u1, . . . , uN ) ∈ Ỹ , (56)

where

uj = N

(
η
( j
N

)
− η
(j − 1

N

))
for j = 1, . . . , N . (57)

Next, we let Γ3 : X2 → X3 be the map that sends each
6-tuple (α, h1, v1, β, γ, η) to the 7-tuple

Γ3(α, h1, v1, β, γ, η) = (α, h1, v1, β, γ, η,Γ0
3(η)) . (58)

Next, we define K̃0 = C2(r̂)N , and let K̃ be the set
of all (u1, . . . , uN ) ∈ K̃0 such that N(u1 + . . . + uN ) =
w0+ ω

ρ w̄ for some w0 ∈ C2. Then K̃0 and K̃ are compact
convex subsets of Ỹ.

We let Γ0
4 be a continuous retraction from Ỹ onto K̃,

and define
X4 = A(C(r))× Û × Rn2 × B × Y × Z × K̃ .

We then let Γ4 : X3 → X4 be the map that sends each
7-tuple (α, h1, v1, β, γ, η,u) to the 7-tuple

Γ4(α, h1, v1, β, γ, η,u)=(α, h1, v1, β, γ, η,Γ0
4(u)) . (59)
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We now define a set-valued map Γ0
5 : K̃→→Ỹ, by let-

ting Γ0
5(u1, . . . , uN ) be, if (u1, . . . , uN ) ∈ K̃, he set of all

N -tuples (c1, . . . , cN ) that satisfy, for j = 1, . . . , N , the
conditions

uj − cj ∈ C2 , (60)

c1 + · · ·+ cN =
Nω

ρ
w̄ , (61)

‖c1‖+ · · ·+ ‖cN‖ ≤ Nωk̄

ρ
, (62)

‖cj‖ ≤ k̄‖uj‖ . (63)

Then Γ0
5 has convex values and a compact graph.

Moreover, (ECP) implies that the values of Γ0
5 are

nonempty. It then follows from Theorem 5.2 of [1] that

Γ0
5 ∈ REG(K̃; Ỹ) . (64)

We then define
X5 = A(C(r))× Û × Rn2 × B × Y × Z × K̃ × Ỹ ,

and let Γ5 : X4→→X5 be the set-valued map that sends
each 7-tuple (α, h1, v1, β, γ, η,u) ∈ X4 to the set

Γ5(α, h1, v1, β, γ, η,u)

=
{

(α, h1, v1, β, γ, η,u, c) : c ∈ Γ0
5(u)

}
⊆ X5 . (65)

Then
Γ5 =

(
I1X4 × Γ5

)
◦∆2 , (66)

where ∆2 : X4 → X4 × K̃ is the map that
sends a 7-tuple (α, h1, v1, β, γ, η,u) to the 8-tuple
(α, h1, v1, β, γ, η,u,u). It follows from (64) and (66)
that

Γ5 ∈ REG(X4;X5) . (67)

Next, define

X6 = A(C(r))×Û ×Rn2 ×B×Y ×Z ×K̃× Ỹ ×Z ×Z ,
and let Γ6 : X5 → X6 be the ordinary map that sends
each 8-tuple (α, h1, v1, β, γ, η,u, c) ∈ X5 to the 10-tuple

Γ6(α, h1, v1, β, γ, η,u, c)
= (α, h1, v1, β, γ, η,u, c, µc, η − µc) ∈ X6 .

We now observe that the real linear space Z is finite-
dimensional, and Z̃ is a nonempty compact convex
subset of Z. Let Γ0

7 be a continuous retraction from
Z onto Z̃. Define
X7 = A(C(r))×Û ×Rn2 ×B×Y ×Z ×K̃× Ỹ ×Z ×Z̃ ,
and let Γ7 : X6 → X7 be the ordinary map that sends
each 10-tuple (α, h1, v1, β, γ, η,u, c, µ, ζ) ∈ X6 to the 10-
tuple

Γ7(α, h, v, β, γ, η,u, c, µ, ζ)
= (α, h1, v1, β, γ, η,u, c, µ,Γ0

7(ζ)) ∈ X7 . (68)

Next, we let Γ0
8 be the set-valued map Z̃→→Ŵ × Rm

that sends ζ ∈ Z̃ to the set G2(ζ) ⊆ Ŵ × Rm. Then

Γ0
8 = G2 ◦ ιA(C2(r2)),Z̃

,

where ι
A(C2(r2)),Z̃

is the inclusion map from Z̃ to

A(C2(r2)). Therefore Γ0
8 ∈ REG(Z̃; Ŵ × Rm).

Define X8 to be the product
A(C(r))×Û×Rn2×B×Y×Z×K̃×Ỹ×Z×Z̃×Ŵ×Rm,

and let Γ8 : X7→→X8 be the set-valued map that sends
each 10-tuple (α, h1, v1, β, γ, η,u, c, µ, ζ) ∈ X7 to the set
Γ8(α, h1, v1, β, γ, η,u, c, µ, ζ)

=
{

(α, h1, v1, β, γ, η,u, c, µ, ζ)
}
×G2(ζ) ⊆ X8

=
{

(α, h1, v1, β, γ, η,u, c, µ, ζ, h2, v2) : (h2, v2)∈G2(ζ)
}
.

It is then clear that Γ8 =
(

I1X7 × G2

)
◦ ∆3, where

∆3 : X7 → X7 × Z̃ is the map that sends a 10-tuple
(α, h1, v1, β, γ, η,u, c, µ, ζ) ∈ X7 to the 11-tuple

(α, h1, v1, β, γ, η,u, c, µ, ζ, ζ) ∈ X7 × Z̃ .

Therefore
Γ8 ∈ REG(X7;X8) . (69)

Finally, we define an ordinary map Γ9 : X8 → Q×Rm

by letting
Γ9(α, h1, v1, β, γ, η,u, c, µ, ζ, h2, v2)

= v2 +
(∫ 1

0

h2(t) dt
)
· v1 −

(
h2 ∗ (β − ζ)

)
(1) .

We have thus defined nine set-valued maps
Γ1 ∈ REG(A(C(r));X1) ,
Γ2 ∈ C0(X1 ; X2 ) ,
Γ3 ∈ C0(X2 ; X3 ) ,
Γ4 ∈ C0(X3 ; X4 ) ,
Γ5 ∈ REG(X4;X5) ,
Γ6 ∈ C0(X5 ; X6 ) ,
Γ7 ∈ C0(X6 ; X7 ) ,
Γ8 ∈ REG(X7;X8) ,
Γ9 ∈ C0(X8 ; Q× Rm ) .

(The regularity of Γ1, Γ5 and Γ8 has already been
proved, cf. (54), (67), (69). The continuity of Γ2, Γ3,
Γ4, Γ6 and Γ7 follows trivially from their definitions.
The continuity of Γ9 follows from Lemma 2.1 because,
if {ξj}j∈N is a sequence of points in C0(X8 ; Q × Rm )
that converges in C0(X8 ; Q× Rm ) to a limit ξ∞, and
we write

ξj = (αj , hj
1, v

j
1, β

j , γj , ηj ,uj , cj , µj , ζj , hj
2, v

j
2) ,

then the βj belong to B and the ζj belong to Z̃, so the
sequence {βj − ζj}j∈N is uniformly Lipschitz, and then
the facts that βj → β∞, ζj → ζ∞, hj

2 → h∞2 , imply
that hj

2 ∗ (βj − ζj) → h∞2 ∗ (β∞ − ζ∞).)
On the other hand,
G = Γ9 ◦ Γ8 ◦ Γ7 ◦ Γ6 ◦ Γ5 ◦ Γ4 ◦ Γ3 ◦ Γ2 ◦ Γ1 .

Therefore G is regular, and our proof is complete. ♦

5. The open mapping theorem

We now show that path-integral generalized differentials
have the directional open mapping property.

Theorem 5.1 Assume that n,m ∈ Z+,
F ∈ SVM(Rn,Rm), w̄ ∈ Rm, C is a polyhedral
convex cone in Rn, Λ belongs to PIGD(F ; 0, 0;C),
and w̄∈

⋂
L∈Λ Int(LC). Then there exists

a closed convex cone D in Rm such that
w̄ ∈ Int(D), having the property that for every
δ ∈]0,∞[ there exists an ε(δ) ∈]0,∞[ such that
D∩{y∈Rm :‖y‖≤ε(δ)}⊆F (C∩{x∈Rn :‖x‖≤δ}) .
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Proof. Let us assume that w̄ 6= 0. Pick a closed convex
cone D̂ in Rn such that w̄ ∈ Int(D̂), a compact neigh-
borhood Λ′ of Λ such that D̂ ⊆ LC for every L ∈ Λ′,
and a continuous map Λ′ × D̂ 3 (L, y) 7→ η(L, y) ∈ C
which is positively homogeneous of degree 1 with respect
to y and such that L ·η(L, y) = y for all (L, y) ∈ Λ′× D̂.
Pick θ such that 0 < θ < ‖w̄‖ and the ball {y ∈ Rm :
‖y − w̄‖ ≤ 2θ} is entirely contained in D̂. Let D be
the smallest closed convex cone that contains the ball
{y ∈ Rm : ‖y − w̄‖ ≤ θ}. Then D satisfies:(

y ∈ D ∧ ‖z‖ ≤ θ‖y‖
‖w̄‖+ θ

)
⇒ y + z ∈ D̂ . (70)

(Indeed, if y = 0 then z = 0, so y + z = 0 ∈ D̂. Assume
that y 6= 0. Then we can write y = su with s > 0 and
‖u − w̄‖ ≤ θ. Then ‖u‖ ≤ ‖w̄‖ + ‖u − w̄‖ ≤ ‖w̄‖ + θ.
Therefore ‖y‖ ≤ s(‖w̄‖+θ), so s ≤ ‖y‖

‖w̄‖+θ . Furthermore,
y + z = sũ, where ũ = u+ z

s . Then

‖ũ−w̄‖ = ‖u−w̄+
z

s
‖ ≤ ‖u−w̄‖+‖z‖

s
≤ θ+

‖z‖
‖y‖

(‖w̄‖+θ) ,

so ‖ũ− w̄‖ ≤ 2θ, and then y + z ∈ D̂.)
Let M = sup{‖η(L, y)‖ : L ∈ Λ′, y ∈ D̂, ‖y‖ ≤ 1}.

Then ‖η(L, y)‖ ≤M‖y‖ whenever L ∈ Λ′ and y ∈ D̂.
Fix a δ ∈]0,∞[. Let δ′ be such that 0 < δ′ ≤ δ,

Λδ′ ⊆ Λ′, 2Mδ′ ≤ θ
‖w̄‖+θ . Then choose R ∈ R such that

R > 0 and a family {Gr : 0 < r ≤ R} of regular set-
valued maps Gr : A(C(r))→→C0( [0, 1] ; Rm×n ) × Rm

such that

(a) h(t) ∈ Λδ′ and ‖v‖ ≤ δ′r whenever α ∈ A(C(r)),
(h, v) ∈ Gr(α), t ∈ [0, 1],

(b) Gr(ΦGr
) ⊆ Gr(F ).

By making R smaller, if necessary, we may assume that
R ≤ δ.

We choose ε such that 2Mε < R, and show that this
choice of ε satisfies our requirements.

Fix y such that 0 < ‖y‖ ≤ ε. Let ρ = ‖y‖, and choose
r = 2Mρ. Then r < R. We will show that there is
an x ∈ C such that ‖x‖ ≤ δ and y ∈ F (x). For this
purpose, it suffices to find a triple (α, h, v) ∈ Gr(Gr)
such that v +

∫ 1

0
h(t) · α̇(t) dt = y and ‖α(1)‖ ≤ δ. The

first equality, in turn, will follow if α satisfies
h(t) · α̇(t) = y − v for a.e. t , (71)

as well as ‖α(1)‖ ≤ δ. If y−v ∈ D, then (71) will follow
if α̇(t) = η(h(t), y − v) for a.e. t, i.e., if

α(t) =
∫ t

0

η(h(s), y − v) ds for all t . (72)

Let Σ be the set-valued map on A(C(r)) that asigns to
each α ∈ A(C(r)) the set Σ(α) of all paths β = βα,h,v for
all (h, v) ∈ Gr(α), where βα,h,v(t) =

∫ t

0
η(h(s), y−v) ds.

Then Σ is well defined and takes values in A(C(r)).
(Proof. Let α ∈ A(C(r)) and (h, v) ∈ Gr(α). Then
‖v‖ ≤ δ′r = 2Mδ′ρ = 2Mδ′‖y‖ ≤ θ‖y‖

‖w̄‖+θ . Therefore

(70) implies that y − v ∈ D̂. Since h(t) ∈ Λδ′ ⊆ Λ′ for
each t, η(h(t), y−v) is defined for each t. Since the map
t 7→ η(h(t), y − v) is continuous, βα,h,v is well defined.

Moreover, β̇α,h,v(t) = η(h(t), y − v) ∈ C. On the other
hand, ‖β̇α,h,v(t)‖ = ‖η(h(t), y − v)‖ ≤M‖y − v‖. But
‖y − v‖ ≤ ‖y‖ + ‖v‖ ≤ ρ + δ′r, and this implies that
‖β̇α,h,v(t)‖ ≤ Mρ + Mδ′r. But Mρ = r

2 , and we
know that Mδ′r ≤ θr

2(‖w̄‖+θ) <
r
2 . So ‖β̇α,h,v(t)‖ ≤ r.

Therefore β̇α,h,v(t) ∈ C(r). Hence βα,h,v ∈ A(C(r)).)
It is easy to see that Σ is regular. Hence Σ is a regular

map from the compact convex set A(C(r)) to itself. By
the obvious extension of Schauder’s fixed point theorem
to regular maps, Σ has a fixed point α∗. Then, for
some (h, v) ∈ Gr(α∗), we have h(t) · α̇∗(t) = y − v for
almost all t. Hence if we let x = α(1), we have y =
v +

∫ 1

0
h(t) · α̇∗(t) dt, so that y ∈ ΦGr

(x), and then y ∈
F (x). Finally the fact that α ∈ A(C(r)) implies that
‖x‖ ≤ r = 2Mρ ≤ 2Mε < R ≤ δ. This completes the
proof. ♦

6. A property of polyhedral cones

Let C be a closed convex cone in a finite-dimensional
normed linear space X. Let SC be the linear subspace of
X spanned by C, so the interior IntSC

(C) of C relative
to SC is nonempty.

Suppose we are trying to add several vectors
u1, . . . , um belonging to C so as to obtain a vector
w ∈ C, but instead of achieving this desired result we
produce a sum w̃, which is “larger” than the target
value w in the sense of the partial ordering induced by
the cone, i.e., such that w̃ = w + e for some e ∈ C.
We would like to correct this error e by subtracting
correction terms ci—not necessarily belonging to C—
to the vectors ui, in such a way that the new vectors
vi = ui− ci belong to C and add up to w. Moreover, we
want to be able to do this while keeping the total error
norm—i.e., the sum E = ‖c1‖+ . . .+‖cm‖—bounded by
a fixed constant k̄, independently of m, the ui’s, and w.
And, in addition, we want the ci’s to be bounded by the
ui’s. Equivalently, we want to subtract off the “error”
e from the sum u1 + . . .+ um by expressing e as a sum
e = c1 + . . . + cm in such a way that after subtracting
each ci from its corresponding ui the resulting vectors
still belong to C, and we want to do this with a bound
on the sum E, and with the the ci’s bounded by the
ui’s.

Whether this “error correction” is possible for a
particular choice of e ∈ C is a property—the “error-
correcting property,” abbreviated “ECP”—of the pair
(C, e). Naturally, the ECP holds if e = 0 but, as we
shall see, it is important for the ECP to hold for some
e ∈ IntSC

(C), so the only case when e = 0 is an accept-
able choice is when C is a linear subspace, i.e., C = SC .

The purpose of this subsection is to show that e can be
chosen to belong to IntSC

(C) if C is a polyhedral cone.
We will also exhibit an example showing that for more
general cones it may happen that there do not exist any
e ∈ C\{0} such that (C, e) has the ECP.

It will be clear, both from the proof of the positive
result for polyhedral cones, and from the counterexam-
ple for a cone which is not polyhedral, that the crucial
property of polyhedral cones, for the purpose of estab-
lishing the ECP, is the fact that the set of all possible
tangent cones TxC, as x varies over C, is finite.

First, we give a formal definition of the ECP.

Definition 6.1 Let X be a finite-dimensional normed
linear space, and let C be a closed convex cone in X.
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Let e ∈ C. Then

1. If k̄ ∈ R, k̄ ≥ 0, we say that the pair (C, e) has
the error-correction property—abbr. “ECP”—with
constant k̄ if

(ECP) for every m ∈ N, every w ∈ C, and every m-
tuple (u1, . . . , um) of members of C such that

u1 + . . .+ um = w + e

there exist vectors c1, . . . , cm in X such that

ui−ci ∈ C for i=1, . . . ,m , (73)
c1+. . .+cm = e , (74)

‖c1‖+. . .+‖cm‖ ≤ k̄ , (75)
‖ci‖ ≤ k̄‖ui‖ for i=1, . . . ,m . (76)

2. We say that (C, e) has the error-correction
property—abbr. “ECP”—if there exists a constant
k̄ such that (C, e) has the error-correction property
with constant k̄.

3. We say that C is ECP-good if there exists a vector
e belonging to the interior IntSC

(C) of C relative
to the linear span SC = span(C) such that the pair
(C, e) has the ECP. ♦

Remark 6.2 The ECP property does not depend on
the choice of the norm on X. Moreover, the ECP
property is an intrinsic property of the cone C, and is
independent of the space X in which C is embedded.
(Precisely, this means that C is ECP-good as a cone in
X if and only if it is ECP-good as a cone in SC . The
proof is straightforward. First, it is trivial that if C
is ECP-good as a cone in SC then it is ECP-good as
a cone in X. To establish the reverse implication we
observe that, whenever m, w, u1, . . . , um are given as
in Definition 6.1, if it is possible to choose c1, . . . , cm
in X such that (73), (74), (75), (76) hold, then the
ci can also be chosen to belong to SC , since one can
replace the ci by their projections Π(ci), where Π is the
orthogonal projection from X onto SC relative to some
inner product on X.) ♦

Remark 6.3 IfX, C, e, w, m, u1, . . . , um are as in Def-
inition 6.1, then it is always possible to choose correction
terms ci such that c1 + . . .+cm = e and ui−ci ∈ C. For
example, one can choose ci = ui − λiw, where the λi are
arbitrary nonnegative numbers such that λ1+. . .+λm =
1. Then, if we let vi = ui − ci, we have vi = λiw, so the
vi belong to C and v1 + . . .+ vm = w. It follows that
c1 + . . .+ cm = e, so (73) and (74) are true. This, how-
ever, does not suffice to guarantee that the ECP holds,
because the error bounds (75) and (76) need not be sat-
isfied. ♦

It is easy to see that

Proposition 6.4 If X is a finite-dimensional normed
linear space, C is a closed convex cone in X, and
e = 0, then (C, e) has the error-correction property. In
particular, if C is a linear subspace of X, then C is
ECP-good.

Proof. If e = 0, and w, m, u1, . . . , um are as in
Definition 6.1, then we can choose ci = 0, and all the
conditions of the definition hold, with k̄ = 0.

If C is a linear subspace, then 0 ∈ IntSC
(C), and

(C, 0) has the ECP. Therefore C is ECP-good. ♦

Remark 6.5 The following example shows that not all
closed convex cones are ECP-good.

Let X = R3, and let C be the cone
C = { (x, y, z) ∈ R3 : z ≥ 0 ∧ z2 ≥ x2 + y2 } .

Then C is not ECP-good. To see this, we will actually
show that the pair (C, e) does not have the ECP for any
e ∈ C such that e 6= 0.

Fix e ∈ C such that e 6= 0. Let e = (α, β, γ), so γ ≥ 0,
γ2 ≥ α2 + β2, and (α, β, γ) 6= (0, 0, 0). After a rotation
of the x and y axes, we may assume that α = 0 and
β ≥ 0. Then e = (0, β, γ), γ ≥ β ≥ 0, and γ > 0.

For N ∈ R, N > 0, let wN = (2N, 0, 2N), so wN ∈ C.
Then all the wN belong to the ray

R = { (r, 0, r) : r ≥ 0 } .
Clearly, R ⊆ C, and R is an extreme ray (that is, if
z1 ∈ C, z2 ∈ C, and z1 + z2 ∈ R, then z1 ∈ R and
z2 ∈ R).

Let m = 2, and let

uN
1 =

(
N, gN , N +

γ

2

)
, uN

2 =
(
N,hN , N +

γ

2

)
,

where
gN =

1
2

√
γ2 + 4γN , hN = β − gN .

Then
N2 + g2

N = N2 +
1
4
(γ2 + 4γN)

= N2 + γN +
γ2

4

=
(
N +

γ

2

)2

,

and
N2 + h2

N = N2 + (β − gN )2

= N2 + β2 + g2
N − 2βgN

=
(
N +

γ

2

)2

+ β2 − 2βgN

=
(
N +

γ

2

)2

+ β(β − 2gN )

≤
(
N +

γ

2

)2

,

where the last inequality follows because
0 ≤ β ≤ γ ≤

√
γ2 + 4γN = 2gN .

Therefore uN
1 ∈ C and uN

2 ∈ C. Moreover, it is clear
that

uN
1 + uN

2 = wN + e .

Fix N , and let c1, c2 be such that v1 = uN
1 − c1 ∈ C,

v2 = uN
2 − c2 ∈ C, and c1 + c2 = e. Then v1 + v2 = wN .

Since the ray R is extreme, the vectors v1 and v2 must
belong to R. Therefore, if we write vi = (vi,1, vi,2, vi,3),
ci = (ci,1, ci,2, ci,3), we must have vi,2 = 0, and then
c1,2 = gN , c2,2 = hN . Therefore

‖c1‖+ ‖c2‖ ≥ gN + |hN | .
Since N is arbitrary, and the quantity gN + |hN | goes
to +∞ as N ↑ +∞ (because γ > 0), the constant k̄
of Definition 6.1 cannot exist. Therefore the pair (C, e)
does not have the ECP. ♦
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Recall that

• A convex polyhedron in a linear space X is a subset
of X which is the convex hull of a finite set.

• The convex cone generated by a subset S of a lin-
ear space X is the smallest convex cone in X that
contains S.

• The closed convex cone generated by a subset S of
a linear space X is the smallest closed convex cone
in X that contains S.

• A polyhedral cone in X is a cone in X which is the
convex cone generated by a finite subset of X.

• If K is a compact convex subset of a normed linear
space X, and x ∈ X, the tangent cone to K at x is
the closed convex cone in X generated by the set of
all vectors y − x, y ∈ K.

If X, K, x are as above, we use TxK to denote the
tangent cone to K at x. The following facts are then
well known and easy to prove.

Lemma 6.6 Let X be a normed linear space. Then

(1) Every convex polyhedron in X is compact.

(2) Every polyhedral cone in X is closed.

(3) If C is a polyhedral cone F , and F is a finite subset
of X such that C is the convex cone generated
by F , then there exists a positive constant κ such
that every v ∈ C can be expressed as a linear
combination
v =

∑
f∈F

αff , 0 ≤ αf ≤ κ‖v‖ for all f ∈ F .

(77)

(4) If K is a convex polyhedron, and x ∈ K, then

(4.a) TxK is a polyhedral cone,
(4.b) there exists a ρ ∈ R such that ρ > 0 and

x+ v ∈ K whenever v ∈ TxK and ‖v‖ ≤ ρ.

(5) If K is a convex polyhedron, then {TxK : x ∈ K}
is a finite set. ♦

Theorem 6.7 Let X be a finite-dimensional real linear
space, and let C be a polyhedral cone in X. Then C is
ECP-good.

Proof. Recall that a cone D is pointed if there is no
nonzero vector v such that v ∈ D and −v ∈ D.

We first show that

(*) we may assume, without loss of generality, that C
is pointed and has nonempty interior.

To prove (*), we assume that every pointed polyhedral
cone with nonempty interior in any finite-dimensional
real linear space Y is ECP-good, and prove that if C
is an arbitrary polyhedral cone in X then C is ECP-
good. For this purpose, since the ECP property does
not depend on the choice of norm, we may assume that
X is Euclidean.

Let C be a polyhedral cone in Rn. Let E be the “edge”
of C, that is, the set of all v ∈ C such that−v ∈ C. Then
E is a linear subspace of X. Let E′ be the orthogonal

complement of E in X, and let C ′ = C ∩E′. Then C ′ is
a closed convex cone. Moroever, C ′ is clearly polyhedral
and pointed.

Let E′′ be the linear span of C ′, so E′′ ⊆ E′. Then,
as a subset of E′′, C ′ is a pointed polyhedral cone
with nonempty interior. So C ′ is ECP-good. Let
e ∈ IntE′′(C ′) be such that (C ′, e) has the ECP. We
show that e ∈ IntSC

(C) and (C, e) has the ECP.
First, we observe that C ⊆ E +E′′. (Proof. If v ∈ C,

then v = w+w′, w ∈ E, w′ ∈ E′. Moreover, −w ∈ E ⊆
C, so w′ = v − w ∈ C + C, and then w′ ∈ C. Then
w′ ∈ E′ ∩ C ′ = E′′, so v ∈ E + E′′.)

Since E ⊆ C, the cone C is in fact equal to the sum
E + (C ∩ E′′). Also,

C ∩ E′′ = C ∩ E′′ ∩ E′ = C ′ ∩ E′′ = C ′ ,

since C ′ ⊆ E′′ ⊆ E′. So
C = E + C ′ .

This clearly implies that
SC = E + E′′ .

Moreover, the sum E + E′′ is orthogonal, so E + E′′

is isomorphic to the product E × E′′, under the map
µ : E × E′′ → E + E′′ given by µ(v, v′′) = v + v′′.
Clearly, µ(E × C ′) = E + C ′ = C. Since e ∈ IntE′′(C ′)
and 0 ∈ IntE(E), we have (0, e) ∈ IntE×E′′(E × C ′), so
µ(0, e) ∈ Intµ(E×E′′)(µ(E × C ′)), that is,

e ∈ IntE+E′′(C) = IntSC
(C) .

Now let k̄ be such that (C ′, e) has the ECP with con-
stant k̄. Let m ∈ N, w ∈ C, (u1, . . . , um) ∈ Cm be such
that

u1 + . . .+ um = w + e .

Write
uj = ũj + u′′j , ũj ∈ E , u′′j ∈ C ′ ,

and also
w = w̃ + w′′ , w̃ ∈ E , w′′ ∈ C ′ .

Then
ũ1 + . . .+ ũm = w̃ ,

u′′1 + . . .+ u′′m = w′′ + e .

Since (C ′, e) has the ECP with constant k̄, there exist
vectors c1, . . . , cm in E′′ such that

u′′i − ci ∈ C ′ for i = 1, . . . ,m ,(78)
c1 + . . .+ cm = e , (79)

‖c1‖+ . . .+ ‖cm‖ ≤ k̄ , (80)
‖ci‖ ≤ k̄‖u′′i ‖ for i = 1, . . . ,m .(81)

But then ui − ci = ũi + u′′i − ci ∈ C, and ‖u′′i ‖ ≤ ‖ui‖,
because the sum E + E′′ is orthogonal. Therefore

ui − ci ∈ C for i = 1, . . . ,m , (82)
‖ci‖ ≤ k̄‖ui‖ for i = 1, . . . ,m , (83)

and (79), (80) hold. Hence (C, e) has the ECP, and the
proof of (*) is complete.

From now on, we assume that C is pointed and has a
nonempty interior in X. We choose an arbitrary interior
point e of C, and prove that (C, e) has the ECP.

Let ζ̄ ∈ X† be a nontrivial linear functional such that
ζ̄(v) > 0 whenever v ∈ C , v 6= 0 .

(Proof of the existence of ζ̄. This follows from the fact
that C is pointed. Indeed, let C† be the polar cone

10



of C. Then C† has nonempty interior in X†, because
otherwise there would exist a nontrivial linear functional
ξ on X† that vanishes identically on C†, and this would
yield—using the canonical identification of X with X††

and the identity C†† = C—a nonzero vector v ∈ X such
that ζ(v) = 0 for all ζ ∈ C†. But then v ∈ C and
−v ∈ C, contradicting the fact that (C, e) is pointed.
If ζ is an interior point of C†, and v ∈ C, v 6= 0, then
ζ(v) < 0, because we know that ζ(v) ≤ 0, and if ζ(v) = 0
then the nontrivial linear map X† 3 z → z(v) ∈ R
would have a local maximum at ζ. So ζ(v) < 0 for all
v ∈ C\{0}, and then ζ̄ = −ζ has the desired property.)

Since e 6= 0 and e ∈ C, we may normalize ζ̄ so that
ζ̄(e) = 1. Since the ECP property does not depend
on the norm, we are entitled to assume that X is
Euclidean, and we may choose the inner product so that
‖e‖ = 1 and e is orthogonal to the kernel of ζ̄. Under
the canonical identification of X with X† arising from
the inner product, ζ̄ will then correspond to a vector
z̄ ∈ X such that e ⊥ z̄⊥. But then e = rz̄ for some
r ∈ R, and the facts that ζ̄(e) = 1 and ‖e‖ = 1 imply
1 = 〈z̄, e〉 = r‖e‖2 = r, so r = 1 and then z̄ = e.

Let n = dim(X). We may assume that n > 0, because
if n = 0 then our conclusion is trivial. Write n = ν + 1,
ν ∈ Z+. By choosing an orthonormal basis of X whose
first member is e, we may identify X with R × Rν in
such a way that e = (1, 0). Then C is a polyhedral cone
in R× Rν , having the property that

(r, x) ∈ C\{0} =⇒ r > 0 .
(This follows because, if v = (r, x) ∈ C\{0}, then
r = 〈e, v〉 = 〈z̄, v〉 = ζ̄(v) > 0.)

Since C is polyhedral, we may fix a finite set
P = {p1, . . . , pN} of points of C such that C is the
smallest convex cone containing P , i.e., the set of all
linear combinations v = α1p1 + . . . + αNpN such that
αi ≥ 0 for i = 1, . . . , N . Clearly, we may assume that
all the pi are nonzero, and then we can write

pi = (ρi, qi) , ρi > 0 , qi ∈ Rν .

Then, after multiplication by ρ−1
i , we may assume that

ρi = 1 for i = 1, . . . , N . Let
K = {x ∈ Rν : (1, x) ∈ C} , Q = {q1, . . . , qN} .

It then follows that
K = convex hull of Q , (84)
0 ∈ IntRνK , (85)

C =
{

(r, rx) : x ∈ K , r ≥ 0
}
. (86)

Let T be the set of all the tangent cones TxK, as
x varies over all points of K. Then T is a finite set
by Lemma 6.6. Let M be the number of members of
T. For each k ∈ N, let Tk be the set of all k-tuples
C = (C1, . . . , Ck) of different members of T such that

C1 + . . .+ Ck = Rν . (87)
Then Tk = ∅ if k > M . Let T = ∪k∈NTk. Then the set
T is finite.

Choose, for each C = (C1, . . . , Ck) ∈ T , a continuous
map

Rν 3x 7→ΘC(x)=(θC1 (x), . . . , θCk (x))∈C1×· · ·×Ck

which is positively homogeneous of degree 1 and satisfies

θC1 (x) + · · ·+ θCk (x) = x for all x ∈ Rν .

(Proof that ΘC exists. Fix C. Let (b1, . . . , bν) be the
canonical basis of Rn, so bi is the vector (b1i , . . . , b

ν
i ),

where bji = 0 if i 6= j, bii = 1. Let b0 = −(b1 + · · ·+ bν).
Then every vector x ∈ Rν can be expressed in a unique
way as an affine combination of b0, b1, . . . , bν , i.e., as a
linear combination
x=α0b0+α1b1+· · ·+ανbν , α0+α1+· · ·+αν =1 , (88)

as can be seen by observing that, if b̃i = (bi, 1) ∈ Rν+1,
x̃ = (x, 1) ∈ Rν+1, then (b̃0, b̃1, · · · , b̃ν) is a basis of
Rν+1, and (88) holds if and only if

x̃ = α0b̃0 + α1b̃1 + · · ·+ αν b̃ν .
For x ∈ Rν , let αi(x), i = 0, 1, . . . , ν, be the unique
coefficients αi such that (88) holds. Then the functions
αi : Rν → R are obviously continuous. Clearly,

α0(0) = α1(0) = · · · = αν(0) =
1

ν + 1
.

So the continuity of the αi implies that there exists
r ∈ R such that r > 0 and αi(x) ≥ 0 whenever
i ∈ {0, 1, . . . , ν}, x ∈ Rν and ‖x‖ ≤ r. Define, for
i = 1, . . . , ν,

βi(x) =

{
‖x‖
r · αi

(
rx
‖x‖

)
if x ∈ Rν\{0} ,

0 if x = 0 ∈ Rν ,

so the βi are continuous real-valued functions on Rν that
are everywhere nonnegative and positively homogeneous
of degree 1. Using (87), write
bi = ci,1 + ci,2 + · · ·+ ci,k, ci,j ∈ Cj for, j = 1, 2, . . . , k .
Then, let θj(x) = β0(x)c0,j + β1(x)c1,j + · · ·+ βν(x)cν,j
for x ∈ Rν , j = 1, . . . , k. Then each θj is a continuous
map from Rν to Cj , which is positively homogeneous of
degree 1. Moreover, if x ∈ Rν and x 6= 0, then

k∑
j=1

θj(x) =
k∑

j=1

ν∑
i=1

βi(x)ci,j =
ν∑

i=1

βi(x)
( k∑

j=1

ci,j

)

=
ν∑

i=1

βi(x)bi =
‖x‖
r

ν∑
i=1

αi

(
rx

‖x‖

)
bi =

‖x‖
r

· rx

‖x‖
= x .

Obviously, the identity
∑k

j=1 θj(x) = x is also valid
when x = 0. Therefore, if we let ΘC be the map
x → (θ1(x), . . . , θk(x)), then all the desired properties
are satisfied.)

Let κ1 = max
{
‖x‖ : x ∈ K

}
, κ2 =

√
1 + κ2

1. For
each C = (C1, . . . , Ck) ∈ T , define

κC = sup
{
‖θCj (x)‖ : x ∈ Rν , ‖x‖ = 1 , j = 1, . . . , k

}
.

Then define κ3 = max
{
κC : C ∈ T

}
. We now choose

the constant k̄ by letting k̄ = 1 + κ2 + 2Mκ1κ3, and
prove that the pair (C, e) has the ECP with constant k̄.

Pick m ∈ N, w ∈ C, and an m-tuple (u1, . . . , um) of
members of C such that

u1 + . . .+ um = w + e , (89)
and write

w = (R,Rω) , R ≥ 0 , ω ∈ K . (90)
We have to find vectors c1, . . . , cm in X such that

ui−ci ∈ C for i=1, . . . ,m, (91)
c1+. . .+cm = e, (92)

‖c1‖+. . .+‖cm‖ ≤ k̄, (93)
‖ci‖ ≤ k̄‖ui‖ for i=1, . . . ,m. (94)
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For this purpose, we find a Lipschitz curve
J 3 s→ γ(s) = (c1(s), . . . , cm(s)) ∈ (Rn)m , (95)

defined on J = [0, 1] and such that
ci(0) = 0 for i = 1, . . . ,m , (96)

ui − ci(s) ∈ C for i = 1, . . . ,m , s ∈ J , (97)

c1(s) + . . .+ cm(s) = se for s ∈ J , (98)

〈e, ċi(s)〉 ≥ 0 for i = 1, . . . ,m , a.e. s ∈ J , (99)

‖ċ1(s)‖+ . . .+ ‖ċm(s)‖ ≤ k̄ for a.e. s ∈ J . (100)

Let Γ be the set of all pairs (J, γ) such that (1) J
is a subinterval of [0, 1], (2) 0 ∈ J , and (3) γ is a
Lipschitz curve of the form (95) such that (96), (97),
(98), (99), (100) hold. Partially order Γ by letting
(J1, γ1) � (J2, γ2) iff J1 ⊆ J2 and γ1 = γ2 d J . It then
follows from Zorn’s Lemma that Γ has a member (J, γ)
which is maximal with respect to �. Let s̄ = sup J ,
so 0 ≤ s̄ ≤ 1, and either J = [0, s̄ [ or J = [0, s̄].
If J = [0, s̄ [ then, since γ is Lipschitz, it can be ex-
tended to a curve γ̂ defined on [0, s̄], and then the pair
([0, s̄], γ̂) satisfies ([0, s̄], γ̂) ∈ Γ, (J, γ) � ([0, s̄], γ̂), and
(J, γ) 6= ([0, s̄], γ̂), thus contradicting the maximality of
(J, γ). So the possibility that J = [0, s̄ [ is excluded.
Hence J = [0, s̄].

We now prove that s̄ = 1. We do this by showing that
if s̄ < 1 then γ can be extended to a curve γ̂ : [0, s̄+ ε]
for some positive ε such that ε ≤ 1 − s̄, in such a way
that the pair ([0, s̄+ ε], γ̂) still belongs to Γ.

Let ȳ = w + (1 − s̄)e. Then ȳ ∈ IntX(C), because
w ∈ C, e ∈ IntX(C) and s̄ < 1. Write ȳ = (r̄, r̄x̄), with
r̄ ≥ 0 and x̄ ∈ K. Then ȳ = (r̄, Rω), r̄ = R+ 1− s̄ > 0,
x̄ = R

r̄ ω, and x̄ ∈ IntRνK. Next, write

ui − ci(s̄) = v̄i = (r̄i, r̄ix̄i),
with r̄i ≥ 0 and x̄i ∈ K for i = 1, . . .m. Then

v̄1 + · · ·+ v̄m = ȳ ,

r̄1 + · · ·+ r̄m = r̄ ,

r̄1x̄1 + · · ·+ r̄mx̄m = r̄x̄ = Rω ,

so
x̄ = ρ̄1x̄1 + · · ·+ ρ̄mx̄m , (101)

where
ρ̄i =

r̄i
r̄

=
r̄i

R+ 1− s̄
,

so that
ρ̄i ≥ 0 for i = 1, . . .m ,

and
ρ̄1 + · · ·+ ρ̄m = 1 .

It then follows that
ρ̄1Tx̄1K + · · ·+ ρ̄mTx̄m

K = Rν . (102)
(Proof. Using the fact that x̄ ∈ IntRνK, pick a real
number δ such that δ > 0 and ‖y‖ ≤ δ =⇒ x̄ + y ∈ K.
If ‖y‖ ≤ δ, and we let z = x̄+ y, then z ∈ K, and

y = z − x̄ = z −
m∑

i=1

ρ̄ixi =
m∑

i=1

ρ̄i(z − x̄i)

∈ ρ̄1Tx̄1K + · · ·+ ρ̄mTx̄mK .

Therefore the cone ρ̄1Tx1K + · · · + ρ̄1Txm
K contains a

neighborhood of 0 in Rν , and (101) follows.)
Clearly, (102) remains true if we eliminate from the

sum those terms ρ̄iTx̄i
K for which ρ̄i = 0. Once this

is done, we can replace each remaining term ρ̄iTx̄i
K

by Tx̄iK, because the Tx̄iK are cones. Finally, we can
eliminate repeated terms, after which we will be left with
at most M terms.

Hence there exist µ ∈ N and i = (i1, . . . , iµ) ∈ Nµ such
that (i) 1 ≤ i1 < i2 < · · · < iµ ≤ m, (ii) Tx̄ij

K 6= Tx̄i`
K

whenever j 6= ` and 1 ≤ j, ` ≤ µ, (iii) ρ̄ij > 0 whenever
1 ≤ j ≤ µ, and (iv) Tx̄i1

K + · · ·+ Tx̄iµ
K = Rν .

Now let

y(h) = ȳ − he = (r̄ − h,Rω
)

for h ≥ 0 .

Then

y(h) =
(
r̄ − h, (r̄ − h)

R

r̄ − h
ω
)

=

(
r̄ − h, (r̄ − h)

(
x̄+

R

r̄ − h
ω − x̄

))

=

(
r̄ − h, (r̄ − h)

(
x̄+

R

r̄ − h
ω − R

r̄
ω
))

=

(
r̄ − h, (r̄ − h)

(
x̄+

( R

r̄ − h
− R

r̄

)
ω
))

=

(
r̄ − h, (r̄ − h)

(
x̄+

hR

r̄(r̄ − h)
ω
))

=
(
r̄ − h, (r̄ − h)x(h)

)
,

where

x(h) = x̄+
hR

r̄(r̄ − h)
ω .

Let T be the µ-tuple

T =
(
Tx̄i1

K , Tx̄i2
K , . . . , Tx̄iµ

K
)
.

Then T ∈ Tµ, so µ ≤M . Let

Rν 3 x→ Θ(x) = (θ1(x), . . . , θµ(x))

be the map ΘT, so Θ : Rν 7→ Tx̄i1
K×Tx̄i2

K×· · ·Tx̄iµ
K.

Then Θ is positively homogeneous of degree 1 and such
that θ1(x) + · · ·+ θµ(x) = x for all x ∈ Rν . Moreover,

‖θj(x)‖ ≤ κT‖x‖ ≤ κ3‖x‖ ≤ κ1κ3

whenever j = 1, . . . , µ and x ∈ K . (103)

Define

ψj(h) =
hR

ρ̄ij
r̄(r̄ − h)

θj(ω) for j = 1, . . . , µ .

Then

ρ̄i1ψ1(h) + · · ·+ ρ̄iµ
ψµ(h) =

hR

r̄(r̄ − h)
ω = x(h)− x̄ .

(104)
Next, let

ri(h) = r̄i − ρ̄ih = ρ̄i(r̄ − h) if i = 1, . . . ,m , (105)

xi(h) =
{
x̄ij +ψj(h) if i= ij , j∈{1, . . . , µ},
x̄i if i /∈ {i1, . . . , iµ} . (106)

vi(h) = (ri(h), ri(h)xi(h)) if i = 1, . . . ,m . (107)
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Then
r1(h)x1(h) + · · ·+ rm(h)xm(h)

= (r̄ − h)
(
ρ̄1x1(h) + · · ·+ ρ̄mxm(h)

)
= (r̄ − h)

(
ρ̄1x̄1 + · · ·+ ρ̄mx̄m

)
+(r̄ − h)

(
ρ̄i1ψ1(h) + · · ·+ ρ̄iµ

ψµ(h)
)

= (r̄ − h)x̄+ (r̄ − h)(x(h)− x̄)
= (r̄ − h)x(h) ,

and
r1(h) + · · ·+ rm(h) = r̄ − h . (108)

Therefore
v1(h)+ · · ·+vm(h) = (r̄−h, (r̄−h)x(h)) = y(h) . (109)
If j ∈ {1, . . . , µ}, then Lemma 6.6 implies that there

is a positive constant δj such that x̄ij +z ∈ K whenever
z ∈ Tx̄ij

K and ‖z‖ ≤ δj . Since ψj(h) is a multiple
of θj(ω), with a factor that goes to zero as h ↓ 0, and
θj(ω) ∈ Tx̄ij

K, there exists a positive constant εj such
that x̄ij

+ ψj(h) ∈ K whenever 0 ≤ h ≤ εj . Let

ε = min
(

1− s̄ ,
r̄

2
, ε1 , . . . , εµ

)
. (110)

Then s̄+ ε ≤ 1, and
xi(h) ∈ K if i ∈ {1, . . . ,m} , 0 ≤ h ≤ ε . (111)

We now extend the functions ci : [0, s̄] → Rn to the
interval [0, s̄+ ε] by letting ci(s̄+h) = ci(s̄)+ v̄i− vi(h)
if i = 1, . . . ,m and 0 ≤ h ≤ ε. Then

c1(s̄+ h) + · · ·+ cm(s̄+ h)
= c1(s̄) + · · ·+ cm(s̄) + v̄1 + · · ·+ v̄m

−(v1(h) + · · ·+ vm(h))
= s̄e+ ȳ − y(h)
= s̄e+ he

= (s̄+ h)e ,
so that

c1(s̄+ h) + · · ·+ cm(s̄+ h) = (s̄+ h)e (112)
if 0 ≤ h ≤ ε. Moreover, if h ∈ [0, ε], and i ∈ {1, . . . ,m},
then

ui − ci(s̄+ h) = ui −
(
ci(s̄) + v̄i − vi(h)

)
= ui − ci(s̄)− v̄i + vi(h)
= v̄i − v̄i + vi(h)
= vi(h)
= (ri(h), ri(h)xi(h))
= ri(h)(1, xi(h)) .

Since xi(h) ∈ K by (111), the point (1, xi(h)) belongs
to C, and then ri(h)(1, xi(h)) also belongs to C. So we
have shown that
ui − ci(s̄+ h) ∈ C if i = 1, . . . ,m , 0 ≤ h ≤ ε .

(113)
We now study the derivatives ċi of the functions ci

on the interval [s̄, s̄ + ε]. We have (using the fact that
vi(h) = ri(h)(1, xi(h)) )

ċi(s̄+ h) = −v̇i(h)
= −ṙi(h)(1, xi(h))− ri(h)(0, ẋi(h))
= ρ̄i(1, xi(h))− ri(h)(0, ẋi(h)) . (114)

This proves, first of all, that the first component of
ċi(s̄+ h) is equal to the nonnegative number ρ̄i, so
〈e, ċi(s̄+ h)〉 ≥ 0 for i = 1, . . . ,m , h ≥ 0 . (115)

Moreover, the norm of the first term of the right-hand
side of (114) is bounded by ρ̄iκ2, since xi(h) ∈ K.

If i /∈ {i1, . . . , iµ}, then the second term of the right-
hand side of (114) vanishes, and we get the bound

‖ċi(s̄+ h)‖ ≤ ρ̄iκ2 if i /∈ {i1, . . . , iµ} . (116)
If i ∈ {i1, . . . , iµ}, then the second term of the right-

hand side of (114) need not vanish, so we have to esti-
mate it. Assume i = ij , j ∈ {1, . . . , µ}. Then

ẋi(h) = ψ̇j(h) =
R

ρ̄ir̄(r̄ − h)
θj(ω) +

hR

ρ̄ir̄(r̄ − h)2
θj(ω),

so (105) implies that

ri(h)ẋi(h) =
ρ̄i(r̄ − h)R
ρ̄ir̄(r̄ − h)

θj(ω) +
hρ̄i(r̄ − h)R
ρ̄ir̄(r̄ − h)2

θj(ω)

=
(R
r̄

+
hR

r̄(r̄ − h)

)
θj(ω) ,

and then
‖ri(h)ẋi(h)‖ ≤

(
1 +

h

r̄ − h

)
‖θj(ω)‖ ≤ 2κ1κ3 ,

because (1) ω ∈ K, so (103) can be used to conclude
that ‖θj(ω)‖ ≤ κ1κ3, (2) R ≤ r̄, and (3) the bound
h ≤ ε ≤ r̄

2 implies h ≤ r̄ − h, and then h
r̄−h ≤ 1.

This gives the estimate
‖ċi(s̄+ h)‖ ≤ ρ̄iκ2 + 2κ1κ3 if i ∈ {i1, . . . , iµ} . (117)

Then (116) and (117) imply (since ρ̄1 + · · · + ρ̄m = 1)
that

µ∑
j=1

‖ċj(s̄+ h)‖≤κ2+2µκ1κ3≤κ2+2Mκ1κ3≤ k̄ . (118)

It follows from (112), (113), (115), and (118), that the
new curve [0, s̄ + ε] 3 s → γ̂(s) = (ĉ1(s), . . . , ĉm(s)),
where the ĉi are the components ci of γ, extended as
above to the interval [0, s̄ + ε], satisfies the conditions
(96), (97), (98), (99), (100) that characterize the set Γ.
Hence the pair ([0, s̄+ ε], γ̂) belongs to Γ. Therefore the
pair ([0, s̄], γ) is not a maximal member of Γ, and we
have reached a contradiction. This happened because
we assumed that s̄ < 1. Hence s̄ = 1.

We have therefore established that there exists a curve
(95) which is defined on the full interval J = [0, 1] and
is such that (96), (97), (98), (99), (100) hold. Fix such
a curve, and define

ci = ci(1) for i = 1, . . . ,m .
Then (97) implies that (91) is satisfied, (98) implies (92),
and (100) together with (96) imply (93).

To complete our proof, we have to show that (94) is
true as well. At this point, we will use (99). The vector
vi = ui− ci belongs to C, and if we write ui = (r̂i, r̂ix̂i),
vi = (ri, rixi), with x̂i, xi ∈ K, r̂i ≥ 0, ri ≥ 0, then (99)
implies that ri ≤ r̂i. Therefore

‖vi‖2 = r2i (1 + ‖xi‖2) ≤ r2i κ
2
2 ≤ r̂2i κ

2
2 ≤ ‖ui‖2κ2

2 ,
since r̂i ≤ ‖ui‖. Hence ‖vi‖ ≤ κ2‖ui‖, and then, since
ci = ui − vi, we have ‖ci‖ ≤ (1 + κ2)‖ui‖ ≤ k̄‖ui‖,
showing that (94) is indeed true, and completing our
proof. ♦
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