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1. Introduction

In this note we announce preliminary results obtained
by applying the methodology of Sussmann [4, 5, 6, 7, 8]
to the problem studied by Ledzewicz and Schéttler (cf.
[1, 2]), of deriving high-order necessssary conditions for
a minimum in optimal control theory, extending the
classical Pontryagin Maximum Principle (abbr. MP)
of [3]. The work of [1, 2] uses high-order generalizations
of the theorems of Lyusternik and Avakov. We pursue a
different approach, constructing needle variations and,
at the crucial point where a “topological argument” is
needed, applying the Brouwer fixed point theorem. The
result is a high-order version of the MP that contains
and extends the results of [1, 2]. In particular, our
version makes it clear that new multipliers occur for the
first time for the third-order principle. It turns out that
what is called a “second-order MP” in [1, 2] is naturally
a “third-order MP” in our setting. Our third-order MP
contains new multipliers exactly as the result of [2] does,
but in addition it also contains the classical multipliers,
to which the new multipliers are coupled in a precise
way, described in Theorem 6.1.

We present an abstract necessary condition for set
separation (Theorem 4.1), a necessary condition for a
minimum in an abstract setting (Theorem 5.1), and,
finally, the optimal control result (Theorem 6.1). We
also present an example showing that our results apply
in cases where those of [1, 2] do not.

For lack of space, we omit the proofs, we limit our
discussion to problems with fixed endpoints, and we only
consider the second and third-order cases.

2. Preliminary definitions

We assume in this section that X', J are normed spaces,
SCX,z, €S8, and F is a map from S to ).

2.1. High-order differentiability. Let £ € N. We

say that F is of class D* at x, in the direction of S if

1. F is continuous on N NS for some neighborhood
N of z, in X,

2. there exists a continuous polynomial map
P:X+— )Y of degree < k without constant
term such that

F(x) — F(zy) — Pz — x4)

2 — . ||*

=0. <

1
LT, LES,THT 4

2.2. Variations and variational directions.

A wariation of x, in S is a continuous curve
[0,&,]2e—n(t)€S, defined on the interval [0,&,]
for some positive &,, such that n(0) = x,. We use
Var(z,,S) to denote the set of all variations of z, in S.

Let k € N. A kth-order variational direction of S at
z, is a k-tuple (vq,...,v;) € X* for which there exists
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a variation n€ Var(z,,S) such that

n(e) =z, +evi+... + vy + o(eh)

as € | 0. We use varg(z.,S) to denote the set of all
kth-order variational directions of S at x,.

A limiting first-order variational direction of S at x,
is a v € X which is the limit of a sequence {v;};en of
first-order variational directions of & at x.. We use
vary (z,S) to denote the set of all limiting first-order
variational directions of S at ..

If v, € X, then varyi(zs,vs,S), varsi(xs«, vy, S)
will denote, respectively, the set of all w € X such
that (v, w) € wvary(zs,S), and the set of all pairs
(w,z) € X x X such that (vi,w,2) € vars(z.,S). If
(Ui, W) € X X X, we use vars 2(Ty, Vs, Wy, S) to denote
the set of all z € X such that (v.,ws, 2) € vars(z,, S).

2.3. Abundant subsets. We say that a subset Sy of

S is (S, F)-abundant if there exists a sequence {0} en
of maps 0; : S — Sy such that

1. the map F o o; is continuous for each j,

2. Fooj converges to F uniformly on compact subsets
of § as j — oc.

2.4. Feasible sets and 2-regularity. Following [1],

we define the notion of a “second-order feasible set,”
and of “2-regularity,” as follows.

Definition 2.1 The second-order feasible set of S in X
at x, in the direction of v, is the set FSg?)(S; Ty, Us) Of
all w € X for which there exist a neighborhood W of w
in X and an € € R such that €>0 and z,+cv,+e2W CS
for all € € [0, &]. &

Definition 2.2 Assume that F is of class D? at z.
in the direction of S. Let P;, P be, respectively, a
continuous linear map from X to ) and a continuous
bilinear symmetric map from X2 to ), such that
F(@utv)=F(2.) +Pi(v)+5P2(v,v) +o(||v]*) as v—0,
z++v€ES. Let m be the canonical projection from ) to
Y/Pi(X). We say that F is 2-reqular at (x4, v, X,S)
if (a) FSO(Siz.,v.)#0, (b) the
XSurs <P1 <, 7o (Pa(os, u))) e P (X)x (V/Pi(X)) is

onto, and (¢) Py (vs,vs) € Py(X). O

linear map

3. The basic assumptions

We let v be a positive integer, which in the results to be
stated below will be equal to 1, 2, or 3. If k is a positive
integer, and v is any object, then we use v<*> to denote
the k-tuple consisting of v repeated k times.

For the separation theorem, we will assume that



(A1) U™ (the “ambient source space”) and Y (the
“target space”) are mormed spaces, Y s finite-
dimensional, U is a convex subset of U, u. € U,
F:U—Y isamap, weY andw # 0.

(A2) A is an (U, F)-abundant subset of U such that

u, € A.

(A3) F is of class D¥ at u.,

(A4) {Py}Y_, is a family such that, (a) for each k, Py is
a continuous k-linear symmetric map from (U*)*
toY, and (b) as v — 0, u, +v € U, we have

Flu, +0) = F) + 32 2 Peo™) ol o]l

k=1
We define
ye E F(u), (1)
QO Y (g, +twiteRt>0}, (2)
0 « {tw:t >0}, (3)

so that y. € F(A) N Q and Q=y,.+Qo={y.+2:2€Q}.
We will look for necessary conditions for the following
separation property:

(SEP) FA)NQ={y.}.

We write
V = vary (uy, U) . (4)

If v > 1, we will consider, in addition to V, a finite set

VY of “independent first-order variational directions with
higher-order effects.” This means, to begin with, that

(A5) V is a finite subset of V.

We will need additional assumptions on V. The first
one is the “independence condition,” whose purpose is
to enable us to add variations

€= My(€) = U + Tu(€) = uyx + v+ 0(e)

of u, in U corresponding to different members v of V,
and still obtain a variation of u, in /. We will guarantee
this by requiring that the values 7, (g) belong to sets U2
such that u, + ), UY C U, from which it will follow
that u. + >, 7jy(€) € U. The sets U will actually play
a role in the statement of our main separation theorems.
Therefore, rather than merely assume that they exist,
we will actually regard them as additional data for our
separation problem. If we write U, = U + u., the
“independence condition” becomes:

(A6) {Uy},cp is a family of conver subsets of U such
that

1. u, € U, for every v € v,
2 et Dy (U — ) CU,
3. v € vary (uy,Uy,) for each v e V.
In addition to (A5) and (A6), we will impose—ifv > 1—

the “cancellation and cross-term conditions” R
(A7) the vector Py - v belongs to Qg whenever v €V,

(A8) whenever v,v' € V are such that v # v/, the
vector Py(v,v") belongs to Q.

When v = 3, we will need the following conditions:

(Az9.a) V2 and V¥ are subsets of V, V2UV? =V and
V2NV =0;

(A39.b) whenever v,v',v" € V3 and v £ v £ v # v,
it follows that P3(v,v',v") € Qq;

(A39.c) whenever v,v’ € V3, v £ v, w belongs to
vars 1 (us, v,U,), and %Pg(v,v) + P -w e Qo,
it follows that %Pg(U,U,U/) + Py(w,v") € Q.

If v = 3, then for each v € V3 and each subset S of
vars 1 (us«, v,U,) we let Y7, g be the linear span of w
and all the vectors 3 P2 (v,v) + Py - w, for all (w,2) € S,

def
and define Y7 , = Y1 0,0ars 1 (w0 hy ) -

For the abstract minimization theorem, we will
assume that

(M1) U* and X are normed spaces, X is finite-
dimensional, U is a conver subset of U, u, € U,
E:U— X isamap, andZ : U — R is a function,

(M2) A is an (U,F)-abundant subset of U such that
uy € A, where F is the map

Usu— Fu)Z(Ew),Iw) e YEX xR, (5)

(M3) & and I are of class DV at u.,

(M4) for each k € {1,...,v}, Py and py are continuous
k-linear symmetric maps from (U)* to X, R,
respectively, and the formulas

£l +v) = £ + 30 TP+ o),
k=1

T(us +0) = Z(w) + 3 oo™ 4 o(Jol])
k=1""

hold asv — 0, u, +v €U.

If v =2 or v = 3, we will also assume that conditions
(A5) and (A6) hold, as well as the following second-oder
cancellation and cross-term conditions:

(M7) Py-v=0 and p1 - v <0 whenever v € f/’,

(M8) Py(vi,v2) = 0 and pa(vi,v2) < 0 whenever

v1,v2 € V are such that vy # va,

If v = 3, we will assume the following third-order

cancellation and cross-term conditions:

(Ms9.a) V2NV3 =0, and V = V2 U V3,

(M39.b) Whenever v,v',v" € V3 and v £ v # 0" # v,
it follows that Ps(v,v',v") = 0 and
p3(11, U/avl/) <0.

(M39.c) Whenever v, v eV3, v, and w is such that
w € wvargi(us,v,Uy,), %Pg(v,v) +P-w=0
and %pg(v,v) +p1-w < 0, it follows that
$P3(v,0,v") + Py(w,v’) 0 and also that
%p:;(?),?),’l)/) +p2(wavl) =

We let

0.
e = E(uy). (6)

We will seek necessary conditions for the minimization
condition:

(MIN) Z(us) < Z(u) for all u € A such that E(u) = x, .



For the optimal control result, we will consider a
control system

j: = f(x, u7 t) )
and a Lagrangian
R" x U x [a,b] 3

zeR" wel,a<t<b, (7)

(x,u,t) — L(xz,u,t) eR. (8)
We let F(m,u,t)déf(f(x,u,t), L(z,u,t)), and assume:
(C1) m e N and U is a closed convex subset of R™,
(C2) the partial map R"xU > (z,u)— F(z,u,t) eR" !

is of class CV for every t € [a,b],

(C3) the partial map [a,b]2t— F(z,u,t)eR™ s

measurable for every (z,u) € R" x U,

(C4) the maps of condition (C2) are bounded, together
with all their partial derivatives with respect to
(z,u) of order < v, on every compact subset of
the product R™ x U x [a, b].

We let U* = L*([a,b],R™), and let U be the set of
those controls u(-) € U that are U-valued.

A trajectory-control pairis a pair (z(-), u(+)) consisting
of an absolutely continuous curve z(-) : [a,b] — R”
and a control u(-) : [a,b] — U with the property that
z(t) = f(x(t),u(t),t) for almost all t € [a, b].

We fix an initial state  and a terminal state Z, and let
TCP(z, ) denote the set of all trajectory-control pairs
(z(-),u(-)) such that z(a) = & and z(b) = Z.

We assume that we are given a pair (x,(-), u«(-)) (the
“reference trajectory-control pair”) such that

C4

(C5) (2.(),u.()) € TCP(), and (v.()u.())
minimizes the functional
TCOP(z, &) 3 (x(-), u()) = J(z(),u(-)) €R,
where J(2(-), u(-))% [* L(x(t), u(t), t)dt.

We write fy, fu, Lz, Ly, for gi, gi, gg, gi, and similarly

for higher order derivatives. Also, we write
FrO% o (@), unt),8) s i) Fula(t), ua(t), 1),
LE)E Lo (t),us(8),), L) fu(@ (), ua(t), 1),

and use a similar notation for higher order derivatives, so
that, for example, fr . () is, for each time ¢ € [a,b], an
R™-valued trilinear form on R™ x R” x R"™ and, if o1, @9,
0 are bounded measurable functions on [a, b] Wlth values
in R™, R™, R™, respectively, then fr (e, <p2, denotes
the function [a b ot fr..(t) @1)

We also assume that

(C6) H is a finite set of pairs (h,v) such thatv € U*, h
is an absolutely continuous map from [a,b] to R™,

h(a) = h(b) = 0
(0) = 52 (0 a0, 00+ 5 61,00 6, )00

for a.e. t € [a,b]. and

b
/(L;(t)-h(t)+L:;(t).u(t))dtgo. )

Furthermore, we assume that
(C7) {Inw}hv)yen is a family of pairwise disjoint subin-
tervals of [a,b] such that

{t € [a,b] : v(t) # 0} C I, for all (h,v) € H. (10)

We remark that conditions (C6) and (10) imply that
{t € [a,b] : h(t) # 0} C I, for all (h,v) e H. (11)

We define the input-to-trajectory map
T:L{»?CO([Q, b],R™) by first defining 7 as a map
from U to C°([a,b],R"™), where U is the set of all
controls v € U such that the initial value problem
z = f(z,u(t),t), x(a) = T, has a solution (which, of
course, is unique) defined on [a,b]. We then extend
T to all of U by defining 7 (u) to be the curve z, if
u € U\U. Naturally, with this definition 7 need not be
continuous on U, but it is continuous (and, in fact, v

times continuously Fréchet differentiable) on U, which
is a relative neighborhood of u, in U, and this more
than suffices to make our abstract theorems applicable.

We then define the terminal point map £ by letting
E(u) =T (u)(b) for u e U.

For each (h,v) € H, we define U7 to be the space
L>*(Ip,4,R™), so US can be identified with a subspace
of U in an obvious way. Also, we let U, be the subset of
U consisting of all functions u € U such that u(t) = u.(t)
for t ¢ Iy, ,. Finally, we let U0 = {u — u, : u € U, }, so
UY is a convex subset of U? and U, = U2 + u,.

We define the restricted terminal map €2 : U — R™
to be the map given by

E0u) = E(u +uy) for

4. The separation theorem

uEU,.

We define C; to be the smallest closed convex cone in
Y that contains all the vectors P, - v, v € V.

If v > 1, we let C5 be the smallest closed convex
cone in Y that contains C(V) as well as all the vectors

LPy(v,v) + Py - w, for all (v,w) such that v € V and

2
( ) € varg(u*,l/l ).
f v =3, we define

of 1
P(v,w) def §P2(U, v)+ P -w, (12)

. e 1
Pv,w,z) def 6P3(v,v,v)+P2(v,w)+P1 -z (13)

and let C3 be the smallest closed convex cone in Y
that contains Cy as well as all the vectors y of the

form y = P(v,w, z) for some (v,w, z) such that v € 1%
(v,w, z) € vars(u.,U,), and P(v,w) € Q.

For v = 1,2, 3, the v-th-order surjectivity condition says:
(SUR-v) w is an interior point of the cone C,,.

The separation theorem can now be stated.

Theorem 4.1 Assume that v € {1,2,3}, and the data
U, Y, U, ue, F, w, A, Pi,..., P, satisfy Assumptions
(A1), (A2), (A3), (A4). Let y., Q, V, Qo be defined by
(1), (2), (4), (3). If v =2 orv = 3, assume in addition
that V, {Uy},cp are such that (A5), (A6), (A7) and
(A8) hold. If v =3, assume that (A39.a), (A39.b) and
(As9.c) are satisfied. Then the vth-order surjectivity
condition (SUR-v) implies that the separation property
(SEP) does not hold. O

Theorem 4.1 implies the following “multiplier” result:

Theorem 4.2 Assume that the hypotheses of Theorem
4.1 are satisfied and (SEP) holds. Then there exists a

nonzero covector X\ € Y*, such that



(1) (Aw)<0
(2) <;\,P1-U> >0 for all v € vary (u., U) ,

(3) if v>1 then (X, P(v,w)) > 0 whenever v eV and
w € varg 1 (s, v,Uy),

(4) if v =3 then for every v € V3

(4.&) (X, P(v,w, z)) > 0 whenever w, z are such that
(w, z) € vars 1 (us,Uy) and P(v,w) € Q.

In addition, if v > 1, then Condition (3) implies, in
particular, that

(3.#) ()\ P - w) > 0 whenever veV and
w) € vary(uy,Uy) .

Furthermore, if v =3, then

e For each v € V3, Condition (4.&) is equivalent to
the following multiplier statement:

(4.#) for every finite subset S of varsi(u«,v,U,)
there exists a covector i*° € YY", s such that

(i, w) <0, and the inequality
(A P@w2))+ (i, Po,w) 20 (14)
holds for all (w,z) € S.

o Condition (4.&)—or its equivalent form (4.#)—
implies the following statement:

(4.%) for everyveV? there exist a covector fi° €Yy,
and a nonnegative number 0¥ such that

(4.%.a) the inequalities
0\, Py -2) >
9”<§\, P(v,w, z)> + <ﬁ”, P(v,w)>
hold for all (w, z) € vars 1 (us, v,Uy),
(4-5.0) (") <0,
(4.%.c) either 6 >0 or p” € Yy*,\{0}.

Y
o o

5. Necessary conditions for a minimum
For each v € V3 and each subset S of vars 1 (Us, v,Uy),
we let X7, g be the linear span of all the vectors P(v, w),

. def
for all (w,z) € S, and write X , éXl,v,uarg,l(u*,v,uv)-
We write

- def 1
p(U, w) = p1-w+ 5172(”7 1)) ) (17)
N def 1
p(’l],’LU,Z) = 6?3(”7”7@"‘]’2(”7“’) +p1 27(18)
Theorem 5.1 Assume that v € {1,2,3}, and the data
Z/la XMU*EUEZA7P1 -7Pl/; 7"'7pl/7

satzsfy Assumptwns (M1) to (M4) of 83. If v > 1,
assume that V and {U, Yoeps are such that (A5) and

(A6) hold, as well as the second-oder cancellation and
cross-term conditions (M7) and (M8). If v = 3, assume
that the third-order cancellation and cross-term condi-
tions (Ms9.a), (M39.b), (Ms9.c) are satisfied.

Let x,. = E(uy), and assume that (MIN) holds. Then

there exist a covector A € X* and a Ag € R such that

(1) Xo >0 and ||A|| + Ao > 0,

(2) (\, Py -v) + Xop1 - v >0 for all v € var (u.,U),

(3) if v>1 then A, P(v,w)) + Xop(v, w) > 0 whenever
veV and w € vary 1 (U, v,Uy),

(4) if v =3 then for every v € V3,

(4.&) (X, P(v,w, 2))+Xop(v, w, 2) >0 whenever
(w,2) € wvarsi(u.,U,), P(v,w)=0 and
B(v, ) < 0.

In addition, if v>1, then (3) implies, in particular, that
(3.#) (N, Pr-w)+ Ao p1-w >0 whenever v € V and
(v, w) € varg(us,U,) .

Furthermore, if v = 3, then

e For each v € V3, Condition (4.&) is equivalent to
the following multiplier statement:

(4.#) for every finite subset S of vars(u«,v,Uy)
there exists a covector S € X1, and a

nonnegative real number ug’s such that
(A P(o,w,2)) + (5”5, Plo,w))
0 (B(v,w0,2)) + % (B0, w)) 20 (19)
for all (w,z) € S.
o (4.&)—or its equivalent form (4.#)—implies:

(4.%) for every v € V3 there emist a covector
pY € X7, and nonnegative numbers g, 6°

such that
(4.%.a) the inequalities

9”<XP1 : z> >0, (20)

9”<5\, P(v,w, z)>+<ﬁ”, P(v, w)>—|—u8 (ﬁ(v, w)) >0 (21)

hold for all (w, z) € vars 1(u., v,U,),
(4-%.b) either 0° #0, or ug #0, or p” € X7, \{0},
(4%6) 9”)\0 =0.

6. A high-order maximum principle

We now study the same optimal control problem as in
§3, and state the necessary condition for a minimum
that follows by applying Theorem 5.1.

Following [2], we write

Rol o] = o f2a(h )+ 2 (o) 5 fruw,0),(22)
RolLl[h, o] = 5 L5, (h b+ L5, (b, o)+ 3 L5 (0,0, (23)
Iﬁﬂww=éhmwhm+ el h0)

v, @9

1
(h,h,h) + = L*

2 rru

+§f;uu(h" v, U) +

RolLl(h,v) = 1

6 rrxr

(h, h,v)

1., 1



and let
(V' f(h,v)e - g faz(g,h) + fru(g,v),  (26)
(VIL(h,0)e-g = Li.(9,h) + Ly, (9,0), (27)
(V(hv)u-w = fr,(h,w)+ fi,(v,w), (28)
(VIL(h,v))y-w = L%, (h,w)+ L%, (v,w), (29)

if g € L*([a,b],R™), w € L*([a,b],R™).

Theorem 6.1 Assume that v€{1,2,3}, and conditions
(C1) to (C7) of §3 hold. Then there exist an absolutely
continuous field of covectors [a,b] > t — A(t) € R,
(where R,, denotes the space of real n-dimensional row
vectors) and a nonnegative Ay € R such that

1 2o + @) >0

2. the adjoint equation \(t) = —\(t) - f*(t) — Ao L% (t)
is satisfied for almost all t € [a,b] ;
3. for almost all t € [a,b], the inequality

(ML) + A0 f2(0) - (w = ua() =0 (30)
holds for alluw e U ;
4. if v > 1, then for every (h,v) € H, the inequalities

b
/ CoL%+A-f3)-wdt >0, (31)

[ (0ot e 5wt amlih 0

FA(t) - R f](h,v)) dt >0 (32)

hold for every w € wargi(us, v,U) such that
{t:w(t) £ 0} C In;
5. if v=3 then for every (h,v)€H the inequality

/buoL:; A FD) -zt

b [0 (e 3 (L))
ab

[ A (V100 (7))

b
+/a (%o BalL(h.v) + A~ Ryl f)(h.v)) dt > 0 (33)

holds for every (w,z) € wvarsi(u.,v,U) such that
{t - w(t) #£ 0} C I, {t: 2(t) # 0} C Iy, and
yU¥(b) = 0, where y”"is the solution of the initial
value problem

you = g
@) = 0

6. if v = 3 then for every member (h,v) of the
set 'H there exist absolutely continuous functions
[a,b] 3t ™V (t) € R, [a,b] Dt pv(t) € R™,
and nonnegative numbers z/Jg’U, 6™ such that

6.i. pP(t) = —p™U(t) - f(t) a.e. on [a,b],

6.i1. the extended adjoint equation

P = M g L= (VEf (R, 0))e (34)
holds for almost all t € [a,b],

YU+ fi - w+ Ro[f](h,v),

6.iii. p™v(t) = 0" N(t) for all t € [a,b],
6.7v. the inequality

b
/ (0" i w ol L wt - £, ()

P Fi () £ 2

b
+ [ (6 Ralf (o) + 5 RalE) o)

o Ra[f](h, v)) dt >0 (35)

holds for all (w, z) € vars 1 (u«,v,U) such that
w =0 and z = 0 outside I, ,,

6.v. either 0™ # 0, or pet # 0, or the
restriction of p’ to X, does mnot wvanish
identically, where X, ,, is the linear span of the

vectors " (uy)(v,v) + &' (ui)(w) for all pairs
(w,z) € vars1(ue,v,U) such that w = 0 and
z =0 outside I, ,,

6.vi. O\ =0,

7. for every member (h,v) of H such that the restricted
terminal point map EY is 2-regular at (0,v,U,UY),
the multipliers ™?, phv, 1/13’”, O"v, satisfy:

74, phv(t) - f(t) = 0 for almost all t € I, ,,
7.4. the inequality

b
/ (W™ fs o L w0 £, (b w)

- fuosw))ae+ [ (4 Ralfl(heo)

U RalL](h,0) + 9 Ry[f)(h,v) ) di > 0 (36)

is true for all w € varai(u«,v,U) such that
w =0 outside I, ),

7.iii. either " # 0, or the functional

LI, R™) 3 w

In,v

+ph,v_f;u(h, w)_|_ph,v .

(Wi wro L

(0, w))dt eR

does not vanish identically on L (I, ,, R™).

7. A simple example
We consider the control system in R? given by

1 = w +e1(ur,ug,x1,T2),
To = u1u2+502(u1,uQ,:c1,9:2),

where @1, @9 are real-valued functions on R* of class C3
and such that ¢; and ¢y vanish at (0,0,0,0) together
with all their partial derivatives of order < 3.

We choose a fixed time interval, namely, [0,1].
The controls are all the bounded measurable functions
[0,1] > t = (u1(t),ua(t)) € R%. Therefore the space U
of control values is R?, and the space U of controls is
Lo ([0,1],R?).

We let Z be the set of all trajectory-control pairs
(z(-),u()), so the members of Z are the pairs (z(-), u(-))



such that u(-) € Y and z(-) is an absolutely continuous
map [0,1] 5 ¢t — x(t) = (z1(t), z2(t)) such that

i(t) = w()  +e(ui(t),ue(t), z1(t), z2(t))

#a(t) = ui(t)ua(t) + @2 (ur(t), ua(t), 21 (), 22(t))
for almost every ¢ € [0, 1].

We define a cost functional J : = +— R by letting

1
J(a(),u() = / n®Pdt for (x()u()) €E.

Our optimal control problem is that of minimizing the
cost among all trajectory-control pairs (z(-), u(-)) € Zo,
where E( is the set of all (z(-),u(-)) € Z such that
xl(O) = l‘g(O) = 1‘1(1) = .1‘2(1) =0

We take our reference trajectory-control pair to be
&« = (T4, us), where z,(t) = (0,0) and u.(¢) = (0,0). It
is clear that (x,u,) is not optimal, since, for example,
it is easy to connect (0,0) to (0,0) by means of a trajec-
tory [0,1] 3 t — (x1(t), z2(t)) such that z1(¢) < 0 and
ug(t) = 0 whenever 0 < ¢ < 1, and such a trajectory
will have a strictly negative cost. (That the trajectory
exists is completely obvious if, say, o1 = 2 =0, and is
quite easy to prove in the general case).

Our goal is to see how well our necessary conditions
perform in ruling out the optimality of £&,. The condition
of Theorem 6.1 says that for &, to be optimal there have
to exist absolutely continuous functions A : [0,1] — R
and Ay : [0,1] — R, and a nonnegative Ag such that
a nontriviality condition and certain inequalities hold,
and the adjoint equation is satisfied.

It is clear that f! = 0 and L} = 0. Therefore the
adjoint equation says that A(t) = constant = (A1, A2),
where A1 and A are real numbers. Clearly,

f;{(l)g} and LZ{g}. (37)

Therefore (30) implies that Aju; > 0 for all pairs

(u1,u2) € R x [0,00[. It follows that A\ = 0.
If h = (h1,ha) and v = (v1, v2) we have
0
Ralfln) = | O, | Rl =0, )

To satisfy Hypothesis (C6) we have to make sure that
every pair (h,v) = ((h1,h2), (v1,v2)) € H is such that

hl(t) = /0 '01(8) dS, hg(t) = 0, hl(l) =0. (39)

This means that we can choose v; and v, to be arbitrary,
provided only that [ vi(t)dt = 0, and then hy and ho

are determined by (39).
The second-order inequality (32) says that

| (@ozis - 1) w oRafz)(ho

FA() - R f](h,v)) dt > 0. (40)
Then (37) and (38) imply, since A; = 0, that
1
)\2/ 'Ul(t)'l)g(t) dt 2 0. (41)
0
We can choose H to consist of two pairs (h!,v!),

are functions supported in the intervals Ij1 .1 = [0, 3],

Ij2 2 = [%,1], not identically zero, and such that

1 1
/ v%(t)dtz/ v3(t)dt =0, wvi=wv], and 3= —v?.
0 0

Then (41) says that
1 1

Ao [ (vi(t))?dt >0 and Xy [ (vy(t)*dt <0. (42)
Therefore Ay = 0. Then the third-order inequality (33)
reduces to the assertion that Ao fol R3[L)(h*,v%) dt > 0
for all i € {1, 2} such that there exists a w = (wy,ws) €
Loo([0,1],R?) having the property that fol wy (t)dt =0,

oy wa(t)dt=— [} vi(t)vs(t)dt, and {t:w(t) #0} C Iy .
It is clear that w does exist for i = 1,2, since we

can take wi(t) = 0, wa(t) = vi(t)vi(t). Moreover,
R3[L)(h*,v%) = (hi)3. S1O the inequality
Xo [ RE(t)Pdt>0 (43)

must be true for i — 1,2. Clearly, we can choose

(h',vl) such that hi(t) < O for all t. (Take, e.g.,
vi(t) = —sindrt for 0 < ¢ < 1.) Then fol hi(t)3 dt < 0,
so (43) implies that A\g < 0. Since A9 > 0, we conclude

that A\g = 0, contradicting the nontriviality condition,
and proving that &, is not optimal.

Remark 7.1 For comparison, we point out that
Theorem 6.1 of Ledzewicz-Schéttler [2], as stated, is not
applicable to our example, since the theorem requires
that the first derivative of the cost functional not be
identically zero (Hypothesis (iii) in Page 833 of [2]). ¢
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