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Abstract—In the nonsmooth versions of the Pontryagin follow in particular that, if two setsS;, S have tangent
Maximum Principle, the transversality condition involves a  conesC, C, at p, one of them in the Boltyanskii sense
normal cone to the terminal set. General versions of the and the other one in the Clarke one, then it is necessary

principle for highly non-smooth systems have been proved
by separation methods for cases that include, for example, a {07 51 and S; to be separated at that ¢, and C'; not

reference vector field which is classically differentiable along be strongly transversal. Bressan’s paper [1] gives a very
the reference trajectory but not Lipschitz. In these versions, nice construction that provides a counterexample to this
the notion of normal cone used is that of the polar of a 555ertion.

Boltyanskii approximating cone. Using a recent result of A. . , ;
Bressan, we prove that these versions can fail to be true if Using Bressan's counterexample, we will construct an

the Clarke normal cone (and, a fortiori, any smaller normal  ©Optimal control problem and an optimal trajectory for which
cone, such as the Mordukhovich cone) is used instead. The the usual conclusions of the Maximum Princple are not
key fact is A. Bressan's recent example of two closed sets that trye, if the Clarke tangent cone to the terminal set is

intersect at a pointp and are such that (a) one of the sets has a ,5q i the transversality condition instead of a Boltyanskii
Boltyanskii approximating cone C, at p, (b) the other set has . .
approximating cone.

a Clarke tangent coneC- at p, and (c) the conesC; and C;

are strongly transversal, but (d) the sets only intersect ap. I1. BOLTYANSKII AND CLARKE CONES
We begin by reviewing the concepts of “Boltyanskii
I. INTRODUCTION approximating cone,” “Bouligand tangent cone,” and
In a series of papers (e.g., [2], [3], [4], [5], [6], [7], “Cllarliﬁ_tangent cone” to a set atlal_pomt. o
(8. [9]. [10], [11], [12], [13], [14] [15], [16], [17], N IS paper, acone In a real inear spacet 1s a

[18], [19]) we have proposed versions of the Pontryagiff®Nempty subseC of X such thatre € C' whenever
Maximum Principle for highly non-smooth systems, based € & 7 = 0, andc € C. (In particular, if ' is a cone
on generalized differentials and flows, and proved b{1€n necessarily € C')

“primal” methods, using packets of needle variations. All Let .S be a subset oR™ and letp € S.

the.se proofs are based on separati.o.n theorems for setspefinition 2.1: A Boltyanskii approximating coneto S
which assert that a necessary condition for two S&ts  at ; is a convex cone” in R™ having the property that
S containing a poin to be separated at (in the sense there exist
that S; N Sy = {p}) is that C; and C> not be strongly
transversal (cf. Definition 3.2 below), wher@, and Cs (ii) a closed convex con® in R™
are “tangent cones” t&; and S, at p. These separation ... . . '

e i i) a neighborhoodU of 0 in R™,
theorems are true if “tangent cone” is interpreted to meay; .
y 0 oo ” A iv) a continuous mag : UND +— S,
Boltyanskii approximating cone” and also if it is taken to .

" » (v) alinear mapL : R™ +— R",
mean “Clarke tangent cone.
It had been an open question for several years wheth&¢ch that

there e_xists a more general theory that-contains both  Fa)=p+La+o(|z|) as 2—0, z€D
separation results, i.e., whether there exists a conceptd
of (non-unique) “tangent cone to a set” such that botANd LD = c. u
Boltyanskii cones and Clarke cones are “tangent” in this Definition 2.2: The Bouligand tangent coneo S atp is
more general sense, and the separation theorem is still trtiee set of all vectors € R™ such that there exist

Recently, A. Bressan has shown (Cf [1]) that such a(|) a Sequencépj}jeN of points of S Converging top,
concept cannot exist. Clearly, if it did exist, then it would (j) a sequence {h;};jen of positive real numbers

Research supported in part by NSF Grant DMS-05-09930 converging to0,

(i) a nonnegative integet,

b



such that The following fact tells us that nontransversality ©f
pj—p . andC is exactly equivalent to the existence of a separating
h; linear functional, i.e. of a\ € R™ such that(\,c) < 0
i for all c € C, and (A\,¢) > 0 for all ¢ € Cy. This point
We qseTfS to denote the Bouligand tangent coneSt@t  ig particularly important in conjunction with Lemma 3.3:
p- Itis then clear that'}” S is a closed cone. in the proof of the maximum principle, one constructs a
Definition 2.3: If S is closed, then the€larke tangent Subset of a reachable set which turns out to be separated

coneto S at p is the set of all vectors € R” such that, from another set, and then concludes that the tangent cones

to p, it follows that there exist Bouligand tangent vectordells us (provided that we manage to eliminate the special
v € TZES such thatlim; .. v; = v. m case wherf; ©C, = R") that the cones are not transversal,

so the separating covector exists.

v = lim

J—00

We useTpCS to denote the Clarke tangent conedaat p.

ThenTCS is a closed convex cone Lemma 3.4:If Cy, Cy are convex cones iR", thenC;
p )

and C, are transversal if and only if

IIl. TRANSVERSALITY n N
Crn(=C3)={0}.

The polar of a coneC in R™ is the setC* of all w € R

such that(w,¢) < 0 for all ¢ € C. It is clear thatC+ Proof: Observe that”; — (s is a convex cone, so
is always a closed convex cone, afd is the smallest C1 — C2 = R™ if and only if Clos(Cy — C2) = R", and
closed convex cone containiidg so in particulaC++ = ¢ if Clos(C1 — C2) # R™ then the Hahn-Banach theorem

if and only if C is closed and convex. implies thatCi- N (~Cy) # {0}. =
Definition 3.1: Two convex conesC;, Cs in R™ are IV. SET SEPARATION
transversalif C; — Cy = R™, i.e., if for everyz € R"” there

Two subsetsS;, Sy of R™ containing a poinp € R™ are
separatedat p if S; NSy = {p}. We say thatS; and S,
Definition 3.2: Two convex conesC;, C, in R" are arelocally separatecat p if there exists a neighborhodd

strongly transversaif they are transversal and in addition Of p such thatS; N Sa NV = {p}.
C1 N Cy #{0}. u The following results are well known.

existe; € Cq, ¢ € Cq, such thatr = ¢; — c». [ |

The following trivial observation says that transversality and Proposition 4.1:Let S;, S> be subsets oR™ that are
strong transversality are almost equivalent, and that the orl§cally separated at a point € R™, and letC, Cy be
gap between the two conditions occurs when the caies Boltyanskii approximating cones t6;, S; at p. ThenCy
and C, are linear subspaces such th@t @ C, = R», andC> are not strongly transversal. ]
in which caseC, and C, are transversal but not strongly Proposition 4.2: Let Sy, Ss
transversal.

be closed subsets & that
are locally separated at a poipte R", and letCy, Cs be
Lemma 3.3:If Cy, C, are convex cones iit”, thenC; the Clarke tangent cones ), S, atp. ThenC; and Cy

andC, are transversal if and only if either are not strongly transversal. u
() Ci and(Cy are strongly transversal, V. BRESSAN S COUNTEREXAMPLE
or The following result, proved recently by Bressan in

o ; _ on [1], answers negatively the natural question whether
(i) €y andC; are linear subspaces ang & C; = R". Propositions 4.1 and 4.2 can be combined into a single more
Proof: It suffices to assume thaf’; and C; are general separation theorem.

transversal but not strongly transversal and show that
(i) holds. Let us prove that”; is a linear subspace.
Pick ¢ € Cy. Using the transversality of’; and Cy write
—c=c1 —co,c; € C;. Thene; +c=co. Bute; +ce Cy
ande; € Cz. Soc +¢ € C1NCy, and therr, +¢ = 0, since (i) C, is a Boltyanskii approximating cone ) at 0,
C1 andCs are not strongly transversal. Therefore = ¢y, . .
s0 —c¢ € (7. This shows that € C; = —c € (4. So (ify C: is the Clarke tangent cone 1 at 0,
C, is a linear subspace. A similar argument shows that (i) C1 andCy are strongly transversal. u
?S a.linear subspace. Then the transversality ‘ofand C'; It will be important for us to know explicitly the cone
implies thatC; + Cs = Rf, and the fact that they are not C, of Bressan's example. It turns out that
strongly transversal implies that; N C; = {0}. Hence
Ci & Cy=R" ] Cr={(r,z,y,2) ER*:7>0, |z| <7, z=y=0}. (1)

Proposition 5.1: There exist two closed subsets, S,
of R* that are separated 6f and closed convex cone€s,
C5 in R* such that



In particular, the cone&”; is two-dimensional, and is the (a) U is a separable metric space,

image of the sector (b) The classi{ is a set of maps fromla,b] to U,
S={(rz)eR?:7>0, |2| <7} which is a “variational neighborhood” of., in the
following sense: for every positive integdf and every

in the (7,2) plane under the embedding map N-tuple (uy,...,ux) of members ofU there exists a

2 4
R® 5 (7,2) = (7,0,0,2) R ' positive numbek such that, whenevell;, ..., Iy) is
Furthermore, in Bressan’s counterexample the number an N-tuple of pairwise disjoint subintervals df, b]
the coneD, and the mag. of Definition 2.1 can be taken to for which ZN meas(I;) < ¢, andy is the funct7ion
j=1 Jj) =%

be 4, C; and the identity map, respectively. In other words: obtained froms, by substituting the constant value

(iv) There exist a neighborhood of 0 in R%, and a u; for n.(t) fort € I;, 5 =1,...,N, it follows that
continuous mag’ : U N C; — Sy, such that neu.

(€) f:R"xUx]Ja,b] — R"*andL : R"xU x [a,b] — R

T'(v) =v+o(]v|) as v—0,veC].
are maps such that

VI. THE OPTIMAL CONTROL COUNTEREXAMPLE (c.1) the mapR"™ x U > (x,u) — fr(x,u,t) € R+
We will first quote a version of the Maximum Principle is continuous for every € R,
which is known to be true—because it is a special case of (c.2) the mapla,b] > t — fE(z,n(t),t) € R** s
the general results of [5], [8], [9], [10], [11], [12], [13], measurable for every € U, x € R™,
[14], [15], [16], [18]—in which the transversality condition (¢ 3) for every compact subsetX of R™ and
involves a Boltyanskji cone. This yvill pe done in order to every n € U there exists an integrable function
contrast the result with the nearly identical statement where ¢ [a,b] — [0,+00] having the property that
the Clarke tangent cone is used instead, for which we will IfE (2, n(t),8)|| < ¢(t) wheneverz € K and
give a counterexample. t € [a,b],

Both statements deal with an optimal control problem in . B
which we are given atate spacewhich will be taken to  (d) S is @ subset oR™ andz € R™.
beR™, acontrol spacel/, aclass of admissible controlg, In addition, we are given an ATCR%,,n.) called the
atime intervala,b] C R, aninitial state z, aterminal set “reference ATCP." For this ATCP, we assume that
S, adynamical law

. (i) The map
Tr = f(xa u, t) s
n L n+1
where f is a map fromR” x U x [a,b] to R", and a R™ 5 b fR(&(0) + hyna(2),) € R
Lagrangian L, which is a map fromR™ x U x [a,b] to is differentiable ath = 0 for almost everyt € [a, b].
R. It is desired to minimize the integral (i) There exist
b
J(&,m) = / L(&(t),m(t),t) dt (1) an integrable functiotk : [a, b] — [0, +00]
@ (2) a positive numbed
in the class of all pairg, n) that satisfy: such that
al) n is a map from[a, b] to U,
(@l) s & map fromie, o] P (0 + b (0),8) — FH(E (0,0, )] < K(O)A]

(@2) nel,

(a3) ¢ is an f-trajectory corresponding to) (that
is, £ [a,b] — R™ is absolutely continuous and Theorem 6.1:Assume that the above conditions hold,
satisfiesé (t) = f(&(t),n(t),t) for almost every and the reference ATCF,,7.) is optimal, in the sense
t € la,b]), that J(&.,m) < J(&n) for all ATCPs (&,7). Assume,

(ad) €(a) = z and£(b) € S. moreover, thatC' is a convex cone inR™ which is a

dBoltyanskii approximating cone t§ at £,.(b). Then there

exist an absolutely continuous map: [a,b] — R™ and a

nonnegative constant, such that

(I) the adjoint equation

whenevert € [a,b], h € R™, and||h] < 0.

(A pair (¢,n) such that (al), (a2), and (a3) hold is calle
a trajectory-control pair abbr. “TCP.” A TCP for which
(ad) holds is amnadmissible trajectory-control pajrabbr.
“ATCP.")
We define . OHp,
" () = = 5 (Eu(t), m(8), 748, 1)
t) = t 7L ) 7t H H imi i iti
P t) = (@ u,t), Lz, w ) and theHamiltonian maximization condition
forz € R", u € U, t € [a,b], so fL is a map from
R™ x U x [a,b] to R"1, Hir, (&4 (8), m(t), m4 (1), 1)
We assume that = max{H, (&), 7(t),u,t) :uec U}




hold for almost allt € [a,b], where, for each and consider the optimal control problemR{ ~ R* x R*
po € R, the HamiltonianH,,, is the function from with dynamical law

R™ x R™ x U X [a, b] toR defined by the formula { 0 TR

I(y) if t>1,

jj =
Hyo (2, p,u,t) = (p, f(z,u,t)) — poL(w, u,1),
. u if t<1
(1) (w(db), m) # (0,0) (the nontriviality conditior), y = { 0 if t>1

() —=(b) € CT (the transversality condition — ® )
(wherez andy belong toR*), and control constraint € U.

The main observation of this paper is then the following. e seek to maximize the integral

Theorem 6.2:The statement of Theorem 6.1 is not true 2 1/2
if S is assumed to be closed and the words “a Boltyanskii I= /0 lu(®)]I*“dt
approximating cone tdS at £.(b)” are replaced by “the

Clarke tangent cone t§ at &, () in the class of all triple$z(-), y(-),n(-)) such that)(-) € U,

where i/ is the set of all measurable functions 2]
with values inU, andz(-), y(-) are the components of a

VIl. PROOF OFTHEOREM 6.2 trajectory ofu(-).

) i We impose the initial constraint
We construct an optimal control problem and an optimal

reference ATCP for which the paftr, 7o) of Theorem 6.1 z(0)=0 and y(0) =0,
does not exist.
For this purpose, we use the séts, S, and the cones
C1, Cy of Bressan’s counterexample (dfV). Then the 2(2) € Sy (3)
following conditions hold:

as well as the terminal constraint

(i.e., ((2),y(2)) € So x RY).
(c1) S; CR* andS, C R?, We let
(c2) S1 NSy ={0}, &()=0, n(t)=0.
(c3) C;, andC, are closed convex cones R,
(c4) Cy andCy are strongly transversal,
(c5) ¢, is a Boltyanskii approximating cone to
S at 0, and satisfies Condition (iv) djV,
(c6) Cj is the Clarke tangent cone 18, at 0.
(c7) €4 is given by (1).

Then the TCP(¢.,n.) satisfies the initial and terminal
constraints, and the integraddto be maximized has the
value0.

We claim that(&,,7n.) is optimal. To see this, we pick
an arbitrary TCR¢, i) that satisfies the initial and terminal
constraints, and prove thgt= ¢, andn = 7.

In view of (c5), there exisp, I" such that Write

(c8) p R andp > 0,
(c9) T is a continuous map fromB* N C; into S;  Then 1
(wherepB* is the closed ball irR* with center y(1) = / n(t) dt
0 and radiusp), 0
(c10) T'(v) = v +o(|[v]|) asv — 0 via values inC1.  soy(1) € U, because is U-valued andJ is compact and
convex.

It follows from (c4) that _
(c4) Furthemore, it is clear that

(c11) C, — Cy = R%, i.e., there does not exist a
nonzero vectow € R* having the property that y(2) = y(1).

> < .
xr%gne;e?c évrganeverc € Crand(v,c) < 0 On the other handxz(1) = 0, and the function
) = ] _[1,2] 3t~ y(t) € R* is constant and has the valyél).
Using (plO), we can assume without loss of generality; fo(10ws thatz(2) = T'(y(1)). Sincel takes values irf,
by choosingp small enough, that it follows that
1 _ x(2) € 5.
IT(v) — o] < §||v|| whenever v € pB* N C; . #(2) € 51
Then the terminal condition (3) implies that
This implies, in particular, that
_ 37(2) € Sl N 52,
if vepB*NC; and I'(v) =0 then v=0. (2) .
and it follows from (c2) that:(2) = 0.
We now let Therefore

U=pB*NnCy, I'(y(1)) =0,



and then (2) implies thag(1) = 0. Hence, if we let

If we write _ _
. . . b= pu(2), v=v(2),
n(t) = (7(t), 2(t),9(t), 2(t)) ,
then 7(¢) > 0 for all ¢t € [0,1] and folT(t) dt = 0, so
7(t) = 0 for almost all¢t € [0,1]. Then 2(¢t) = 0 almost

we see that

u(t) =g for tel0,2],

everywhere as well, becausg(t)| < 7(t). v(t) = (2— )+ 7 for te[l1,2], (5)
It follows thatn = 0 = n., so & = &.. Hence

(&,,m,) is theonly TCP that satisfies the initial and terminaland

constraints, sa fortiori (,,7,) is optimal. vit)=p+v  for tel0,1]. (6)

. 8
We now show that_ the map (0,2 — R® and the The terminal conditionz(2),y(2)) € Sy x R* tells us
constantr, of the Maximum Principle do not exist. Assumethat

they do, and write i€ CQT and 7=0.

m(t) = (u(t), v(t). It then follows from (5) (or from (6)) that
Then the Hamiltonian is given b _
g y " v(l)=p.
. if t<1
Ho (o, y,p gyt =4 44 mollel So (4) implies that
peCy.

where p € R?* ¢ € R* are, respectively, the

momentum variables conjugate toand y. (In particular,

Hy,(x,y,p,q,u,t) does not depend oh) —hE CI N(=Cy)t.
For the Hamiltonian maximization condition (HMC) to

be satisfied, we neeg, = 0, because ifr, > 0 then, if p On the other hand;; andC, are transversal, Henge= 0.
is arbitrary, the function Since we have already shown that= 0, we have in fact

proved that

We have therefore established that

Usus p-u+ mllul|/?

_ ) u(2)=v(2)=0 and T =0.
does not have a maximum at= 0, since
This contradicts the nontriviality condition.

. 1/2 _ _
prutmlu”" =0 when u=0, Hence we have completed our proof that a set of
while, on the other hand, multipliers satisfying all the conditions of the conclusion
. of the Maximum Principle does does not exist, proving our
12 _ 1/2 p-u
p - u+ mol|ul| = mollul[ /(1 + moluli72 theorem.

mollul 2 (1+0(1))

so thatp - u + mo||ul|/2 > 0 if u # 0 and||u|| is small.
If t <1, then the HMC implies that

VIIl. CONCLUDING REMARKS

The result of Theorem 6.2 shows that the separation
methods used to prove theorems such as those of [16]

v(t)-u<0 for all weU, and [18] will definitely not work if the terminal condition
o . involves a set with a given Clarke tangent cofieand
from which it follows easily that the transversality condition is expected to require that the
y(t) u<0 for all weC,. terminal adjoint covector belong to the_negative p(;~li_;ﬁ’T _
of C. Naturally, then, these methods will not work either if
Therefore one tries to use a “normal coneV smaller thatCT, such
u(t) € le for all te[0,1]. @) @os for example the Mordukhovich normal cone.
o _ On the other hand, these methods are all based on
The adjoint equation says that extensions of Proposition 4.1, whose proof depends on a

topological argument involving the Brouwer fixed point
theorem or some variation thereof.

v(t) = constant  for ¢ € [0,1], It is conceivable that there might exist another family of
separation theorems, generalizing Proposition 4.2. In [17]
we have proposed a concept of “tangent multicone” to a set
at a point (called a “Mordukhovich-Warga approximating
(because the map — T'(y) is differentiable aty = 0 and multicone”, henceforth abbreviated as MWAMC), which
its differential at0 is the identity map). contains as a particular case the Clarke tangent cone

p(t) = constant for te€]0,2],

and
v(t) = —u(t) for tell,2],



and, more generally, the Mordukhovich tangent multicone|3]
(In the ordinary theory, there exists no such thing as a
“Mordukhovich tangent cone,” because the Mordukhovich
normal cone is not convex, and therefore it is not the polays)
of an ordinary cone. In our theory, in which “multicones”
are sets of cones, the polar of a convex multicone is a cone
which need not be convex, and the Mordukhovich normais;
cone is the polar of a cone that we call the “Mordukhovich
tangent multicone.”)

This suggests the possibility that there might exist anotheyg)
family of versions of the Maximum Principle related to our
MWAMCs, or perhaps to some other notion of tangent cone
or multicone, or of normal cone, or of normal object of some,
kind.

The first step towards developing such a theory is the
separation theorem for MWAMCSs, which was proved in
[17], and constitutes a natural extension of Proposition 4.2.
The next step would be to derive versions of the Maximum(8!
Principle in this new setting. It is clear that the methods
would have to be different from those of the theory based
on topological arguments. In particular, the proofs of the
separation theorems would involve analytical arguments[.
(Typically, these proofs use the finite-dimensionality in
a completely different way from that of the topologicall10]
arguments. The standard technique is to somehow construct
a sequence(p;}en of “approximate adjoint covectors”, 19
normalized so thafp;|| = 1, and then pass to the limit and
extract a subsequence that convergence to a true adjoint
covector p. The technical problem is then to guarantee
that p # 0, which is possible in finite dimensions using[12]
ordinary convergence and the compactness of the unit
sphere, while in infinite dimensions, even when one can
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extract a subsequence that converges in some weak Sefsg, sussmann, H.J., “Needle variations and almost lower semicontinuous

it may very well happen thagi = 0.)

The hope is that there will turn out to be two (and nq, ,
more than two) general versions of the finite-dimensional
maximum principle, one involving generalizations of
Boltyanksii cones (such as our “GDQ approximatin
multicones”), the other one involving generalizations (ﬂ ]
Clarke cones (perhaps the MWAMCS).

The unifying principle of both theories would be the 6]
separation theorems. Unfortunately, the counterexample
discovered by Bressan shows that the idea of developing one
single theory that contains both is almost certainly doomeld?]
to failure.

(18]
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