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1 Introduction

This paper is devoted to the study of Hamilton-Jacobi-
Bellman equations (HJB’s) for a large class of un-
bounded optimal control problems for fully nonlinear
systems having the form

{

y′(t) = f( y(t), α(t) ), t ≥ 0, α(t) ∈ A
y(0) = x

. (1)

Our hypotheses will be such that (1) has a unique solu-
tion trajectory, defined on [0,∞), for each input. The
optimal control problems are of the form

Minimize J( x, α, tx(α) ) over α ∈ Af (x), (2)

where yx(·, α) is the solution of (1) for the measurable
input α : [0,∞) → A, tx(α) is the first time this so-
lution reaches some target T , Af (x) is the set of mea-
surable inputs for which tx(α) < ∞, and the infimand
J : R

N ×A× R+ → R is defined by

J(x, α, t) :=

∫ t

0

`( yx(s, α), α(s) ) ds + g (yx(t, α)) ,

where A is the set of measurable functions [0,∞)→ A.

The value function of (2) will be denoted by v, and R is
the set of all points that can be brought to T in finite
time using the evolution (1) and some input α in A.
Thus, v(x) = infα∈Af (x) J(x, α, tx(α)) for x in R and
is +∞ elsewhere. The class of problems we consider in-
cludes the Fuller Problem (FP) (cf. [6], [9], and [11]),
as well as problems in which the control set A is non-
compact, problems for which nonconstant trajectories
can give zero running costs, and problems where ` can
be negative. The HJB for (2) is

sup
a∈A

{−f(x, a) ·Du(x) − `(x, a) } = 0, (3)

which we wish to satisfy on Ω\T , where Ω is a suitable
open subset of R

N containing T . We will study (3) in
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the framework of the theory of viscosity solutions and
relaxed controls (cf. [1]).

We characterize the value functions of these prob-
lems as the unique viscosity solutions of the associ-
ated HJB’s among continuous functions with suitable
boundary and growth conditions. As a consequence, we
show that the FP value function is the unique radially
unbounded viscosity solution of the corresponding HJB
among functions which are zero at the origin. Value
function characterizations of this kind have been stud-
ied and applied by many authors for a large number of
stochastic and deterministic optimal control problems
and for differential games, including problems for which
the value function is discontinuous. Recent accounts of
work in these areas may be found in [1], [3], and in the
many references therein.

However, the FP is not covered by these results, since
its cost functional ` vanishes at points outside T . For
example, see [1], where the main comparison results for
exit time problems require ` ≥ 1, and [8], where this
requirement is relaxed to requiring that for each ε > 0,
there is a Cε > 0 such that `(x, a) ≥ Cε for all a ∈ A
and x ∈ R

n \ B(T , ε). In fact, one can find HJB’s for
optimal control problems with exit times that have sev-
eral radially unbounded viscosity solutions when this
lower bound requirement is violated. For example, con-
sider the system y′(t) = u(t), where y(t) ∈ R and
u(t) ∈ [−1, +1]. Choose the running cost functional
`(x, a) = (x + 2)2 (x− 2)2 x2 (x + 1)2 (x− 1)2, and use
the final cost g ≡ 0. Let v1 and v2 be the value func-
tion for the associated problem (2) with the targets
T1 = {0} and T2 = {0, 2,−2}, respectively. One can
easily check that v1 and v2 are both solutions of the
associated HJB (3) with T := T1 and that with this
choice of T , the problem satisfies all the hypotheses
of the well-known theorems which characterize value
functions of exit time control problems as the unique
radially unbounded viscosity solutions of (3) which are
zero on T save for the fact that the positive lower bound
requirement on ` is not satisfied. One also checks that
the ingredient missing from this problem is a property



we will call ‘strong compatibility’. This property will
guarantee that there are no spurious solutions for the
HJB of the FP.

The problems we study also satisfy an analog of the La
Salle Invariance Principle. This condition will be called
‘strong transience’. Roughly stated, the condition says
that each trajectory of (1) eventually leaves any subset
N of the state space outside the target in which the
running cost is null along some trajectory. Our work
is part of a larger research program which generalizes
uniqueness results of the theory of viscosity solutions
to versions that cover well-known optimal control prob-
lems whose dynamics do not necessarily admit unique
solutions or whose running cost functionals violate the
usual boundedness requirements. A continuation by
the author appears elsewhere in this volume (cf. [5]).

2 Assumptions and Definitions

Let us make the following assumptions:

(A0) A is a nonempty topological space

(A1) f : R
N × A → R

N is continuous and
bounded on BR(0) × A for all R > 0, and
there are L > 0 and a modulus ωf such that
for all a ∈ A, the following conditions hold:

(a) For all R > 0, and all x, y ∈ BR(0),
|| f(y, a)− f(x, a) || ≤ ωf (||x− y ||, R).

(b) (f(x, a)−f(y, a)) ·(x−y) ≤ L||x−y ||2

for all x, y ∈ R
N .

(A2) T ⊆ R
N is closed, T 6= ∅, g ∈ C(T ), and g

is bounded below.

(A3) ` : R
N ×A→ R is continuous and bounded

below, and there is a modulus ω` such that
|`(y, a)−`(x, a)| ≤ ω`(||x−y ||) for all a ∈ A
and x, y ∈ R

N .

In (A1), a modulus is a function ω : R+ × R+ → R+

such that, for all R > 0, ω(·, R) is continuous and non-
decreasing and ω(0, R) = 0; and ω` is a modulus of
the same kind which is constant in its second variable.
Also, Br(x) :=

{

p ∈ R
N : ||x− p|| < r

}

for all r > 0
and x ∈ R

N . Condition (A1) will guarantee unique-
ness of solutions (cf. [1]). When A is a compact metric
space, we view our controls α ∈ A as members of the
larger class Ar of relaxed controls (cf. [1]). Define `r :
R

N ×Ar → R and fr : R
N ×Ar → R

N by `r(x, m) :=
∫

A `(x, a) dm(a) and f r(x, m) :=
∫

A f(x, a) dm(a),
where Ar is the set of Radon probability measures on
A. These relaxations satisfy analogs of (A1) and (A3),
so we can define yr

x(·, α) to be the unique solution of
y′(s) = fr(y(s), α(s)) starting at x for each α ∈ Ar.

Define H : R
N × R

N → R by

H(x, p) = sup
a∈A

{−f(x, a) · p − `(x, a) } (4)

The set of x ∈ R
N such that

∫ t

0 `r(yr
x(s, α), α(s))ds > 0

for all t ∈ (0,∞] and α ∈ Ar will be denoted by P . We
study cases where any x ∈ R is ‘eventually’ brought to
P . More precisely, we have the following:

Definition 2.1 Let S ⊂ R
N be open, let A be a com-

pact metric space, let w : S → R, and assume (Ao)-
(A3) are satisfied. We call (2) strongly transient
with respect to T , w, and S and write ST (w, S) if the
following conditions hold:

1. For each x ∈ S \ [P ∪ T ], there exist a bounded
open set B ⊆ S containing x so that ∂B ⊆ S and
a positive number L strictly less than

inf
α∈A
{t > 0 : dist(yx(t, α), ∂B) ≤ dist(x, ∂B)/2}

such that, for all α ∈ A, yx(L, α) ∈ P ∩ S and
∫ L

0 `(yx(s, α), α(s)) ds ≥ 0.

2. For each x ∈ S and y ∈ ∂S, there is an ε > 0 such
that if p ∈ S and || p−y || < ε, then w(x) < w(p).

3. If x ∈ R
N , α ∈ Af (x), and

{t ≥ 0 : t ≤ tx(α) and yx(t, α) /∈ S} 6= ∅,

and if λ=sup{t ≥ 0 : t ≤ tx(α) & yx(t, α) /∈ S},

then
∫ λ

0 `(yx(s, α), α(s)) ds ≥ 0.

When S = R = R
N , strong transience reduces to the

much simpler Condition 1 on exits from [P ∪ T ]c. In
that case, we write ST instead of ST (w, RN ). We also
need the following generalization of STCT (cf. [7]):

Definition 2.2 Let O ⊆ R
N and assume (A0)-(A3)

are satisfied. We say that O satisfies the strong
small time control condition with respect to T and
write SSTC(O, T ) if there is an increasing sequence of
bounded open sets {Ωj} such that O = ∪∞j=1Ωj and
such that if Tj : Ωj \ T → R ∪ {+∞} is defined by

Tj(x) := inf
α
{ t : yx(t, α) ∈ ∂(Ωj \ T ) }

for j = 1, 2, . . . and Ωj \ T 3 x→ x0 ∈ ∂(Ωj \ T ), then
Tj(x)→ 0. When these conditions hold, {Ωj} is called
the associated controllability sequence.

The limit condition in Definition 2.2 can be replaced
by STC(Ωc

j)∧ STCT for j = 1, 2, . . . (where STCU is
the condition that U i s interior to the set of points
that can be brought to U in time < ε for each ε > 0).



Definition 2.3 Assume (2) satisfies (Ao)-(A3) and
SSTC(O, T ). Let {Ωj} be the associated controllabil-
ity sequence, and let w : O → R and ωo ∈ R ∪ {+∞}.
We say w is (O, T , ωo)-compatible if ∂(Ωj) \ T ⊆ O
for all j and limj→∞ min{w(p) : p ∈ ∂(Ωj) \ T } = ωo.

3 Main Lemmas

Assume Ω ⊆ R
N is open, Ω ⊆ S, and F : R

N×R
N → R

and w : S → R are continuous. Call w a viscosity
solution of F (x, Dw(x)) = 0 on Ω if the following
conditions are satisfied:

(i) If γ : Ω→ R is C1 and xo is a local minimum of
w − γ, then F (xo, D γ(xo)) ≥ 0.

(ii) If λ : Ω→ R is C1 and x1 is a local maximum of
w − λ, then F (x1, D λ(x1)) ≤ 0.

When condition (i) (resp., (ii)) holds, we say that w
is a (viscosity) supersolution (resp., subsolution)
of F (x, Dw(x)) = 0 on Ω. Recall the following results
from [1], [4], and [10]:

Lemma 3.1 Assume (A0)-(A3) and define H by (4).
Assume that u ∈ C(Ω̄) is a viscosity subsolution of
H(x, Du(x)) = 0 on Ω, where Ω ⊂ R

N is bounded and
open. If 1 τx(α) = inf{ t ≥ 0 : yx(t, α) ∈ ∂Ω} for each
α ∈ A and x ∈ Ω, then, for all α ∈ A and x ∈ Ω,

u(x) ≤

∫ t

0

`(yx(s, α), α(s)) ds + u(yx(t, α))

for 0 ≤ t < τx(α).

Lemma 3.2 Let the assumptions (A0)-(A3) be satis-
fied, let B ⊂ R

N be bounded and open, and assume
w ∈ C(B̄) is a viscosity supersolution of (3) on B. Set
Tδ(p) := infα∈A{ t : dist (yp(t, α), ∂B) ≤ δ } for each
p ∈ B and δ > 0. Then for any δ ∈ (0, dist (p, ∂B)/2),

w(p) ≥ inf
α∈A

{
∫ t

0

`(yp(s, α), α(s)) ds + w(yp(t, α))

}

(5)

for all t ∈ (0, Tδ(p)) and p ∈ B.

Lemma 3.3 Let A be a compact metric space, let
{αn} be a sequence in Ar, and let c > 0. Assume
f : R

N × A → R
N satisfies (A1) and is uniformly Lip-

schitz in A. 2 There is a subsequence of {αn} (which
we do not relabel) and an α ∈ Ar such that αn → α
weak-star on [0, c] and such that yr

xn
(·, αn) → yr

x(·, α)
uniformly on [0, c] whenever xn → x in R

N .

1The glb of an empty set of real numbers is +∞.
2This means there is a constant L > 0 such that ||f(x, a) −

f(z, a)|| ≤ L||x − z|| for all a ∈ A and x, z ∈
�

N .

4 Main Results

Theorem 1 Let (2) satisfy (A0)-(A3), let Ω ⊆ R
N

be an open set containing T , let ωo ∈ R ∪ {+∞}, let
w ∈ C(Ω) be a viscosity solution of

{

H(x, Dw(x)) = 0, x ∈ Ω \ T
w(x) = g(x), x ∈ T

(6)

which is bounded below, and let w(x) < ω0 on Ω.3 As-
sume either (i) there are positive constants m and M
such that m ≤ ` ≤M on R

N ×A, and limx→x0
w(x) =

ωo for all x0 ∈ ∂Ω; or (ii) A is a compact met-
ric space, f is uniformly Lipschitz in A, condition
ST (w, Ω) holds, and w is (Ω ∩ P, T , ωo)-compatible.
Then w = v on Ω.

Theorem 2 Assume (2) satisfies (A0)-(A3), R is
open, and v ∈ C(R). (i) If there are positive num-
bers m and M such that m ≤ ` ≤ M on R

N × A and
STCT holds, then v is the unique viscosity solution of

{

H(x, Dw(x)) = 0, x ∈ R \ T
w(x) = g(x), x ∈ T

(7)

in the class of functions w ∈ C(R) which are bounded
below and satisfy limx→x0

w(x) = +∞ for all x0 in
∂R. (ii) If A is a compact metric space, f is uni-
formly Lipschitz in A, condition ST (v,R) holds, and v
is (R∩ P, T , +∞)-compatible and bounded below, then
v is the unique solution of (7) among (R∩ P, T , +∞)-
compatible functions w ∈ C(R) that are bounded below
and satisfy ST (w,R).

Before turning to the proofs, we indicate how our re-
sults give the uniqueness result for the FP. Recall that

the FP is the minimization of
∫ tp(α)

0 y2
1,p(t, α) dt over

α ∈ Af (p) for each p ∈ R
2, where (y1,p(t, u), y2,p(t, u))′

is the solution of x′(t) = y(t), y′(t) = u(t) with
(x(0), y(0))′ = p for a given [−1, +1]-valued measur-
able control u, and tp(u) is the first time that trajec-
tory reaches the target T := (0, 0)′. Let L > 0 be
given. The trajectory from (0, L)′ using the constant

control u ≡ −1/2, φ1(t) =
(

Lt− t2

4 , L− t
2

)′

, reaches

the point (0,−L)′ at time 4L. The trajectory from

(0,−L)′ using u ≡ 1/2, φ2(t) =
(

−Lt + t2

4 ,−L + t
2

)′

,

reaches (0, L)′ at time 4L. Let ζL denote the concatena-
tion of φ1 : [0, 4L]→ R

2 followed by φ2 : [0, 4L]→ R
2,

and let ΩL denote the open set bounded by this con-
catenation with the origin removed. By elementary cal-
culations of trajectories, one sees that STC(Ωc

L) holds
for each L > 0. The calculation in based on the fact
that φ1 solves x2 = L2−y2 and φ2 solves x2 = y2−L2.
One easily checks that STC({0}) holds also (cf. [7]).
This establishes condition SSTC(R2 \ {0}, {0}).

3 By this, we mean a viscosity solution w of H(x,Dw(x)) = 0
on Ω \ T which is also defined on T and agrees with g on T .



For all x 6= 0,
∫ t

0
`(yr

x(s, α), α(s)) ds > 0 for all α ∈ Ar

and t > 0, since ẋ ≡ y is continuous along any tra-
jectory (which means that |x(t)| > 0 for a positive
measure of small times whenever y(0) 6= 0). Also,
R

2 \ (P ∪ T ) = ∅. By [11], the FP value function v
is continuous and R = R

2, and one easily checks that
the minimum norm of any φ1 or φ2 point → ∞ as
L→ +∞. Theorem 2 therefore gives the following

Corollary: The FP value function is the unique vis-
cosity solution of

−y(Dw((x, y)′))1 + |(Dw((x, y)′))2| − x2 = 0

on R
2 \ {0} among functions w ∈ C(R2) satisfying

w((0, 0)′) = 0 and lim||x||→∞ w(x) = +∞.

Since the FP Lagrangian ` vanishes outside T , this re-
sult does not follow from the earlier uniqueness results
for viscosity solutions of HJB’s.

5 Proof of Main Results

This section proves Theorem 1 under the latter of the
alternative hypotheses. The other case is covered in
[1]. Theorem 2 follows from the fact that v is a viscos-
ity solution of the associated HJB, which is shown by
modifying standard arguments from [1].

Proposition 5.1 Assume that (2) satisfies (A0)-(A3),
that Ω ⊆ R

N is an open set containing T , and that
w ∈ C(Ω) is a viscosity subsolution of (6) such that
ST (w, Ω) holds. Then w ≤ v on Ω.

Proof: Let x ∈ Ω \ T be given, and let B be any
bounded open set in Ω that contains x and is such
that B̄ ⊆ Ω. Then w is a viscosity subsolution of
sup

a∈A
{−f(x, a) ·Dw(x) − `(x, a) } = 0 on B \ T .

Since w ∈ C(B), it follows from Lemma 3.1 that

w(x) ≤

∫ t

0

`(yx(s, α), α(s)) ds + w(yx(t, α)) (8)

for all α ∈ A and t ∈ [0, τx(α)), where the τx’s are the
exit times from B \ T . Supposing that w(x) > v(x),
we get an α̃ ∈ Af (x) such that

∫ tx(α̃)

0

`(yx(s, α̃), α̃(s)) ds + g(yx(tx(α̃), α̃)) < w(x).

If yx(·, α̃) remains in Ω, then tx(α̃) is a limit of exit
times from sets B = Bk as above. For example, take Bk

to be a suitable tube around the restriction of the trace
of yx(·, α̃) to [0, tx(α̃)− 1/k]. In that case we arrive at

a contradiction once we put α = α̃ and t = tk
x(α̃) in (8),

where the tkx are exit times from the Bk’s, and pass to
the limit as k → ∞. Otherwise, let τ̂ be the last time
in (0, tx(α̃)) that yx(·, α̃) is in ∂Ω, and apply (8) to
a sequence of points of the form zn = yx(τ̂ + 1/n, α̃),
with α(·) = αn(·) := α̃(·+ τ̂ + 1/n), t = tzn

(α̃), and B
chosen to be a tube in Ω around the trajectory from zn

to T , to get w(zn) < w(x) for all n, contradicting the
ST assumption. Indeed, there would be a δ > 0 such
that

w(x) − δ >

∫ τ̂+1/n

0

`(yx(s, α̃), α̃(s)) ds

+

∫ tx(α̃)−τ̂−1/n

0

`(yzn
(s, αn), αn(s)) ds

+ w(yx(tx(α̃), α̃))

≥

∫ τ̂+1/n

0

`(yx(s, α̃), α̃(s)) ds + w(zn)

By the ST condition, the last integral is ≥ −δ for large
n, so we get w(x) > w(zn) for large n. But Ω 3 zn →
yx(τ̂ , α̃) ∈ ∂Ω, contradicting the ST assumption.

Therefore, Theorem 1 will follow once we show that
w ≥ v. Fix x ∈ [Ω ∩ P ] \ T . Then x ∈ Ωj \ T for j
large enough, and for such a j, we set S = Ωj . We will
later put some restrictions on the value of j. We now
use (5) (with B = S \ T ) to prove the existence of a
trajectory starting at x and reaching T in finite time.
This is possible since S \ T ⊆ S \ T ∪ ∂S ∪ ∂T ⊆ Ω
and w is continuous on Ω. We will first assume that
ω0 < ∞. The proof is similar in spirit to the proof
of Theorem IV.3.15 in [1] and arguments in [2], but
we use a weak convergence and strong controllabil-
ity argument to replace the positive lower bound re-
quirement on `. We will assume that all the δ’s in
Lemma 3.2 can be chosen to be 1. The general case
then follows by replacing the corresponding 1/k’s with
δk/k’s for a suitable sequence δk ↘ 0. In what follows,

I(x, t, α) =
∫ t

0
`(yx(s, α), α(s))ds + w(yx(t, α)).

Given ε > 0, let us begin by constructing an ᾱ ∈ A
such that τx(ᾱ) < +∞ and such that

w(x) ≥

∫ τx(ᾱ)

0

`(yx(s, ᾱ), ᾱ(s)) ds + λx(ᾱ)− ε, (9)

where τx(α) is the first time yx(·, α) exits S \ T and

λx(α) :=

{

w(x) + ω0

2
, tx(α) 6= τx(α)

w (yx(τx(α), α)) , tx(α) = τx(α)
.

Letting the Tδ’s be as in Lemma 3.2 with B = S \ T ,
we define x1 := x, τ1 := T1(x1) when T1(x1) < +∞,
and τ1:=10 when T1(x1) = +∞, and use (5) to get an
α1 such that w(x1) ≥ I(x1, τ1, α1) − ε/4. Note that
yx1

(τ1, α1) ∈ S \ T . By induction, we define xk :=



yxk−1
(τk−1, αk−1), where τk := T1/k(xk) if T1/k(xk) <

+∞ and 10k otherwise. Since xk ∈ S \ T we can use
(5) to get an αk ∈ A such that

w(xk) ≥ I(xk, τk, αk)− 2−(k+1)ε. (10)

We also set σk := τ1 + . . . + τk, σ̄ = lim supk σk, and,
for an arbitrary ā ∈ A,

ᾱ(s) :=































α1(s) if 0 ≤ s < σ1,
α2(s− σ1) if σ1 ≤ s < σ2,
. . .
αk(s− σk−1) if σk−1 ≤ s < σk,
. . .
ā if σ̄ ≤ s,

with the last line making sense for σ̄ < +∞. From the
definitions of xk , P , and ᾱ, we know that, when s < σ̄,

yx(s, ᾱ) = yxk
(s− σk−1, αk) ∈ S \ T , and (11)

∫ τk

0 `(yxk
(s, αk), αk(s)) ds =

∫ σk

σk−1

`(yx(s, ᾱ), ᾱ(s))ds

is nonnegative for all k. Via (10),

w(x) ≥

∫ τ1

0

`(yx(s, ᾱ), ᾱ(s)) ds + w(x2)− ε/4

≥

∫ σ2

0

`(yx(s, ᾱ), ᾱ(s)) ds + w(x3)− ε

(

1

4
+

1

8

)

≥ . . .

≥ I(x, σk , ᾱ)− ε/2
(

1− 2−k
)

∀k. (12)

By (11) and the boundedness of the Ωj ’s, the xk’s are
bounded and therefore cluster. Let x̄ be a cluster point
of the xk’s, so x̄ ∈ S \ T . We will need the following
minimality property of x̄:

Proposition 5.2 With the previous notation, we have
lim supk τk ≥ infα{t : yx̄(t, α) ∈ ∂(S \ T )} =: τ̄ .

Proof: For δ > 0 arbitrary, suppose that τ̄ <∞ and
that, for k as large as desired, we had τk < τ̄ − δ. If
τk → 0, then by passing to a suitable weak-? limit of
relaxed controls, ᾱ, we would get

dist (x̄, ∂(S\T ))← dist (yxk
(τ̃k, αk), ∂(S\T )) ≤

1

k

along some τ̃k ↘ 0, so τ̄ = 0, which is impossible. The
details are as follows. Assuming τk ↘ 0, the definition
of the infimum gives a τ̃k ↘ 0 and a sequence {αk} in
A satisfying the inequality. We apply Lemma 3.3 with
c := τ̃1 to conclude that for any δ > 0, the RHS of

|| x̄− yxk
(τ̃k, αk) || ≤ || x̄− yr

x̄(τ̃k , ᾱ) ||

+ || yr
x̄(τ̃k , ᾱ)− yxk

(τ̃k, αk) ||

is < δ for large enough k, which establishes the left
arrow, since dist(·, ∂(S \ T )) is continuous.

Therefore, we can assume by passing to a further sub-
sequence that for some positive number µ, τk > µ > 0
for all k and τk → z ∈ [µ, τ̄ − δ]. That gives, for a
sequence τ̃k → z as above,

dist (yr
x̄(z, u), ∂(S \ T ))← dist (yxk

(τ̃k, uk), ∂(S \ T ))

≤
1

k
→ 0 as k → +∞,

where now u is a relaxed control which is a weak-? limit
of some subsequence of the uj ’s. This follows from the
same compactness theorem with c chosen to be some
upper bound of the τ̃k’s with k large enough.

The standard trajectories yx̄(·, uk) approximate yr
x̄(·, u)

uniformly well on [0, z+1] (by Lemma 3.3), so for large
k, yx̄(τ̃k, uk) lies in S\T (since τk < τ̄ for all k) and, by
the preceding argument, can be brought to ∂(S \T ) by
a standard control ũ in time less than δ/2. If we now
assemble the control for such an approximating stan-
dard trajectory and ũ, we get a (standard) trajectory
which brings x̄ to ∂(S \ T ) in time ≤ τ̄ − δ/2, which is
impossible. We conclude that if τ̄ <∞, then τk ≥ τ̄−δ
for k large enough. Since δ > 0 was arbitrary, we can
assume wlog that τk → l ≥ τ̄ in this case (allowing
l = +∞). If we had τ̄ = +∞, then replace τ̄ − δ in the
argument above with any fixed positive number.

One easily sees that τ̄ is zero iff x̄ ∈ ∂(S \ T ). The
following is a consequence of Proposition 5.2.

Corollary 5.3 With the above notation, any cluster
point of {xk} lies in ∂(S \ T ).

Proof: Let α̃ be a weak-? limit of a subsequence of
the αk’s in Ar (which we assume to be the sequence
itself for brevity). Let M > 0 be given. We then get

0←

∫ σk∧{σk−1+M}

σk−1

`(yx(s, ᾱ), ᾱ(s)) ds =

∫ τk∧M

0

`(yxk
(s, αk), αk(s)) ds→

∫ l∧M

0

`r(yr
x̄(s, α̃), α̃(s)) ds.

The left arrow is by the divergence test applied to the
last integral in (12), using the facts that w is bounded
below and yx(·, ᾱ) stays in S \ T ⊆ P . To justify the
right arrow, apply Lemma 3.3 on [0, M ] to get

yr
xk

(s, αk)→ yr
x̄(s, α̃) uniformly on [0, M ]. (13)

Since A is compact, it therefore suffices to show that
`r(yr

xk
(s, αk), αk(s)) → `r(yr

x̄(s, α̃), α̃(s)) on [0, M ],
(and then the result follows from the Dominated Con-
vergence Theorem). Fix s ∈ [0, M ], and let αk,s(·)



(resp., α̃s(·)) denote the Radon measures αk(s) (resp.,
α̃(s)) for each k. Then,

|`r(yr
x̄(s, α̃), α̃(s))− `r(yr

xk
(s, αk), αk(s))| ≤

∣

∣

∣

∣

∫

A

`(yr
x̄(s, α̃), a) dα̃s(a)−

∫

A

`(yr
x̄(s, α̃), a) dαk,s(a)

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

A

[

`(yr
x̄(s, α̃), a)− `(yr

xk
(s, αk), a)

]

dαk,s(a)

∣

∣

∣

∣

.

The first RHS term→ 0 because `(yr
x̄(s, α̃), ·) is contin-

uous and αk → α̃ weak-∗ on [0, M ]. The second RHS
term → 0 by (13) and (A3).

If we had
∫ τ̄

0
`r(yr

x̄(s, α̃), α̃(s)) ds > 0, then we would

have
∫ G

0
`r(yr

x̄(s, α̃), α̃(s)) ds > 0 for some G ∈ (0, τ̄),
and then, since l ≥ τ̄ , we would reach a contradiction
by putting M = G above. Therefore, τ̄ = 0, or x̄ is not
in P . But, x̄ ∈ S \ T , and S \ T ⊂ P , so we conclude
that x̄ ∈ ∂(S \ T ) and τ̄ = 0, as needed.

We can therefore find a K such that if k > K, then
∫ τxk

(βk)

0 `(yxk
(s, βk), βk(s)) ds < ε/4 for some βk ∈ A

driving xk to x̃ ∈ ∂(S \ T ), where τp(γ) = inf{t ≥ 0 :
yp(t, γ) /∈ S \ T } for γ ∈ A and p ∈ S \ T . This is
possible since ` is continuous, xk → x̄, and Tj → 0
near ∂(S \ T ). Since yxk

(τk, αk) = yx(σk , ᾱ), we get

I(x, σk , ᾱ) =

∫ σk

0

`(yx(s, ᾱ), ᾱ(s)) ds + w(yxk
(τk , αk))

For such k, the construction (12) therefore gives

w(x) ≥ I(x, σk−1, ᾱ)

+

∫ τxk
(βk)

0

`(yxk
(s, βk), βk(s)) ds

− ε/2 (1− 2−(k−1) + 1/2). (14)

For large k and x̄ ∈ T , w(xk) + ε/4 > w(x̃),
since w ∈ C(Ω). Otherwise, x̄ ∈ ∂S \ T , so
w(yxk−1

(τk−1, αk−1)) ≥ 1/2(w(x) + ω0), since, by the
compatibility condition, we can assume that j is so
large that w(p) > 1

4w(x) + 3
4w0 for p ∈ S \ T near

∂S \ T . In the former case, we add and subtract ε/4
in (14). We complete the construction by assembling
ᾱ up to time σk−1 and βk for k large enough.

Thus, when ω0 ∈ R, our construction always gives us a
control ᾱ for which τx(ᾱ) < +∞ satisfying (9). Since
ε > 0 was arbitrary, we conclude that w(x) majorizes

inf
α

{

∫ τx(α)

0

`(yx(s, α), α(s))ds + λx(α) : τx(α)<+∞

}

.

If τx(α) 6= tx(α), then the corresponding infimand is
∫ τx(α)

0 `(yx(s, α), α(s)) ds + 1
2 (ω0 + w(x)) > w(x),

since w(x) < w0 for all x ∈ Ω and x ∈ P , so such

a control is irrelevant for the infimum. Since g = w
on T , w(x) ≥ v(x) on Ω ∩ P . If x ∈ Ω \ [P ∪ T ],
w(x) = [w(x) − w(yx(L, α′))] + w(yx(L, α′)) for some
α′ ∈ A and L > 0 such that yx(L, α′) ∈ P ∩ Ω and

w(x) − w(yx(L, α′)) ≥
∫ L

0
`(yx(s, α′), α′(s)) ds − ε

(via the first ST (w, Ω) condition and Lemma 3.2), then
assemble α′d[0, L] and the ᾱ constructed above to get
w(x) ≥ v(x) as above. Thus, w ≥ v on Ω.

The proof for the w0 = +∞ case is similar to this. We
view a fixed x ∈ [P ∩Ω]\T as a member of Ωj \T where
j is large enough so that values of w on ∂Ωj\T majorize
w(x), and then we construct a trajectory that reaches
∂(Ωj) or T in finite time. The controls whose exit times
for Ωj \ T are not exit times for T are irrelevant for
the calculation of the appropriate infimum, as above,
so w ≥ v as before.
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