MATHEMATICS 502 — SPRING 2016 Theory of functions of a real variable II H. J. Sussmann ### NOTES ON FOURIER TRANSFORMS ## Contents | 1 | Gau | issian Integrals | J | |---|--------------------|--|----| | 2 | Fourier Trnasforms | | 3 | | | 1 | The Fourier Inversion Formula | 4 | | | 2 | Plancherel's Theorem | 10 | | | 3 | Fourier transforms of functions in L^2 | 11 | # 1 Gaussian Integrals **Theorem 1.** If $\alpha \in \mathbb{R}$, $\beta \in \mathbb{C}$ and $\alpha > 0$, then $$\int_{-\infty}^{\infty} e^{-\alpha x^2 + \beta x} dx = \sqrt{\frac{\pi}{\alpha}} e^{\frac{\beta^2}{4\alpha}}. \quad (1.1)$$ *Proof.* First observe that the integral is convergent, because $\alpha > 0$. (This is trivial, but if you want to see a complete proof you can look at the remark at the end of this subsection.) Next we observe that, for fixed α , the integral of (1.1) is a holomorphic function of the complex variable β , so to prove (1.1) it suffices, by analytic continuation, to assume that β is real. Let us make the change of variable $$\xi = \sqrt{2\alpha}x - \frac{\beta}{\sqrt{2\alpha}},$$ SO $$\xi^2 = 2\alpha x^2 - 2\beta x + \frac{\beta^2}{2\alpha} \,,$$ and then $$-\frac{\xi^2}{2} = -\alpha x^2 + \beta x - \frac{\beta^2}{4\alpha}.$$ Also, $d\xi = \sqrt{2\alpha} dx$, so $dx = \frac{d\xi}{\sqrt{2\alpha}}$, and then $$\int_{-\infty}^{\infty} e^{-\alpha x^2 + \beta x} dx = \frac{1}{\sqrt{2\alpha}} e^{\frac{\beta^2}{4\alpha}} \int_{-\infty}^{\infty} e^{-\frac{\xi^2}{2}} d\xi.$$ If we let $$I = \int_{-\infty}^{\infty} e^{-\frac{\xi^2}{2}} d\xi \,,$$ then $$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{\xi^{2} + \eta^{2}}{2}} d\xi \, d\eta \,,$$ and the last integral can be done in polar coordinates: $$I^{2} = \iint_{\mathbb{R}^{2}} e^{-\frac{r^{2}}{2}} r \, dr \, d\theta$$ $$= \int_{0}^{\infty} \left(\int_{0}^{2\pi} d\theta \right) r e^{-\frac{r^{2}}{2}} dr$$ $$= 2\pi \int_{0}^{\infty} r e^{-\frac{r^{2}}{2}} dr$$ $$= 2\pi \int_{0}^{\infty} \left(-\frac{d}{dr} e^{-\frac{r^{2}}{2}} \right) dr$$ $$= 2\pi .$$ It follows that $I = \sqrt{2\pi}$, and then $$\int_{-\infty}^{\infty} e^{-\alpha x^2 + \beta x} dx = \frac{1}{\sqrt{2\alpha}} \times \sqrt{2\pi} e^{\frac{\beta^2}{4\alpha}}$$ SO $$\int_{-\infty}^{\infty} e^{-\alpha x^2 + \beta x} dx = \sqrt{\frac{\pi}{\alpha}} e^{\frac{\beta^2}{4\alpha}},$$ as desired. Q.E.D. **Remark 1**. Let us prove the convergence of the integral in (1.1). First, we have the inequality $$|\beta x| \le \frac{1}{2} \left(\alpha x^2 + \frac{|\beta|^2}{\alpha} \right),$$ using the inequality $ab \leq \frac{a^2+b^2}{2}$ with $a = \sqrt{\alpha}|x|, b = \frac{|\beta|}{\sqrt{\alpha}}$, so that $ab = |\beta x|$. Then $$-\alpha x^2 + |\beta x| \leq -\alpha x^2 + \frac{1}{2} \left(\alpha x^2 + \frac{|\beta|^2}{\alpha} \right)$$ $$= -\frac{\alpha x^2}{2} + \frac{|\beta|^2}{\alpha}.$$ Hence $$|e^{-\alpha x^2 + \beta x}| = e^{-\alpha x^2} |e^{\beta x}|$$ $$\leq e^{-\alpha x^2} e^{|\beta x|}$$ $$\leq e^{-\alpha x^2 + |\beta x|}$$ $$\leq e^{-\frac{\alpha x^2}{2} + \frac{|\beta|^2}{\alpha}}$$ $$= e^{-\frac{\alpha x^2}{2}} e^{\frac{|\beta|^2}{\alpha}}.$$ And $e^{\frac{\alpha x^2}{2}} \ge 1 + \frac{\alpha x^2}{4}$, because $e^u \ge 1 + u$ for every nonnegative u, so $$e^{-\frac{\alpha x^2}{2}} \le \frac{1}{1 + \frac{\alpha x^2}{4}},$$ so the function $x \mapsto e^{-\frac{\alpha x^2}{2}}$ is integrable. # 2 Fourier Trnasforms In this section, we define a. the Fourier transform \hat{f} , and b. the <u>inverse Fourier transform</u> \check{f} , of a function $f \in L^1(\mathbb{R}; \mathbb{C})$. We do this by letting $$\hat{f}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v)e^{-iuv}dv,$$ $$\check{f}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v)e^{iuv}dv.$$ With the above definitions, it is clear that **Theorem 2.** If $f \in L^1(\mathbb{R}; \mathbb{C})$, then \hat{f} and \check{f} are continuous functions on \mathbb{R} , and satisfy $$\lim_{|u|\to\infty} \hat{f}(u) = \lim_{|u|\to\infty} \check{f}(u) = 0,$$ as well as $$\|\hat{f}\|_{L^{\infty}} \le \|f\|_{L^{1}}$$ and $\|\check{f}\|_{L^{\infty}} \le \|f\|_{L^{1}}$. Furthermore, $\check{f}(u) = \hat{f}(-u)$ for all $u \in \mathbb{R}$, so that $$\check{f} = \mathcal{R}\hat{f}$$, where \mathcal{R} is the reflection operator, i.e., the map that sends each funtion f on \mathbb{R} to the function $\mathbb{R} \ni u \mapsto f(-u)$. *Proof.* All these things are very easy to prove, and were proved in class. #### 1 The Fourier Inversion Formula We are now ready to prove the Fourier Inversion Formula for L^1 functions¹ We define $\Lambda^1(\mathbb{R}; \mathbb{C})$ to be the space of all functions $f \in L^1(\mathbb{R}; \mathbb{C})$ such that the Fourier transform \hat{f} also belongs to $L^1(\mathbb{R}; \mathbb{C})$. **Theorem 3.** Let f be a function belonging to $\Lambda^1(\mathbb{R};\mathbb{C})$. Then $$f = \dot{\hat{f}}. \quad (2.2)$$ *Proof.* First of all. the facts that f and \hat{f} belong to L^1 imply that the integrals in the right-hand sides of the formulas $$\begin{split} \hat{f}(u) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v) e^{-iuv} dv \,, \\ \check{\hat{f}}(u) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(v) e^{-iuv} dv \,, \end{split}$$ $^{^{1}}$ As will become clear soon, there are versions of the Fourier Inversion Formula for L^{2} functions, and for tempered distributions. exist for each u, and are bounded continuous functions of u. Furthermore, if $u \in \mathbb{R}$, then $$\check{\hat{f}}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(v) e^{iuv} dv.$$ Let $$g_{\varepsilon}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\varepsilon v^2} \hat{f}(v) e^{iuv} dv. \qquad (2.3)$$ Then it is clear that $$\lim_{\varepsilon \downarrow 0} g_{\varepsilon}(u) = \check{\hat{f}}(u), \qquad (2.4)$$ because the functions $\mathbb{R} \ni v \mapsto e^{-\varepsilon v^2} \hat{f}(v) e^{iuv}$ converge pointwise to the function $\mathbb{R} \ni v \mapsto \hat{f}(v) e^{iuv}$ and are uniformly dominated by the integrable function $|\hat{f}|$. It follows from (2.3) that $$g_{\varepsilon}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(w)e^{-ivw} dw\right) e^{-\varepsilon v^{2}} e^{iuv} dv$$ $$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\varepsilon v^{2}} e^{iv(u-w)} f(w) dw dv$$ $$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(w) \left(\int_{-\infty}^{\infty} e^{-\varepsilon v^{2}} e^{iv(u-w)} dv\right) dw,$$ where the changes of the orders of integration are justified because the absolute value of the function of two variables $$\mathbb{R}^2 \ni (v, w) \mapsto e^{-\varepsilon v^2} e^{iv(u-w)} f(w)$$ is $e^{-\varepsilon v^2}|f(w)|$, which is an integrable function on \mathbb{R}^2 . The integral $$J(u,w) = \int_{-\infty}^{\infty} e^{-\varepsilon v^2} e^{iv(u-w)} dv$$ can be computed using Formula (1.1) (with $\alpha = \varepsilon$ and $\beta = i(u - w)$), and we get $$J(u, w) = \sqrt{\frac{\pi}{\varepsilon}} e^{-\frac{(u-w)^2}{4\varepsilon}}$$. It follows that $$g_{\varepsilon}(u) = \sqrt{\frac{\pi}{\varepsilon}} \times \frac{1}{2\pi} \int_{-\infty}^{\infty} f(w) e^{-\frac{(u-w)^2}{4\varepsilon}} dw$$ SO $$g_{\varepsilon}(u) = \frac{1}{2\sqrt{\pi\varepsilon}} \int_{-\infty}^{\infty} f(w) e^{-\frac{(u-w)^2}{4\varepsilon}} dw$$ and then, making the change of variables $$\xi = \frac{u - w}{2\sqrt{\varepsilon}} \,,$$ so that $$d\xi = -\frac{dw}{2\sqrt{\varepsilon}},$$ $$dw = -2\sqrt{\varepsilon}d\xi,$$ $$w = u - 2\sqrt{\varepsilon}\xi.$$ and $$\frac{(u-w)^2}{4\varepsilon} = \xi^2 \,,$$ we find $$g_{\varepsilon}(u) = \frac{1}{2\sqrt{\pi\varepsilon}} \times 2\sqrt{\varepsilon} \int_{-\infty}^{\infty} f(u - 2\sqrt{\varepsilon}\xi)e^{-\xi^2}d\xi$$ so $$g_{\varepsilon}(u) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(u - 2\sqrt{\varepsilon}\xi) e^{-\xi^2} d\xi$$. We can compute the integral $\int_{-\infty}^{\infty} e^{-\xi^2} d\xi$ using (1.1), and get $$\int_{-\infty}^{\infty} e^{-\xi^2} d\xi = \sqrt{\pi} \,,$$ SO $$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\xi^2} d\xi = 1.$$ Therefore, $$g_{\varepsilon}(u) - f(u) = \frac{1}{\sqrt{\pi}} = \int_{-\infty}^{\infty} \left(f(u - 2\sqrt{\varepsilon}\xi) - f(u) \right) e^{-\xi^2} d\xi.$$ Hence $$|g_{\varepsilon}(u) - f(u)| \le \frac{1}{\sqrt{\pi}} = \int_{-\infty}^{\infty} |f(u - 2\sqrt{\varepsilon}\xi) - f(u)| e^{-\xi^2} d\xi.$$ If we now integrate this with respect to u, we get $$\int_{-\infty}^{\infty} |g_{\varepsilon}(u) - f(u)| du \le \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| f(u - 2\sqrt{\varepsilon}\xi) - f(u) \right| e^{-\xi^2} d\xi \, du \,. \tag{2.5}$$ The double integral in the above inequality makes sense because the integrand is positive, and satisfies the inequality $$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| f(u - 2\sqrt{\varepsilon}\xi) - f(u) \right| e^{-\xi^2} d\xi \, du \le \int_{-\infty}^{\infty} \theta(2\sqrt{\varepsilon}\xi) e^{-\xi^2} d\xi \,,$$ where we define $$\theta(h) = \int_{-\infty}^{\infty} |f(u+h) - f(u)| du.$$ Clearly, $\theta(h) = \|\tau_h(f) - f\|_{L^1}$, where $\tau_h(f)$ is the h-translate of f, i.e., the function $\mathbb{R} \ni u \mapsto f(u+h)$. Inequality (2.5) says that $$||g_{\varepsilon} - f||_{L^{1}} \le \int_{-\infty}^{\infty} \theta(2\sqrt{\varepsilon}\xi)e^{-\xi^{2}}d\xi.$$ (2.6) It is clear that $\theta(h) \leq 2||f||_{L^1}$ for every h. Therefore the functions $$\mathbb{R} \ni \xi \mapsto \theta(2\sqrt{\varepsilon}\xi)e^{-\xi^2} \tag{2.7}$$ are uniformly dominated by the integrable function $$\mathbb{R} \ni \xi \mapsto 2||f||_{L^1}e^{-\xi^2}$$. We now use the fact that θ is continuous (proved below, as Lemma (1)) to conclude that the functions (2.7) converge pointwise to $\theta(0)e^{-\xi^2}$ as $\varepsilon \downarrow 0$. Since $\theta(0) = 0$, the functions (2.7) converge pointwise to zero. It the follows from the Lenesgue dominated convergence theorem that $$\lim_{\varepsilon \downarrow 0} \int_{-\infty}^{\infty} \theta(2\sqrt{\varepsilon}\xi) e^{-\xi^2} d\xi = 0.$$ Thefeore (2.6) implies that $$\lim_{\varepsilon \downarrow 0} \|g_{\varepsilon} - f\|_{L^1} = 0.$$ So the functions g_{ε} converge to f in L^1 . But Equation (2.4) says that the g_{ε} converge pointwise to \check{f} . Hence $f = \check{f}$, and our conclusion is proved. **Q.E.D.** **Lemma 1.** If $f \in L^1(\mathbb{R}; \mathbb{C})$, then the translations $\tau_h(f)$ depend continuously on h. That is, the function $$\mathbb{R} \ni h \mapsto \tau_h(f) \in L^1(\mathbb{R}; \mathbb{C}) \tag{2.8}$$ is continous. Furthermore, the function (2.8) is actually uniformly continuous. In particular, if we let $\theta(h) = \|\tau_h(f) - f\|_{L^1}$, then θ is a continuous function. *Proof.* First assume that f is a continuous compactly supported function. Then f is uniformly continuous. Therefore, if ε' is an arbitrary positive number, there exists a positive δ such that - 1. $\delta < 1$, - 2. $|f(x+h) f(x)| < \varepsilon'$ whenever $x, h \in \mathbb{R}$ and $|h| < \delta$. If $|h| < \delta$, and L is such that the support of f is contained in the interval [-L, L], then $$\|\tau_h(f) - f\|_{L^1} = \int_{-\infty}^{\infty} |f(x+h) - f(x)| dx \le 2(L+1)\varepsilon',$$ because the integrand is always bounded by ε' , and vanishes whenever |x| > L + 1. Therefore, if $\varepsilon > 0$, and we choose ε' such that $2(L+1)\varepsilon' \leq \varepsilon$, we find that $$\|\tau_h(f) - f\|_{L^1} \le \varepsilon$$ whenever $|h| < \delta$. It follows that $$\|\tau_{h_1}(f) - \tau_{h_2}(f)\|_{L^1} \le \varepsilon$$ whenever $|h_1 - h_2| < \delta$, because $$\|\tau_{h_1}(f) - \tau_{h_2}(f)\|_{L^1} = \|\tau_{h_2}(\tau_{h_1 - h_2}(f) - f)\|_{L^1} = \|\tau_{h_1 - h_2}(f) - f\|_{L^1},$$ in view of the trabslation-invariance of the L^1 norm. Now, if f is a general L^1 function, and $\varepsilon > 0$, we can find a continuous compactly supported function g such that $||f - g||_{L^1} < \frac{\varepsilon}{3}$. Then $$\|\tau_h(f) - \tau_h(g)\|_{L^1} < \frac{\varepsilon}{3}$$ for every h . We then find a positive δ such that $$\|\tau_{h_1}(g) - \tau_{h_2}(g)\|_{L^1} \le \frac{\varepsilon}{3}$$ whenever $|h_1 - h_2| < \delta$, It then follows that, if $|h_1 - h_2| < \delta$, the inequality $$\|\tau_{h_1}(f) - \tau_{h_2}(f)\|_{L^1} \le \varepsilon$$ holds, because $$\|\tau_{h_1}(f) - \tau_{h_2}(f)\|_{L^1} \leq \|\tau_{h_1}(f) - \tau_{h_1}(g)\|_{L^1} + \|\tau_{h_1}(g) - \tau_{h_2}(g)\|_{L^1} + \|\tau_{h_2}(g) - \tau_{h_2}(f)\|_{L^1}.$$ Hence the function (2.8) is uniformly continuous, and our proof is complete. **Q.E.D**. Corollary 1. If $f \in \Lambda^1(\mathbb{R}; \mathbb{C})$ then - 1. Both f and \hat{f} are continuous functions on \mathbb{R} that go to zero at infinity. - 2. $\|\hat{f}\|_{L^{\infty}} \le \|f\|_{L^{1}} \text{ and } \|f\|_{L^{\infty}} \le \|\hat{f}\|_{L^{1}}.$ - 3. Both f and \hat{f} belong to $L^2(\mathbb{R};\mathbb{C})$. *Proof.* We already know that \hat{f} and \hat{f} are continuous functions that go to zero at infinity, and that $\|\hat{f}\|_{L^{\infty}} \leq \|f\|_{L^1}$ and $\|\check{f}\|_{L^{\infty}} \leq \|\hat{f}\|_{L^1}$. But now we know in addition that $\check{f} = f$. Hence f is a continuous function that goes to zero at infinity, and $\|f\|_{L^{\infty}} \leq \|\hat{f}\|_{L^1}$. Finally, the fact that f and \hat{f} belong to L^2 follows by interpolation from the fact that both functions belong to $L^1 \cap L^{\infty}$. (That is, $\int |f|^2 \le ||f||_{L^1} ||f||_{L^{\infty}}$, so $\int |f|^2 < \infty$, and similarly for \hat{f} .) Q.E.D. #### 2 Plancherel's Theorem Now that we know that the functions f and \hat{f} belong to L^2 whenever $f \in \Lambda^1$, we can go one step further and prove the very important **Plancherel theorem**: **Theorem 4.** If $f \in \Lambda^1(\mathbb{R}; \mathbb{C})$ then $$\|\hat{f}\|_{L^2} = \|f\|_{L^2}. \quad (2.9)$$ *Proof.* First observe that, if f and g belong to Λ^1 , then $$\int_{-\infty}^{\infty} f(x)\overline{\check{g}(x)}dx = \int_{-\infty}^{\infty} \hat{f}(x)\overline{g(x)}dx, \qquad (2.10)$$ To see this, we compute $$\int_{-\infty}^{\infty} f(x)\overline{\check{g}(x)}dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \overline{\int_{-\infty}^{\infty} g(y)e^{ixy}dy}dx$$ $$= \frac{1}{\sqrt{2\pi}} \int \int)_{\mathbb{R}^{2}} f(x)\overline{g(y)e^{ixy}}dydx$$ $$= \frac{1}{\sqrt{2\pi}} \int \int)_{\mathbb{R}^{2}} f(x)e^{-ixy}\overline{g(y)}dydx$$ $$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x)e^{-ixy}dx\right)\overline{g(y)}dy$$ $$= \int_{-\infty}^{\infty} \hat{f}(y)\overline{g(y)}dy.$$ This proves (2.10). If we then apply (2.10) with $g = \hat{f}$, we get $$\int_{-\infty}^{\infty} f(x) \overline{\hat{f}(x)} dx = \int_{-\infty}^{\infty} \hat{f}(x) \overline{\hat{f}(x)} dx.$$ Since $\check{f} = f$, we may conclude that $$\int_{-\infty}^{\infty} f(x)\overline{f(x)}dx = \int_{-\infty}^{\infty} \hat{f}(x)\overline{\hat{f}(x)}dx,$$ that is, $$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(x)|^2 dx,$$ which is the desired identity. Q.E.D. ## 3 Fourier transforms of functions in L^2 We have shown that Λ^1 is a subspace of L^2 and the Fourier transform map $\Lambda^1 \ni f \mapsto \hat{f}$ maos Λ^1 to Λ^1 and satisfies $\|\hat{f}\|_{L^2} = \|f\|_{L^2}$ for all $f \in \Lambda^1$. It is easy to see that Λ^1 is a dense subspace of L^2 . (For example, the space \mathcal{S} od rapidly decreasing C^{∞} functions is conatined in Λ^1 and is dense in L^2 .) Hence the Fourier transform map can be extended to a map $\mathcal{F}: L^2 \mapsto L^2$, and this map also satisfies $\|\mathcal{F}(f)\|_{l^2} = \|f\|_{L^2}$. In other words, \mathcal{F} is an isometric map from L^2 to L^2 . We will now go back to our initial notation, and write \hat{f} for $\mathcal{F}(f)$ and \check{f} for $\mathcal{R}(\mathcal{F}(f))$. (Recall that \mathcal{R} os the reflection map, that sends a function f to the function $x \mapsto f(-x)$.) The formulas $$\dot{\hat{f}} = f \,, \tag{2.11}$$ and $$\|\hat{f}\|_{L^2} = \|f\|_{L^2}, \tag{2.12}$$ that were proved for $f \in \Lambda^1$, extend by contimulity to all of L^2 . The Fourier inversion formula (2.11) says that $$\mathcal{F}\circ\mathcal{F}=\mathcal{R}$$. Since \mathcal{R}^2 = identity, it follows that $$\mathcal{F}^4 = identity. (2.13)$$ It is important to note thet. for a general function in L^2 , the formula $$\hat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-icy}dy$$ is no longer valid as written, because f need not be integrable, so the integral need not exist. What is true, however, is that \hat{f} is the L^2 -limit of \hat{f}_L as $L \to \infty$, where \hat{f}_L is the Fourier transform of $\chi_{[-L,L]}f$, because $\chi_{[-L,L]}f \to f$ in L^2 as $L \to \infty$. Furthermore, the functions $\chi_{[-L,L]}f$ are in L^1 , so their Fourier transforms are given by the integral fornula. And the same is true for rthe inverse Fourier transform. So we get the following **Fourier transform formulas**: $$\hat{f} = L^{2} - \lim_{L \to \infty} \hat{f}_{L}, \qquad (2.14)$$ $$\hat{f}_{L}(x) = \frac{1}{\sqrt{2\pi}} \int_{-L}^{L} f(y) e^{-ixy} dy, \qquad (2.15)$$ $$\check{f} = L^{2} - \lim_{L \to \infty} \check{f}_{L}, \qquad (2.16)$$ $$\check{f}_{L}(x) = \frac{1}{\sqrt{2\pi}} \int_{-L}^{L} f(y) e^{ixy} dy, \qquad (2.17)$$ $$\check{f} = f, \qquad (2.18)$$ $$\|\hat{f}\|_{L^{2}} = \|f\|_{L^{2}}, \qquad (2.19)$$ valid for $f \in L^2(\mathbb{R}; \mathbb{C})$. Formulas (2.14) and (2.16) aare sometimes written in the form $$\hat{f}(x) = \frac{1}{\sqrt{2\pi}} \lim_{L \to \infty} \int_{-L}^{L} f(y)e^{-ixy}dy,$$ and $$\check{f}(x) = \frac{1}{\sqrt{2\pi}} \lim_{L \to \infty} \int_{-L}^{L} f(y)e^{ixy}dy,$$ with the understanding that the limits are not pointwise limits, for every x, but limits in L^2 of functions of x/