MATHEMATICS 502 — SPRING 2016

Theory of functions of a real variable II

H. J. Sussmann

NOTES ON FOURIER TRANSFORMS

Contents

1	Gau	issian Integrals	J
2	Fourier Trnasforms		3
	1	The Fourier Inversion Formula	4
	2	Plancherel's Theorem	10
	3	Fourier transforms of functions in L^2	11

1 Gaussian Integrals

Theorem 1. If $\alpha \in \mathbb{R}$, $\beta \in \mathbb{C}$ and $\alpha > 0$, then

$$\int_{-\infty}^{\infty} e^{-\alpha x^2 + \beta x} dx = \sqrt{\frac{\pi}{\alpha}} e^{\frac{\beta^2}{4\alpha}}. \quad (1.1)$$

Proof. First observe that the integral is convergent, because $\alpha > 0$. (This is trivial, but if you want to see a complete proof you can look at the remark at the end of this subsection.)

Next we observe that, for fixed α , the integral of (1.1) is a holomorphic function of the complex variable β , so to prove (1.1) it suffices, by analytic continuation, to assume that β is real.

Let us make the change of variable

$$\xi = \sqrt{2\alpha}x - \frac{\beta}{\sqrt{2\alpha}},$$

SO

$$\xi^2 = 2\alpha x^2 - 2\beta x + \frac{\beta^2}{2\alpha} \,,$$

and then

$$-\frac{\xi^2}{2} = -\alpha x^2 + \beta x - \frac{\beta^2}{4\alpha}.$$

Also, $d\xi = \sqrt{2\alpha} dx$, so $dx = \frac{d\xi}{\sqrt{2\alpha}}$, and then

$$\int_{-\infty}^{\infty} e^{-\alpha x^2 + \beta x} dx = \frac{1}{\sqrt{2\alpha}} e^{\frac{\beta^2}{4\alpha}} \int_{-\infty}^{\infty} e^{-\frac{\xi^2}{2}} d\xi.$$

If we let

$$I = \int_{-\infty}^{\infty} e^{-\frac{\xi^2}{2}} d\xi \,,$$

then

$$I^{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\frac{\xi^{2} + \eta^{2}}{2}} d\xi \, d\eta \,,$$

and the last integral can be done in polar coordinates:

$$I^{2} = \iint_{\mathbb{R}^{2}} e^{-\frac{r^{2}}{2}} r \, dr \, d\theta$$

$$= \int_{0}^{\infty} \left(\int_{0}^{2\pi} d\theta \right) r e^{-\frac{r^{2}}{2}} dr$$

$$= 2\pi \int_{0}^{\infty} r e^{-\frac{r^{2}}{2}} dr$$

$$= 2\pi \int_{0}^{\infty} \left(-\frac{d}{dr} e^{-\frac{r^{2}}{2}} \right) dr$$

$$= 2\pi .$$

It follows that $I = \sqrt{2\pi}$, and then

$$\int_{-\infty}^{\infty} e^{-\alpha x^2 + \beta x} dx = \frac{1}{\sqrt{2\alpha}} \times \sqrt{2\pi} e^{\frac{\beta^2}{4\alpha}}$$

SO

$$\int_{-\infty}^{\infty} e^{-\alpha x^2 + \beta x} dx = \sqrt{\frac{\pi}{\alpha}} e^{\frac{\beta^2}{4\alpha}},$$

as desired.

Q.E.D.

Remark 1. Let us prove the convergence of the integral in (1.1). First, we have the inequality

$$|\beta x| \le \frac{1}{2} \left(\alpha x^2 + \frac{|\beta|^2}{\alpha} \right),$$

using the inequality $ab \leq \frac{a^2+b^2}{2}$ with $a = \sqrt{\alpha}|x|, b = \frac{|\beta|}{\sqrt{\alpha}}$, so that $ab = |\beta x|$. Then

$$-\alpha x^2 + |\beta x| \leq -\alpha x^2 + \frac{1}{2} \left(\alpha x^2 + \frac{|\beta|^2}{\alpha} \right)$$
$$= -\frac{\alpha x^2}{2} + \frac{|\beta|^2}{\alpha}.$$

Hence

$$|e^{-\alpha x^2 + \beta x}| = e^{-\alpha x^2} |e^{\beta x}|$$

$$\leq e^{-\alpha x^2} e^{|\beta x|}$$

$$\leq e^{-\alpha x^2 + |\beta x|}$$

$$\leq e^{-\frac{\alpha x^2}{2} + \frac{|\beta|^2}{\alpha}}$$

$$= e^{-\frac{\alpha x^2}{2}} e^{\frac{|\beta|^2}{\alpha}}.$$

And $e^{\frac{\alpha x^2}{2}} \ge 1 + \frac{\alpha x^2}{4}$, because $e^u \ge 1 + u$ for every nonnegative u, so

$$e^{-\frac{\alpha x^2}{2}} \le \frac{1}{1 + \frac{\alpha x^2}{4}},$$

so the function $x \mapsto e^{-\frac{\alpha x^2}{2}}$ is integrable.

2 Fourier Trnasforms

In this section, we define

a. the Fourier transform \hat{f} ,

and

b. the <u>inverse Fourier transform</u> \check{f} ,

of a function $f \in L^1(\mathbb{R}; \mathbb{C})$. We do this by letting

$$\hat{f}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v)e^{-iuv}dv,$$

$$\check{f}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v)e^{iuv}dv.$$

With the above definitions, it is clear that

Theorem 2. If $f \in L^1(\mathbb{R}; \mathbb{C})$, then \hat{f} and \check{f} are continuous functions on \mathbb{R} , and satisfy

$$\lim_{|u|\to\infty} \hat{f}(u) = \lim_{|u|\to\infty} \check{f}(u) = 0,$$

as well as

$$\|\hat{f}\|_{L^{\infty}} \le \|f\|_{L^{1}}$$
 and $\|\check{f}\|_{L^{\infty}} \le \|f\|_{L^{1}}$.

Furthermore, $\check{f}(u) = \hat{f}(-u)$ for all $u \in \mathbb{R}$, so that

$$\check{f} = \mathcal{R}\hat{f}$$
,

where \mathcal{R} is the reflection operator, i.e., the map that sends each funtion f on \mathbb{R} to the function $\mathbb{R} \ni u \mapsto f(-u)$.

Proof. All these things are very easy to prove, and were proved in class.

1 The Fourier Inversion Formula

We are now ready to prove the Fourier Inversion Formula for L^1 functions¹ We define $\Lambda^1(\mathbb{R}; \mathbb{C})$ to be the space of all functions $f \in L^1(\mathbb{R}; \mathbb{C})$ such that the Fourier transform \hat{f} also belongs to $L^1(\mathbb{R}; \mathbb{C})$.

Theorem 3. Let f be a function belonging to $\Lambda^1(\mathbb{R};\mathbb{C})$. Then

$$f = \dot{\hat{f}}. \quad (2.2)$$

Proof. First of all. the facts that f and \hat{f} belong to L^1 imply that the integrals in the right-hand sides of the formulas

$$\begin{split} \hat{f}(u) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(v) e^{-iuv} dv \,, \\ \check{\hat{f}}(u) &= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(v) e^{-iuv} dv \,, \end{split}$$

 $^{^{1}}$ As will become clear soon, there are versions of the Fourier Inversion Formula for L^{2} functions, and for tempered distributions.

exist for each u, and are bounded continuous functions of u.

Furthermore, if $u \in \mathbb{R}$, then

$$\check{\hat{f}}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \hat{f}(v) e^{iuv} dv.$$

Let

$$g_{\varepsilon}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\varepsilon v^2} \hat{f}(v) e^{iuv} dv. \qquad (2.3)$$

Then it is clear that

$$\lim_{\varepsilon \downarrow 0} g_{\varepsilon}(u) = \check{\hat{f}}(u), \qquad (2.4)$$

because the functions $\mathbb{R} \ni v \mapsto e^{-\varepsilon v^2} \hat{f}(v) e^{iuv}$ converge pointwise to the function $\mathbb{R} \ni v \mapsto \hat{f}(v) e^{iuv}$ and are uniformly dominated by the integrable function $|\hat{f}|$.

It follows from (2.3) that

$$g_{\varepsilon}(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(w)e^{-ivw} dw\right) e^{-\varepsilon v^{2}} e^{iuv} dv$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\varepsilon v^{2}} e^{iv(u-w)} f(w) dw dv$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} f(w) \left(\int_{-\infty}^{\infty} e^{-\varepsilon v^{2}} e^{iv(u-w)} dv\right) dw,$$

where the changes of the orders of integration are justified because the absolute value of the function of two variables

$$\mathbb{R}^2 \ni (v, w) \mapsto e^{-\varepsilon v^2} e^{iv(u-w)} f(w)$$

is $e^{-\varepsilon v^2}|f(w)|$, which is an integrable function on \mathbb{R}^2 .

The integral

$$J(u,w) = \int_{-\infty}^{\infty} e^{-\varepsilon v^2} e^{iv(u-w)} dv$$

can be computed using Formula (1.1) (with $\alpha = \varepsilon$ and $\beta = i(u - w)$), and we get

$$J(u, w) = \sqrt{\frac{\pi}{\varepsilon}} e^{-\frac{(u-w)^2}{4\varepsilon}}$$
.

It follows that

$$g_{\varepsilon}(u) = \sqrt{\frac{\pi}{\varepsilon}} \times \frac{1}{2\pi} \int_{-\infty}^{\infty} f(w) e^{-\frac{(u-w)^2}{4\varepsilon}} dw$$

SO

$$g_{\varepsilon}(u) = \frac{1}{2\sqrt{\pi\varepsilon}} \int_{-\infty}^{\infty} f(w) e^{-\frac{(u-w)^2}{4\varepsilon}} dw$$

and then, making the change of variables

$$\xi = \frac{u - w}{2\sqrt{\varepsilon}} \,,$$

so that

$$d\xi = -\frac{dw}{2\sqrt{\varepsilon}},$$

$$dw = -2\sqrt{\varepsilon}d\xi,$$

$$w = u - 2\sqrt{\varepsilon}\xi.$$

and

$$\frac{(u-w)^2}{4\varepsilon} = \xi^2 \,,$$

we find

$$g_{\varepsilon}(u) = \frac{1}{2\sqrt{\pi\varepsilon}} \times 2\sqrt{\varepsilon} \int_{-\infty}^{\infty} f(u - 2\sqrt{\varepsilon}\xi)e^{-\xi^2}d\xi$$

so

$$g_{\varepsilon}(u) = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} f(u - 2\sqrt{\varepsilon}\xi) e^{-\xi^2} d\xi$$
.

We can compute the integral $\int_{-\infty}^{\infty} e^{-\xi^2} d\xi$ using (1.1), and get

$$\int_{-\infty}^{\infty} e^{-\xi^2} d\xi = \sqrt{\pi} \,,$$

SO

$$\frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} e^{-\xi^2} d\xi = 1.$$

Therefore,

$$g_{\varepsilon}(u) - f(u) = \frac{1}{\sqrt{\pi}} = \int_{-\infty}^{\infty} \left(f(u - 2\sqrt{\varepsilon}\xi) - f(u) \right) e^{-\xi^2} d\xi.$$

Hence

$$|g_{\varepsilon}(u) - f(u)| \le \frac{1}{\sqrt{\pi}} = \int_{-\infty}^{\infty} |f(u - 2\sqrt{\varepsilon}\xi) - f(u)| e^{-\xi^2} d\xi.$$

If we now integrate this with respect to u, we get

$$\int_{-\infty}^{\infty} |g_{\varepsilon}(u) - f(u)| du \le \frac{1}{\sqrt{\pi}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| f(u - 2\sqrt{\varepsilon}\xi) - f(u) \right| e^{-\xi^2} d\xi \, du \,. \tag{2.5}$$

The double integral in the above inequality makes sense because the integrand is positive, and satisfies the inequality

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left| f(u - 2\sqrt{\varepsilon}\xi) - f(u) \right| e^{-\xi^2} d\xi \, du \le \int_{-\infty}^{\infty} \theta(2\sqrt{\varepsilon}\xi) e^{-\xi^2} d\xi \,,$$

where we define

$$\theta(h) = \int_{-\infty}^{\infty} |f(u+h) - f(u)| du.$$

Clearly, $\theta(h) = \|\tau_h(f) - f\|_{L^1}$, where $\tau_h(f)$ is the h-translate of f, i.e., the function $\mathbb{R} \ni u \mapsto f(u+h)$.

Inequality (2.5) says that

$$||g_{\varepsilon} - f||_{L^{1}} \le \int_{-\infty}^{\infty} \theta(2\sqrt{\varepsilon}\xi)e^{-\xi^{2}}d\xi.$$
 (2.6)

It is clear that $\theta(h) \leq 2||f||_{L^1}$ for every h. Therefore the functions

$$\mathbb{R} \ni \xi \mapsto \theta(2\sqrt{\varepsilon}\xi)e^{-\xi^2} \tag{2.7}$$

are uniformly dominated by the integrable function

$$\mathbb{R} \ni \xi \mapsto 2||f||_{L^1}e^{-\xi^2}$$
.

We now use the fact that θ is continuous (proved below, as Lemma (1)) to conclude that the functions (2.7) converge pointwise to $\theta(0)e^{-\xi^2}$ as $\varepsilon \downarrow 0$.

Since $\theta(0) = 0$, the functions (2.7) converge pointwise to zero. It the follows from the Lenesgue dominated convergence theorem that

$$\lim_{\varepsilon \downarrow 0} \int_{-\infty}^{\infty} \theta(2\sqrt{\varepsilon}\xi) e^{-\xi^2} d\xi = 0.$$

Thefeore (2.6) implies that

$$\lim_{\varepsilon \downarrow 0} \|g_{\varepsilon} - f\|_{L^1} = 0.$$

So the functions g_{ε} converge to f in L^1 . But Equation (2.4) says that the g_{ε} converge pointwise to \check{f} . Hence $f = \check{f}$, and our conclusion is proved. **Q.E.D.**

Lemma 1. If $f \in L^1(\mathbb{R}; \mathbb{C})$, then the translations $\tau_h(f)$ depend continuously on h. That is, the function

$$\mathbb{R} \ni h \mapsto \tau_h(f) \in L^1(\mathbb{R}; \mathbb{C}) \tag{2.8}$$

is continous. Furthermore, the function (2.8) is actually uniformly continuous.

In particular, if we let $\theta(h) = \|\tau_h(f) - f\|_{L^1}$, then θ is a continuous function.

Proof. First assume that f is a continuous compactly supported function. Then f is uniformly continuous. Therefore, if ε' is an arbitrary positive number, there exists a positive δ such that

- 1. $\delta < 1$,
- 2. $|f(x+h) f(x)| < \varepsilon'$ whenever $x, h \in \mathbb{R}$ and $|h| < \delta$.

If $|h| < \delta$, and L is such that the support of f is contained in the interval [-L, L], then

$$\|\tau_h(f) - f\|_{L^1} = \int_{-\infty}^{\infty} |f(x+h) - f(x)| dx \le 2(L+1)\varepsilon',$$

because the integrand is always bounded by ε' , and vanishes whenever |x| > L + 1.

Therefore, if $\varepsilon > 0$, and we choose ε' such that $2(L+1)\varepsilon' \leq \varepsilon$, we find that

$$\|\tau_h(f) - f\|_{L^1} \le \varepsilon$$
 whenever $|h| < \delta$.

It follows that

$$\|\tau_{h_1}(f) - \tau_{h_2}(f)\|_{L^1} \le \varepsilon$$
 whenever $|h_1 - h_2| < \delta$,

because

$$\|\tau_{h_1}(f) - \tau_{h_2}(f)\|_{L^1} = \|\tau_{h_2}(\tau_{h_1 - h_2}(f) - f)\|_{L^1} = \|\tau_{h_1 - h_2}(f) - f\|_{L^1},$$

in view of the trabslation-invariance of the L^1 norm.

Now, if f is a general L^1 function, and $\varepsilon > 0$, we can find a continuous compactly supported function g such that $||f - g||_{L^1} < \frac{\varepsilon}{3}$. Then

$$\|\tau_h(f) - \tau_h(g)\|_{L^1} < \frac{\varepsilon}{3}$$
 for every h .

We then find a positive δ such that

$$\|\tau_{h_1}(g) - \tau_{h_2}(g)\|_{L^1} \le \frac{\varepsilon}{3}$$
 whenever $|h_1 - h_2| < \delta$,

It then follows that, if $|h_1 - h_2| < \delta$, the inequality

$$\|\tau_{h_1}(f) - \tau_{h_2}(f)\|_{L^1} \le \varepsilon$$

holds, because

$$\|\tau_{h_1}(f) - \tau_{h_2}(f)\|_{L^1} \leq \|\tau_{h_1}(f) - \tau_{h_1}(g)\|_{L^1} + \|\tau_{h_1}(g) - \tau_{h_2}(g)\|_{L^1} + \|\tau_{h_2}(g) - \tau_{h_2}(f)\|_{L^1}.$$

Hence the function (2.8) is uniformly continuous, and our proof is complete. **Q.E.D**.

Corollary 1. If $f \in \Lambda^1(\mathbb{R}; \mathbb{C})$ then

- 1. Both f and \hat{f} are continuous functions on \mathbb{R} that go to zero at infinity.
- 2. $\|\hat{f}\|_{L^{\infty}} \le \|f\|_{L^{1}} \text{ and } \|f\|_{L^{\infty}} \le \|\hat{f}\|_{L^{1}}.$
- 3. Both f and \hat{f} belong to $L^2(\mathbb{R};\mathbb{C})$.

Proof. We already know that \hat{f} and \hat{f} are continuous functions that go to zero at infinity, and that $\|\hat{f}\|_{L^{\infty}} \leq \|f\|_{L^1}$ and $\|\check{f}\|_{L^{\infty}} \leq \|\hat{f}\|_{L^1}$. But now we know in addition that $\check{f} = f$. Hence f is a continuous function that goes to zero at infinity, and $\|f\|_{L^{\infty}} \leq \|\hat{f}\|_{L^1}$.

Finally, the fact that f and \hat{f} belong to L^2 follows by interpolation from the fact that both functions belong to $L^1 \cap L^{\infty}$. (That is, $\int |f|^2 \le ||f||_{L^1} ||f||_{L^{\infty}}$, so $\int |f|^2 < \infty$, and similarly for \hat{f} .) Q.E.D.

2 Plancherel's Theorem

Now that we know that the functions f and \hat{f} belong to L^2 whenever $f \in \Lambda^1$, we can go one step further and prove the very important **Plancherel theorem**:

Theorem 4. If $f \in \Lambda^1(\mathbb{R}; \mathbb{C})$ then

$$\|\hat{f}\|_{L^2} = \|f\|_{L^2}. \quad (2.9)$$

Proof. First observe that, if f and g belong to Λ^1 , then

$$\int_{-\infty}^{\infty} f(x)\overline{\check{g}(x)}dx = \int_{-\infty}^{\infty} \hat{f}(x)\overline{g(x)}dx, \qquad (2.10)$$

To see this, we compute

$$\int_{-\infty}^{\infty} f(x)\overline{\check{g}(x)}dx = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x) \overline{\int_{-\infty}^{\infty} g(y)e^{ixy}dy}dx$$

$$= \frac{1}{\sqrt{2\pi}} \int \int)_{\mathbb{R}^{2}} f(x)\overline{g(y)e^{ixy}}dydx$$

$$= \frac{1}{\sqrt{2\pi}} \int \int)_{\mathbb{R}^{2}} f(x)e^{-ixy}\overline{g(y)}dydx$$

$$= \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} \left(\int_{-\infty}^{\infty} f(x)e^{-ixy}dx\right)\overline{g(y)}dy$$

$$= \int_{-\infty}^{\infty} \hat{f}(y)\overline{g(y)}dy.$$

This proves (2.10). If we then apply (2.10) with $g = \hat{f}$, we get

$$\int_{-\infty}^{\infty} f(x) \overline{\hat{f}(x)} dx = \int_{-\infty}^{\infty} \hat{f}(x) \overline{\hat{f}(x)} dx.$$

Since $\check{f} = f$, we may conclude that

$$\int_{-\infty}^{\infty} f(x)\overline{f(x)}dx = \int_{-\infty}^{\infty} \hat{f}(x)\overline{\hat{f}(x)}dx,$$

that is,

$$\int_{-\infty}^{\infty} |f(x)|^2 dx = \int_{-\infty}^{\infty} |\hat{f}(x)|^2 dx,$$

which is the desired identity.

Q.E.D.

3 Fourier transforms of functions in L^2

We have shown that Λ^1 is a subspace of L^2 and the Fourier transform map $\Lambda^1 \ni f \mapsto \hat{f}$ maos Λ^1 to Λ^1 and satisfies $\|\hat{f}\|_{L^2} = \|f\|_{L^2}$ for all $f \in \Lambda^1$. It is easy to see that Λ^1 is a dense subspace of L^2 . (For example, the space \mathcal{S} od rapidly decreasing C^{∞} functions is conatined in Λ^1 and is dense in L^2 .) Hence the Fourier transform map can be extended to a map $\mathcal{F}: L^2 \mapsto L^2$, and this map also satisfies $\|\mathcal{F}(f)\|_{l^2} = \|f\|_{L^2}$. In other words, \mathcal{F} is an isometric map from L^2 to L^2 .

We will now go back to our initial notation, and write \hat{f} for $\mathcal{F}(f)$ and \check{f} for $\mathcal{R}(\mathcal{F}(f))$. (Recall that \mathcal{R} os the reflection map, that sends a function f to the function $x \mapsto f(-x)$.)

The formulas

$$\dot{\hat{f}} = f \,, \tag{2.11}$$

and

$$\|\hat{f}\|_{L^2} = \|f\|_{L^2}, \tag{2.12}$$

that were proved for $f \in \Lambda^1$, extend by contimulity to all of L^2 . The Fourier inversion formula (2.11) says that

$$\mathcal{F}\circ\mathcal{F}=\mathcal{R}$$
 .

Since \mathcal{R}^2 = identity, it follows that

$$\mathcal{F}^4 = identity. (2.13)$$

It is important to note thet. for a general function in L^2 , the formula

$$\hat{f}(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(y)e^{-icy}dy$$

is no longer valid as written, because f need not be integrable, so the integral need not exist.

What is true, however, is that \hat{f} is the L^2 -limit of \hat{f}_L as $L \to \infty$, where \hat{f}_L is the Fourier transform of $\chi_{[-L,L]}f$, because $\chi_{[-L,L]}f \to f$ in L^2 as $L \to \infty$. Furthermore, the functions $\chi_{[-L,L]}f$ are in L^1 , so their Fourier transforms are given by the integral fornula. And the same is true for rthe inverse Fourier transform. So we get the following **Fourier transform formulas**:

$$\hat{f} = L^{2} - \lim_{L \to \infty} \hat{f}_{L}, \qquad (2.14)$$

$$\hat{f}_{L}(x) = \frac{1}{\sqrt{2\pi}} \int_{-L}^{L} f(y) e^{-ixy} dy, \qquad (2.15)$$

$$\check{f} = L^{2} - \lim_{L \to \infty} \check{f}_{L}, \qquad (2.16)$$

$$\check{f}_{L}(x) = \frac{1}{\sqrt{2\pi}} \int_{-L}^{L} f(y) e^{ixy} dy, \qquad (2.17)$$

$$\check{f} = f, \qquad (2.18)$$

$$\|\hat{f}\|_{L^{2}} = \|f\|_{L^{2}}, \qquad (2.19)$$

valid for $f \in L^2(\mathbb{R}; \mathbb{C})$.

Formulas (2.14) and (2.16) aare sometimes written in the form

$$\hat{f}(x) = \frac{1}{\sqrt{2\pi}} \lim_{L \to \infty} \int_{-L}^{L} f(y)e^{-ixy}dy,$$
and
$$\check{f}(x) = \frac{1}{\sqrt{2\pi}} \lim_{L \to \infty} \int_{-L}^{L} f(y)e^{ixy}dy,$$

with the understanding that the limits are not pointwise limits, for every x, but limits in L^2 of functions of x/