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1. Introduction

This is the second of a series of two papers on generalized
differentiation theories (abbr. GDTs). The first paper
discussed the definition of the GDT concept, presented
several GDTs (the Warga derivate containers, weak
multidifferentials, and generalized differential quotients)
and compared them showing, in particular, that none of
these theories contains all the others.

In this paper, we introduce another concept of
generalized differential—the “path-integral generalized
differential,” abbreviated PIGD—that achieves the de-
sired unification.

2. Preliminaries

If n,m € Z4, a : [0,1] — R™ is a Lipschitz function,
and h : [0,1] — R™*™ ig integrable, we use h * a to
denote the “chronological product” of h and «, that is,
the absolutely continous function g : [0,1] — R™ given
by B(t) = [) h(s) - a(s) ds.

The following lemma says that the chronological
product operation C°([0,1]; R™) x L1([0,1],R™*") >
(a,h) — hxa € C°([0,1]; R™) is jointly continuous,
as long as the function « varies in a uniformly Lipschitz
subset of C°([0,1]; R™). The proof is very simple and
will be omitted.

Lemma 2.1 Let n,m € Zi.  Let {(aj,h;)}532,
be a sequence of members of the product space
S =C%[0,1]; R™) x L([0,1],R™*"™) that converges in
S to a limit (0o, hoo). Assume that the sequence {a;}
is uniformly Lipschitz (that is, there exists a constant
r € R such that ||a;(t) — o (s)|| < 7|t —s| forall j €N
and all t,s € [0,1]). Then

in C°([0,1]; R™) as j— 00.

Let n € Z4, and let S be a subset of R". We write

A(S) to denote the subset of C°([0,1]; R™) consisting
of all absolutely continuous curves « : [0,1] — R™ such
that a(0) = 0 and &(t) € S for almost all ¢ € [0,1].

If S C C°([0,1]; R™), we write 7(S) to denote the set

T(S)déf{a(l) ca € S8}, s0 7(8S) is the set of all terminal
points of curves in S.

The following is then an immediate consequence of
our definitions.

hjxa; — hoo*Oioo

Proposition 2.2 If K is a compact conver subset
of R™, then A(K) is a compact conver subset of

co([0,1]; R™), and T(.A(K)) - K. &
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If m e Z4 and v € R™, we use &, to denote the curve
0,1] 5t —tv < &,(t) e R™. (1)
If
S CR™ and G : A(S)— C°([0,1]; R™*"™) x R™ | (2)
then we can define set-valued maps
I A(S)—C°([0,1]; R™), &g :S—R™,
by letting

Ig(a)

bg(zr) =

{h*a—l—fv:(h,v)eG(a)},
{y € R™ : (3(a, h,v) € Cr(Q))

(a() =2V (hxa)1) +v=y) }.
The following fact is then trivial.

Proposition 2.3 Let n,m € Z,, and let S, G be such
that (2) holds. Then:

1. Do(Zg) = Do(G), so in particular L is everywhere
defined if and only if G is.

2. If G is everywhere defined then ®g is everywhere
defined.

3. If G is single-valued at a particular o € A(S), then
Lq is single-valued at o; in particular, if G is single-
valued and everywhere defined, then Zg is single-
valued and everywhere defined.

Lemma 2.4 Let n,m € Z4, and let S, G be such that
(2) holds. Assume that S is compact and convex. Then:

1. If Gr(Q) is compact, then Gr(Zg) and Gr(®g) are
compact.

2. If G is single-valued, everywhere defined, and
continuous, then Ig is single-valued, everywhere
defined, and continuous.

3. If G is regular, then Zg and @ are regular.

Proof. To prove the first statement, assume that G has
a compact graph. We want to show that Gr(Zg) and
Gr(®¢) are compact.

Let {(aj,53j)}52; be a sequence in Gr(Zg). We
want to extract a subsequence that converges to a limit
(0o, Bo) € Gr(Zg). Since B; € Zg(ey), there exist
(hj,vj) € G(ay) such that 3; = hj * aj + &, for j € N.
Then (aj,h;,v;) € Gr(G). Since Gr(G) is compact,
we may assume, after passing to a subsequence, that
(i) the sequences {;}22,, {h;}32,, converge uniformly
to limits oo, Moo, (i) {vj}32; converges in R™ to a limit
Voo, (1) oo € A(S), and (iv) (heo, Vo) € G(Qoo)-



Let Boo = Moo * Qoo +&u..- Then Boo € Z(too). Lemma
2.4 implies that 3; — (o uniformly as j — oo. So
Gr(Z¢) is compact.

Now (z,y) € Gr(®¢) if and only if there exists a pair
(o, B) € Gr(Zg) such that a(1) = z and 8(1) = y. So
Gr(®¢) is the image of Gr(Zg) under the projection

CO([0,1]; R™) x C°([0,1]; R™) 3
(o, B) — ((1),8(1)) e R" x R™.
Since this projection is continuous, Gr(®g) is compact,
and the proof of the first statement is complete.

If G is single-valued, everywhere defined, and
continuous, then Zgs is single-valued and everywhere
defined and, moreover, the graph Gr(Zg) is compact,
because Gr(G) is compact. This implies that Zg is
continuous, and the second statement is proved.

Finally, let us prove the third statement. Assume
that G is regular. We want to show that Zg and @4 are
regular. This requires that we prove that

(a) the graphs Gr(Zg) and Gr(®¢) are compact,

(b) Zg and ®; can be approximated in the sense of
inward graph convergence by sequences of single-
valued continuous maps.

Part (a) follows from the fact that Gr(G) is compact.
We now prove part (b). Using the regularity
of G, let {G;}32, be a sequence of single-valued,
everywhere defined continuous maps from A(S) to
CO([0,1]; R™*™) x R™ such that G; -5 G as j — oc.
Then the Zg, are single-valued, everywhere defined, and
continuous. )
We show that Zg, BN Ta as j — 0o. Let

0; = sup { dist ((cu,ﬁ)7 Gr(Ig)) (o, B) € Gr(Zg,) } .

We want to show that §; — 0 as j — oco. Assume this
is not true. Then there exists an infinite subset J of N
and a strictly positive number 6 such that ¢; > 26 for
all j € J. We can therefore pick members (a;, ;) of
Gr(Zg,) for j € J such that

dist ((aj,ﬁj), Gr(Ig)> >0 whenever j€J. (3)

If j € J, then 3; € Ig,(a;), so we can pick pairs
(hj,vj) € Gj(ay) such that §; = hj * o + &,,. Since
G; 2%, @, we may assume, after making J smaller, if
necessary, that the limit

(Qoos hoos Vo) = lim
j—00,j€

exists and belongs to Gr(G). Let Boo = hoo * Qoo + o -
Then foo € Zg(0oo). Lemma 2.4 implies that §; — oo
uniformly as j — oo via values in J. But then

(aooa ﬂoo) = j—lolorge‘](ajv ﬂ]) .
Since (oo, Bo) € Gr(Zg), we have shown that
lim ; dist ((aj,ﬂj),Gr(Ig)) =0,

J—o0,j€

(@ hy )

contradicting (3). Therefore §; — 0 as j — oo, and we
have completed the proof that Zs is regular.

We must now show that ®¢ is regular.
x € 5, let o, be the curve given by

ay(t) =tz for te][0,1].

For each

Then a, € A(S), and the map S > z — a, € A(S9) is
continuous. Define
O (1) =Zg,(a,)(1) for zeS.

Then ®’ is a continuous map from S to R™. (Continuity
follows because the map Zg, : A(S) — C°([0,1]; R™)
is continuous, and the maps © — a, and 8 — (1) are
continuous as well. The continuity of Zg, follows from
Lemma 2.1.)

We now show that & 25 &g Let (2;,v;) € Gr(®7).
We want to extract a subsequence of {(z;,y;)}32, that
converge to a limit (z,y) € Gr(®g). Pick 8; € Zg, (ay; ).
Then

dist( (azj,ﬁj),Gr(IG» —0 as j— o0,

because Zg, &, Za. Since Gr(Zg) is compact we may
assume, after passing to a susequence, that there ex-
ists a pair (a,3) € Gr(Zg) such that a,, — « and
B; — B. If we let x = (1), then z; — z. Therefore
Qg; — O, 80 @ = . Let y = B(1). Then y € ®g(x),
and (z;,y;) — (z,y). So our proof is complete. &

3. The main definition

Ifn€Zy,CisaconeinR", and r €]0,00[, we write
C(r) to denote the set C' N rB™, that is

crizec:|z)<r}.

Then C(r) is compact convex if C is a closed convex
cone.

Definition 3.1 Let n,m be nonnegative integers, let
F be a set-valued map from R™ to R™, and let C
be a closed convex cone in R™. We say that A is a
path-integral generalized differential of F at (0,0) in
the direction of C, and write A € PIGD(F,C), if
(1) A is a nonempty compact subset of R™*™ and
(2) for every positive real number ¢ there exists a
number R €]0,00[ with the property that for ev-
ery r €]0,R] there exists a regular set-valued map

G : A(C(r))—C°([0,1]; R™*™) x R™ such that

(2a) h(t) € A% and |jv|| < 6r whenever a € A(C(r)),
(h,v) € G(a), t € ]0,1],

(2b) Gr(®g) C Gr(F). &

4. The chain rule

Theorem 4.1 Let ni, no, ng be nonnegative integers,
and let F; be, fori = 1,2, set-valued maps from R™ to
R™+1, Assume that

1. C; is a closed convex cone in R™ fori=1,2,
2. Cy is polyhedral,
3. A; € PIGD(F;,C;) fori=1,2,
4. F1(C1) C Co,
and
5. A-Cy CCy (thatis, L-Cy C Cy for every L € Aq).

Then
AyoA; € PIGD(FQ OFl,Cl) .



Proof. The crucial point is that, since the cone C5 is
polyhedral, it is possible to pick a vector @ € Intg(Co)
and a positive constant k£ such that the following “error
correction property” holds

(ECP) If m € N, up,...,up, € Cy, w €
Cy, and ui +...+u, =w+w, then there exist
vectors 1, ..., Cm such that |lci||+...+ |lem| < K,
cit...Aem=w, and the conditions ||c;|| < kil
and u; — ¢; € Cy hold fori=1,...,m.

(This follows from Theorem 6.7.)

We then may—and will—assume, without loss of gen-
erality, that ||w| < 1. We then fix a number p €]0, 00
such that B

w+ pB™? C Cjy. (4)

Then the vector w and the number p satisfy
(s>0/\u€S/\Hu|| §s> SutplsweCy. (5)
(Indeed, let y = Zu. Then |y|| < p. Therefore (4)
implies y + w € Cs. Since u + %117 = %(y + ), and Cy
is a cone, u + %w € Cs, as stated.)

Write F' = FooFy, A = Ay o Ay, n = ny, m = ng,
C = (1, and let

S = linear span of Cs in R"?,
IT = the orthogonal projection from R™ to S,
ki = sup{||L||: LeA;} for i=1,2.

Then F : R*™—R™, and A is a nonempty compact
subset of R™*™,

Fix a positive real number §. We want to find a number
R €]0,00] satisfying Property 2# of Definition 3.1.
Define a function ¥ : [0, 00 [ x[0,00[— [0,00][ by

(o, 0,) (1+12:)(m+251(1+p*1))52

(ko + 82)61 +251(1+p—1(1+15))(@+52). (6)
Then )
G150 0.0) L1,0,) =0. ™)

We let 41, 02, be positive numbers such that
0
U (dy,02) < 5 (8)

For i = 1,2, using the fact that A; € PIGD(F;, C;),
choose R; €]0,00[ with the property that for every
r; €10, R;] there exists G; such that

(1) Gi€REG(A(Ci(ry)); CO([0, 1] ; RM+1X7 ) x RM+1),

(2) Gr(®g,) € Gr(F),

(3) (hi(t),v;) € A% x (8;7;B™+1) whenever t € [0,1],

(e .A(Cz(ﬂ)), and (hi,’Uz’) € GZ(C)

Inequality (8) implies in particular that the inclusion
A2 o ASt C A° (9)

holds. (Proof. If Ly € A% for i = 1,2, and L = Ly o Ly,

then we can write L; = L? + E;, where L? € A; and

|E:ill < 6. Let L°® = LYo LY so L° € A. Then

L=L"+E, where E = LYo FE)+ EyoLY+ Eyo0 Ey, so

|E|l < K201 4 d2k1 + 0201 .

It follows easily from (8) that
K01 + 0ak1 + 0201 < 0. (10)
Therefore ||E|| <, showing that L € A, as stated.)
We let

1 _
9():/61—}-2(51(14';), 92(14—]6)90,

and choose R
R:min(Rl,—z).

0
We then have to show that, with this choice of R, the
property of Definition 3.1 is satisfied. For this purpose,
we pick r € R such that 0 < » < R, and prove the
existence of a G satisfying the conditions of Definition
3.1.

Let

rn =T,
ro = 0Or,

and observe that 0 < r; < Ry and 0 < ry < Ry. Pick
G1, Ga, such that (1)-(2)-(3) hold.

Let
w = 251T1,
r = KT,
Fo= 0Oore,
so that B
ro = (1+Kk)F. (11)

Let K be the w-neighborhood of Cy(7), that is,
K ={xz eR" :dist(z,Cs(F)) <w}.
We claim that

To, (A(C1(1)) ) € A(K). (12)

let 8 € ZGI(A(Cl(rl))). Pick

a € A(Ci(r1)) such that 8 € Zg,(a). Then choose
(h1,v1) € Gi(a) such that = hy xa+&,,. It is clear
that 8(0) = 0, and § is absolutely continuous. So (12)
will be proved if we show that G(t) € K for almost all
t €0,1].

Let E be a subset of [0,1] such that meas(F) = 1,
having the property that for every t € E

To see this,

(I) the derivative &(¢) exists and belongs to C1(r1),

(IT) B(t) exists and is equal to hq(t) - &(t) 4 v1.

Lett € E. Since hq(t) € A3, we can write hy (t) = L+L,
with L € A; and ||L|| < ;. Then

B(t)=L-a(t)+L-&lt)+u,
and ~
HL . a(t) + 1)1” é 2517’1 =w.

We now use the hypothesis that A;C; C Cs to conclude
that L - &(t) € Cy. Moreover, ||L - &(t)|| < kirp = 7.
Therefore L - &(t) € Ca(7). It then follows that

dist(B(t), Ca(7) ) < w. (13)

So ((t) € K. Since this is true for all t € E, we have

shown that ((t) € K for almost all ¢, completing the
proof of (12).



We are now ready to begin the long process of defining

the set-valued map
G: AC(r)—C°([0,1]; R™*™) x R™.

The first step will be to assign, to each triple («, by, v1)
such that oo € A(C(r)) and (hy,v1) € Gi(a), a curve
ﬁOt,hl,Ul : [O, 1] — R™2,

Pick a € A(C(r)) = A(C1(r1)), and (h1,v1) € G1(w).
Let

ef
6a,h1,'u1 d: hl * o+ 51}1 .

Let Bany o = hi % 0+ &, Then Ban, 0, € Za, (@), 50
(12) implies that Bq .0, € A(K). Moreover,

6%’117111 (1) € Cy y (14)
because

Banrvn (1) € g, (a(l)) € Fi(a(1)) € Cs.

The second step is to correct the error arising from the
fact that 8 € A(K) rather than in A(Co(7)). For this
purpose we define, whenever « belongs to A(C(r)) and

(hi,v1) € Gi(a), anew curve Yo ,n, 0, € CO([0,1]; R™)

by letting Yo, ny v, (t) = (Ba,hy 0, (t))—l—%tu? fort € [0, 1].
We claim that

Ya,hi o € A(C2(F)) - (15)

To see this, write 8 = Ba.hy,v1> ¥ = Ya,hy,01, a0d Observe

that 7 is an absolutely continuous curve, and (0) = 0.
In addition, for almost all ¢ € [0,1], §(¢) exists and is

equal to II(B(t)) + “w, and 5(t) € K. Let E be the set
of all t € [0, 1] for which this is true. Then meas(E) = 1.
Moreover,

(t) € Co(f) whenever teE. (16)

(Proof. Fix t € E. Since §(t) € K, we can
write 5(t).=b1—|—b2, with b € Co(7) and ||b2] < w.
Then TI(5(t)) = II(by) + I(b2) = by + II(b2), since
by € S. Moreover, |[II(bs)| < w, because ||bs] < w
and II is an orthogonal projection. Then (5) im-

plies that II(by) + p~lww € Cy. Since by € Cy, and
4(t) = by + II(b2) + p~lww, we conclude that (¢) € Cs.
Furthermore,

@Il LB+ p~ wllwll < 1B + oo
Fdw+ptw= (k1 +28 +2p 161)r1
907”1 =7r.

So 4(t) € Ca(7), and the proof of (16) is complete.)
Therefore (15) holds.

The third step is to make a piecewise linear
approximation of the curves 7o n,.,, by first choos-
ing a large positive integer N as follows. The fact
that Gg is regular implies that the set Go(A(Ca(r2)))
is compact in CO([0,1]; R"*"2) x R". Let H be
the set of those hy € C9([0,1]; R™*"2) such that
(ha,v2) € G (A(Cg(rz))) for some vy € R™. Then H is
compact as well. Hence H is uniformly equicontinuous,
so we can choose NV € N such that ||ha(t) —ha(s)| < &
whenever hy € H, t,s € [0,1], and |t — 5| < . With
this choice of N, we define

na,hhvl (t) = (.] - Nt)’}/a,hl,vl (N_l(j - 1))

+(Nt+ 1 _j)Pya,hl,Ul(N_lj) (17)

IAIA

whenever a € A(C(r)), (h1,v1) € G1(a), % <t< %,
JEN,1<j<N.
Then o ny 0, € CO([0,1]; R™2), and

Noyhyr (0) =0, (18)
Nash,or (1) = Yok, (1)

= Bahwo (1) +p tww

€ Cr+plw. (19)

Moreover, the map 7q. 4,5, is linear on each interval
I; = [N7'(j — 1),N~1j]. The derivative 74 p, v, () of

Na,hy,vr 18 equal, for t € 15, to ughl,vl)j, where
uo]:[,hl,vl,j = nya,hl,ﬂl (N_lj)_N/ya,hly'Ul (N_l(] - 1))
i
=N [ Soman 0. (20)
.
N

Since Yo ny 0, (£) € Cof) for almost all ¢, the vectors
“i\’,hl,vl,j belong to Co(7) as well. So 1a.hy 0, (t) € Ca(F)
for almost all ¢ € [0, 1], and then (18) implies that
Moo € A(Ca(F)) - (21)
The fourth step is to take care of the undesirable
fact that 7q,n, ., satisfies (19), and produce a
curve whose terminal point is B, py 0, (1) rather than
Bahyw; (1) + p~lww.  For this purpose, we define
~N

_ _P N
Ua,hyw1,5 — No Pa,hi,v,g Then
= 14
-N _ _
Zuaahhvl,j - ;ﬁa,hlﬂn(l) +w.
j=1

It then follows from (ECP) that there exists an N-tuple

¢ = (C1,...,cn) of vectors that satisfies
a(]XV,hh’Uhj — 6]' S CQ (22)
G4 tiy = W, (23)
el + - +llenll <k, (24)
I&ll < Flagn, oyl - (25)
for j = 1,...,N. Define ¢; = p 'Nwé¢; and
c=(c1,...,cn). Then, for j=1,...,N,
Ugy by, — Cj S CQ s (26)
ci+-+ey = p 'Nww, (27)
ledl 4+ -+ llenll < p~'Nwk, (28)
lejll < Ellug py w4 (29)
Let pe be the function such that
pe € C°([0,1);R™), (30)
pe(0) = 0, (31)
fie = ¢; on I; for j=1,...,N. (32)
Then
/ll' (t)[| dt 1(|| [+ ||)<w_ (33)
Mc - —_— Cl DY CN <S —_—
0 N P
and
(D)= =(cr 4 4en) = 2w (34)
He =N 1 N )= P .
Define a curve (q,h,,0,,c by letting
Caha,on,e(t) = Moy o (1) — pe(t)  for te[0,1]. (35)



Then (o hy ,0;,c Satisfies

Comime € C°J0,1];R™), (36)
<a,h1,v1,c(0) = 0, (37)
Carhion,e(l) = Nayhy o (1) = pe(1)

Bahy,vn (1) (38)

Moreover, Cq by 0y ,c 1S linear on each interval I;, and the
derivative (o hy v1,c(t) Of Caohyvr,c 1S equal, for ¢t € I,
to u®Y ¢;. It follows from (26) that the vectors

a,hiv,g
Vj = Uy p, ., 5 — ¢ belong to Cy. Moreover, the bound
(29) implies that

o]l < (U4 F) U py o 5 < A+ R)F =72
Therefore

Caninc € Ca(ra) for ae. t€[0,1],  (39)
and then (37) implies that
Cahr,vr,e € A(C2(r2)) - (40)

We have now finally succeeded in producing, for each
curve a € A(C(r)) and each pair (hi,v1) € Gi(a), a
curve Cohyvr,e € A(Ca(r2)) whose terminal point is
exactly Ba.h, v, (1). Moreover, this curve is “close” to
Bea,hy 015 iD the sense that it is close to 7q, by 0, Which is
close to Ya,h,,0,, Which is close to Bq,ny 0, -

This curve need not be unique, because ¢ may fail to
be unique, so this nonuniqueness will have to be taken
care of. As a first step in that direction, we introduce
the notation Cg, 4, ., to refer to the set of all N-tuples
c = (c1,...,cn) that belong to (R"2)Y and satisfy (26),
(27), (28), and (29).

Given a curve a € A(C(r)), a pair (hy,v1) € G1(a),
and a c € Cy p, v, Pick (h2,v2) € G2(Ca,hy,01,c)- Define

hg(t) . hl(t) for t € [0, 1] s

vg + (/01 hg(t)dt) -y

1
- / ha(t) - (B(t) — E(t)) dt

We let G(a) be the set of all pairs
(Pohyv1,.ha,09s Vanha w1 ,e.hawe )y @S @ varies  over
A(C(r)), (h1,v1) varies over all members of Gi(a),
c varies over all members of C,, .,, and the pair
(hg,v2) varies over all members of G2(Ca ny,v;.¢)-

With this definition, it is clear that G is a set-
valued map from A(C(r)) to C°([0,1]; R™*") x R™.
Moreover, if (h,v) € G(a) for an o € A(C(r)), then the
following three facts are true.

haahlﬂflymhzﬂfz (t) =

Va,hy,v1,¢,ha,v2 =

(F1) The matrix-valued function h takes values in A°.

(F2) If = o(1), 0 = h*xa+ &, and z = o(1), then
z € F(x).

(F3) o] < or.
Proof of (F1). Write
(h,’l)) = (ha,hlﬂihcyhz,vz ’ ’Ua,hlﬂihcyhz,vz) : (41)

Then, if t € [0,1], (9) implies that ho(t) - hi(t) € A°,
since hy(t) € AS* and ho(t) € AS2.

PT’OOf Of (FQ) Write 6 = ﬁa,hl,vp Y = Ya,hi,v1s
N = Na,hy,v15 C = Ca,hl,tha A= B - Ca Yy = ﬁ(l) = C(1)7
vV = hQ * C + £v2~

Then y € &g, (x), because 8 € Zg, (), so
B(1) € &g, (x). Therefore y belongs to Fi(x), because

Gr(®¢g,) C Gr(Fy). Now, z = fol h(t) - &(t) dt + v, so

1 1
/ hg(t) . hl (t) . Oé(t) dt + / (hg(t) . Ul) dt + vo
0 0

_/1 ho(t) - At) dt
0
- /0 hat) - (1) - 6(t) + 1) b + vy

—/1 ho(t) - A(t) dt

/O ho(t) - B(t) dt + vo

1
- / ha(t) - (B(t) — (1)) dt

0
_ /Ohg(t)-((t)dt—i—m
v(l).

)
But v € Zg,(¢), because v = hy *x ( + &, and
(ha,v2) € G2(C). Therefore

z=v(l) € 2g,(¢(1)) = Pa,(y) -
Hence z belongs to Fa(y), because Gr(®g,) C Gr(Fy).
Since y € Fi(z) and z € Fy(y), the conclusion that
z € F(z) follows.

Proof of (F3). Using the notations introduced above,
we have

v =1vg + (/01 hg(t)dt> .v1+/01h2(t).)\(t)dt, (42)

h ol < darg + (kg + 02)01m + E

< (00+(eta)n)r+ B, (43)
where

E= /01 ho(t) - A(t) dt|| . (44)

To estimate E, we write
A=B=B)+@B =N +O-—n+m—-¢)  (45)

where 3* = ITo 3. Then 3* = Ilo 3, because II is linear.
It follows from (13) that

18(t) — B*()|| <w for ae. tel0,1],
and then

| /01 halt) - (5(t) — B*(0) ]| < (2 + B2)e
= 201 (kg + d2)r. (46)

The function 3* — 4 has a constant value, equal to
“w. Therefore

| [ rattr 60 = 50yt <7 e+ el
<2p7 181 (ko +62)r . (47)



The function n — ¢ is pe. Then (33) implies the bound

| ot

dt” <p k(Ko + 02)w

<2p 11 k(ko+02)r. (48)

Finally, we have to estimate the integral

o= f01 ho(t) - (4(t) — 0(t)) dt. Let hy be the piecewise

constant function on [0, 1] whose value on each interval
I; is equal to ho(fg 1), Then

/O (ha(t) — ha(8)) - (3(t) — (1)) dit

g =

+ / ha(t) - (4(t) — () dt.

Since v and 71 belong to A(Cs(7)), the estimate

17(t) =00 < 27 (49)
is true for almost all ¢. Our choice of N implies the
estimate 5 5

r
_ < =
Iha(t) = ha(t)] < 55 = 4 (50)
Then (49) and (50) imply
! - . . or
|ty = hato) - G0y i arl < 5. (o0
Finally,
1
[ (o G - i@na=o, (=)
0

because hy is constant on each interval I;, and 1) is also
constant on I;, and equal to the average of 7 over I;.

If we combine (43), (44), (45), (46), (47), (48), (51),
and (52), we end up with the bound

—_—
< Z
loll < (¥+3)r (53)
where
_ 1+ k
1/) = 069+ (,‘{2 + 52)51 + 26, (1 + :) (I{Q + 62)
- 1
= (1 + k) (Hl + 26, (1 + p)>52 + (lﬁ)Q + 52)51
1+k
+26; (1 + ;)0@ + 02)
= U(d,02)
1)
< —.
- 2

The proof of (F3) is thus complete.

In view of (F1), (F2) and (F3), our conclusion will fol-
low if we prove that G is regular. To prove the regularity
of GG, we express G as a composite of regular maps.

We define

U = 0.1 R,

U = {metd: )] <r+6 foralteo]},
y = C°([0,1];R™),

B = {BeV:(m+20)80)— B <t —s

whenever t,s € [0, 1] } )

y = ®™)N

z = {ney:nislinearonlj forj:1,...,N},
Z = ZNACa(r)),

W= C([0,1]; R™™),

W= {thW:th(t)Hgmg—i—ég for allte[O,l]},
Q = C°[o,1]; R™™),

X1 = AC() xU xR,

Xy = ACH)xUXR? xBxYxZ,

Xy = ACEH)XxUXRZXxBXxYXxZxY,

We then let T'y : A(C(r))—~ X1 be the set-valued map
that sends o € A(C(r)) to the set {a} x G1(«a), so that

1"1(04):{(a,hl,vl):(hl,vl)eGl(a)} if e A(C(r)).

Then

't € REG(A(C(r)); X1) (54)
(]I.A(C( )) X G1> OAl, where
Ar A(C(r)) — A(C(r)) x (C( )) is the diagonal map
(i.e., the map that sends o € A(C(r)) to the pair (o, «)).

We then let T'y : X1 — A5 be the ordinary map that
sends each triple (o, hy,v1) € X} to the 6-tuple

(aahlavhﬁa’}/vn) S XQa

because of the identity I'; =

where
hl * o+ 5’01 )

V1) = H(g<t))+%tw for telo1],

and
0(t) = G = N (L) + (Ve + 1= () (65)

whenever—1<t§ N,jeN,andlgjgN.
We then let FO

12— 51 be the map that sends each
n € Z to the N—tuple

T3(n) = (ui, ...

auN) € y7 (56)
where

Uj:N<77(]J\./-)_77(j;71>> for j=1,...,N. (57)

Next, we let I's : Xy, — X3 be the map that sends each
6-tuple («, hy,v1,5,7,7n) to the 7-tuple
F3(a7h17vl7ﬂ77?7’1) = (avhlvvlaﬁa’}/)narg(n)) . (58)
Next, we define Ko = Cy(#)N, and let K be the set
of all (uy,...,uy) € Ko such that N(u; + ... 4+ uy) =
wo—l— w for some wg € Cy. Then Ko and K are compact

convex subsets of ).

We let 1"2 be a continuous retraction from JNJ onto l%,
and define

Xy =ACr) xUXR™ xBxYx ZxK.
We then let 'y : X35 — X, be the map that sends each
7-tuple (o, h1,v1,3,7,7n,u) to the 7-tuple

F4(Oé, hl,v17577,77,u):(a, h17vla/87’y7777 Fg(u)) . (59)



We now define a set-valued map TI'? : K—Y, by let-
ting T2(uy, ..., un) be, if (ug,...,un) € K, he set of all
N-tuples (c1,...,cn) that satisfy, for j = 1,..., N, the
conditions

u; —¢j € Co s (60)
Nw
a+--+en = Tw, (61)
Nwk
el + -+ llenll < — (62)
lesll < Kl - (63)

Then T'Y has convex values and a compact graph.
Moreover, (ECP) implies that the values of I'Y are

nonempty. It then follows from Theorem 5.2 of [1] that
I'Y € REG(K;Y). (64)
We then define
Xs=ACr) xUXR™2 xBxYXxZxKxY,
and let I's : Xy—- X5 be the set-valued map that sends
each 7-tuple («, h1,v1,8,7,1,u) € Xy to the set

F5<a7h170176775n’u)
= {(a o1, B, 7.m.u,0) e € THW) € A5 (65)

Then
F5 = <][X4 X F5> o AQ, (66)

where A, : Xy — X, x K is the map that
sends a 7-tuple («,hi,v1,03,7,17,u) to the 8-tuple
(a0, hy,v1, 8,7,m,u,u). It follows from (64) and (66)

that
s € REG(Xy; Xs). (67)
Next, define
X =ACI) xUXR™2XBXxYXZXxKXYXZxXZ,

and let I'g : X5 — A be the ordinary map that sends
each 8-tuple (o, h1,v1,,7,1,u,c) € X5 to the 10-tuple

L(a, hi,v1, 8,7, m,u,¢)
= (a,h1,01, 8,710, €, e, 1) — pe) € X .

We now observe that the real linear space Z is finite-
dimensional, and Z is a nonempty compact convex
subset of Z. Let I'Y be a continuous retraction from
Z onto Z. Define

Xy =ACr) xUXR™2 X BxYXx ZXxKXxY X ZxZ,
and let I'7 : Xy — X7 be the ordinary map that sends

each 10-tuple («, hy,v1,8,7,1,u,¢, 1, () € Xg to the 10-
tuple

L7 (e, hyv, 8,7, m, 1, €, 1, €)
= (b, Bym w e, u T7(Q) € X (68)
Next, we let I:g be the set-valued map Z—W x R™
that sends ¢ € Z to the set G2(¢) CW x R™. Then

= oL :
s =G A(Ca(rg)),2

where ¢ is the inclusion map from Z to

A(Cq(r2)),2 .
A(C3(r2)). Therefore I'§ € REG(Z; W x R™).
Define A5 to be the product o
AC(M)) xUXR™ x BXY X ZXK XY X ZXx ZXWxR™,

and let I's : X7—~ Xs be the set-valued map that sends
each 10-tuple («, hy,v1, 8,7,m,u,¢, 1, () € X7 to the set

FS(aahlavlaﬁa7vnauaC7/’[’a C)
= { (Oé, hlavlaﬁa’%na u,C,M,C) } X G2(C) g X8

:{(Oé,hl,’Ul,ﬁ,"}/,n,u,C,,U/,C,hQ,UQ):(hQ,UQ)GGQ(C)}-
It is then clear that I's = (][X7 X Gg) o Az, where

As: X7 — X7 x Z is the map that sends a 10-tuple
(O[, h17 U1, 67 v, N, u,C, i, C) S X7 to the ]-]-'tuple

(aa hlu”l»ﬂv’Yvnauac7M7<7C) € X? X 2
Therefore
I's € REG(X7; Xg) . (69)
Finally, we define an ordinary map I'g : X3 — Q xR™
by letting
Fg(O{, h17 U1, ﬁ777 n,4a,c, U, Ca h’2a UQ)
1
vt ([ ha(®ydt) o1 = (ha (5= 0) ().
([ ra®rdt) o )

We have thus defined nine set-valued maps

I'' € REG(A(C(r);X1),
Iy € C%x; &),
I's € C%X; As),
Iy € C%xs;4),
I's € REG(Xyds),
g € C'Xs; X)),
7 € C%(Xs; X7),
I's € REG(Xp;Xs),
Iy € C%Xs; QxR™).

(The regularity of T'y, T's and I's has already been
proved, cf. (54), (67), (69). The continuity of T's, T's,
'y, T's and I'; follows trivially from their definitions.
The continuity of I'g follows from Lemma 2.1 because,
if {¢/}en is a sequence of points in CO(Xg; Q x R™)
that converges in C%( Xg; Q x R™) to a limit £€*°, and
we write

fj = (O(],h‘{,1}{7ﬂj7’}/],7’]],llj,C]7/J,]7CJ7h,%7U%),
then the 3; belong to B and the (; belong to Z, so the
sequence {7 — (7} ey is uniformly Lipschitz, and then
the facts that 37 — B, ¢/ — (>, hj — h$°, imply
that h) « (67 — ¢7) — hs® % (8> — (*).)

On the other hand,

G:F90F80F7OF60F5OF4OF3OFQOrl,

Therefore G is regular, and our proof is complete. <

5. The open mapping theorem

We now show that path-integral generalized differentials
have the directional open mapping property.

Theorem 5.1 Assume  that n,m € 7,
F ¢ SYMR",R™), w € R™, C isa polyhedral
convex cone in R™, A belongs to PIGD(F;0,0;C),
and  wWE()cp Int(LCO). Then  there exists
a closed conver cone D in R™ such that
w € Int(D), having the property that for every
0 €]0,00[ there exists an £(§) €]0,00[ such that

| Dn{yeR™: ||y <e(6)} CF(CN{zcR":||z]|<4}) |




Proof. Let us assume that w # 0. Pick a closed convex
cone D in R™ such that w € Int(D), a compact neigh-
borhood A’ of A such that D C LC for every L € A/,
and a continuous map A’ x D 3 (L,y) — n(L,y) € C
which is positively homogeneous of degree 1 with respect
to y and such that L-n(L,y) =y for all (L,y) € A’ x D.
Pick 6 such that 0 < 6 < ||| and the ball {y € R™ :
ly — @] < 20} is entirely contained in D. Let D be
the smallest closed convex cone that contains the ball

{y e R™: ||y — w|| < 0}. Then D satisfies:
Ollyll :
eEDAN|z| £ ———)=y+z€D. 70
(vepnlal < i) =y (70)

(Indeed, if y=0then 2=0,s0y+2=0¢€ D. Assume

that y # 0. Then we can write y = su with s > 0 and
u— ] < 0. Then [jul| <[]+ [lu—o| < |lw]| + 6.
Therefore ||y|| < s(||w|+8),s0s < 0 Hﬁ“ Furthermore,
Yy + 2 = su, where @ = u + Z. Then

Izl g N2l
[a—wl| = [lu—w+— || < [lu—wll+== < 6+ (@] +6)

1yl
so ||& — w|| < 26, and then y + z € D.)
Let M = sup{[n(L.y)ll : L € Ny € D, [yl < 1.
Then ||n(L,y)|| < M||y|| whenever L € A’ and y € D.
Fix a ¢ €]0, 00l Let 4§’ be such that 0 < ¢ < 4,
A C A, 2ME < |w|\+9 Then choose R € R such that
R >0and a famlly {G, : 0 < r < R} of regular set-

valued maps G, : A(C’(r))—H C°([0,1]; Rm*xm™) x R™
such that

(a) h(t) € A% and |jv|| < &'r whenever a € A(C(r)),
(h,v) € Gr(a), t €[0,1],

(b) Gr(®¢,) C Gr(F).

By making R smaller, if necessary,
R <.

We choose € such that 2Me < R, and show that this
choice of € satisfies our requirements.

Fix y such that 0 < ||y|| < e. Let p = ||ly||, and choose

= 2Mp. Then r < R. We will show that there is
an x € C such that ||z|| < § and y € F(z). For this
purpose, it suffices to find a triple (o, h,v) € Gr(G,)
such that v + fol h(t) - &(t)dt = y and ||a(1)]] < 6. The
first equality, in turn, will follow if « satisfies

h(t)-&(t)=y—v forae. ¢, (71)

as well as ||a(1)|| < 6. If y—v € D, then (71) will follow
if a(t) =n(h(t),y —v) for a.e. t, ie., if

t
a(t) :/ n(h(s),y—v)ds forall ¢. (72)

0
Let ¥ be the set-valued map on A(C(r)) that asigns to
each a € A(C(r)) the set X(«) of all paths ﬁ Ba,h,v for
all (h,v) € G,(«), where Bq p.o( fo ),y —v)ds.
Then ¥ is well defined and takes values in A(C(r))

we may assume that

(Proof. Let a € A(C(r)) and (h,v) € G,(«). Then
[loll < &'r = 2M&p = 2Md'||y|| < i{u\lyj_\ . Therefore

(70) implies that y — v € D. Since h( ) e A C A for
each ¢, n(h(t),y—v) is defined for each ¢. Since the map
t — n(h(t),y —v) is continuous, By n,v is well defined.

Moreover, B4 no(t) = n(h(t),y — v) € C. On the other
t

(h
hand, [|Ba.nv(®)] = In(h(t),y = v)[| < Mlly —v|. But
ly = vl < [lyll +lloll < p+ 5’7“ and this implies that
1Bans@)] < Mp + M5'r But Mp = %

5, and we
or r 3
know that M(;/T S W < 5" So ||6a,h,v(t)|| S .

Therefore Bq 1 (t) € C(r). Hence Ba.n. € A(C(r)).)

It is easy to see that X is regular. Hence X is a regular
map from the compact convex set A(C(r)) to itself. By
the obvious extension of Schauder’s fixed point theorem
to regular maps, ¥ has a fixed point «,. Then, for
some (h,v) € Gr(ay), we have h(t) - d.(t) = y — v for
almost all ¢t. Hence if we let 2 = (1), we have y =
v+ fol h(t) - & (t) dt, so that y € @, (), and then y €
F(z). Finally the fact that o € A(C(r)) implies that
lz]| <7 =2Mp < 2Me < R < 4. This completes the
proof. &

6. A property of polyhedral cones

Let C be a closed convex cone in a finite-dimensional
normed linear space X. Let S¢ be the linear subspace of
X spanned by C, so the interior Intg, (C) of C relative
to S¢ is nonempty.

Suppose we are trying to add several vectors
u1,...,U, belonging to C' so as to obtain a vector
w € C, but instead of achieving this desired result we
produce a sum w, which is “larger” than the target
value w in the sense of the partial ordering induced by
the cone, i.e., such that w = w + e for some e € C.
We would like to correct this error e by subtracting
correction terms ¢;—not necessarily belonging to C—
to the vectors u;, in such a way that the new vectors
v; = u; — ¢; belong to C and add up to w. Moreover, we
want to be able to do this while keeping the total error
norm—i.e., the sum E = ||c1||+. ..+ /¢y ||[—bounded by
a fixed constant &, independently of m, the u;’s, and w.
And, in addition, we want the ¢;’s to be bounded by the
u;’s. Equivalently, we want to subtract off the “error”
e from the sum uy + ... + u,, by expressing e as a sum
e =c1 + ...+ ¢y, in such a way that after subtracting
each ¢; from its corresponding u; the resulting vectors
still belong to C, and we want to do this with a bound
on the sum FE, and with the the ¢;’s bounded by the
u;’s.

Whether this “error correction” is possible for a
particular choice of e € C' is a property—the “error-
correcting property,” abbreviated “ECP”—of the pair
(C,e). Naturally, the ECP holds if ¢ = 0 but, as we
shall see, it is important for the ECP to hold for some
e € Intg. (C), so the only case when e = 0 is an accept-
able choice is when C is a linear subspace, i.e., C = S¢.

The purpose of this subsection is to show that e can be
chosen to belong to Intg,, (C) if C is a polyhedral cone.
We will also exhibit an example showing that for more
general cones it may happen that there do not exist any
e € C\{0} such that (C,e) has the ECP.

It will be clear, both from the proof of the positive
result for polyhedral cones, and from the counterexam-
ple for a cone which is not polyhedral, that the crucial
property of polyhedral cones, for the purpose of estab-
lishing the ECP, is the fact that the set of all possible
tangent cones T,,C, as x varies over C, is finite.

First, we give a formal definition of the ECP.

Definition 6.1 Let X be a finite-dimensional normed
linear space, and let C' be a closed convex cone in X.



Let e € C. Then

1. If k € R, k > 0, we say that the pair (C,e) has
the error-correction property—abbr. “ECP”—with
constant k if

(ECP) for every m € N, every w € C, and every m-
tuple (u1,...,un) of members of C' such that

Uy +...+uy, =w+e

there exist vectors cq,..., ¢, in X such that

u—c; € C fori=1,...,m, (73)

ca+...4em = e, (74)
leall+. - Alleml <, (75)
lleill < Kkllugl]  fori=1,...,m. (76)

2. We say that (C,e) has the error-correction
property—abbr. “ECP”—if there exists a constant

k such that (C, e) has the error-correction property
with constant k.

3. We say that C' is ECP-good if there exists a vector
e belonging to the interior Intg,(C) of C relative

to the linear span S¢ = span(C') such that the pair
(C,e) has the ECP.

Remark 6.2 The ECP property does not depend on
the choice of the norm on X. Moreover, the ECP
property is an intrinsic property of the cone C, and is
independent of the space X in which C is embedded.
(Precisely, this means that C' is ECP-good as a cone in
X if and only if it is ECP-good as a cone in Sg. The
proof is straightforward. First, it is trivial that if C
is ECP-good as a cone in S¢ then it is ECP-good as
a cone in X. To establish the reverse implication we
observe that, whenever m, w, uy,...,u,, are given as
in Definition 6.1, if it is possible to choose c¢y,...,cn
in X such that (73), (74), (75), (76) hold, then the
¢; can also be chosen to belong to S¢, since one can
replace the ¢; by their projections II(¢;), where II is the
orthogonal projection from X onto S¢ relative to some
inner product on X.) O

Remark 6.3 If X, C, e, w, m, uq,...,u, are as in Def-
inition 6.1, then it is always possible to choose correction
terms ¢; such that ¢;+...+¢,, = e and u; —¢; € C. For
example, one can choose ¢; = u; — A\;w, where the \; are
arbitrary nonnegative numbers such that A\ +...+ A, =
1. Then, if we let v; = u; — ¢;, we have v; = \;w, so the
v; belong to C and vy + ...+ v, = w. It follows that
c1+...+cm =e,s0 (73) and (74) are true. This, how-
ever, does not suffice to guarantee that the ECP holds,
because the error bounds (75) and (76) need not be sat-
isfied. &

It is easy to see that

Proposition 6.4 If X is a finite-dimensional normed
linear space, C' is a closed convex cone in X, and
e =0, then (C,e) has the error-correction property. In
particular, if C' is a linear subspace of X, then C is
ECP-good.

Proof. If e = 0, and w, m, ui,...,u, are as in
Definition 6.1, then we can choose ¢; = 0, and all the
conditions of the definition hold, with k = 0.

If C is a linear subspace, then 0 € Intg,(C), and
(C,0) has the ECP. Therefore C' is ECP-good. &

Remark 6.5 The following example shows that not all
closed convex cones are ECP-good.

Let X = R3, and let C be the cone

C={(r,y,2) ER3: 2>0A2%> 2% +4%}.
Then C' is not ECP-good. To see this, we will actually
show that the pair (C,e) does not have the ECP for any
e € C such that e # 0.

Fix e € C such that e # 0. Let e = («, 3,7), so y > 0,
v > a? + 32, and (o, 8,7) # (0,0,0). After a rotation
of the z and y axes, we may assume that o = 0 and
8 >0. Then e =(0,58,7),y >8>0, and v > 0.

For N € R, N > 0, let w" = (2N,0,2N), so w®™ € C.
Then all the w belong to the ray

R={(r,0,r):r>0}.
Clearly, R C C, and R is an extreme ray (that is, if
z1 € C, z9 € C, and z1 + 29 € R, then z; € R and
29 € R)
Let m = 2, and let

UJIV:(NangN+%)7 uéV:<N7hN7N+Z)7

2
where )
9N=§\/72+47N, hy =08 —gn .
Then .
N?+gy = N?+2(5° +49N)
2
= N24qN+
~y 2
- (N 7)
(v+3)
and
N?+hy = N’+(8—gn)
N?+ 8% + g% — 2Bgn
2
(N+3) +82—280n
2
= (N+3) +8(3-29n)
0% 2
< (N 7),
< (Vg

where the last inequality follows because

0<B<y< VY2 +4yN =2gn.

Therefore uY € C and u) € C. Moreover, it is clear

that
u{v + uév =w +e.

Fix N, and let c¢1, co be such that v; = u{v —c € C,
Vg :UéV—CQ € C, and ¢1 + ¢ = e. Then v1 + vy = wl.
Since the ray R is extreme, the vectors v; and vy must
belong to R. Therefore, if we write v; = (v;,1,v;,2,v;.3),
¢ = (¢i1,¢i2,¢i3), we must have v;2 = 0, and then
€1,2 = gn, 2,2 = hyy. Therefore

leall + llezll = g + [ ]
Since N is arbitrary, and the quantity gy + |hn| goes
to +00 as N T +oo (because v > 0), the constant k
of Definition 6.1 cannot exist. Therefore the pair (C,e)
does not have the ECP.



Recall that

e A convex polyhedron in a linear space X is a subset
of X which is the convex hull of a finite set.

e The convexr cone generated by a subset S of a lin-
ear space X is the smallest convex cone in X that
contains S.

e The closed convexr cone generated by a subset S of
a linear space X is the smallest closed convex cone
in X that contains S.

e A polyhedral cone in X is a cone in X which is the
convex cone generated by a finite subset of X.

e If K is a compact convex subset of a normed linear
space X, and = € X, the tangent cone to K at z is
the closed convex cone in X generated by the set of
all vectors y —x, y € K.

If X, K, x are as above, we use T, K to denote the
tangent cone to K at x. The following facts are then
well known and easy to prove.

Lemma 6.6 Let X be a normed linear space. Then
(1) Every convex polyhedron in X is compact.
(2) Every polyhedral cone in X is closed.

(3) If C is a polyhedral cone F', and F' is a finite subset
of X such that C is the convex cone genmerated
by F, then there exists a positive constant k such
that every v € C can be expressed as a linear

combination
v = Zaff, 0 <oy <kl|v| foral feF.
fer
(77)

(4) If K is a convex polyhedron, and x € K, then

(4.a) T, K is a polyhedral cone,

(4.b) there exists a p € R such that p > 0 and
z+v € K whenever v € T, K and ||v]| < p.

(5) If K is a convex polyhedron, then {T,K : © € K}
is a finite set. &

Theorem 6.7 Let X be a finite-dimensional real linear
space, and let C be a polyhedral cone in X. Then C is
ECP-good.

Proof. Recall that a cone D is pointed if there is no
nonzero vector v such that v € D and —v € D.
We first show that

(*) we may assume, without loss of generality, that C
is pointed and has nonempty interior.

To prove (*), we assume that every pointed polyhedral
cone with nonempty interior in any finite-dimensional
real linear space Y is ECP-good, and prove that if C
is an arbitrary polyhedral cone in X then C is ECP-
good. For this purpose, since the ECP property does
not depend on the choice of norm, we may assume that
X is Euclidean.

Let C' be a polyhedral cone in R™. Let E be the “edge”
of C, that is, the set of all v € C such that —v € C'. Then
E is a linear subspace of X. Let E’ be the orthogonal
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complement of F' in X, and let C/ = CNE’. Then C" is
a closed convex cone. Moroever, C’ is clearly polyhedral
and pointed.

Let E” be the linear span of C’, so E” C E’. Then,
as a subset of E”, C’ is a pointed polyhedral cone
with nonempty interior. So C’ is ECP-good. Let
e € Intg/(C") be such that (C’,e) has the ECP. We
show that e € Intg, (C) and (C, e) has the ECP.

First, we observe that C C E+ E”. (Proof. If v € C,
then v = w+w', w € E, w' € E’. Moreover, —w € E C
C,sow =v—we C+C, and then w’ € C. Then
weENC'=E" sove E4+E".)

Since E C C, the cone C is in fact equal to the sum
E+ (CNnE"). Also,

CNE'=CNnE'NE' =C'NE"=C",
since C' C E" C E'. So

C=E+C(C".
This clearly implies that
Sc =F+ E".

Moreover, the sum E + E” is orthogonal, so E + E”
is isomorphic to the product E x E”, under the map
uw: ExE" — E+ E" given by u(v,v") = v+ ",
Clearly, u(E x C') = E+C" = C. Since e € Intg.(C")
and 0 € Intg(E), we have (0,¢) € Intgx g (E x C'), so
u(O, 6) S Intu(ExE//)(p(E X Cl))7 that is,

e e IDtE+E//(C) = Intgc (C) .

Now let k be such that (C”, e) has the ECP with con-
stant k. Let m € Ny w € C, (u1,...,un) € C™ be such

that
UL+ ... T Uy =W+ €.
Write
uj:ﬂj+u9’, u; € B, u;'EC',
and also
w=uw+w", wek, w' .
Then
G4ty = W,
ui + ..o+, w’ +e.

Since (C’,e) has the ECP with constant k, there exist

vectors ci,...,cn in E” such that
u —¢; € C' for i=1,...,1i8)
ci+...+enm = e, (79)
el + -+ llemll < K, (80)
ledll < k||uf||  for i=1,...,781)

But then w; — ¢; = @; + ul —¢; € C, and ||uf|] < ||usl,
because the sum E + E” is orthogonal. Therefore
U; — e C (82)
lell < Kl for i=1,....,m, (83)
and (79), (80) hold. Hence (C,e) has the ECP, and the
proof of (*) is complete.
From now on, we assume that C' is pointed and has a

nonempty interior in X. We choose an arbitrary interior
point e of C, and prove that (C,e) has the ECP.

Let ¢ € XT be a nontrivial linear functional such that
¢(v) >0 whenever veEC, v#0.

(Proof of the existence of . This follows from the fact
that C is pointed. Indeed, let CT be the polar cone

C; for i=1,...,m,



of C. Then C' has nonempty interior in X', because
otherwise there would exist a nontrivial linear functional
€ on X' that vanishes identically on CT, and this would
yield—using the canonical identification of X with X Tt
and the identity C'f = C—a nonzero vector v € X such
that ¢(v) = 0 for all ¢ € CT. But then v € C and
—v € C, contradicting the fact that (C,e) is pointed.
If ¢ is an interior point of C't, and v € C, v # 0, then
¢(v) < 0, because we know that ((v) <0, and if ((v) =

then the nontrivial linear map X 3 2 — z(v) € R
would have a local maximum at ¢. So ¢(v) < 0 for all
v € C\{0}, and then ¢ = —( has the desired property.)

Since e # 0 and e € C, we may normalize ¢ so that
¢(e) = 1. Since the ECP property does not depend
on the norm, we are entitled to assume that X is
Euclidean, and we may choose the inner product so that
|le]l =1 and e is orthogonal to the kernel of ¢. Under
the canonical identification of X with X arising from
the inner product, ¢ will then correspond to a vector
Z € X such that e L z'. But then e = rZ for some
r € R, and the facts that {(e) = 1 and |le| = 1 imply
1=(z,e) =rlle|]>=r,s07 =1 and then z = e.

et n = dim(X). We may assume that n > 0, because
if n = 0 then our conclusion is trivial. Write n = v + 1,
v € Z4. By choosing an orthonormal basis of X whose
first member is e, we may identify X with R x R” in
such a way that e = (1,0). Then C is a polyhedral cone
in R x R”, having the property that

(r,x) e C\{0} = r>0.

(This follows because, if v = (r,z) € C\{0}, then
r=(e,0) = (7.0) = (1) > 0)

Since C' is polyhedral, we may fix a finite set
P ={p1,...,pn} of points of C such that C is the
smallest convex cone containing P, i.e., the set of all
linear combinations v = aip; + ... + aypny such that
a; > 0fore=1,...,N. Clearly, we may assume that
all the p; are nonzero, and then we can write

pi = (pi,qi), p:i>0, ¢ €R”.

Then, after multiplication by p; ! we may assume that

pi=1fori=1,...,N. Let
K={zeR":(L,z)eC}, Q={q,.--,qn}.
It then follows that
K = convex hull of @, (84)
0 € Intp K, (85)
Cc = {(r,rx):xeK,rEO}. (86)

Let T be the set of all the tangent cones T, K, as
x varies over all points of K. Then T is a finite set
by Lemma 6.6. Let M be the number of members of
T. For each k € N, let 7 be the set of all k-tuples
C = (Cy,...,C%) of different members of T such that

Ci+...+4C,=R". (87)

Then 7, = 0 if k > M. Let 7 = UpenTi. Then the set
7T is finite.

Choose, for each C = (C4,...,C) € T, a continuous
map
R”32—0%(x)=(0F(2),...,05(z)) €C1 x - xC},

which is positively homogeneous of degree 1 and satisfies
0C(x) +---+0S(x) =2 for all z€RY.
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(Proof that ©F exists. Fix C. Let (by,...,b,) be the
canonical basis of R™, so b; is the vector (b},...,bY),
where b =01if i # j, bt =1. Let bg = —(by + - -+ + b,).
Then every vector z € R” can be expressed in a unique
way as an affine combination of by, by,...,b,, i.e., as a
linear combination

r=aobotarbi+---+ab,, aptari+---+a,=1, (88)
as can be seen by observing that, if b; = (b;,1) € R¥*1,

)

i = (x,1) € R"' then (bo, by, - is a basis of
R”H, and (88) holds if and only if
£:a01~)0+a11~)1+~-~+a,,l~11,.

For z € R, let a;(x), ¢ = 0,1,...,v, be the unique
coefficients «; such that (88) holds. Then the functions
a; : R — R are obviously continuous. Clearly,

1
ap(0) = a1(0) a,(0) STl
So the continuity of the «; implies that there exists
r €R such that » > 0 and «;(x) > 0 whenever
i € {0,1,...,v}, x € R” and ||z| < r. Define, for

1=1,...,v,
llzll a»(ﬂ) if zeR"\{0}
() = r \ Ml ’
i) {0 if x=0eRY,

so the (3; are continuous real-valued functions on R” that
are everywhere nonnegative and positively homogeneous
of degree 1. Using (87), write

b; =c¢1tCat+- -+ Cik, CijE Cj fOI‘,j: 1,2,...,k.
Then, let 0;(z) = Bo(x)co,; + Pi(x)cr; + -+ Bu(x)cy;
forx e R¥, j =1, . Then each 6, is a continuous
map from R” to C}, which is positively homogeneous of
degree 1. Moreover, if x € R¥ and x # 0, then

k E v
;Gj(I)ZZZ@( cw_Z@ (ZC”>

j=11i=1 j=1

S Iml\ _ =l e
=) Bi(z)b =
; e Z || H vl
Obviously, the 1dent1ty ijl 0;(z) = x is also valid

Therefore, if we let ©€ be the map
0r(x)), then all the desired properties

= /1+ k7. For
,k}

Then define k3 = max { kK€:CeT } We now choose

the constant k by letting k = 1 + ko + 2Mk1k3, and
prove that the pair (C,e) has the ECP with constant k.

when z = 0.

= (01(x),...,

are satisfied.)

Let k1 = max{ |z|| : = € K}, Ko
each C = (C4,...,Cy) € T, define
R =sup { 105 (@)] s 2 € RY o =1, =1,...

Pick m € N, w € C, and an m-tuple (uq,...,uy,) of
members of C' such that
U+ ... +um =w+e, (89)
and write
w=(R,Rw), R>0, we K. (90)
We have to find vectors cy, ..., ¢y, in X such that
uj—c; € C fori=1,...,m, (91)
c1t...+em = e (92)
lell+- . +lleml < &, (93)
leill < Kl|ug]| fori=1,...,m. (94)



For this purpose, we find a Lipschitz curve

J3s—=7(s)=(c1(s),...,cm(s)) € (R™)™,  (95)
defined on J = [0,1] and such that
¢i(0)=0 for i=1,...,m, (96)
u,—c¢i(s)eC for i=1,....m, sedJ, (97
c1(s)+ ... +em(s) =se for seJ, (98)
(e,¢;(s))y >0 for i=1,....,m, ae s€eJ, (99)
ler(s) I+ ...+ llém(s)| <k for ae. seJ. (100)

Let T be the set of all pairs (J,v) such that (1) J
is a subinterval of [0,1], (2) 0 € J, and (3) v is a
Lipschitz curve of the form (95) such that (96), (97),
(98), (99), (100) hold. Partially order I' by letting
(Ji,71) 2 (Jo,7) iff J; € Jo and 71 = v [ J. Tt then
follows from Zorn’s Lemma that I' has a member (J, )
which is maximal with respect to <. Let 5§ = supJ,
so 0 < 5 < 1, and either J = [0,5] or J = [0,3].
If J = [0,8] then, since « is Lipschitz, it can be ex-
tended to a curve 4 defined on [0, §], and then the pair
([0, 5],4) satisfies (]0,5],%4) € I, (J,v) < ([0,5],%), and

,7v) # ([0, 8],4), thus contradicting the maximality of
J,7). So the possibility that J = [0,5] is excluded.
Hence J = [0, .

We now prove that § = 1. We do this by showing that
if § < 1 then 7 can be extended to a curve 4 : [0, 5 + €]
for some positive € such that ¢ < 1 — 5, in such a way
that the pair ([0,3 + ¢€],4) still belongs to I.

Let § = w+ (1 — 5)e. Then § € Intx(C), because

w e C, e €Intx(C) and § < 1. Write § = (7, 7Z), with
F>0andzZ € K. Then g = (F,Rw), T=R+1—-5>0,
T = %w, and T € Intgr K. Next, write

U; — Cl(g) = ’l_)i = (TZ‘,TZ‘.TZ'),

with 7; > 0 and Z; € K for i = 1,...m. Then
v+ U =Y,
mt-+Trm = T,
F1Z1 + 4 Fp@m = 72 = Rw,
S0
T=pZ1+ 4 Pmm, (101)
where _ _
= T T
P T Ry1-5
so that
pi>0 for i=1,...m,
and
ﬁ1+"'+ﬁm:1-

It then follows that
T K+ + ppTe, K =R (102)
(Proof. Using the fact that T € Intg. K, pick a real

number ¢ such that § > 0 and ||y|| <d =z +y € K.
If ||y]| <6, and we let 2 = T + y, then z € K, and

m m
z—a’c:z—zmxi ZZ@'(Z—@)
i=1 i=1

€ Tz, K+ -+ pnTs, K.
Therefore the cone p1T,, K + -+ + p11,,, K contains a
neighborhood of 0 in R¥, and (101) follows.)
Clearly, (102) remains true if we eliminate from the
sum those terms p; 1z, K for which p; = 0. Once this

y =
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is done, we can replace each remaining term p;7T;, K
by Tz, K, because the T;, K are cones. Finally, we can
eliminate repeated terms, after which we will be left with
at most M terms.

Hence there exist p € Nand i = (41,...,4,) € N* such
that (1) 1 <4y <ig <--- <iy, <m, (ii) Tiin;«é Tz, K
whenever j # £ and 1 < j,¢ < p, (iii) p;; > 0 whenever
1<j<p and (iv) Tz, K+ + T3, K =R

Now let

y(h):?]—h(i:(f—h,Rw) for h>0.

Then
o) = (r=h-n) )
- <r—h,(r—h)(x+thw—x)>
- (F—h,(?—h)(fi—krj_%hw—fw))
- (renenes (- 5))
= <F—h,(f—h)(i+r(rhfh)w)>
- (f—h,(f—h)x(h) ,
where
:v(h)iJrr(rhfh)w.
Let T be the u-tuple
T:(T@IK,T%K,...,T%K).

Then T € 7, so p < M. Let
R 32z — O(z) = (01(x),...,0,(x))

be the map ©F, 50 0 : R” — T, K xTg, K x-- Tz, K.
Then © is positively homogeneous of degree 1 and such
that 6;(z) + -+ 0, (z) = « for all z € R”. Moreover,

165 < KTllzll < mallz]| < Kk
whenever j=1,...,u and z € K. (103)
Define
hR
i(h) = ——=——=10; for j=1,...,p.
¥j (h) ﬁijF(F_ h) 0; (w) for j ) »
Then
_ _ hR
P+ i) = P =) 2
(104)
Next, let
Ti(h):fi—ﬁih:ﬁi(F—h) if i=1,...,m, (105)
zi(h) = @;‘H/Jj(h) ?f i=ij, ]6{1.7...7;1}7(106)
T; if 4 Ulyeveylpyf-
vi(h) = (ri(h),r;(h)x;(h)) if i=1,...,m. (107)



Then

r1(h)zy (h) + Tm(h)xm(h)
= = W) (praa(h) -+ ()
G CEE e A
(7= 1) (it (B) + - + i, (1))
= (F=h)Z+ (F—h)(xz(h)—T)
= (F—h)z(h),
and
ri(h)+ - +rm(h)=7—h. (108)
Therefore
vi(h)+--+vn,(h) = (F—h,(F—h)z(h)) =y(h). (109)
If j € {1,...,u}, then Lemma 6.6 implies that there

is a positive constant J; such that z;, + 2z € K whenever
z € Tz, K and |z|]| < d;. Since 9;(h) is a multiple
of §;(w), with a factor that goes to zero as h | 0, and
0j(w) € Tz, K, there exists a positive constant ¢; such
that z;, +¢;(h) € K whenever 0 < h <¢;. Let

e:min<lf§,g,el,...,e“). (110)
Then s +¢ <1, and
zi(h)e Kifie{l,...,m}, 0<h<e. (111)

We now extend the functions ¢; : [0,5] — R™ to the
interval [0, 5+ €| by letting ¢;(§+ h) = ¢;(3) +0; —v;(h)

ifi=1,...,mand 0 < h <e. Then
c1(s+h) ot em(5+h)
= a®+ - FcenS+v1++Un
~(1(h) + o+ o (B)
se+ g —y(h)
= 5se+he
= (5+h)e,
so that
(5+Rh) 4+ +em(5+h)=(5+he (112)
if 0 < h <e. Moreover, if h € [0,¢], and i € {1,...,m},

then

wi — (54 h) w; — (ci(E) ' —vi(h)>

U; — Ci(g) —v; + ’Ul(h)
’L_}i - ’L_)Z' + Ul(h)

vi(h)

(ri(h), ri(h)zi(h))
ri(h)(1,zi(h)) .

the point (1,x;(h)) belongs
( )) also belongs to C. So we

Since z;(h) € K by (111),
to C, and then r;(h )(1
have shown that

u, —ci(§+h)eC if <e
(113)
We now study the derivatives ¢; of the functions c¢;

on the interval [3,5 4 €]. We have (using the fact that

vi(h) = ri(h)(1,z:(h)) )

¢ (5+h) —vi(h)
—73(h)(1,z:(h)) — r;(h)(0, &;:(h))
pil1,2(h)) — ra() (0, (k) . (114)

0<h

i=1,....,m, <
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This proves, first of all, that the first component of
¢i(5+ h) is equal to the nonnegative number p;, so
e,¢i(s+h))>0 for i=1,...,m, h>0. (115)
Moreover, the norm of the first term of the right-hand
side of (114) is bounded by p;k2, since z;(h) € K.
If i ¢ {i1,...,4,}, then the second term of the right-
hand side of (114) vanishes, and we get the bound
16:(58 + h)|| < pika if ¢ {in, ... 4.} (116)
If ¢ € {i1,...,14,}, then the second term of the right-
hand side of (114) need not vanish, so we have to esti-

mate it. Assume ¢ =14;, j € {1,...,u}. Then
. R h
s (h) = i (h) = ———8, 0. (w),
(1) = 3 1) = ) + (o)
so (105) implies that
R pi(r —h)R hpi(r —h)R
T,(h):ﬁz(h) - ﬁif(f_h) ](w) + ﬁﬂ:(F—h 2 oj(w)
R hR
= (F+i—m)he)

and then

. h
Iri(m)a () < (14 == )10;() | < 2r15s.,

because (1) w € K, so (103) can be used to conclude
that [|6;(w)]| < kiks, (2) R < 7, and (3) the bound
h <e < I implies h <7 — h, and then -+ < 1.

This gives the estimate

||Cz(§+ h)” S [_)iHQ + 2%1/433 if 7€ {il, e 7i,u} . (117)
Then (116) and (117) imply (since p1 + -+ + pm = 1)
that

o

D 116 (54 h)|| < ka+2um1 k3 < ka+2Mri kg <k. (118)
j=1
It follows from (112), (113), (115), and (118), that the
new curve [0,5+¢] 3 s — Y(s) = (¢1(9),-..,Em(s)),
where the ¢; are the components ¢; of v, extended as
above to the interval [0, 5 + ¢], satisfies the conditions
(96), (97), (98), (99), 100% that characterize the set T.
Hence the pair ([0, 5+ ¢],%) belongs to I'. Therefore the
pair ([0, 5],v) is not a maximal member of I', and we
have reached a contradiction. This happened because
we assumed that § < 1. Hence 5§ = 1.

We have therefore established that there exists a curve
(95) which is defined on the full interval J = [0, 1] and
is such that (96), (97), (98), (99), (100) hold. Fix such
a curve, and define

ci=c¢(l) for i=1,.
Then (97) 1mphes that (91) is satisfied, (98) implies (92),
and (100) together with (96) imply (93)

To complete our proof, we have to show that (94) is
true as well. At this point, we will use (99). The vector
v; = u; —¢; belongs to C, and if we write u; = (7, 7:3;),
v; = (rq, rx), with &;,2; € K, # >0, r; > 0, then (99)
implies that rl < 7. Therefore

, ||%H2 (L Jlzi]|*) < ring < Fig < PR3
since 7; < ||uZ |. Hence ||vz|| /@2||uz|| 2and thenismce
¢ = u; —v;, we have |¢;]] < (14 wo)l|wi|| < kflull,

showing that (94) is indeed true, and completing our
proof.

References

[1] Sussmann, H.J., “Warga derivate containers and
other generalized differentials.” Submitted for pub-
lication in Proc. 41st IEEE Conf. Decision and
Control, Las Vegas, December 2002.



