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Héctor J. Sussmann
Department of Mathematics

Rutgers, the State University of New Jersey
Hill Center—Busch Campus

Piscataway, NJ 08854-8019, USA
sussmann@math.rutgers.edu

1. Introduction

This is the first of two papers devoted to recent ideas
on the theory of generalized differentials with good open
mapping properties. Here we will discuss “generalized
differentiation theories” (abbr. GDTs), with special
emphasis on the series of developments initiated by Jack
Warga’s pioneering work on derivate containers. In the
second paper, we will focus on the most recent theory, of
“path-integral generalized differentials,” and prove that
it has the crucial properties required for a version of the
Pontryagin Maximum Principle (abbr. PMP) to exist,
namely, the chain rule and the directional open mapping
property.

Our work continues the study of general smooth,
nonsmooth, high-order, and hybrid versions of the PMP
for finite-dimensional deterministic optimal control
problems without state space constraints by means of
a method developed by us in recent years. As explained
in [11, 12, 13, 14], such versions can be derived in a
unified way, by using a modified version of the approach
of the classical book [6] by Pontryagin et al.. In the
classical approach, one constructs “packets of needle
variations,” linearly approximates these packets at the
base value of the variation parameter, and propagates
the resulting linear approximations to the terminal
point of the trajectory by means of the differentials
of the reference flow maps. This technique must be
modified by (a) replacing the the theory of the classical
differential by other GDTs, (b) replacing the time-
varying vector fields that occur in the classical MP
by flows, and (c) replacing the needle variations by
abstract variations. Every GDT yields a version of the
MP provided it satisfies some natural properties such
as the chain rule and an appropriate “directional open
mapping property” (abbr. DOMP). (Details are pro-
vided in [11, 12, 13, 14].)

In these two papers we will not explicitly discuss flows,
variations, and the PMP. How these topics are dealt
with in the theory, and how one gets versions of the
PMP for general GDTs, has been extensively disucssed
in other papers, and for lack of space we choose not
to address these questions here. We will, instead, give
a detailed discussion of GDTs, and show how several
important GDTs are defined and how they are related
to one another. It will turn out that the complicated
nature of these interrelationships, and in particular the
fact that none of the “natural” theories contains all the
others, suggests the question whether a theory that truly
contains all other GDTs can be defined. The answer to
this question is given in the second paper of the series,
where a theory that does the desired job is defined and
studied.

∗The author was supported in part by NSF Grant DMS98-
03411-00798.

Here we propose an axiomatic definition of the
concept of a GDT and a precise statement of the DOMP.
We then outline the definitions of some GDTs, such
as the Warga derivate containers (abbr. WDCs), and
our more recent theories of “multidifferentials” and
“generalized differential quotients” (abbbr. GDQs).
Multidifferentials are generalizations of Warga’s derivate
containers, which in turn include the Clarke generalized
Jacobians (abbr. CGJs) as a special case. The
GDQs, on the other hand, generalize the CGJs in a
different direction, and constitute a theory that neither
contains nor is contained in that of the WDCs or in
that of multidifferentials. We will make this precise
by comparing these two types of theories by means of
examples. This will set the stage for the second paper, in
which we will presents a theory that achieves the desired
unification.

Remark 1.1 Generalized differentials that extend the
classical differential and the Warga derivate containers
were studied by H. Halkin in the 1970s in three remark-
ably insightful papers ([3, 4, 5]) that, unfortunately, do
not seem to have attracted the attention they deserved.

The work presented here is a continuation and ex-
tension of that of Halkin. In particular, our machinery
makes it possible to deal systematically with set-valued
maps, which appear when one studies flows of continu-
ous but not necessarily Lipschitz vector fields (as in the
“Lojasiewicz maximum principle,” cf. [7]) and also in
the analysis of differential inclusions (cf. [8]). ♦

2. GDTs

A “generalized differentiation theory” (abbr. GDT) is,
roughly, a way of assigning a “differential” D(F ;x, y;S)
to each 4-tuple (F, x, y, S) consisiting of (a) a set valued
map F : M→→N whose source M and target N are
manifolds of class C1, (b) a point x of M , (c) a point y
of N , and (d) a subset S of M . The object D(F ;x, y;S)
is required to be a set of nonempty compact subsets
of Lin(TxM,TyN), the space of linear maps from TxM
to TyN , where, for a manifold Q and a q ∈ Q, TqQ
denotes the tangent space to Q at q. The members of
D(F ;x, y;S) are the “D-differentials of F at (x, y) in the
direction of S.” (The set D(F ;x, y;S) could be empty,
in which case we say that F is not D-differentiable at
(x, y) in the direction of S.) The correspondence D is
required to satisfy the chain rule, the Cartesian product
rule, locality, and invariance under C1 diffeomorphisms.
Furthermore, it is required to be an extension of the
classical theory of differentials of maps of class C1.

To make all this precise, we introduce some notations
and definitions.
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Set-valued maps. By a set-valued map (abbr. SVM)
we mean a triple F = (A,B, G) such that A
and B are sets and G is a subset of A × B.
The sets A, B, G are, respectively, the source,
target, and graph of F , and we write A = So(F ),
B = Ta(F ), G = Gr(F ). If x is any object, we write
F (x) = {y : (x, y) ∈ Gr(F )}. (Hence F (x) = ∅ unless
x ∈ So(F ).) The sets Do(F ) = {x ∈ So(F ) : F (x) 6= ∅},
Im(F ) =

⋃
x∈So(F ) F (x), are, respectively, the domain

and image of F . If F = (A,B,G) is an SVM, we say
that F is an SVM from A to B, and write F : A→→B.
We use SV M(A,B) to denote the set of all SVMs from
A to B. The expression “ppd map” stands for “possibly
partially defined (that is, not necessarily everywhere
defined) ordinary (that is, single-valued) map,” and we
write f : A ----> B to indicate that f is a ppd map from
A to B. A time-varying ppd map from a set A to a set
B is a ppd map from A× R to B.

Classes of manifolds. We use Z+ to denote the
set of all nonnegative integers. If k ∈ Z+, then
Mk, SVM(Mk) will denote, respectively, the class of
all finite-dimensional Hausdorff manifolds of class Ck

without boundary, and the class of all SVMs F such that
So(F )∈Mk and Ta(F )∈Mk. If k ≥ 1 and x∈M∈Mk,
then TxM , T ∗x M , TM , T ∗M will denote, respectively,
the tangent and cotangent spaces to M at x, and the
tangent and cotangent bundles of M . Clearly, TM and
T ∗M belong to SVM(Mk−1).

The Bouligand tangent cone. If M ∈ M1, x ∈ M , and
S ⊆ M , then TB

x S will denote the Bouligand tangent
cone to S at x. By definition, TB

x S is the set of
all tangent vectors v ∈ TxM such that there exist a
sequence {(xj , hj)}j∈N of points of S × R having the
property that hj > 0 for all j, hj ↓ 0 as j → ∞,
and limj→∞ h−1

j (ϕ(xj) − ϕ(x)) = vϕ for all functions
ϕ ∈ C1(M, R).

Classes of linear spaces, linear multimaps. We write
RLS, FDRLS, to denote, respectively, the class of all
linear spaces over R, and the class of all X ∈ RLS that
are finite-dimensional. If X, Y ∈ RLS, then Lin(X, Y )
denotes the set of all R-linear maps from X to Y . A
subset of Lin(X, Y ) will be called a linear multimap from
X to Y . We use MLin(X, Y ), MLinc(X, Y ), to denote,
orespectively, the set of all linear multimaps from X
to Y and (if X, Y ∈ FDRLS) the set of all nonempty
compact linear multimaps from X to Y .

Definition 2.1 A generalized differentiation theory
(abbr. GDT) is a correspondence D that assigns to
every F ∈ SVM(M1), every (x, y) ∈ So(F )× Ta(F ),
and every subset S of the source So(F ), a
set D(F ;x, y;S) ⊆ MLinc(TxM,TyY ) of nonempty
compact linear multimaps from TxM to TyY , in such
a way that the following axioms are satisfied:

1. If m,n ∈ Z+, f : Rm 7→ Rn is a map of class C1,
and S is a polyhedral convex cone in Rm, then
{Df(0)}∈D(f ; 0, 0;S).

2. (The chain rule) If Fi ∈ SVM(M1) and Si⊆Mi
for i = 1, 2, M1 = So(F1), M2 =Ta(F1)=So(F2),
M3 =Ta(F2), xi ∈ Mi for i = 1, 2, 3, F1(S1) ⊆ S2,
Λ1(TB

x1
S1)⊆TB

x2
S2, and Λ2∈D(F2;x2, x3;S2), then

Λ2 ◦ Λ1∈D(F2 ◦ F1;x1, x3;S1).

3. (The product rule) If, for i = 1, 2, Fi ∈ SVM(M1),
xi ∈ Mi = So(Fi), yi∈Ni =Ta(Fi), Si ⊆ Mi, and
Λi ∈ D(Fi;xi, yi;Si), then Λ1 × Λ2 belongs to
D(F1 × F2; (x1, x2), (y1, y2);S1 × S2).

4. (C1 invariance) Assume that (a) for i = 1, 2,
Mi, Ni ∈ M1, Fi ∈ SVM(M1), Mi = So(Fi),
Ni =Ta(Fi), Si ⊆ Mi, xi ∈ M1, yi ∈ Ni, Ui, Vi
are open subsets of Mi, Ni such that xi ∈ Ui and
yi ∈ Vi, (b) Φ : U1 7→ U2 and Ψ : V1 7→ V2 are
diffeomorphisms of class C1 such that Φ(x1) = x2
and Ψ(y1) = y2, (c) Φ(S1 ∩U1) = S2 ∩ V2, and
(d) the set (Φ×Ψ)

(
Gr(F1)∩((S1 ∩ U1)×V1)

)
is equal to Gr(F2) ∩ ((S2 ∩ U2) × V2).
Then the set D(F2;x2, y2;S2) is equal to
DΨ(y1) ◦ D(F1;x1, y1;S1) ◦DΦ−1(x2). ♦

Remark 2.2 The C1 invariance property implies in
particular that a GDT D is local , in the sense that D
satisfies
4’. (Locality) Assume that (a) M,N ∈ M1, x ∈ M ,

y ∈ N , U, V is are open subsets of M,N such that
x ∈ U , y ∈ V , (b) for i = 1, 2, Fi ∈ SVM(M1),
M = So(Fi), N =Ta(Fi), Si ⊆ Mi,
(c) S1 ∩ U = S2 ∩ U and Gr(F1) ∩ ((S1 ∩ U)× V )
is equal to Gr(F2) ∩ ((S2 ∩ U)× V ). Then
D(F1;x, y;S1) = D(F2;x, y;S2). ♦

Remark 2.3 To construct a GDT D, it suffices to
specify D(F ; 0, 0;S), for all k, `, whenever F : Rk→→R`

and S ⊆ Rk. Let D0 be a correspondence of the kind
described above, but restricted to M = Rk, N = Rk,
x = 0, y = 0. It is then a routine matter to write down
a list of axioms that will guarantee that D0 “gives rise
in a canonical way” to a GDT in the sense of Definition
2.1.

The crucial point is C1 invariance and locality, i.e.,
the version of the C1 invariance condition of Definition
2.1 restricted to Rk, R`. We omit the details of the
general theory, but refer the reader to our discussion
of weak multidifferentials below (in §6, especially the
remarks following Corollary 6.3), where we explain how
this is done in one particular case. ♦

3. The directional open mapping property

We say that a GDT D has the directional open mapping
property if the following statement is true:.

(DOMP) Assume that n, m ∈ Z+, F ∈SVM(Rn, Rm),
v ∈ Rm, C is a closed convex cone in Rn, Λ belongs
to D(F ; 0, 0;C), and v∈

⋂
L∈Λ Int(LC). Then there

exists a closed convex cone D in Rn such that
v ∈ Int(D), having the property that for every
δ ∈]0,∞[ there exists an ε(δ) ∈]0,∞[ such that
D∩{y∈Rm :‖y‖≤ε(δ)}⊆F (C∩{x∈Rn :‖x‖≤δ}) . ♦

4. Warga derivate containers (WDCs)

Definition 4.1 Let f be a map from an open subset
Ω of Rm to Rn, and let x∗ ∈ Ω. A Warga derivate
container of f at x is a nonempty compact subset Λ of
Lin(Rm, Rn) such that

(*) for every open neighborhood Λ′ of Λ in the space
Lin(Rm, Rn) there exist an open neighborhood
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U = UΛ′ of x∗ in Ω and a sequence {fj}∞j=1 of maps
of class C1 from U to Rn, such that (a) fj → f
uniformly on U as j → ∞, and (b) the differential
Dfj(x) belongs to Λ′ for every x ∈ U and every j.

It follows from the definition of a WDC that any map
f that admits a WDC at a point x∗ must be Lipschitz
continuous on a neighborhood of x∗, since we can always
choose Λ′ to be bounded, in which case f will be a
uniform limit, on a neighborhood U of x∗, of maps of
class C1 with uniformly bounded derivatives.

Associated to the Warga derivate containers we can
define GDTs by extending the definition of the WDCs to
“WDCs along sets.” This can be done in more than one
way. For example, suppose C is a closed convex cone in
Rn, U is a neighborhood of 0 in Rn, and f : U∩C 7→ Rm

is a Lipschitz continuous map. We could then define a
WDC of f at 0 in the direction of C to be a WDC of
any extension f̃ of f to a Lipschitz map defined on a
full neighborhood V of 0 in Rn. Alternatively, we could
mimic Definition 4.1, using uniform approximations of f
by maps of class C1 on relative neighborhoods V ∩C of
0 in C. These two approaches lead to different theories.

We will not pursue this matter here any further and
will, instead, move on directly to a more general theory
called WMD (“weak multidifferentials”) that will be de-
fined ab initio as theory of differentials in the direction
of sets.

5. Regular set-valued maps

If X, Y are metric spaces, then SV Mcomp(X, Y )
will denote the subset of SV M(X, Y ) whose members
are the set-valued maps from X to Y that have a
compact graph. We say that a sequence {Fj}j∈N of
members of SV Mcomp(X, Y ) inward graph-converges to

an F ∈ SV Mcomp(X, Y )—and write Fj
igr−→ F—if for

every open subset Ω of X × Y such that Gr(F ) ⊆ Ω
there exists a jΩ ∈ N such that Gr(Fj) ⊆ Ω whenever
j ≥ jΩ.

Definition 5.1 Assume that X, Y are metric spaces.
A regular set-valued map from X to Y is a set-valued
map F ∈ SV M(X, Y ) such that
• for every compact subset K of X, the restriction

F dK of F to K belongs to SV Mcomp(K, Y ) and is
a limit—in the sense of inward graph-convergence—
of a sequence of continuous single-valued maps from
K to Y .

We use REG(X;Y ) to denote the set of all regular
set-valued maps from X to Y . ♦

It is easy to see that if F : X 7→ Y is an ordinary (that
is, single-valued and everywhere defined) map, then F
belongs to REG(X;Y ) if and only if F is continuous.

An important class of examples of regular maps is
provided by the following two results, whose proof we
omit.

Theorem 5.2 Assume that K is a compact metric
space, Y is a normed space, and C is a convex subset
of Y . Let Φ : K→→C be a set-valued map such that the
graph of Φ is compact and the value Φ(x) is a nonempty
convex set for every x ∈ K. Then Φ is regular as a map
from K to C.

Theorem 5.3 Assume that X is a metric space, Y
is a normed space, and C is a convex subset of Y .
Let Φ : K→→C be an upper semicontinuous set-valued
map with nonempty compact convex values. Then Φ ∈
REG(X;C). ♦

In addition, it is not hard to prove the following.

Theorem 5.4 Assume that X, Y , Z are metric spaces.
Let F ∈ REG(X;Y ), G ∈ REG(Y ;Z). Then the
composite map G ◦ F belongs to REG(X;Z). ♦

6. Weak multidifferentials

“Multidifferentials” were studied in [10]. Here we
introduce a slightly more general theory, of objects that
we call “weak multidifferentials.”

As a preliminary, we need some notations. If X, Y
are finite-dimensional real spaces, Ω ⊆ X, and Λ ⊆
Lin(X, Y ), we use C1

Λ(Ω, Y ) to denote the set of all maps
h : Ω 7→ Y of class C1 such that Dh(x) ∈ Λ for all
x ∈ Ω. (The precise meaning of “h is of class C1” is
clear if Ω is open. We also need to assign a meaning
to this expression when Ω is closed. This is done in the
usual Whitney way, which turns out to be equivalent
to the following: a map of class C1 from Ω to Y is a
pair (h1,H) consisting of continuous maps h1 : Ω 7→ Y ,
H : Ω 7→ Lin(X, Y ), having the property that, for every
x ∈ Ω, h1(x′)− h1(x)−H(x) · (x′ − x) = o(‖x′ − x‖) as
x′ → x via values in Ω. If h = (h1,H) is such an object,
then Dh is defined to be H, and if x ∈ Ω we define h(x)
to be h1(x).)

Definition 6.1 Let X, Y be finite-dimensional normed
real linear spaces. Define B̄X = {x ∈ X : ‖x‖ ≤ 1},
Z = Lin(X, Y ). Let F : X→→Y be a set-valued map.
Let (x∗, y∗) ∈ X × Y , and let Λ be a compact subset of
Z. Let C be a closed convex cone in X. We say that Λ is
a weak multidifferential of F at (x∗, y∗) in the direction
of C, and write

Λ ∈ WMD(F ;x∗, y∗;C) ,

if the following is true:

(WMD) for every neighborhood Λ′ of Λ in Z there exists
a pair (R,Θ) such that

(WMD.1) R > 0, and Θ is a function on the interval
]0, R] with values in [0,∞[ and such that
lims↓0 Θ(s) = 0,

(WMD.2) for every r ∈]0, R] there exist f, h such
that

(WMD.2.1) f ∈ REG(x∗ + (C ∩ rB̄X), Y );
(WMD.2.2) Gr(f) ⊆ Gr(F );
(WMD.2.3) h ∈ C1

Λ′(x∗ + (C ∩ rB̄X), Y );
(WMD.2.4) h(x∗) = y∗;
(WMD.2.5) the inequality

sup
{
||y−h(x)|| : y∈f(x)

}
≤r.Θ(r) (1)

holds whenever x−x∗ ∈ C ∩ rB̄X . ♦

Weak multidifferntials satisfy the following version of
the chain rule:
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Theorem 6.2 Let X1, X2, X3 be finite-dimensional real
linear spaces, and let x̄i ∈ Xi, i = 1, 2, 3. For i = 1, 2,
let Fi : Xi→→Xi+1 be a set-valued map from Xi to Xi+1,
let Ci be a closed convex cone in Xi, and let Λi be such
that Λi ∈ WMD(Fi; x̄i, x̄i+1, Ci). Let S be the linear
subspace of X2 spanned by C2, and let Π be a linear
projection from X2 onto S. Assume that F1(x̄1 + C1) is
a subset of x̄2 + C2. Then

Λ2 ◦Π ◦ Λ1 ∈ WMD(F2 ◦ F1; x̄1, x̄3;C1) . (2)

Theorem 6.2 was proved in [10] for multidifferentials,
but the same proof applies to weak multidifferentials as
well and we will not repeat it here.

The following is a trivial consequence of Theorem 6.2.

Corollary 6.3 Let X1, X2, X3 be finite-dimensional
real linear spaces, and let x̄i ∈ Xi, i = 1, 2, 3. For
i = 1, 2, let Fi : Xi→→Xi+1 be a set-valued map from
Xi to Xi+1, let Ci be a closed convex cone in Xi, and
let Λi be such that Λi ∈ WMD(Fi; x̄i, x̄i+1, Ci). Let
S be the linear subspace of X2 spanned by C2, and let
Π be a linear projection from X2 onto S. Assume that
F1(x̄1 + C1) is a subset of x̄2 + C2 and LC1 ⊆ S for all
L ∈ Λ1. Then

Λ2 ◦ Λ1 ∈ WMD(F2 ◦ F1; x̄1, x̄3;C1) . (3)

Using Corollary 6.3, we can extend WMD to a GDT
by defining WMD(F ;x∗, y∗;S), if M , N are manifolds
of class C1, F : M→→N , x∗ ∈ M , y∗ ∈ N , and
S ⊆ M , as follows. We call the set S conic at x∗
if there exists a coordinate chart κ near x∗ such that
κ(x∗) = 0 and κ(Do(κ) ∩ S) = Im(κ) ∩ C for some
closed convex cone C in Rdim M . If S is conic at x∗,
then we define WMD(F ;x∗, y∗;S) as a set of nonempty
compact subsets of Lin(Tx∗M,Ty∗N) using a chart κ as
above, together with a chart for N near y∗. Corollary 6.3
then tells us that WMD(F ;x∗, y∗;S) does not depend
on the choice of charts, so it is intrinsically defined. We
complete the definition by taking WMD(F ;x∗, y∗;S) to
be empty if S is not conic at x∗.

It is then easy to show that

Theorem 6.4 WMD is a GDT that has the DOMP.♦

7. Generalized differential quotients (GDQs)

Definition 7.1 Let m,n ∈ Z+, let F : Rm→→Rn be
a set-valued map, and let Λ be a nonempty compact
subset of Rn×m. Let S be a subset of Rm. We say
that Λ is a generalized differential quotient (abbreviated
“GDQ”) of F at (0, 0) in the direction of S, and write
Λ ∈ GDQ(F ; 0, 0;S), if for every positive real number δ
there exist U , G such that

1. U is a compact neighborhood of 0 in Rm and U ∩S
is compact;

2. G is a regular set-valued map from U ∩ S to the
δ-neighborhood Λδ of Λ in Rn×m;

3. G(x) · x ⊆ F (x) for every x ∈ U ∩ S. ♦

Remark 7.2 The definition of the GDQ is a general-
ization of a characterization of classical differentials due
to Botsko and Gosser, [2]. ♦

If M , N are C1 manifolds, x̄∈M , ȳ∈N , S⊆M , and
F : M→→N , then we can define a set GDQ(F ; x̄, ȳ;S)
of nonempty compact linear multimaps from Tx̄M to

TȳN by picking coordinate charts M 3 x → ξ(x) ∈ Rm,
N 3 y → η(y) ∈ Rn—where m = dim M , n = dim N—
defined near x̄, ȳ such n that ξ(x̄) = 0, η(ȳ) = 0,
and declaring a subset Λ of Lin(Tx̄M,TȳN) to belong
to GDQ(F ; x̄, ȳ;S) if the multimap Dη(ȳ)◦Λ◦Dξ(x̄)−1

is in GDQ(η◦F ◦ξ−1; 0, 0; ξ(S)). It turns out that, with
this definition, the set GDQ(F ; x̄, ȳ;S) does not depend
on the choice of the charts ξ, η. Moreover, the following
three results can be proved.

Theorem 7.3 GDQ is a generalized differentiation
theory that has the DOMP. ♦

Theorem 7.4 If F : Rn 7→ Rm is a continuous map,
x ∈ Rn, and F is classically differentiable at x, then
{DF (x)} ∈ GDQ(F ;x, F (x); Rn). ♦

Theorem 7.5 If F : Rn 7→ Rm is Lipschitz-continuous,
and x ∈ Rn, then the Clarke generalized Jacobian ∂F (x)
belongs to GDQ(F ;x, F (x); Rn). ♦

8. Comparison of WDC, WMD, and GDQ

Theorem 8.1 If F : Rn 7→ Rm is Lipschitz-continuous,
x∗ ∈ Rn, and Λ is a Warga derivate container of F at
x∗, then Λ ∈ WMD(F x∗, F (x∗) : Rn).

Proof. Let Λ′ be a neighoborhood of Λ in Rm×n. Let
{Fj}∞j=1 be a sequence of Rm-valued maps of class C1

defined on a closed ball B in Rn with center x∗, such
that Fj → F uniformly on B and DFj(x) ∈ Λ′ for all j
and all x ∈ B. Pick R and Θ in an arbitrary fashion so
that (WMD.1) holds and Θ(s) > 0 when s > 0. Given
r ∈]0, R], let f be the restriction of F to B. Then f is a
single-valued continuous map, so f is a fortiori a regular
set-valued map.

The maps B 3 x 7→ Fj(x)− Fj(x∗) + F (x∗) = hj(x)
converge uniformly to f on B and satisfy
hj(x∗) = F (x∗). Pick j such that ‖hj‖sup ≤ r.Θ(r),
and let h = hj , C = Rn. It is then clear that all the
conditions of (WMD.2) are satisfied. ♦

Theorems 7.4 and 7.5 show that GDQ is a common
generalization of both the classical theory of differentials
and the CGJ. Furthermore, it is easy to exhibit maps
that have GDQs at a point x̄ but are not classically
differentiable at x̄ and do not have a CGJ or a WDC. (A
simple example is provided by the function f : R → R
given by f(x) = x sin 1/x if x 6= 0, f(0) = 0. Then f
is not differentiable at 0 and does not have a WDC of
f at 0, since f is not Lipschitz continuous near 0. On
the other hand, the interval [−1, 1] clearly belongs to
GDQ(f ; 0, 0, R).)

The previous remarks show that GDQ is “much more
general than the classical differential and the CGJ com-
bined.” It would then be natural to conjecture that
GDQ is also more general than WMD, or at least more
general than WDC. This, however, it not true, because
there are Warga derivate containers that are not GDQs.

For a simple example, consider the function
f : R 7→ R2 ∼ C given by f(x) =

∫ x

0
e

i
t dt. Then

f is Lipschitz continuous. Let hj(t) = t−1 when
|t| ≥ j−1, and hj(t) = j2t when |t| ≤ j−1. Let
fj(x) =

∫ x

o
ei hj(t) dt. Then fj ∈ C1(R, C), and fj → f

uniformly on compact sets as j →∞. Furthermore, for
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every x and every j, the derivative f ′j(x) belongs to the
unit circle S1 = {z ∈ C : |z| = 1}. It follows that S1 is a
Warga derivate container of f at 0. On the other hand,
S1 is not a GDQ of f at 0. We will actually show that if
Λ is any GDQ of f at 0, then 0 ∈ Λ. To see this, assume
that 0 /∈ Λ, and pick a compact neighborhood Λ′ of Λ
such that 0 /∈ Λ′. Observe that, if x > 0, then we can
make the change of variables t = 1/s and conclude that
f(x) =

∫∞
1/x

eis

s2 ds. Integration by parts, with ξ = 1/x,

then yields f(x) = −iξ−2eiξ + 2i
∫∞

ξ
eis

s3 ds. A second
integration by parts then gives

f(x) = −iξ−2eiξ + 2ξ−3eiξ − 6
∫ ∞

ξ

eis

s4
ds .

But 6|
∫∞

ξ
eis

s4 ds| ≤ 6
∫∞

ξ
s−4 ds = 2ξ−3. Therefore

|f(x)| = O(ξ−2) = O(x2) as x ↓ 0. Now, since
Λ is a GDQ of f at 0, f must have a factorization
f(x) = g(x)x such that g is continuous and Λ′-valued on
some punctured neighborhood ]−α, α[\{0} of 0. Hence
there exists a δ ∈ R such that δ > 0 and |g(x)| ≥ δ
whenever 0 < x ≤ α. On the other hand, the bound
|f(x)| = O(x2) implies that |g(x)| = O(x) as x ↓ 0, and
we have reached a contradiction.

9. Conclusion

The remarks at the end of the previous section show
that the two “most general” GDTs described so far—
that is, GDQ and WMD—do not contain each other.
In the second paper of this series we introduce a new
GDT—the “path-integral generalized differential”—
that contains both.
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