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Book Review

Singular Trajectories and their Role in Control Theory —
Bernard Bonnard and Monique Chyba (New York, Springer-
Verlag, 2003).
Reviewed by H́ector J. Sussmann
“Singular extremals” are, roughly, trajectories that satisfy the
necessary conditions for optimality given by the Pontryagin
Maximum Principle in a special (“singular,” or “degenerate”)
way. In the optimal control literature, our vague phrase “in a
special way” has been given several different precise mean-
ings, as well as quite a few that are less than completely
precise. It is one of the many virtues of this book that
it presents the notion of “singular trajectory” in a clear,
mathematically precise way, so that the reader can not only
get the general picture of the very exciting mathematics that
revolves around this idea but also follow the technical details,
which to many of us are of interest in themselves.

The authors consider autonomous control systems of the
form

ẋ = f(x, u) , (1)

for which (a) the state variablex belongs to a smooth (i.e.,
C∞) manifoldM , (b) the control variableu takes values in a
Euclidean spaceRp, (c) the mapf : M×U 7→ TM is of class
C∞ and such thatf(x, u) ∈ TxM for eachx, u (where we
useTM to denote the tangent bundle ofM and, for eachx,
TxM is the tangent space toM atx) and (d) the classU of all
admissible controls consists of all bounded measurable maps
u(·) : [0, T (u)] 7→ R

p defined on a compact interval[0, T (u)]
such that theu(·)-dependent terminal timeT (u) is positive.
They then consider, for a fixedx0 ∈ M and a fixedT , the
endpoint mapEx0,T : UT 7→ M that sends a controlu(·)
(where we writeUT to denote the spaceL∞([0, T ],Rp)) to
the timeT point x(T, x0, u) of the trajectory[0, T ] 3 t 7→
x(t, x0, u) that corresponds tou(·) and the initial condition
x(0, x0, u) = x0. A “singular trajectory” is then defined to be
a singularity of this endpoint map, i.e., a pointu of UT where
the Fŕechet differentialE′x0,T

u : UT 7→ TE(u)M of Ex0,T at u
fails to be surjective. (In this review, the word “singular” will
often be used as applying to acontrol-trajectory pair—abbr.
CTP–rather than to a trajectory or a control. This reviewer
would have felt more comfortable if the authors had also talked
about singularity of CTP’s, because to talk about “singularity”
one needsboth the control and the trajectory— or, at a
minimum, the control and the initial conditionx0.)

The singular CTP’s are then exactly those CTP’s(u(·), ξ)
such that the linearized system

ẏ(t) = A(t) · y(t) +B(t) · v(t) , t ∈ [0, T (u)]

(whereA(t) = ∂f
∂x (ξ(t), u(t)) andB(t) = ∂f

∂u (ξ(t), u(t))) is
not controllable. They can also be characterized, using the
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HamiltonianH : (T ∗M\{0})× Rp 7→ R given by

H(x, p, u) = 〈p, f(x, u)〉

(whereT ∗M\{0} is the bundle overM whose fiber at each
x ∈M is T ∗xM\{0}, andT ∗xM is the cotangent space ofM
at x), by the equivalant condition that there exists a solution
Ξ : [0, T ] 7→ T ∗M\{0} of the constrained Hamiltonian system

Ξ̇(t) = ~Hu(Ξ(t)) ,
∂H

∂u
(Ξ(t), u(t)) = 0

whose projection toM is ξ. (Here (a) for each fixedu, Hu

is the function(x, p) 7→ H(x, p, u) and (b) if h is a smooth
function on a symplectic manifold such asT ∗M , we use~h to
denote the corresponding Hamilton vector field.) Naturally, if
Ξ(t) = (ξ(t), p(t)), the last condition amounts to saying that
there exists a field[0, T ] 3 t 7→ p(t) ∈ T ∗ξ(t)M of nonzero
covectors alongξ (usually called an “adjoint vector”) that
satisfies the “adjoint equation”̇p(t) = −∂H∂x (ξ(t), p(t), u(t))
and the “critical point condition”∂H∂u (ξ(t), p(t), u(t)) = 0.

Singular trajectories are important, first of all, because, if
a trajectoryξ : [0, T ] 7→ M is such thatξ(T ) belongs to the
boundary∂Rx0,f,T of the timeT reachable setRx0,f,T from
x0 for the system (1), thenξ must be singular. Hence the
study of the structure of reachable sets is intimately tied to
the analysis of singular trajectories.

Second, as the authors point out, singular trajectories are
natural candidates in the search for solutions of a minimum
time problem in which the controls are further restricted to
take values in a subsetΩ of Rp. (To be precise, ifΩ is open
then every time-minimizer is a singular trajectory. IfΩ is not
open, then it is still true that every time minimizer must be
singular in all directions in which it is not an extreme point
of Ω. That is, if the pair(ξ(·), u(·)) is a minimizer, then
there must exist an adjoint vectorp(·) such that the directional
derivative∇uH(ξ(t), p(t), u(t)) · v vanishes for everyv ∈ Rp
such that{u(t) + εv : ε ∈ [−ε̄, ε̄]} ⊆ Ω for some ε̄ > 0.
This follows from the Pontryagin Maximum Principle, which
yields the existence of a nontrivial solutionp(·) of the adjoint
equation such that the functionΩ 3 w 7→ H(ξ(t), p(t), w) is
minimized atw = u(t) for a.e.t.)

Third, singular trajectories show up for more general
optimal control problems, in which there are no restrictions
on the control values, and the cost functional is a Lagrangian
integral

∫ T
0
L(ξ(t), u(t)) dt. For a problem of that kind, if the

time T is fixed, the Pontryagin Maximum Principle requires
that we consider the HamiltonianH given by

H(x, p, p0, u) = 〈p, f(x, u)〉+ p0L(x, u) ,

where p0 is a new scalar variable known as the “abnormal
multiplier.” Furthermore,p0 is required to be a nonnegative
constant, but it could be zero, in which case we obtain a whole
class of extremals characterized by conditions that do not
involveL at all. These are known as “abnormal extremals,” and
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turn out to be exactly the singular trajectories for the system
(1). Abnormal extremals are known to play an important role
in the study of the regularity properties of the value function
for real-analytic optimal control problems.

Finally, singular trajectories are feedback invariants, and for
large classes of control problems thay can actually be used to
generate complete sets of feedback invariants.

This impressive book discusses the general theory of
singular trajectories, and presents in detail a large number
of important results, many of which are due to the authors.
The book is, however, much broader and comprehensive than
the title may suggest, and the authors have gone out of their
way to make it accessible to an audience far wider than a
narrow circle of specialists. In fact, it could be regarded as
a general introduction to the field of differential-geometric
optimal control theory, and would be useful for a two-semester
graduate course taught on a high mathematical level, as long
as it is supplemented with some additional readings on basic
material for which Bonnard and Chyba do not provide all the
necessary background.

The first two chapters introduce classical material on linear
systems, controllability, time-optimal control and optimal
synthesis, and on optimal control, the Pontryagin Maximum
Principle, and the second variation.

Chapter 3 gives a brief introduction to symplectic geometry
and Poisson brackets, and then moves on to discuss
minimum-time control for scalar-control systems of the form
ẋ = X(x) + uY (x), |u| ≤ 1, showing how to find singular
optimal controls as feedback laws depending on the state and
the adjoint vector, using the Poisson bracket formalism.

In Chapter 4 the authors show how to use singular
trajectories to obtain feedback classifications of affine systems
and of distributions.

Chapter 5 deals with controllability and high-order
necessary conditions for optimality, and in particular presents
the celebrated Legendre-Clebsch and Goh conditions as
necessary conditions for rigidity of trajectories. Chapter 6
then gives an extremely clear discussion of conjugate points,
with applications to time-optimal synthesis in two dimensions
(which can be read as an excellent introduction to the more
detailed work by this reviewer and by Bressan and Piccoli,
cf. [6], [7], [8] and [2], [3]), optimal control inR3, and a
very helpful study of an example of an optimal abnormal
subriemannian extremal introduced by this reviewer and W.
Liu in [4].

Chapter 7 shows the power of the methods introduced in the
book, and the importance of singular trajectories, by applying
them to the study of minimum time control for chemical batch
reactors. This chapter is a must for any graduate course on
optimal control whose instructor wants to show to the students
examples of serious applications of hard mathematics.

In Chapter 8, the authors study generic properties of singular
extremals. For systems of the forṁx = F0(x)+uF1(x), with
a scalar control, they prove that, for generic pairs(F0, F1) of
C∞ vector fields, only minimal order singular extremals can
occur.

Chapter 9 deals with subriemannian geometry, and contains
a detailed proof of a spectacular result, due to the authors

together with A. Agrachev and I. Kupka, cf. [1], on the
structure of the cut locus for the Martinet case and in particular
(in Theorem 29, page 267) of the non-subanalyticity of the
corresponding subriemannian spheres.

Chapter 10 discusses Lagrangian submanifolds and the
stratifications of the cotangent bundle associated to the
Hamilton-Jacobi-Bellman equation. Finally, in Chapter 11 the
authors present the results of numerical computations, showing
elegant pictures of conjugate loci and cut loci.

Finally, in a brief concluding chapter (Ch. 12) some con-
jectures and open problems are presented.

This is a diffcult book, because it contains lots of
technical, complicated proofs, that take time and effort to
read and understand. It is not recommended reading for the
mathematically faint-hearted. But those who appreciate really
deep mathematics, written with passion, on a high technical
level, by authors who have themselves made significant
contributions, will find this book rewarding and will read
it—and struggle and suffer with its many long and hard
arguments— with enormous pleasure.

REFERENCES

[1] Agrachev, A., B. Bonnard, M. Chyba, and I. Kupka, “Subriemannian
sphere in Martinet flat case.”ESAIM Control Optim. Calc. Var.Vol. 2,
pp. 377-441.

[2] Bressan, A., and B. Piccoli, “Structural stability for time-optimal planar
syntheses.”Dynam. Contin. Discrete Impuls. Systems3 (1997), pp. 335–
371.

[3] Bressan, A., and B. Piccoli, “A generic classification of time optimal
planar stabilizing feedbacks.”SIAM J. Control Optim.36 (1998), no. 1,
pp. 12-32.

[4] Liu, W.S., and H.J. Sussmann, “Shortest paths for sub-riemannian metrics
on rank-2 distributions.”Memoirs of the American Math. Society, 118,
no. 564 (1995), x+104 pp.

[5] Pontryagin, L.S., V.G. Boltyanskii, R. V. Gamkrelidze and E.F. Mis-
chenko,The Mathematical Theory of Optimal Processes.Wiley, New
York, 1962.

[6] Sussmann, H.J., “The structure of time-optimal trajectories for single-
input systems in the plane : theC∞ nonsingular case.”SIAM J. Control
and Optimization,25, no. 2 (1987), pp. 433-465.

[7] Sussmann, H.J., “The structure of time-optimal trajectories for single-
input systems in the plane: the general real-analytic case.”SIAM J.
Control and Optimization25, no. 4 (1987), pp. 868-904.

[8] Sussmann, H.J., “Regular synthesis for time-optimal control of single-
input real-analytic systems in the plane.”SIAM J. Control and Optimiza-
tion 25, no. 5 (1987), pp. 1145-1162.


