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Abstract— In the nonsmooth versions of the Pontryagin
Maximum Principle, the transversality condition involves a
normal cone to the terminal set. General versions of the
principle for highly non-smooth systems have been proved
by separation methods for cases that include, for example, a
reference vector field which is classically differentiable along
the reference trajectory but not Lipschitz. In these versions,
the notion of normal cone used is that of the polar of a
Boltyanskii approximating cone. Using a recent result of A.
Bressan, we prove that these versions can fail to be true if
the Clarke normal cone (and, a fortiori, any smaller normal
cone, such as the Mordukhovich cone) is used instead. The
key fact is A. Bressan’s recent example of two closed sets that
intersect at a point p and are such that (a) one of the sets has a
Boltyanskii approximating cone C1 at p, (b) the other set has
a Clarke tangent coneC2 at p, and (c) the conesC1 and C2

are strongly transversal, but (d) the sets only intersect atp.

I. I NTRODUCTION

In a series of papers (e.g., [2], [3], [4], [5], [6], [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19]) we have proposed versions of the Pontryagin
Maximum Principle for highly non-smooth systems, based
on generalized differentials and flows, and proved by
“primal” methods, using packets of needle variations. All
these proofs are based on separation theorems for sets,
which assert that a necessary condition for two setsS1,
S2 containing a pointp to be separated atp (in the sense
that S1 ∩ S2 = {p}) is that C1 and C2 not be strongly
transversal (cf. Definition 3.2 below), whereC1 and C2

are “tangent cones” toS1 and S2 at p. These separation
theorems are true if “tangent cone” is interpreted to mean
“Boltyanskii approximating cone” and also if it is taken to
mean “Clarke tangent cone.”

It had been an open question for several years whether
there exists a more general theory that contains both
separation results, i.e., whether there exists a concept
of (non-unique) “tangent cone to a set” such that both
Boltyanskii cones and Clarke cones are “tangent” in this
more general sense, and the separation theorem is still true.

Recently, A. Bressan has shown (cf. [1]) that such a
concept cannot exist. Clearly, if it did exist, then it would
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follow in particular that, if two setsS1, S2 have tangent
conesC1, C2 at p, one of them in the Boltyanskii sense
and the other one in the Clarke one, then it is necessary
for S1 and S2 to be separated atp that C1 and C2 not
be strongly transversal. Bressan’s paper [1] gives a very
nice construction that provides a counterexample to this
assertion.

Using Bressan’s counterexample, we will construct an
optimal control problem and an optimal trajectory for which
the usual conclusions of the Maximum Princple are not
true, if the Clarke tangent cone to the terminal set is
used in the transversality condition instead of a Boltyanskii
approximating cone.

II. B OLTYANSKII AND CLARKE CONES

We begin by reviewing the concepts of “Boltyanskii
approximating cone,” “Bouligand tangent cone,” and
“Clarke tangent cone” to a set at a point.

In this paper, acone in a real linear spaceX is a
nonempty subsetC of X such thatrc ∈ C whenever
r ∈ R, r ≥ 0, and c ∈ C. (In particular, ifC is a cone
then necessarily0 ∈ C.)

Let S be a subset ofRn and letp ∈ S.

Definition 2.1: A Boltyanskii approximating coneto S
at p is a convex coneC in Rn having the property that
there exist

(i) a nonnegative integerm,
(ii) a closed convex coneD in Rm,

(iii) a neighborhoodU of 0 in Rm,
(iv) a continuous mapF : U ∩D 7→ S,
(v) a linear mapL : Rm 7→ R

n,

such that

F (x) = p+ Lx+ o(‖x‖) as x→ 0 , x ∈ D ,

andLD = C.

Definition 2.2: TheBouligand tangent coneto S at p is
the set of all vectorsv ∈ Rn such that there exist

(i) a sequence{pj}j∈N of points ofS converging top,
(ii) a sequence {hj}j∈N of positive real numbers

converging to0,



such that

v = lim
j→∞

pj − p
hj

.

We useTBp S to denote the Bouligand tangent cone toS at
p. It is then clear thatTBp S is a closed cone.

Definition 2.3: If S is closed, then theClarke tangent
cone to S at p is the set of all vectorsv ∈ Rn such that,
whenever{pj}j∈N is a sequence of points ofS converging
to p, it follows that there exist Bouligand tangent vectors
vj ∈ TBpjS such thatlimj→∞ vj = v.

We useTCp S to denote the Clarke tangent cone toS at p.
ThenTCp S is a closed convex cone.

III. T RANSVERSALITY

The polar of a coneC in Rn is the setC⊥ of all w ∈ Rn
such that〈w, c〉 ≤ 0 for all c ∈ C. It is clear thatC⊥

is always a closed convex cone, andC⊥⊥ is the smallest
closed convex cone containingC, so in particularC⊥⊥ = C
if and only if C is closed and convex.

Definition 3.1: Two convex conesC1, C2 in R
n are

transversalif C1 − C2 = R
n, i.e., if for everyx ∈ Rn there

exist c1 ∈ C1, c2 ∈ C2, such thatx = c1 − c2.

Definition 3.2: Two convex conesC1, C2 in R
n are

strongly transversalif they are transversal and in addition
C1 ∩ C2 6= {0}.

The following trivial observation says that transversality and
strong transversality are almost equivalent, and that the only
gap between the two conditions occurs when the conesC1

and C2 are linear subspaces such thatC1 ⊕ C2 = R
n,

in which caseC1 andC2 are transversal but not strongly
transversal.

Lemma 3.3:If C1, C2 are convex cones inRn, thenC1

andC2 are transversal if and only if either

(i) C1 andC2 are strongly transversal,

or

(ii) C1 andC2 are linear subspaces andC1 ⊕ C2 = R
n.

Proof: It suffices to assume thatC1 and C2 are
transversal but not strongly transversal and show that
(ii) holds. Let us prove thatC1 is a linear subspace.
Pick c ∈ C1. Using the transversality ofC1 andC2 write
−c = c1 − c2, ci ∈ Ci. Thenc1 + c = c2. But c1 + c ∈ C1

andc2 ∈ C2. Soc1+c ∈ C1∩C2, and thenc1+c = 0, since
C1 andC2 are not strongly transversal. Therefore−c = c1,
so −c ∈ C1. This shows thatc ∈ C1 ⇒ −c ∈ C1. So
C1 is a linear subspace. A similar argument shows thatC2

is a linear subspace. Then the transversality ofC1 andC2

implies thatC1 + C2 = R
n, and the fact that they are not

strongly transversal implies thatC1 ∩ C2 = {0}. Hence
C1 ⊕ C2 = R

n.

The following fact tells us that nontransversality ofC1

andC2 is exactly equivalent to the existence of a separating
linear functional, i.e. of aλ ∈ Rn such that〈λ, c〉 ≤ 0
for all c ∈ C1 and 〈λ, c〉 ≥ 0 for all c ∈ C2. This point
is particularly important in conjunction with Lemma 3.3:
in the proof of the maximum principle, one constructs a
subset of a reachable set which turns out to be separated
from another set, and then concludes that the tangent cones
to the two sets are not strongly transversal. Lemma 3.3 then
tells us (provided that we manage to eliminate the special
case whenC1⊕C2 = R

n) that the cones are not transversal,
so the separating covector exists.

Lemma 3.4:If C1, C2 are convex cones inRn, thenC1

andC2 are transversal if and only if

C⊥1 ∩ (−C⊥2 ) = {0} .

Proof: Observe thatC1 − C2 is a convex cone, so
C1 − C2 = R

n if and only if Clos(C1 − C2) = R
n, and

if Clos(C1 − C2) 6= R
n then the Hahn-Banach theorem

implies thatC⊥1 ∩ (−C⊥2 ) 6= {0}.

IV. SET SEPARATION

Two subsetsS1, S2 of Rn containing a pointp ∈ Rn are
separatedat p if S1 ∩ S2 = {p}. We say thatS1 andS2

are locally separatedat p if there exists a neighborhoodV
of p such thatS1 ∩ S2 ∩ V = {p}.

The following results are well known.

Proposition 4.1:Let S1, S2 be subsets ofRn that are
locally separated at a pointp ∈ Rn, and letC1, C2 be
Boltyanskii approximating cones toS1, S2 at p. ThenC1

andC2 are not strongly transversal.

Proposition 4.2:Let S1, S2 be closed subsets ofRn that
are locally separated at a pointp ∈ Rn, and letC1, C2 be
the Clarke tangent cones toS1, S2 at p. ThenC1 andC2

are not strongly transversal.

V. BRESSAN’ S COUNTEREXAMPLE

The following result, proved recently by Bressan in
[1], answers negatively the natural question whether
Propositions 4.1 and 4.2 can be combined into a single more
general separation theorem.

Proposition 5.1:There exist two closed subsetsS1, S2

of R4 that are separated at0, and closed convex conesC1,
C2 in R4 such that

(i) C1 is a Boltyanskii approximating cone toS1 at 0,

(ii) C2 is the Clarke tangent cone toS2 at 0,

(iii) C1 andC2 are strongly transversal.

It will be important for us to know explicitly the cone
C1 of Bressan’s example. It turns out that

C1 ={(τ, x, y, z)∈R4 :τ≥0, |z|≤τ, x=y=0} . (1)



In particular, the coneC1 is two-dimensional, and is the
image of the sector

Σ = {(τ, z) ∈ R2 : τ ≥ 0 , |z| ≤ τ}

in the (τ, z) plane under the embedding map
R

2 3 (τ, z) 7→ (τ, 0, 0, z) ∈ R4.
Furthermore, in Bressan’s counterexample the numberm,

the coneD, and the mapL of Definition 2.1 can be taken to
be4, C1 and the identity map, respectively. In other words:

(iv) There exist a neighborhoodU of 0 in R
4, and a

continuous mapΓ : U ∩ C1 7→ S1, such that

Γ(v) = v + o(‖v‖) as v → 0 , v ∈ C1 .

VI. T HE OPTIMAL CONTROL COUNTEREXAMPLE

We will first quote a version of the Maximum Principle
which is known to be true—because it is a special case of
the general results of [5], [8], [9], [10], [11], [12], [13],
[14], [15], [16], [18]—in which the transversality condition
involves a Boltyanskii cone. This will be done in order to
contrast the result with the nearly identical statement where
the Clarke tangent cone is used instead, for which we will
give a counterexample.

Both statements deal with an optimal control problem in
which we are given astate space, which will be taken to
beRn, a control spaceU , a class of admissible controlsU ,
a time interval[a, b] ⊆ R, an initial state x̄, a terminal set
S, a dynamical law

ẋ = f(x, u, t) ,

where f is a map fromRn × U × [a, b] to Rn, and a
LagrangianL, which is a map fromRn × U × [a, b] to
R. It is desired to minimize the integral

J(ξ, η) =
∫ b

a

L(ξ(t), η(t), t) dt

in the class of all pairs(ξ, η) that satisfy:

(a1) η is a map from[a, b] to U ,

(a2) η ∈ U ,

(a3) ξ is an f -trajectory corresponding toη (that
is, ξ : [a, b] 7→ R

n is absolutely continuous and
satisfiesξ̇(t) = f(ξ(t), η(t), t) for almost every
t ∈ [a, b]),

(a4) ξ(a) = x̄ andξ(b) ∈ S.

(A pair (ξ, η) such that (a1), (a2), and (a3) hold is called
a trajectory-control pair, abbr. “TCP.” A TCP for which
(a4) holds is anadmissible trajectory-control pair, abbr.
“ATCP.”)

We define

fL(x, u, t) = (f(x, u, t), L(x, u, t))

for x ∈ R
n, u ∈ U , t ∈ [a, b], so fL is a map from

R
n × U × [a, b] to Rn+1.
We assume that

(a) U is a separable metric space,

(b) The classU is a set of maps from[a, b] to U ,
which is a “variational neighborhood” ofη∗, in the
following sense: for every positive integerN and every
N -tuple (u1, . . . , uN ) of members ofU there exists a
positive numberε such that, whenever(I1, . . . , IN ) is
an N -tuple of pairwise disjoint subintervals of[a, b]
for which

∑N
j=1 meas(Ij) ≤ ε, andη is the function

obtained fromη∗ by substituting the constant value
uj for η∗(t) for t ∈ Ij , j = 1, . . . , N , it follows that
η ∈ U .

(c) f : Rn×U× [a, b] 7→ R
n andL : Rn×U× [a, b] 7→ R

are maps such that

(c.1) the mapsRn × U 3 (x, u) 7→ fL(x, u, t) ∈ Rn+1

is continuous for everyt ∈ R,

(c.2) the map[a, b] 3 t 7→ fL(x, η(t), t) ∈ Rn+1 is
measurable for everyη ∈ U , x ∈ Rn,

(c.3) for every compact subsetK of R
n and

every η ∈ U there exists an integrable function
ϕ : [a, b] 7→ [0,+∞] having the property that
‖fL(x, η(t), t)‖ ≤ ϕ(t) wheneverx ∈ K and
t ∈ [a, b],

(d) S is a subset ofRn and x̄ ∈ Rn.

In addition, we are given an ATCP(ξ∗, η∗) called the
“reference ATCP.” For this ATCP, we assume that

(i) The map

R
n 3 h 7→ fL(ξ∗(t) + h, η∗(t), t) ∈ Rn+1

is differentiable ath = 0 for almost everyt ∈ [a, b].
(ii) There exist

(1) an integrable functionk : [a, b] 7→ [0,+∞]
(2) a positive numberδ

such that

‖fL(ξ∗(t) + h, η∗(t), t)− fL(ξ∗(t), η∗(t), t)‖ ≤ k(t)‖h‖

whenevert ∈ [a, b], h ∈ Rn, and‖h‖ ≤ δ.

Theorem 6.1:Assume that the above conditions hold,
and the reference ATCP(ξ∗, η∗) is optimal, in the sense
that J(ξ∗, η∗) ≤ J(ξ, η) for all ATCPs (ξ, η). Assume,
moreover, thatC is a convex cone inRn which is a
Boltyanskii approximating cone toS at ξ∗(b). Then there
exist an absolutely continuous mapπ : [a, b] 7→ R

n and a
nonnegative constantπ0 such that

(I) the adjoint equation

π̇(t) = − ∂Hπ0

∂x
(ξ∗(t), π(t), η∗(t, t)

and theHamiltonian maximization condition

Hπ0(ξ∗(t), π(t), η∗(t), t)

= max{Hπ0(ξ∗(t), π(t), u, t) : u ∈ U}



hold for almost all t ∈ [a, b], where, for each
p0 ∈ R, the HamiltonianHp0 is the function from
R
n × Rn × U × [a, b] toR defined by the formula

Hp0(x, p, u, t) def= 〈p, f(x, u, t)〉 − p0L(x, u, t) ,

(II) (π(b), π0) 6= (0, 0) (the nontriviality condition),
(III) −π(b) ∈ C† (the transversality condition).

The main observation of this paper is then the following.

Theorem 6.2:The statement of Theorem 6.1 is not true
if S is assumed to be closed and the words “a Boltyanskii
approximating cone toS at ξ∗(b)” are replaced by “the
Clarke tangent cone toS at ξ∗(b).”

VII. PROOF OFTHEOREM 6.2

We construct an optimal control problem and an optimal
reference ATCP for which the pair(π, π0) of Theorem 6.1
does not exist.

For this purpose, we use the setsS1, S2 and the cones
C1, C2 of Bressan’s counterexample (cf.§V). Then the
following conditions hold:

(c1) S1 ⊆ R4 andS2 ⊆ R4,
(c2) S1 ∩ S2 = {0},
(c3) C1 andC2 are closed convex cones inR4,
(c4) C1 andC2 are strongly transversal,
(c5) C1 is a Boltyanskii approximating cone to

S1 at 0, and satisfies Condition (iv) of§V,
(c6) C2 is the Clarke tangent cone toS2 at 0.
(c7) C1 is given by (1).

In view of (c5), there existρ, Γ such that

(c8) ρ ∈ R andρ > 0,
(c9) Γ is a continuous map fromρB̄4 ∩ C1 into S1

(whereρB̄4 is the closed ball inR4 with center
0 and radiusρ),

(c10) Γ(v) = v + o(‖v‖) asv → 0 via values inC1.

It follows from (c4) that

(c11) C1 − C2 = R
4, i.e., there does not exist a

nonzero vectorv ∈ R4 having the property that
〈v, c〉 ≥ 0 wheneverc ∈ C1 and 〈v, c〉 ≤ 0
wheneverc ∈ C2.

Using (c10), we can assume without loss of generality,
by choosingρ small enough, that

‖Γ(v)− v‖ ≤ 1
2
‖v‖ whenever v ∈ ρB̄4 ∩ C1 .

This implies, in particular, that

if v ∈ ρB̄4 ∩ C1 and Γ(v) = 0 then v = 0 . (2)

We now let
U = ρB̄4 ∩ C1 ,

and consider the optimal control problem inR8 ∼ R4 × R4

with dynamical law

ẋ =
{

0 if t < 1
Γ(y) if t ≥ 1 ,

ẏ =
{
u if t < 1
0 if t ≥ 1

(wherex andy belong toR4), and control constraintu ∈ U .
We seek to maximize the integral

I =
∫ 2

0

‖u(t)‖1/2dt

in the class of all triples(x(·), y(·), η(·)) such thatη(·) ∈ U ,
where U is the set of all measurable functions on[0, 2]
with values inU , andx(·), y(·) are the components of a
trajectory ofu(·).

We impose the initial constraint

x(0) = 0 and y(0) = 0 ,

as well as the terminal constraint

x(2) ∈ S2 (3)

(i.e., (x(2), y(2)) ∈ S2 × R4).
We let

ξ∗(t) ≡ 0 , η∗(t) ≡ 0 .

Then the TCP(ξ∗, η∗) satisfies the initial and terminal
constraints, and the integrandI to be maximized has the
value0.

We claim that(ξ∗, η∗) is optimal. To see this, we pick
an arbitrary TCP(ξ, η) that satisfies the initial and terminal
constraints, and prove thatξ ≡ ξ∗ andη ≡ η∗.

Write
ξ(t) = (x(t), y(t)) .

Then

y(1) =
∫ 1

0

η(t) dt ,

so y(1) ∈ U , becauseη is U -valued andU is compact and
convex.

Furthemore, it is clear that

y(2) = y(1) .

On the other hand,x(1) = 0, and the function
[1, 2] 3 t 7→ y(t) ∈ R4 is constant and has the valuey(1).
It follows thatx(2) = Γ(y(1)). SinceΓ takes values inS1,
it follows that

x(2) ∈ S1 .

Then the terminal condition (3) implies that

x(2) ∈ S1 ∩ S2 ,

and it follows from (c2) thatx(2) = 0.
Therefore

Γ(y(1)) = 0 ,



and then (2) implies thaty(1) = 0.
If we write

η(t) = (τ(t), x̂(t), ŷ(t), ẑ(t)) ,

then τ(t) ≥ 0 for all t ∈ [0, 1] and
∫ 1

0
τ(t) dt = 0, so

τ(t) = 0 for almost all t ∈ [0, 1]. Then ẑ(t) = 0 almost
everywhere as well, because|ẑ(t)| ≤ τ(t).

It follows that η ≡ 0 ≡ η∗ , so ξ ≡ ξ∗ . Hence
(ξ∗, η∗) is theonly TCP that satisfies the initial and terminal
constraints, soa fortiori (ξ∗, η∗) is optimal.

We now show that the mapπ : [0, 2] 7→ R
8 and the

constantπ0 of the Maximum Principle do not exist. Assume
they do, and write

π(t) = (µ(t), ν(t)) .

Then the Hamiltonian is given by

Hπ0(x, y, p, q, u, t) =
{
q · u+ π0‖u‖1/2 if t < 1
p · Γ̂(y) if t ≥ 1 ,

where p ∈ R
4, q ∈ R

4 are, respectively, the
momentum variables conjugate tox and y. (In particular,
Hπ0(x, y, p, q, u, t) does not depend ont.)

For the Hamiltonian maximization condition (HMC) to
be satisfied, we needπ0 = 0, because ifπ0 > 0 then, if p
is arbitrary, the function

U 3 u 7→ p · u+ π0‖u‖1/2

does not have a maximum atu = 0, since

p · u+ π0‖u‖1/2 = 0 when u = 0 ,

while, on the other hand,

p · u+ π0‖u‖1/2 = π0‖u‖1/2
(

1 +
p · u
π0‖u‖1/2

)
= π0‖u‖1/2

(
1 + o(1)

)
,

so thatp · u+ π0‖u‖1/2 > 0 if u 6= 0 and‖u‖ is small.
If t < 1, then the HMC implies that

ν(t) · u ≤ 0 for all u ∈ U ,

from which it follows easily that

ν(t) · u ≤ 0 for all u ∈ C1 .

Therefore

ν(t) ∈ C†1 for all t ∈ [0, 1] . (4)

The adjoint equation says that

µ(t) = constant for t ∈ [0, 2] ,

ν(t) = constant for t ∈ [0, 1] ,

and
ν̇(t) = −µ(t) for t ∈ [1, 2] ,

(because the mapy 7→ Γ(y) is differentiable aty = 0 and
its differential at0 is the identity map).

Hence, if we let

µ̄ = µ(2) , ν̄ = ν(2) ,

we see that

µ(t) = µ̄ for t ∈ [0, 2] ,

ν(t) = (2− t)µ̄+ ν̄ for t ∈ [1, 2] , (5)

and
ν(t) = µ̄+ ν̄ for t ∈ [0, 1] . (6)

The terminal condition(x(2), y(2)) ∈ S2 × R4 tells us
that

−µ̄ ∈ C†2 and ν̄ = 0 .

It then follows from (5) (or from (6)) that

ν(1) = µ̄ .

So (4) implies that
µ̄ ∈ C†1 .

We have therefore established that

−µ̄ ∈ C†1 ∩ (−C2)† .

On the other hand,C1 andC2 are transversal, Hencēµ = 0.
Since we have already shown thatν̄ = 0, we have in fact
proved that

µ(2) = ν(2) = 0 and π0 = 0 .

This contradicts the nontriviality condition.
Hence we have completed our proof that a set of

multipliers satisfying all the conditions of the conclusion
of the Maximum Principle does does not exist, proving our
theorem.

VIII. C ONCLUDING REMARKS

The result of Theorem 6.2 shows that the separation
methods used to prove theorems such as those of [16]
and [18] will definitely not work if the terminal condition
involves a set with a given Clarke tangent coneC and
the transversality condition is expected to require that the
terminal adjoint covector belong to the negative polar−C†
of C. Naturally, then, these methods will not work either if
one tries to use a “normal cone”N smaller thatC†, such
as for example the Mordukhovich normal cone.

On the other hand, these methods are all based on
extensions of Proposition 4.1, whose proof depends on a
topological argument involving the Brouwer fixed point
theorem or some variation thereof.

It is conceivable that there might exist another family of
separation theorems, generalizing Proposition 4.2. In [17]
we have proposed a concept of “tangent multicone” to a set
at a point (called a “Mordukhovich-Warga approximating
multicone”, henceforth abbreviated as MWAMC), which
contains as a particular case the Clarke tangent cone



and, more generally, the Mordukhovich tangent multicone.
(In the ordinary theory, there exists no such thing as a
“Mordukhovich tangent cone,” because the Mordukhovich
normal cone is not convex, and therefore it is not the polar
of an ordinary cone. In our theory, in which “multicones”
are sets of cones, the polar of a convex multicone is a cone
which need not be convex, and the Mordukhovich normal
cone is the polar of a cone that we call the “Mordukhovich
tangent multicone.”)

This suggests the possibility that there might exist another
family of versions of the Maximum Principle related to our
MWAMCs, or perhaps to some other notion of tangent cone
or multicone, or of normal cone, or of normal object of some
kind.

The first step towards developing such a theory is the
separation theorem for MWAMCs, which was proved in
[17], and constitutes a natural extension of Proposition 4.2.
The next step would be to derive versions of the Maximum
Principle in this new setting. It is clear that the methods
would have to be different from those of the theory based
on topological arguments. In particular, the proofs of the
separation theorems would involve analytical arguments.
(Typically, these proofs use the finite-dimensionality in
a completely different way from that of the topological
arguments. The standard technique is to somehow construct
a sequence{pj}j∈N of “approximate adjoint covectors”,
normalized so that‖pj‖ = 1, and then pass to the limit and
extract a subsequence that convergence to a true adjoint
covector p̄. The technical problem is then to guarantee
that p̄ 6= 0, which is possible in finite dimensions using
ordinary convergence and the compactness of the unit
sphere, while in infinite dimensions, even when one can
extract a subsequence that converges in some weak sense,
it may very well happen that̄p = 0.)

The hope is that there will turn out to be two (and no
more than two) general versions of the finite-dimensional
maximum principle, one involving generalizations of
Boltyanksii cones (such as our “GDQ approximating
multicones”), the other one involving generalizations of
Clarke cones (perhaps the MWAMCs).

The unifying principle of both theories would be the
separation theorems. Unfortunately, the counterexample
discovered by Bressan shows that the idea of developing one
single theory that contains both is almost certainly doomed
to failure.
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