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1. Introduction

In this note we announce preliminary results obtained
by applying the methodology of Sussmann [4, 5, 6, 7, 8]
to the problem studied by Ledzewicz and Schättler (cf.
[1, 2]), of deriving high-order necessssary conditions for
a minimum in optimal control theory, extending the
classical Pontryagin Maximum Principle (abbr. MP)
of [3]. The work of [1, 2] uses high-order generalizations
of the theorems of Lyusternik and Avakov. We pursue a
different approach, constructing needle variations and,
at the crucial point where a “topological argument” is
needed, applying the Brouwer fixed point theorem. The
result is a high-order version of the MP that contains
and extends the results of [1, 2]. In particular, our
version makes it clear that new multipliers occur for the
first time for the third-order principle. It turns out that
what is called a “second-order MP” in [1, 2] is naturally
a “third-order MP” in our setting. Our third-order MP
contains new multipliers exactly as the result of [2] does,
but in addition it also contains the classical multipliers,
to which the new multipliers are coupled in a precise
way, described in Theorem 6.1.

We present an abstract necessary condition for set
separation (Theorem 4.1), a necessary condition for a
minimum in an abstract setting (Theorem 5.1), and,
finally, the optimal control result (Theorem 6.1). We
also present an example showing that our results apply
in cases where those of [1, 2] do not.

For lack of space, we omit the proofs, we limit our
discussion to problems with fixed endpoints, and we only
consider the second and third-order cases.

2. Preliminary definitions

We assume in this section that X , Y are normed spaces,
S ⊆ X , x∗ ∈ S, and F is a map from S to Y.
2.1. High-order differentiability. Let k ∈ N. We
say that F is of class Dk at x∗ in the direction of S if

1. F is continuous on N ∩ S for some neighborhood
N of x∗ in X ,

2. there exists a continuous polynomial map
P : X 7→ Y of degree ≤ k without constant
term such that

lim
x→x∗,x∈S,x 6=x∗

F(x)−F(x∗)− P(x− x∗)
‖x− x∗‖k

= 0 . ♦

2.2. Variations and variational directions.
A variation of x∗ in S is a continuous curve
[0, ε̄η]3ε 7→η(t)∈S, defined on the interval [0, ε̄η]
for some positive ε̄η, such that η(0) = x∗. We use
V ar(x∗,S) to denote the set of all variations of x∗ in S.

Let k ∈ N. A kth-order variational direction of S at
x∗ is a k-tuple (v1, . . . , vk) ∈ X k for which there exists
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a variation η∈V ar(x∗,S) such that

η(ε)=x∗+εv1+. . .+ εkvk + o(εk)

as ε ↓ 0. We use vark(x∗,S) to denote the set of all
kth-order variational directions of S at x∗.

A limiting first-order variational direction of S at x∗
is a v ∈ X which is the limit of a sequence {vj}j∈N of
first-order variational directions of S at x∗. We use
var1(x∗,S) to denote the set of all limiting first-order
variational directions of S at x∗.

If v∗ ∈ X , then var2,1(x∗, v∗,S), var3,1(x∗, v∗,S)
will denote, respectively, the set of all w ∈ X such
that (v∗, w) ∈ var2(x∗,S), and the set of all pairs
(w, z) ∈ X × X such that (v∗, w, z) ∈ var3(x∗,S). If
(v∗, w∗) ∈ X ×X , we use var3,2(x∗, v∗, w∗,S) to denote
the set of all z ∈ X such that (v∗, w∗, z) ∈ var3(x∗,S).
2.3. Abundant subsets. We say that a subset S0 of
S is (S,F)-abundant if there exists a sequence {σj}j∈N
of maps σj : S 7→ S0 such that

1. the map F ◦ σj is continuous for each j,

2. F◦σj converges to F uniformly on compact subsets
of S as j →∞.

2.4. Feasible sets and 2-regularity. Following [1],
we define the notion of a “second-order feasible set,”
and of “2-regularity,” as follows.

Definition 2.1 The second-order feasible set of S in X
at x∗ in the direction of v∗ is the set FS(2)

X (S;x∗, v∗) of
all w ∈ X for which there exist a neighborhood W of w
in X and an ε̄ ∈ R such that ε̄>0 and x∗+εv∗+ε2W ⊆S
for all ε ∈ [0, ε̄]. ♦

Definition 2.2 Assume that F is of class D2 at x∗
in the direction of S. Let P1, P2 be, respectively, a
continuous linear map from X to Y and a continuous
bilinear symmetric map from X 2 to Y, such that
F(x∗+v)=F(x∗)+P1(v)+ 1

2P2(v, v)+o(‖v‖2) as v→0,
x∗+v∈S. Let π be the canonical projection from Y to
Y/P1(X ). We say that F is 2-regular at (x∗, v∗,X ,S)
if (a) FS

(2)
X (S;x∗, v∗) 6= ∅, (b) the linear map

X 3u 7→
(
P1 · u, πv

(
P2(v∗, u)

))
∈P1(X )×

(
Y/P1(X )

)
is

onto, and (c) P2(v∗, v∗) ∈ P1(X ). ♦

3. The basic assumptions

We let ν be a positive integer, which in the results to be
stated below will be equal to 1, 2, or 3. If k is a positive
integer, and v is any object, then we use v<k> to denote
the k-tuple consisting of v repeated k times.

For the separation theorem, we will assume that
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(A1) Ua (the “ambient source space”) and Y (the
“target space”) are normed spaces, Y is finite-
dimensional, U is a convex subset of Ua, u∗ ∈ U ,
F : U 7→ Y is a map, ω ∈ Y and ω 6= 0.

(A2) A is an (U ,F)-abundant subset of U such that
u∗ ∈ A.

(A3) F is of class Dν at u∗,
(A4) {Pk}ν

k=1 is a family such that, (a) for each k, Pk is
a continuous k-linear symmetric map from (Ua)k

to Y , and (b) as v → 0, u∗ + v ∈ U , we have

F(u∗ + v) = F(u∗) +
ν∑

k=1

1
k!
Pk(v<k>) + o(‖v‖ν) .

We define
y∗

def= F(u∗) , (1)

Ω def= {y∗ + tω : t ∈ R, t ≥ 0} , (2)

Ω0
def= {tω : t ≥ 0} , (3)

so that y∗∈F(A) ∩ Ω and Ω=y∗+Ω0 ={y∗+z :z∈Ω0}.
We will look for necessary conditions for the following

separation property:

(SEP) F(A) ∩ Ω = {y∗} .

We write
V = var1(u∗,U) . (4)

If ν > 1, we will consider, in addition to V, a finite set
V̂ of “independent first-order variational directions with
higher-order effects.” This means, to begin with, that

(A5) V̂ is a finite subset of V.

We will need additional assumptions on V̂. The first
one is the “independence condition,” whose purpose is
to enable us to add variations

ε 7→ ηv(ε) = u∗ + η̃v(ε) = u∗ + εv + o(ε)

of u∗ in U corresponding to different members v of V̂,
and still obtain a variation of u∗ in U . We will guarantee
this by requiring that the values η̃v(ε) belong to sets U0

v

such that u∗ +
∑

` U0
v ⊆ U , from which it will follow

that u∗ +
∑

v η̃v(ε) ∈ U . The sets U0
v will actually play

a role in the statement of our main separation theorems.
Therefore, rather than merely assume that they exist,
we will actually regard them as additional data for our
separation problem. If we write Uv = U0

v + u∗, the
“independence condition” becomes:

(A6) {Uv}v∈V̂ is a family of convex subsets of Ua such
that

1. u∗ ∈ Uv for every v ∈ V̂,
2. u∗ +

∑
v∈V̂

(
Uv − u∗) ⊆ U ,

3. v ∈ var1(u∗,Uv) for each v ∈ V̂.

In addition to (A5) and (A6), we will impose—if ν > 1—
the “cancellation and cross-term conditions”
(A7) the vector P1 · v belongs to Ω0 whenever v ∈ V̂,

(A8) whenever v, v′ ∈ V̂ are such that v 6= v′, the
vector P2(v, v′) belongs to Ω0.

When ν = 3, we will need the following conditions:

(A39.a) V̂2 and V̂3 are subsets of V, V̂2 ∪ V̂3 = V and
V̂2 ∩ V̂3 = ∅;

(A39.b) whenever v, v′, v′′ ∈ V̂3 and v 6= v′ 6= v′′ 6= v,
it follows that P3(v, v′, v′′) ∈ Ω0;

(A39.c) whenever v, v′ ∈ V̂3, v 6= v′, w belongs to
var2,1(u∗, v,Uv), and 1

2P2(v, v) + P1 · w ∈ Ω0,
it follows that 1

2P3(v, v, v′) + P2(w, v′) ∈ Ω0.

If ν = 3, then for each v ∈ V̂3 and each subset S of
var3,1(u∗, v,Uv) we let Y1,v,S be the linear span of ω
and all the vectors 1

2P2(v, v) + P1 ·w, for all (w, z) ∈ S,

and define Y1,v
def=Y1,v,var3,1(u∗,v,Uv).

For the abstract minimization theorem, we will
assume that

(M1) Ua and X are normed spaces, X is finite-
dimensional, U is a convex subset of Ua, u∗ ∈ U ,
E : U 7→ X is a map, and I : U 7→ R is a function,

(M2) A is an (U ,F)-abundant subset of U such that
u∗ ∈ A, where F is the map

U 3 u 7→ F(u)def=(E(u), I(u)) ∈ Y def=X × R , (5)
(M3) E and I are of class Dν at u∗,
(M4) for each k ∈ {1, . . . , ν}, Pk and pk are continuous

k-linear symmetric maps from (Ua)k to X, R,
respectively, and the formulas

E(u∗ + v) = E(u∗) +
ν∑

k=1

1
k!
Pk(v<k>) + o(‖v‖ν) ,

I(u∗ + v) = I(u∗) +
ν∑

k=1

1
k!
pk(v<k>) + o(‖v‖ν)

hold as v → 0, u∗ + v ∈ U .

If ν = 2 or ν = 3, we will also assume that conditions
(A5) and (A6) hold, as well as the following second-oder
cancellation and cross-term conditions:

(M7) P1 · v = 0 and p1 · v ≤ 0 whenever v ∈ V̂,
(M8) P2(v1, v2) = 0 and p2(v1, v2) ≤ 0 whenever

v1, v2 ∈ V̂ are such that v1 6= v2,

If ν = 3, we will assume the following third-order
cancellation and cross-term conditions:

(M39.a) V̂2 ∩ V̂3 = ∅, and V̂ = V̂2 ∪ V̂3,

(M39.b) Whenever v, v′, v′′ ∈ V̂3 and v 6= v′ 6= v′′ 6= v,
it follows that P3(v, v′, v′′) = 0 and
p3(v, v′, v′′) ≤ 0.

(M39.c) Whenever v, v′∈V̂3, v 6=v′, and w is such that
w ∈ var2,1(u∗, v,Uv), 1

2P2(v, v) + P1 · w = 0
and 1

2p2(v, v) + p1 · w ≤ 0, it follows that
1
2P3(v, v, v′) + P2(w, v′) = 0 and also that
1
2p3(v, v, v′) + p2(w, v′) = 0.

We let
x∗ = E(u∗) . (6)

We will seek necessary conditions for the minimization
condition:
(MIN) I(u∗) ≤ I(u) for all u ∈ A such that E(u) = x∗ .
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For the optimal control result, we will consider a
control system

ẋ = f(x, u, t) , x ∈ Rn , u ∈ U , a ≤ t ≤ b , (7)

and a Lagrangian
Rn × U × [a, b] 3 (x, u, t) 7→ L(x, u, t) ∈ R . (8)

We let F (x, u, t)def=(f(x, u, t), L(x, u, t)), and assume:

(C1) m ∈ N and U is a closed convex subset of Rm,
(C2) the partial map Rn×U 3(x, u) 7→F (x, u, t)∈Rn+1

is of class Cν for every t ∈ [a, b],
(C3) the partial map [a, b]3 t 7→F (x, u, t)∈Rn+1 is

measurable for every (x, u) ∈ Rn × U ,
(C4) the maps of condition (C2) are bounded, together

with all their partial derivatives with respect to
(x, u) of order ≤ ν, on every compact subset of
the product Rn × U × [a, b].

We let Ua = L∞([a, b],Rm), and let U be the set of
those controls u(·) ∈ Ua that are U -valued.

A trajectory-control pair is a pair (x(·), u(·)) consisting
of an absolutely continuous curve x(·) : [a, b] 7→ Rn

and a control u(·) : [a, b] 7→ U with the property that
ẋ(t) = f(x(t), u(t), t) for almost all t ∈ [a, b].

We fix an initial state x̄ and a terminal state x̂, and let
TCP (x̄, x̂) denote the set of all trajectory-control pairs
(x(·), u(·)) such that x(a) = x̄ and x(b) = x̂.

We assume that we are given a pair (x∗(·), u∗(·)) (the
“reference trajectory-control pair”) such that

(C5) (x∗(·), u∗(·)) ∈ TCP (x̄, x̂), and (x∗(·), u∗(·))
minimizes the functional
TCP (x̄, x̂) 3 (x(·), u(·)) 7→ J(x(·), u(·)) ∈ R ,

where J(x(·), u(·))def=
∫ b

a
L(x(t), u(t), t)dt.

We write fx, fu, Lx, Lu for ∂f
∂x , ∂f

∂u , ∂L
∂x , ∂f

∂u , and similarly
for higher order derivatives. Also, we write

f∗x(t)def= fx(x∗(t), u∗(t), t) , f∗u(t)def= fu(x∗(t), u∗(t), t) ,

L∗x(t)def=Lx(x∗(t), u∗(t), t) , L∗u(t)def= fu(x∗(t), u∗(t), t) ,

and use a similar notation for higher order derivatives, so
that, for example, f∗xxu(t) is, for each time t ∈ [a, b], an
Rn-valued trilinear form on Rn×Rn×Rm and, if ϕ1, ϕ2,
θ are bounded measurable functions on [a, b] with values
in Rn, Rn, Rm, respectively, then f∗xxu(ϕ1, ϕ2, θ) denotes
the function [a, b] 3 t 7→ f∗xxu(t)(ϕ1(t), ϕ2(t), θ(t)).

We also assume that
(C6) H is a finite set of pairs (h, v) such that v ∈ Ua, h

is an absolutely continuous map from [a, b] to Rn,
h(a) = h(b) = 0,

ḣ(t) =
∂f

∂x
(x∗(t), u∗(t), t)·h(t)+

∂f

∂u
(x∗(t), u∗(t), t)·v(t)

for a.e. t ∈ [a, b]. and∫ b

a

(
L∗x(t) · h(t) + L∗u(t) · v(t)

)
dt ≤ 0 . (9)

Furthermore, we assume that

(C7) {Ih,v}(h,v)∈H is a family of pairwise disjoint subin-
tervals of [a, b] such that

{t ∈ [a, b] : v(t) 6= 0} ⊆ Ih,v for all (h, v) ∈ H. (10)

We remark that conditions (C6) and (10) imply that

{t ∈ [a, b] : h(t) 6= 0} ⊆ Ih,v for all (h, v) ∈ H. (11)
We define the input-to-trajectory map

T : U 7→ C0([a, b],Rn) by first defining T as a map
from Ũ to C0([a, b],Rn), where Ũ is the set of all
controls u ∈ U such that the initial value problem
ẋ = f(x, u(t), t), x(a) = x̄, has a solution (which, of
course, is unique) defined on [a, b]. We then extend
T to all of U by defining T (u) to be the curve x∗ if
u ∈ U\Ũ . Naturally, with this definition T need not be
continuous on U , but it is continuous (and, in fact, ν
times continuously Fréchet differentiable) on Ũ , which
is a relative neighborhood of u∗ in U , and this more
than suffices to make our abstract theorems applicable.

We then define the terminal point map E by letting
E(u) = T (u)(b) for u ∈ U .

For each (h, v) ∈ H, we define Ua
v to be the space

L∞(Ih,v,Rm), so Ua
v can be identified with a subspace

of Ua in an obvious way. Also, we let Uv be the subset of
U consisting of all functions u ∈ U such that u(t) = u∗(t)
for t /∈ Ih,v. Finally, we let U0

v = {u − u∗ : u ∈ Uv}, so
U0

v is a convex subset of Ua
v and Uv = U0

v + u∗.
We define the restricted terminal map E0

v : U0
v 7→ Rn

to be the map given by
E0

v (u) = E(u+ u∗) for u ∈ Uv .

4. The separation theorem

We define C1 to be the smallest closed convex cone in
Y that contains all the vectors P1 · v, v ∈ V.

If ν > 1, we let C2 be the smallest closed convex
cone in Y that contains C1(V) as well as all the vectors
1
2P2(v, v) + P1 · w, for all (v, w) such that v ∈ V̂ and
(v, w) ∈ var2(u∗,Uv).

If ν = 3, we define

P̃ (v, w) def=
1
2
P2(v, v) + P1 · w , (12)

P̂ (v, w, z) def=
1
6
P3(v, v, v)+P2(v, w)+P1 · z . (13)

and let C3 be the smallest closed convex cone in Y
that contains C2 as well as all the vectors y of the
form y = P̂ (v, w, z) for some (v, w, z) such that v ∈ V̂3,
(v, w, z) ∈ var3(u∗,Uv), and P̃ (v, w) ∈ Ω0.
For ν = 1, 2, 3, the ν-th-order surjectivity condition says:

(SUR-ν) ω is an interior point of the cone Cν .

The separation theorem can now be stated.

Theorem 4.1 Assume that ν ∈ {1, 2, 3}, and the data
Ua, Y , U , u∗, F , ω, A, P1, . . . , Pν satisfy Assumptions
(A1), (A2), (A3), (A4). Let y∗, Ω, V, Ω0 be defined by
(1), (2), (4), (3). If ν = 2 or ν = 3, assume in addition
that V̂, {Uv}v∈V̂ are such that (A5), (A6), (A7) and
(A8) hold. If ν = 3, assume that (A39.a), (A39.b) and
(A39.c) are satisfied. Then the νth-order surjectivity
condition (SUR-ν) implies that the separation property
(SEP) does not hold. ♦

Theorem 4.1 implies the following “multiplier” result:

Theorem 4.2 Assume that the hypotheses of Theorem
4.1 are satisfied and (SEP) holds. Then there exists a
nonzero covector ¯̄λ ∈ Y ∗, such that
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(1) 〈¯̄λ, ω〉 ≤ 0 ,
(2) 〈¯̄λ, P1 · v〉 ≥ 0 for all v ∈ var1(u∗,U) ,
(3) if ν > 1 then 〈¯̄λ, P̃ (v, w)〉 ≥ 0 whenever v ∈ V̂ and

w ∈ var2,1(u∗, v,Uv) ,
(4) if ν = 3 then for every v ∈ V̂3

(4.&) 〈¯̄λ, P̂ (v, w, z)〉 ≥ 0 whenever w, z are such that
(w, z) ∈ var3,1(u∗,Uv) and P̃ (v, w) ∈ Ω0 .

In addition, if ν > 1, then Condition (3) implies, in
particular, that

(3.#) 〈¯̄λ, P1 · w〉 ≥ 0 whenever v ∈ V̂ and
(v, w) ∈ var2(u∗,Uv) .

Furthermore, if ν = 3, then

• For each v ∈ V̂3, Condition (4.&) is equivalent to
the following multiplier statement:

(4.#) for every finite subset S of var3,1(u∗, v,Uv)
there exists a covector ¯̄µv,S ∈ Y ∗1,v,S such that
〈¯̄µv,S , ω〉 ≤ 0 , and the inequality〈
¯̄λ, P̂ (v, w, z)

〉
+

〈
¯̄µv,S , P̃ (v, w)

〉
≥ 0 (14)

holds for all (w, z) ∈ S.

• Condition (4.&)—or its equivalent form (4.#)—
implies the following statement:

(4.%) for every v∈V̂3 there exist a covector ¯̄µv∈Y ∗1,v

and a nonnegative number θv such that
(4.%.a) the inequalities

θv〈¯̄λ, P1 · z〉 ≥ 0 (15)

θv
〈
¯̄λ, P̂ (v, w, z)

〉
+

〈
¯̄µv, P̃ (v, w)

〉
≥ 0 (16)

hold for all (w, z) ∈ var3,1(u∗, v,Uv),

(4.%.b)
〈
¯̄µv, ω〉 ≤ 0 ,

(4.%.c) either θv > 0 or ¯̄µv ∈ Y ∗1,v\{0}.

5. Necessary conditions for a minimum

For each v ∈ V̂3 and each subset S of var3,1(u∗, v,Uv),
we letX1,v,S be the linear span of all the vectors P̃ (v, w),

for all (w, z) ∈ S, and write X1,v
def=X1,v,var3,1(u∗,v,Uv).

We write

p̃(v, w) def= p1 · w +
1
2
p2(v, v) , (17)

p̂(v, w, z) def=
1
6
p3(v, v, v) + p2(v, w) + p1 · z ,(18)

Theorem 5.1 Assume that ν ∈ {1, 2, 3}, and the data
Ua, X, U , u∗ ∈ U , E, I, A, F , P1, . . . , Pν , p1, . . . , pν ,
satisfy Assumptions (M1) to (M4) of §3. If ν > 1,
assume that V̂ and {Uv}v∈V̂ , are such that (A5) and
(A6) hold, as well as the second-oder cancellation and
cross-term conditions (M7) and (M8). If ν = 3, assume
that the third-order cancellation and cross-term condi-
tions (M39.a), (M39.b), (M39.c) are satisfied.

Let x∗ = E(u∗), and assume that (MIN) holds. Then
there exist a covector λ̄ ∈ X∗ and a λ0 ∈ R such that

(1) λ0 ≥ 0 and ‖λ̄‖+ λ0 > 0,
(2) 〈λ̄, P1 · v〉+ λ0p1 · v ≥ 0 for all v ∈ var1(u∗,U),
(3) if ν > 1 then 〈λ̄, P̃ (v, w)〉+λ0p̃(v, w) ≥ 0 whenever

v ∈ V̂ and w ∈ var2,1(u∗, v,Uv),
(4) if ν = 3 then for every v ∈ V̂3,

(4.&)
〈
λ̄, P̂ (v, w, z)

〉
+λ0p̂(v, w, z)≥0 whenever

(w, z) ∈ var3,1(u∗,Uv), P̃ (v, w)=0 and
p̃(v, w) ≤ 0.

In addition, if ν>1, then (3) implies, in particular, that

(3.#) 〈λ̄, P1 ·w〉+ λ0 p1 ·w ≥ 0 whenever v ∈ V̂ and
(v, w) ∈ var2(u∗,Uv) .

Furthermore, if ν = 3, then

• For each v ∈ V̂3, Condition (4.&) is equivalent to
the following multiplier statement:

(4.#) for every finite subset S of var3,1(u∗, v,Uv)
there exists a covector µ̄v,S ∈ X∗

1,v,S and a
nonnegative real number µv,S

0 such that〈
λ̄, P̂ (v, w, z)

〉
+

〈
µ̄v,S , P̃ (v, w)

〉
+λ0

(
p̂(v, w, z)

)
+ µv,S

0

(
p̃(v, w)

)
≥ 0 (19)

for all (w, z) ∈ S.

• (4.&)—or its equivalent form (4.#)—implies:

(4.%) for every v ∈ V̂3 there exist a covector
µ̄v ∈ X∗

1,v and nonnegative numbers µv
0, θv

such that
(4.%.a) the inequalities

θv
〈
λ̄, P1 · z

〉
≥ 0, (20)

θv
〈
λ̄, P̂ (v, w, z)

〉
+

〈
µ̄v, P̃ (v, w)

〉
+µv

0

(
p̃(v, w)

)
≥0 (21)

hold for all (w, z) ∈ var3,1(u∗, v,Uv),
(4.%.b) either θv 6=0, or µv

0 6=0, or µ̄v∈X∗
1,v\{0},

(4.%.c) θvλ0 = 0.

6. A high-order maximum principle

We now study the same optimal control problem as in
§3, and state the necessary condition for a minimum
that follows by applying Theorem 5.1.

Following [2], we write

R2[f ][h, v] =
1
2
f∗xx(h, h)+f∗xu(h, v)+

1
2
f∗uu(v, v), (22)

R2[L][h, v] =
1
2
L∗xx(h, h)+L∗xu(h, v)+

1
2
L∗uu(v, v), (23)

R3[f ](h, v) =
1
6
f∗xxx(h, h, h) +

1
2
f∗xxu(h, h, v)

+
1
2
f∗xuu(h, v, v) +

1
6
f∗uuu(v, v, v) , (24)

R3[L](h, v) =
1
6
L∗xxx(h, h, h) +

1
2
L∗xxu(h, h, v)

+
1
2
L∗xuu(h, v, v) +

1
6
L∗uuu(v, v, v), (25)
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and let
(∇1f(h, v))x · g = f∗xx(g, h) + f∗xu(g, v) , (26)
(∇1L(h, v))x · g = L∗xx(g, h) + L∗xu(g, v) , (27)
(∇1f(h, v))u · w = f∗xu(h,w) + f∗uu(v, w) , (28)
(∇1L(h, v))u · w = L∗xu(h,w) + L∗uu(v, w) , (29)

if g ∈ L∞([a, b],Rn), w ∈ L∞([a, b],Rm).

Theorem 6.1 Assume that ν∈{1, 2, 3}, and conditions
(C1) to (C7) of §3 hold. Then there exist an absolutely
continuous field of covectors [a, b] 3 t 7→ λ(t) ∈ Rn
(where Rn denotes the space of real n-dimensional row
vectors) and a nonnegative λ0 ∈ R such that

1. λ0 + ‖λ(b)‖ > 0 ;
2. the adjoint equation λ̇(t) = −λ(t) · f∗x(t)− λ0L

∗
x(t)

is satisfied for almost all t ∈ [a, b] ;
3. for almost all t ∈ [a, b], the inequality(

λ0L
∗
u(t) + λ(t) · f∗u(t)

)
· (u− u∗(t)) ≥ 0 (30)

holds for all u ∈ U ;
4. if ν > 1, then for every (h, v) ∈ H, the inequalities∫ b

a

(λ0L
∗
u + λ · f∗u) · w dt ≥ 0 , (31)

∫ b

a

(
(λ0L

∗
u + λ · f∗u) · w + λ0R2[L](h, v)

+λ(t) ·R2[f ](h, v)
)
dt ≥ 0 (32)

hold for every w ∈ var2,1(u∗, v,U) such that
{t : w(t) 6= 0} ⊆ Ih,v ;

5. if ν=3 then for every (h, v)∈H the inequality∫ b

a

(λ0L
∗
u + λ · f∗u) · z dt

+
∫ b

a

λ0

(
(∇1L(h, v))x · yv,w + (∇1L(h, v))u · w

)
dt

+
∫ b

a

λ ·
(
(∇1f(h, v))x · yv,w + (∇1f(h, v))u · w

)
dt

+
∫ b

a

(
λ0R3[L](h, v) + λ ·R3[f ](h, v)

)
dt ≥ 0 (33)

holds for every (w, z) ∈ var3,1(u∗, v,U) such that
{t : w(t) 6= 0} ⊆ Ih,v, {t : z(t) 6= 0} ⊆ Ih,v, and
yv,w(b) = 0, where yv,wis the solution of the initial
value problem{

ẏv,w = f∗x · yv,w + f∗u · w +R2[f ](h, v) ,
yv,w(a) = 0 ;

6. if ν = 3 then for every member (h, v) of the
set H there exist absolutely continuous functions
[a, b] 3 t 7→ ψh,v(t) ∈ Rn, [a, b] 3 t 7→ ρh,v(t) ∈ Rn,
and nonnegative numbers ψh,v

0 , θh,v such that

6.i. ρ̇h,v(t) = −ρh,v(t) · f∗x(t) a.e. on [a, b] ,
6.ii. the extended adjoint equation

ψ̇h,v = −ψh,v ·f∗x−ψ
h,v
0 L∗x−ρh,v ·(∇1f(h, v))x (34)

holds for almost all t ∈ [a, b],

6.iii. ρh,v(t) = θh,vλ(t) for all t ∈ [a, b],
6.iv. the inequality∫ b

a

(
ψh,v ·f∗u · w+ψh,v

0 L∗u · w+ρh,v ·f∗xu(h,w)

+ρh,v · f∗uu(v, w)+ρh,v ·f∗u · z
)
dt

+
∫ b

a

(
ψh,v ·R2[f ](h, v) + ψh,v

0 R2[L](h, v)

+ρh,v ·R3[f ](h, v)
)
dt ≥ 0 (35)

holds for all (w, z) ∈ var3,1(u∗, v,U) such that
w ≡ 0 and z ≡ 0 outside Ih,v,

6.v. either θh,v 6= 0, or µh,v
0 6= 0, or the

restriction of µv̄ to X1,v does not vanish
identically, where X1,v is the linear span of the
vectors 1

2E
′′(u∗)(v, v) + E ′(u∗)(w) for all pairs

(w, z) ∈ var3,1(u∗, v,U) such that w ≡ 0 and
z ≡ 0 outside Ih,v,

6.vi. θh,vλ0 = 0,

7. for every member (h, v) of H such that the restricted
terminal point map E0

v is 2-regular at (0, v,Ua
v ,U0

v ),
the multipliers ψh,v, ρh,v, ψh,v

0 , θh,v, satisfy:

7.i. ρh,v(t) · f∗u(t) ≡ 0 for almost all t ∈ Ih,v,
7.ii. the inequality∫ b

a

(
ψh,v ·f∗u · w+ψh,v

0 L∗u · w+ρh,v ·f∗xu(h,w)

+ρh,v · f∗uu(v, w)
)
dt+

∫ b

a

(
ψh,v ·R2[f ](h, v)

+ψh,v
0 R2[L](h, v) + ρh,v ·R3[f ](h, v)

)
dt ≥ 0 (36)

is true for all w ∈ var2,1(u∗, v,U) such that
w ≡ 0 outside Ih,v,

7.iii. either ψh,v
0 6= 0, or the functional

L∞(Ih,v,Rm) 3 w 7→
∫

Ih,v

(
ψh,v ·f∗u · w+ψh,v

0 L∗u · w

+ρh,v ·f∗xu(h,w)+ρh,v · f∗uu(v, w)
)
dt ∈ R

does not vanish identically on L∞(Ih,v,Rm).

7. A simple example

We consider the control system in R2 given by{
ẋ1 = u1 + ϕ1(u1, u2, x1, x2) ,
ẋ2 = u1u2 + ϕ2(u1, u2, x1, x2) ,

where ϕ1, ϕ2 are real-valued functions on R4 of class C3

and such that ϕ1 and ϕ2 vanish at (0, 0, 0, 0) together
with all their partial derivatives of order ≤ 3.

We choose a fixed time interval, namely, [0, 1].
The controls are all the bounded measurable functions
[0, 1] 3 t 7→ (u1(t), u2(t)) ∈ R2. Therefore the space U
of control values is R2, and the space U of controls is
L∞([0, 1],R2).

We let Ξ be the set of all trajectory-control pairs
(x(·), u(·)), so the members of Ξ are the pairs (x(·), u(·))
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such that u(·) ∈ U and x(·) is an absolutely continuous
map [0, 1] 3 t 7→ x(t) = (x1(t), x2(t)) such that
ẋ1(t) = u1(t) + ϕ1(u1(t), u2(t), x1(t), x2(t))
ẋ2(t) = u1(t)u2(t) + ϕ2(u1(t), u2(t), x1(t), x2(t))

for almost every t ∈ [0, 1].
We define a cost functional J : Ξ 7→ R by letting

J(x(·), u(·)) =
∫ 1

0

x1(t)3 dt for (x(·), u(·)) ∈ Ξ .

Our optimal control problem is that of minimizing the
cost among all trajectory-control pairs (x(·), u(·)) ∈ Ξ0,
where Ξ0 is the set of all (x(·), u(·)) ∈ Ξ such that
x1(0) = x2(0) = x1(1) = x2(1) = 0.

We take our reference trajectory-control pair to be
ξ∗ = (x∗, u∗), where x∗(t) ≡ (0, 0) and u∗(t) ≡ (0, 0). It
is clear that (x∗, u∗) is not optimal, since, for example,
it is easy to connect (0, 0) to (0, 0) by means of a trajec-
tory [0, 1] 3 t 7→ (x1(t), x2(t)) such that x1(t) < 0 and
u2(t) = 0 whenever 0 < t < 1, and such a trajectory
will have a strictly negative cost. (That the trajectory
exists is completely obvious if, say, ϕ1 ≡ ϕ2 ≡ 0, and is
quite easy to prove in the general case).

Our goal is to see how well our necessary conditions
perform in ruling out the optimality of ξ∗. The condition
of Theorem 6.1 says that for ξ∗ to be optimal there have
to exist absolutely continuous functions λ1 : [0, 1] 7→ R
and λ2 : [0, 1] 7→ R, and a nonnegative λ0 such that
a nontriviality condition and certain inequalities hold,
and the adjoint equation is satisfied.

It is clear that f∗x ≡ 0 and L∗x ≡ 0. Therefore the
adjoint equation says that λ(t) ≡ constant ≡ (λ1, λ2),
where λ1 and λ2 are real numbers. Clearly,

f∗u ≡
[

1 0
0 0

]
and L∗u ≡

[
0
0

]
. (37)

Therefore (30) implies that λ1u1 ≥ 0 for all pairs
(u1, u2) ∈ R× [0,∞[. It follows that λ1 = 0.

If h = (h1, h2) and v = (v1, v2) we have

R2[f ](h, v) =
[

0
v1v2

]
, R2[L](h, v) = 0 . (38)

To satisfy Hypothesis (C6) we have to make sure that
every pair (h, v) = ((h1, h2), (v1, v2)) ∈ H is such that

h1(t) =
∫ t

0

v1(s) ds , h2(t) ≡ 0 , h1(1) = 0 . (39)

This means that we can choose v1 and v2 to be arbitrary,
provided only that

∫ 1

0
v1(t) dt = 0, and then h1 and h2

are determined by (39).
The second-order inequality (32) says that∫ 1

0

(
(λ0L

∗
u + λ · f∗u) · w + λ0R2[L](h, v)

+λ(t) ·R2[f ](h, v)
)
dt ≥ 0 . (40)

Then (37) and (38) imply, since λ1 = 0, that

λ2

∫ 1

0

v1(t)v2(t) dt ≥ 0 . (41)

We can choose H to consist of two pairs (h1, v1) ,
(h2, v2) , where v1 = (v1

1 , v
1
2), v2 = (v2

1 , v
2
2), v1

1 , v2
1

are functions supported in the intervals Ih1,v1 = [0, 1
2 ],

Ih2,v2 = [12 , 1], not identically zero, and such that∫ 1

0

v1
1(t) dt =

∫ 1

0

v2
1(t) dt = 0 , v1

2 ≡ v1
1 , and 2

2 ≡ −v2
1 .

Then (41) says that

λ2

∫ 1

0

(v1
1(t))2 dt ≥ 0 and λ2

∫ 1

0

(v1
2(t))2 dt ≤ 0 . (42)

Therefore λ2 = 0. Then the third-order inequality (33)
reduces to the assertion that λ0

∫ 1

0
R3[L](hi, vi) dt ≥ 0

for all i ∈ {1, 2} such that there exists a w = (w1, w2) ∈
L∞([0, 1],R2) having the property that

∫ 1

0
w1(t)dt= 0,∫ 1

0
w2(t)dt=−

∫ 1

0
vi
1(t)v

i
2(t)dt, and {t :w(t) 6=0}⊆Ihi,vi .

It is clear that w does exist for i = 1, 2, since we
can take w1(t) ≡ 0, w2(t) = vi

1(t)v
i
2(t). Moreover,

R3[L](hi, vi) = (hi
1)

3. So the inequality

λ0

∫ 1

0

hi
1(t)

3 dt ≥ 0 (43)
must be true for i = 1, 2. Clearly, we can choose
(h1, v1) such that h1

1(t) ≤ 0 for all t. (Take, e.g.,
v1
1(t) = − sin 4π t for 0 ≤ t ≤ 1

2 .) Then
∫ 1

0
hi

1(t)
3 dt < 0,

so (43) implies that λ0 ≤ 0. Since λ0 ≥ 0, we conclude
that λ0 = 0, contradicting the nontriviality condition,
and proving that ξ∗ is not optimal. ♦
Remark 7.1 For comparison, we point out that
Theorem 6.1 of Ledzewicz-Schättler [2], as stated, is not
applicable to our example, since the theorem requires
that the first derivative of the cost functional not be
identically zero (Hypothesis (iii) in Page 833 of [2]). ♦
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