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1 Introduction

These notes are about mathematical proofs. We are going to get started
by presenting some examples of proofs. Later, after we have seen several
proofs, we will discuss in general, in great detail,

• What proofs are.

• How to read proofs.

• How to write and how not to write proofs.

• What proofs are for.

• Why proofs they are important.

But first, in Sections 2 and 4, I am going to show you several examples of
proofs.

In each of these examples, we are going to prove a theorem. Theorems
have statements. Each statement expresses a proposition, and the fact
that the statement has been proved implies that the proposition is true, in
which case we say that the statement is true.

So maybe it is a good idea to start by clarifying the meanings of the
words “theorem”, “statement”, “proof”, and of other related words such as
“proposition”, “fact”, and “conclusion”.

1.1 Propositions, theorems and proofs

Basically, a proposition is something that can be true or false and can be
the object of belief.

In other words: a proposition is an expression P such that it
makes sense to ask the questions:

• Is P true?
• Is P false?
• Do you believe that P?

A fact is a true proposition.
For example,

• the following are true propositions:

– George Washington was the first president of the United States,
– Paris is the capital of France,
– electrons are negatively charged particles,
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– two plus two equals four,
– if a, b are real numbers then (a+ b)2 = a2 + 2ab+ b2;

• the following are false propositions:

– John Adams was the first president of the United States,
– Paris is the capital of Spain,
– electrons are positively charged particles,
– two plus two equals five,
– if a, b are real numbers then (a+ b)2 = a2 + b2;

• the following are propositions that I don’t know if they are true or
false:

– Lee Harvey Oswald was part of a conspiracy to kill President
Kennedy,

– there is intelligent extraterrestrial life,
– every even natural number n such that n ≥ 4 is the sum of two

prime numbers1;

• and the following are not propositions:

– John Adams,
– is the capital of Spain,
– Mount Everest,
– the book that I bought yesterday,
– two plus two,
– if a, b are real numbers.

A proof of a proposition P is a logical argument2 that establishes the
truth of P by moving step by step from proposition to proposition until
P is reached. The proof ends with the proposition P , which is called the
conclusion.

For example, let us consider the proof, given on page 27, of Euclid’s
theorem, that the set of prime numbers is infinite: this proof consists of
several steps, and the very last of these steps, i.e. the conclusion, says
precisely what we were trying to prove, i.e., that the set of prime nunbers is
infinite.

Proofs can by written in a language, such as English, French, Chinese,
Japanese, Spanish, etc. But in addition, there is a particular language which

1This proposition is called “the Goldbach conjecture”; it is an unsolved problem in
Mathematics.

2If you are worried because it is not clear to you what a “logical argument” is, do
not worry. We are going to spend the whole semester discussing logical arguments and
explaining what they are and how to read them and write them, so by the end of the
semester you will know.
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is prefectly suited for writing mathematical proofs: formal mathematical
language.

Formal mathematical language involves formulas, rather than words.
For example, “ 2+2 = 4 ” is an expression in formal language, i.e., a formula.

Most of our proofs will be written in a mixture of formal mathematical
language and English. For example, we will write expressions such as

(#) If a and b are real numbers then a2 − b2 = (a+ b)(a− b).

But we will also explain how to write proofs in purely formal mathematical
language. (And we will discuss why having a purely mathematical language
is important: one of the main reasons is that formal mathematical lan-
guage is a universal language, that is, a language understandable by all
the mathematicallu educated people in the world3. Another reason is that
formal mathematical language is completely precise: you cannot say
vague things such as “the distance between A and B is small”, and this is
fine, because nobody knows what “small” means, so it is better if we are
not allowed to say it.)

In order to write proofs in formal language, we will have to learn formal
language, i.e., we will have to learn to say in formal language everthing
that we now say in English or in a mixture of English and formal language.
For example, the sentence (#) that we wrote above will become, in formal
language,

(#) (∀a ∈ IR)(∀b ∈ IR) a2 − b2 = (a+ b)(a− b).

Why are proofs important? Again, this is an issue that will be taken up
later, but let me sketch the answer right away:

A mathematical proof of a proposition P absolutely guar-
antees, with complete certainty, that P is true.

This is so for a simple reason:

3For example, the formula “ 2+2 = 4 ” is the same in English, French, Chinese, or any
other language.
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The rules of logic are designed in such a way that one
can only prove, using them, propositions that are true.

Therefore, if you write a correct proof of a proposition
P , that is, a proof that obeys the rules of logic, then you
can be sure that P is true.

On the other hand, if you produce a purported proof
of a proposition P that is not true, then we can all be
sure that your proof is incorrect, in the sense that in at
least one step you violeted the rules of logic.

And, in case you ask what are those “rules of logic” that you are talking
about? The answer is: I am about to tell you! But it is going to take me a
few weeks to tell you. And, once I have told you, you will see that the rules
are very simple. But you have to be patient and allow me to get you there
step by step4.

Furthermore, there is no other way to know for sure that a math-
ematical statement is true.

For example, consider the statement of the first theorem in this course,
that the set of prime numbers is infinite. There is no way to know for sure
that this is true, other than by proving it. Computing lots of prime numbers
will not do, because no matter how many millions or billions or trillions of
primes you may compute, you will only have computed a finite number of
them, and you will never never know whether these are all the primes, or
whether there are more. The proof given below shows you that, no matter
how long a list of primes numbers may be, there is always at least one prime
that is not on the list. And this guarantees that there are infinitely mamy
primes.

1.2 Some examples of proofs

1.2.1 Expressing an integer as a difference of two squares

Let us start with a simple question: We are given an integer k, and we want
to find integers m,n such that m2 − n2 = k. That is, we want to express k
as the difference of the squares of two integers.

For some values of k, this is easy to do. For example,

4It’s like swimming. Once you have learned to swim, it seems simple to you. But most
people need to learn to swim gradually, by first practicing floating, then exhaling under
water, then kicking, then maybe doing a backstroke, treading water, and so on. And, once
you have learned all that, it all looks very simple.
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• If I give you k = 5, then you can see right away that 5 = 9 − 4, so

5 = 33 − 22 .

• If I give you k = −5, then you can see right away that −5 = 4− 9, so

−5 = 23 − 32 .

• If I give you, say, k = 8, then 8 = 9− 1, i.e., 8 = 32 − 12 .

• If I give you k = −8, then −8 = 1− 9, i.e., −8 = 12 − 32 .

• If I give you k = 28, then it takes more work to solve the problem,
but you can find a solution: 28 = 64 − 36, and 64 = 82, 36 = 62, so

28 = 82 − 62 .

• And if k = 29, then you also need work, but you can find a solution:

29 = 225− 196, and 225 = 152, 196 = 142, so 29 = 152 − 142 .

But there are some numbers k for which you may try and try and try,
and work very hard, but will not be able to find integers m,n such that
m2 − n2 = k. For example, if k = 6, or k = 10, or k = 30, then no matter
how hard you try you will not be able to find m,n.

Let us make the situation more dramatic: suppose I am offering a prize
for finding integers m,n such that m2−n2 = 30: I will give you one million
dollars if you solve this problem. Then you will want to solve it. You will go
on, and keep trying. What would it take for you to be absolutely convinced
that you must stop?

Suppose someone proves to you that those numbersm,n, do not exist. If
this is proved to you, and you understand the proof, and the proof convinces
you, then you will be completely sure that it is impossible to find those
numbers, and you will stop looking for them.

A proof of a statement S is an argument that
is so convincing that after you have seen it you
will be absolutely sure that S is true.
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So let us prove our first theorem:

Theorem 1. There do not exist integers m,n such that m2 − n2 = 30.

Proof.
Suppose it is possible to pick integers m,n such that m2 − n2 = 30.
Pick integers m,n such that m2 − n2 = 30.
Then 30 = (m+ n)(m− n), because m2 − n2 = (m+ n)(m− n).
The integer m− n is either even or odd.

Suppose that m− n is even.
Then m+ n is even as well, because m+ n = m− n+ 2n, 2n is even,
and the sum of two even integers is even.
Since m− n is even, we can pick an integer j such that m− n = 2j.
Since m+ n is even, we can pick an integer k such that m+ n = 2k.
Then 30 = (m+ n)(m− n) = (2j)(2k) = 4jk, so 30 is divisible by 4.

Therefore if m− n is even then 30 is divisible by 4 .
Now suppose that m− n is odd.
Then m+ n is odd as well, because m+ n = m− n+ 2n, 2n is even,
and the sum of an odd integer and an even integer is odd.
It follows that (m+ n)(m− n) is odd, because m+ n is odd, m− n
is odd, and the product of two odd integers is odd.

Therefore if m− n is odd then 30 is odd .
Since m− n is either even or odd, we can conclude from the above that

30 is either divisible by 4 or odd .

But 30 is neither divisible by 4 nor odd.
So we have proved that the statement “30 is either divisible by 4 or odd”
is both true and false, and this is a contradiction.

So the assumption that it is possible to pick integersm,n such thatm2−n2 =
30 has led us to a contradcition.
Hence it is not possible to pick integers m,n such that m2 − n2 = 30 .

Q.E.D.

Mathematicians like to prove statements that are as general as possible. If
we look at Theorem 1, we can ask an obvious question: is Theorem 1 only
about the number 30, or are there other numbers for which we can prove
exactly the same thing?

If you at the proof of Theorem 1, you can see immediately that thee
only thing that matters about 30 is that it is neither odd nor divisible by
4. Clearly, we can exactly the same thing for other numbers that are also
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neither odd nor divisible by 4, such as, for example, 6, or 10, or 50, or 202,
or 4, 038.

In other words, we can prove a much more general theorem:

Theorem 2. Let a be an integer such that a is neither odd not divisible by
4. Then there do not exist integers m,n such that m2 − n2 = a.

Proof.
Let a be an arbitrary integer such that a is neither odd nor divisible by 4.
We want to prove that it is not possible to pick integers m,n such that
m2 − n2 = a.
We will prove this by contradiction.

Suppose it is possible to pick integers m,n such that m2 − n2 = a.
Pick integers m,n such that m2 − n2 = a.
Then a = (m+ n)(m− n), because m2 − n2 = (m+ n)(m− n).
The integer m− n is either even or odd.
Suppose that m− n is even.
Then m+n is even as well, because m+n = m−n+2n, 2n is even,
and the sum of two even integers is even.
Since m− n is even, we can pick an integer j such that m− n = 2j.

Since m+ n is even, we can pick an integer k such that m+ n = 2k.
Then a = (m+ n)(m− n) = (2j)(2k) = 4jk, so a is divisible by 4.

Therefore if m− n is even then a is divisible by 4 .
Now suppose that m− n is odd.
Then m+n is odd as well, because m+n = m−n+2n, 2n is even,
and the sum of an odd integer and an even integer is odd.
It follows that (m+ n)(m− n) is odd, because m+ n is odd, m− n
is odd, and the product of two odd integers is odd.

Therefore if m− n is odd then a is odd .
Since m−n is either even or odd, we can conclude from the above that

a is either divisible by 4 or odd .

But a is neither divisible by 4 nor odd.
So we have proved that the statement “a is either divisible by 4 or
odd” is both true and false, and this is a contradiction.

So the assumption that it is possible to pick integers m,n such that
m2 − n2 = a has led us to a contradcition.
Hence it is not possible to pick integers m,n such that m2 − n2 = a .

And this has been proved for an arbitrary integer a such that a is neither
odd nor divisible by 4.
So our proof is complete. Q.E.D.
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Problem 1. Prove that there do not exist integers m,n such that the
equation

m2 − 4n2 = 8

holds. �

Problem 2. State and prove a theorem that generalizes the result of
Problem 1 in exactly the same way as Theorem 2 generalizes Theorem 1.�

Problem 3. For each of the following equations:

m2 − 2n2 = 1 , (1.1)

m2 − 2n2 = 2 , (1.2)

m2 − 2n2 = 3 , (1.3)

m2 − 2n2 = 4 , (1.4)

m2 − 2n2 = 5 , (1.5)

either find a pair (m,n) of integers for which the equation holds, or prove
that such a pair does not exist. �

1.3 A preview of the division theorem for integers

The division theorem for integers is one of the most important facts
of integer arithmetic. It is stated in great detail in Section 15.2, and then
proved in Section 15.3, but you should be aware of it right now, without
waiting until we prove it.

Here is the statement of the division theorem:
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The division theorem for
integers

If a, b are integers, and b 6= 0,
then there exist unique integers
q, r such that

a = bq + r and 0 ≤ r < |b| .
In formal language, the division theorem for integers says:

(∀a∈Z)(∀b∈Z)
(

b 6= 0 =⇒ (∃!q∈Z)(∃!r∈Z)(a = bq + r ∧ 0 ≤ r < |b|)
)

.

Remark 1. The statement of the division theorem for integers involves ex-
istence and uniqueness. This is discussed in great detail in Section 9, so
YOU SHOULD READ SECTION 9 RIGHT NOW.
�

The division theorem makes it possible to introduce the concepts of quotient
and remainder of the division of an integer a by a nonzero integer b.

Definition 1. If a, b are integers, and b 6= 0, then the unique integers q, r
such that

a = bq + r and 0 ≤ r < |b|
are called, respectively, the quotient and the remainder of the division of a
by b.

We use QUO(a, b) and REM(a, b) to denote the quotient and the remain-
der of the division of a by b. �

It follows from Definition 1 that, if a ∈ Z, b ∈ Z, and b 6= 0, then

1. a = b×QUO(a, b) + REM(a, b),

2. QUO(a, b) ∈ Z,
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3. REM(a, b) ∈ Z and 0 ≤ REM(a, b) < |b|,

4. if q, r are integers such that a = bq+ r and 0 ≤ r < |b|, then q =
QUO(a, b) and r = REM(a, b).

Here are some examples:

• Let a = 25, b = 5. Then a = b× 5 + 0, and 0 ≤ 0 < |b|. So

QUO(25, 5) = 4 and REM(25, 5) = 0 . (1.6)

• Let a = 23, b = 5. Then a = b× 4 + 3, and 0 ≤ 3 < |b|. So

QUO(23, 5) = 4 and REM(23, 5) = 3 . (1.7)

• Let a = −23, b = 5. Then a = b× (−5) + 2, and 0 ≤ 2 < |b|. So

QUO(−23, 5) = −5 and REM(−23, 5) = 2 . (1.8)

• Let a = 23, b = −5. Then a = b× (−4) + 3, and 0 ≤ 3 < |b|. So

QUO(23,−5) = −4 and REM(23,−5) = 3 . (1.9)

• Let a = −23, b = −5. Then a = b× 5 + 2, and 0 ≤ 2 < |b|. So

QUO(−23,−5) = 5 and REM(−23,−5) = 2 . (1.10)

1.4 Congruence of integers

Definition 2. Let N be a natural number, and let a, b be integers. We say
that a is congruent to b modulo N , and write

a ≡ b modN ,

if a− b is divisible by N . �

Remark 2. Definition 2 uses the notion of “divisibility”. This is defined in
Section 2.2, so YOU SHOULD READ SECTION 2.2 RIGHT NOW.

Here are some examples:

• 23 is congruent to 48 modulo 5, because 48−23 = 25 and 25 is divisible
by 5.



Math 300, Fall 2020 12

• 16 is congruent to 0 modulo 4, because 16− 0 = 16 and 16 is divisible
by 4.

• −1 is congruent to 7 modulo 8, because −1−7 = −8 and −8 is divisible
by 8.

• If a, b are integers, then a is congruent to b nodulo 1 if and only if
a = b. This means that congruence modulo 1 is not very interesting.
For that reason, when we work with congruence modulo n normally
we are interestedin the case when n > 1.

• The following can be proved:

Theorem 3. Let N be a natural number and let a ∈ Z. Then there exists
one and only one integer r such that 0 ≤ r < N and a ≡ r modN , and that
integer is REM(a,N).

Proof. YOU DO IT.

Problem 4. Prove Theorem 3. �

1.4.1 Useful properties of congruences

Conguences modulo a fixed integer N can be added and multiplied like
ordinary equalities. Actually, the following theorem is true:

Theorem 4. Let N be a natural number, and let a, b, c, d be integers. Then

(1) If a ≡ b modN and b ≡ c modN , then a ≡ c modN . (This is the
transitive law of conguence modulo N .

(2) If a ≡ b modN and c ≡ d modN , then a+ c ≡ b+ d modN .

(3) If a ≡ b modN and c ≡ d modN , then ac ≡ bd modN .

(4) If a ≡ b modN , then −a ≡ −b modN .

Proof. Proof of (1):

Let a, b, c be integers such that a ≡ b modN and b ≡ c modN .

Then a− b is divisible by N and b− c is divisible by N .

So we may pick integers j, k such that a− b = Nj and b− c = Nk.
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Then

a− c = (a− b) + (b− c)

= Nj +Nk

= N(j + k) ,

Since j+k ∈ Z, it follows that a−c is divisible by N , so a ≡ c modN .

Proof of (2):

Let a, b, c, d be integers such that a ≡ b modN and c ≡ d modN .

Then a− b is divisible by N and c− d is divisible by N .

So we may pick integers j, k such that a− b = Nj and c− d = Nk.

Then

a+ c− (b+ d) = (a− b) + (c− d)

= Nj +Nk

= N(j + k) ,

Since j + k ∈ Z, it follows that (a + c) − (b + d) is divisible by N , so
a+ c ≡ b+ d modN .

Proof of (3): YOU DO IT.

Proof of (4): YOU DO IT.

Problem 5. Prove (3) and (4) of Theorem 4. �

Problem 6. Prove or disprove the following statement:

(*) If N ∈ IN, a ∈ Z, b ∈ Z, and a ≡ b modN then a2 ≡ b2 modN2.

NOTE: In formal language, (*) says:

(∀N ∈ IN)(∀a ∈ Z)(∀b ∈ Z)
(

a ≡ b modN =⇒ a2 ≡ b2 modN2
)

.
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1.5 Using congruences to test the solvability of Diophatine
equations

A Diophantine equation is an equation such that only integer solutions are
sought or studied.

We have already studied some Diophantine equations. For example, we
studied the equation5

x2 − y2 = 30 (1.11)

and proved, in Theorem 1, that Equation (1.11) has no integer solutions,
that is, that Equation (1.11), regarded as a Diophantine equation, has no
solutions.

We also studied the Diophantine equations x2− 4y2 = 8 (in Problem 1),
and x2 − 2y2 = a, for a = 1, a = 2, a = 3, a = 4, and a = 5 (in Problem 3).

I will now explain how one can use congruences to gain insights into the
solvability of some Diophantine equations.

Te idea is quite simple: take a Diophantine equation such as

x2 − y2 = 30 . (1.12)

Suppose an integer solution of (1.12) exists. Pick integers m,n such that
the pair (m,n) is a solution, that is, m2 − n2 = 30. Then for every natural
number N it is true that m2 − n2 ≡ 30 modN . So, if we can find a natural
number N such that there do not exist integers x, y for which

x2 − y2 ≡ 30 modN ,

then it will follow that (1.12) does not have integer solutions either.
For Equation (1.12), this is easy to do. Let us tale N = 4. Then, if m is

an integer, we have m ≡ 0, or m ≡ 1, or m ≡ 2, or m ≡ 3, modulo 4.
If m ≡ 0 mod 4, then m2 ≡ 0 mod 4.
If m ≡ 1 mod 4, then m2 ≡ 1 mod 4.
If m ≡ 2 mod 4, then m2 ≡ 22 mod 4, 22 = 4, and 4 ≡ 0 mod 4, so

m2 ≡ 0 mod 4.
If m ≡ 3 mod 4, then m2 ≡ 32 mod 4, 32 = 9, and 9 ≡ 1 mod 4, so

m2 ≡ 1 mod 4.
So we have shown that m2 ≡ 0 mod 4 or m2 ≡ 1 mod 4.
Similarly, n2 ≡ 0 mod 4 or n2 ≡ 1 mod 4.
Hence m2−n2 is congruent modulo 4 to 0−0, or 1−0, or 0−1, or 1−1.

5In Section 1.2.1. At that point we called the variables “m” and “n”, but now I am
calling them “x” and “y”.
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That is, m2 − n2 is congruent modulo 4 to 0, or 1, or −1.
But −1 ≡ 3 mod 4, so m2 − n2 is congruent modulo 4 to 0, or 1, or 3.
But 30 ≡ 2 mod 4. So m2 − n2 is not congruent to 30 modulo 4, and

then m2 − n2 cannot equal 30.
This proves that there do not exist integers m,n such that m2−n2 = 30,

thus giving us a different proof of Theorem 1.
Let us us the same method for a few other examples of Diophantine

equations.

Question 1. Prove that there do not exist integers m,n such that m2+n2 =
3, 602, 963.

Solution: We have already shown that if n is an integer then n2 is congruent
to 0 or 1 modulo 4. So m2 + n2 is congruent to 0 or 1 or 2 modulo 4. But
3, 602, 963 = 3 mod 4. It follows that there do not exist integers m,n such
that m2 + n2 = 3, 602, 963. �

Question 2. Prove that there do not exist integers m,n such that m2 +
3n2 = 1, 604.

Solution: We look at the solvability of our equation modulo 3. If m ∈ Z,
then m = 0mod 3 or m = 1mod 3 or m = 2mod 3. If m = 0mod 3, then
m2 = 0mod 3. If m = 1mod 3, then m2 = 1mod 3. If m = 2mod 3, then
m2 = 4mod 3, but 4 = 1mod 3, so m2 = 1mod 3.

So we have shown that ifm ∈ Z thenm2 is congruent to 0 or to 1 modulo
3.

On the other hand, it is clear that if n ∈ Z then 3n2 ≡ 0 mod 3.
It follows that m2 + 3n2 is congruent to 0 or to 1 modulo 3.
On the other hand, 1, 604 ≡ 2 mod 3, so it is not possible for integers

m,n to satisfy m2 + 3n2 = 1, 604. �

Problem 7. Prove that the Diophantine equation 61x + 23y = 1 has a
solution. �

Problem 8. Prove that the Diophantine equation x2 + y2 = 3z2 has a
unique solution. (That is, prove that there exists one and only one triple
(x, y, z) of integers such that x2 + y2 = 3z2. In formal language, the state-
ment to be proved is: (∃!x ∈ Z)(∃!y ∈ Z)(∃!z ∈ Z)x2 + y2 = 3z2.) �
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2 An example of a proof: Euclid’s proof of the
infinitude of the set of prime numbers

Our first example of a proof will be Euclid’s proof that there are infinitely
many prime numbers. This proof is found in Euclid’s Elements (Book IX,
Proposition 20). Euclid (who was probably born in 325 BCE and died in 270
BCE) was the first mathematician to write a large treatise where mathemat-
ics is presented as a collection of definitions, postulates, propositions (i.e.,
theorems and constructions) and mathematical proofs of the propositions.

2.1 What Euclid’s proof is about

You probably know what a “prime number” is. (If you do not know, do not
worry; I will explain it to you pretty soon.) Here are the first few prime
numbers:

2, 3, 5, 7, 11, 13, 17, 19 . . .

Does the list of primes stop there? Of course not. It goes on:

23, 29, 31, 37, 41, 43, 47, 53, 59, 61 . . .

And it doesn’t stop there either. It goes on:

67, 71, 73, 79, 83, 89, 97, 101, 103 . . . .

Does the list go on forever? If you go on computing primes, you would find
more and more of them. And mathematicians have actually done this, and
found an incredibly large number of primes.

The largest known prime

As of January, 2019, the largest known prime was

282,589,933 − 1 .

(That is, 2 multiplied by itself 82, 589, 933 times, minus one.) This is a
huge number! It has 24, 862, 048 decimal digits.

Is it possible that the list of primes stops here, that is, that there are no
primes larger than 282,589,933 − 1?
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Before we answer this, just ask yourself: suppose it was indeed true that
the list stops with this prime number. How would you know that? If you
think about it for a minute, you will see that there is no way to know. You
could go on looking at natural numbers larger than 282,589,933− 1, and see if
among these numbers you find one that is prime. But if you don’t find any
it doesn’t mean there aren’t any. It could just be that you haven’t gone far
enough in your computation, and if you went farther you would find one.

In fact, no matter how many primes you may compute, you will never
know whether the largest prime you have found is indeed the largest prime
there is, or there is a larger one.

Can we know in some way, other than by computing lots of primes,
whether the list of primes goes on forever or there is a prime number which
is the largest one?

It turns out that this question can be answered by means of reasoning.
And, amazingly, the answer is “yes, the list of primes goes on forever”! This
was discovered, in the year 300 B.C., approximately, by the great Greek
mathematician Euclid. Euclid’s 3,000-year old proof is a truly remarkable
achievement, the first result of what we would now call “number theory”,
one of the most important areas of Mathematics.

Euclid’s theorem says the following:

Theorem. The set of prime numbers is infi-
nite.

In order to prove the theorem, we need to understand the precise meaning
of the terms that occur in the statement. So I will begin by explaining the
meaning of “prime number” and “infinite set”.

And, in order to explain what a prime number is, we will have to explain
first what we mean by “divisibility”, and “factors”.

2.2 Divisibility of integers; factors

If you have two integers a and b, you would like to “divide a by b”, and
obtain a “quotient” q, i.e., an integer q that multiplied by b gives you back
a. For example, we can divide 6 by 2, and get the quotient 3. And we can
divide 6 by 3, and get the quotient 2.

But it is not always possible to divide a by b. For example, if a = 4 and
b = 3, then an integer q such that 3q = 4 does not exist6.

6You may say that “the result of dividing 4 by 3 is the fraction 4

3
”. That is indeed true,
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Since dividing a by b is sometimes possible and sometimes not, we will
introduce some new words to describe those situations when division is pos-
sible.

Definition 3. Let a, b be integers.

1. We say that b divides a if there exists an integer k such that

a = bk .

2. We say that a is a multiple of b if b is a factor of a.

3. We say that b is a factor of a if b divides a.

4. We say that a is divisible by b if b divides a.

5. We write
b|a

to indicate that b divides a. �

Remark 3. As the previous definition indicates,

The following are five different ways of saying exactly the same
thing:

• m divides n,
• m is a factor of n,
• n is a multiple of m,
• n is divisible by m,
• m|n. �

but 4

3
is not an integer, and so far we are working in a world in which there are integers

and nothing else. If we want 4

3
to exist, we have to invent new numbers—the fractions,

or “rational numbers”. We are going to do that pretty soon, but for the moment, since
we are working with integers only, it is not possible to divide 4 by 3 and get a quotient
which is an integer.
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Reading statements with the “divides” symbol “|”

The symbol “|” is read as “divides”, or “is a factor of”.
For example, the statement “3|6” is read as “3 divides 6”, or “3 is a
factor of 6”. And the statement “3|5” is read as “3 divides 5”, or “3 is
a factor of 5”. (Naturally, “3|6” is true, but “3|5” is false.)
The vertical bar of “divides” has nothing to do with the bar
used to write fractions. For example, “3|6” is the statementa

“3 divides 6’, which is true. And “3
6” is a noun phrase: it is

one of the names of the number also known as “1
2”, or “0.5”.

aA statement is something we can say that is true or false. A noun phrase is
something we can say that stands for a thing or person. For example, “Mount Ever-
est”, “New York City”, “My friend Alice”, “The movie I saw on Sunday”, are noun
phrases. “Mount Everest is very tall”, “I live in New York City”, “My friend Alice
studied mathematics at Rutgers”, and “The movie I saw on Sunday was very boring”,
are statements.

Example 1. Here are some examples illustrating the use of the word “di-
vides” and the symbol “|”:

• The following statements are true:

1. 6 divides 6,

2. 6|6,
3. 6 divides 12,

4. 6|12,
5. 1 divides 5,

6. 1|5,
7. 13 divides 91,

8. 13|91,
9. 6 divides 0,

10. 6|0,
11. 6 divides −6,

12. 6| − 6,

13. −6 divides 6,

14. −6|6,
15. 6 divides −12,
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16. −6|12,
17. 6 divides 0,

18. 6|0,
19. 0 divides 0,

20. 0|0,

• and the following statements are false:

1. 6 divides 7,

2. 6|7,
3. 0 divides 1,

4. 0|1,
5. 12 divides 6,

6. 12|6,
7. −5 divides 6,

8. −5|6,
9. 0|6.

2.3 What is a “prime number”

Definition 4. A prime number is a natural number p such that

I. p > 1,

II. p is not divisible by any natural numbers other than 1 and p. �

And here is another way of saying the same thing, in case you do not want
to talk about “divisibility”.

Definition 5. A prime number is a natural number p such that

I. p > 1,

II. There do not exist natural numbers j, k such that j > 1, k > 1, and
p = jk. �
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2.3.1 Why isn’t 1 prime?

If you look at the definition of “prime number”, you will notice that, for a
natural number p to qualify as a prime number, it has to satisfy

p > 1. In other words, the number 1 is not prime. Isn’t that

weird? After all, the only natural number factor of 1 is 1, so the only factors
of 1 are 1 and itself, and this seems to suggest that 1 is prime.

Well, if we had defined a number p to be prime if p has no natural number
factors other than 1 and itself, then 1 would be prime. But we were very
careful not to do that. Why?

The reason is, simply, that there is a very nice theorem called the “unique
factorization theorem”, that says that every natural number greater than 1
either is prime or can be written as a product of primes in a unique way.
(For example: 6 = 2 · 3, 84 = 2 · 2 · 3 · 7, etc.)

If 1 was a prime, then the result would not be true as stated. (For
example, here are two different ways to write 6 as a product of primes:
6 = 2 · 3 and 6 = 1 · 2 · 3.) And mathematicians like the theorem to be true
as stated, so we have decided not to call 1 a prime7.

If you do not like this, just keep in mind that we can use words any way
we like, as long as we all agree on what they are going to mean. If we decide
that 1 is not prime, then 1 is not prime, and that’s it. If you think that for
you 1 is really prime, just ask yourself why and you will see that you do not
have a proof that 1 is prime.

2.3.2 The prime factorization theorem

In our proof of Euclid’s theorem, we are going to use the fact that every
natural number (except 1) can be written as a product of prime numbers.
This is a very important result in arithmetic8, and we are going to prove it
later.

The precise statement is as follows:

Theorem. (The prime factorization theorem.) Every natural number n
such that n ≥ 2 is a product of primes. �

7This is exactly the same kind of reason why Pluto is not a planet. Pluto is not a planet
because astronomers have decided not to call Pluto a planet. Similarly, mathematicians
have decided not to call 1 prime, and that’s why 1 is not prime.

8Actually, many mathematicians call “The Fundamental Theorem of Arithmetic”.
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2.3.3 Clarification: What is a “product of primes”?

Like all mathematical ideas, even something as simple as “product of primes”
requires a precise definition. Without a precise definition, it would not be
clear, for example, whether a single prime such as 2 or 3 or 5 is a “product
of primes”.

Definition 6. A natural number n is a product of primes if there exist

1. a natural number k,

and

2. a finite list9

p = (p1, . . . , pk)

of prime numbers,

such that
n = p1 · p2 · · · · · pk . (2.13)

(If you are familiar with the product “
∏
” notation, formula (2.13) says that

n =
∏k

i=1 pi .)
Notice that k can be equal to one. That is, a single prime, such as 2,

or 3, or 23, is a product of primes in the sense of our definition.
�

Definition 7. If n is a natural number, then a list p = (p1, . . . , pk) of prime
numbers such that (2.13) holds is called a prime factorization of n. �

Example 2. The following natural numbers are products of primes:

• 7 (because 7 is prime); the list (7) is a prime factorization of 7,

• 24; (the list (2, 2, 2, 3) is a prime factorization of 24, because 24 =
2× 2× 2× 3),

• 309; (the list (3, 103) is a prime factorization of 309);

• 3, 895, 207, 331, 689 . Here it would really take a lot of work to find
the natural number k and the prime numbers p1, p2, . . . , pk such that

3, 895, 207, 331, 689 = p1 · p2 · · · · · pk .
But the prime factorization theorem guarantees to us, without having
to find the factorization of our number into a product of primes, that
3, 895, 207, 331, 689 is a product of primes. �

9Finite lists will be defined and discussed in great detail later in these notes.
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2.4 Proofs by contradiction

Our proof of Euclid’s theorem is going to be a proof by contradiction

Proof by contradiction is probably the most important and most
widely used of all proof strategies. So you should not only learn
what proofs by contradiction are, but acquire the habit of al-
waysa seriously considering the possibility of using the
proof by contradiction strategy when you are trying to
figure out how to do a proof.

aSure, I am exaggerating a little bit. There are quite a few direct proofs (that is,
proofs that are not by contradiction). But the number of proofs by contradiction is
huge.

Let me first explain what proofs by contradiction are, and then I will tell
you why they are so important.

And the first thing I need to explain is what a contradiction is.
And, ir order to explain that, I have to discuss how to negate a sentence.

2.4.1 Negation

To negate (or deny) a statement A is to assert that A is false. (Any such
statement is called a denial of A)

So, for example, a denial of “7 is a prime number” is “7 is not a prime
number”. (But there are many other ways to write a denial of “7 is a prime
number.” For example, we could write “it is not true that 7 is a prime
number”, or “it is not the case that 7 is a prime number”.)

The symbol “∼” (“it’s not true that”)

The symbol “∼”, put in front of a statement, is used to assert that
the statement is false.
So “∼” stands for “it is not the case that”, or “it is not true that”.
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Example 3. The following sentences are true:

• ∼ 6 is a prime number (that is, “6 is not a prime number”),

• ∼ 2 is an odd integer (that is, “2 is not an odd integer”),

• ∼(6 is even and 7 is even) (that is, “it’s not true that 6 and 7 are both
even”).

The following sentences are false:

• ∼ 7 is a prime number (that is, “7 is not a prime number”),

• ∼ 3 is an odd integer (that is, “3 is not an odd integer”),

• ∼(6 is even or 7 is even) (that is, “it’s not true that 6 is even or 7 is
even”),

• ∼ 6 is even and 7 is even (that is, “6 is not even and 7 is even”).

2.4.2 When is a negation true?

If A is a sentence, then

• ∼ A is true if A is false;

• ∼ A is false if A is true.

2.4.3 What is a contradiction?

The precise definition of “contradiction” is complicated, and requires some
knowledge of logic. So let me give you a simplified definition that is easy to
understand and is good enough for our purposes.

Temporary, simplified definition of “contradiction”: A contradiction
is a statement of the form “A and ∼ A”, that is, “A is true and A is not
true”. �

Example 4.

• The sentence “2+2 = 7” is not a contradiction. It is a false statement,
of course, but not every false statement is a contradiction.

• The sentence “2 + 2 = 7 and 2 + 2 = 4” is not a contradiction either.
It is a false statement (because it is the conjunction of two sentences
one of which is false), but that does not make it a contradiction.
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• The sentence “2 + 2 = 7 and 2 + 2 6= 7” is a contradiction. because
it is of the form “A and no A”, with the sentence “2 + 2 = 7” in the
role of A.

• The sentence “n = 1 and n 6= 1” is a contradiction.

• The sentence “John Adams was the first U.S. president” is false, but
it not a contradiction.

• The sentence “John Adams was the first U.S. president and was the
second U.S. president” is false, but it not a contradiction.

• The sentence “John Adams was the first U.S. president and was not
the first U.S. president” is a contradiction. �

2.4.4 What is a proof by contradiction?

A proof by contradiction is a proof in which you start by assuming that
the statement you want to prove is false, and you prove a contradiction.
Once you have done that, you are allowed to conclude that the statement
you are trying to prove is true.

To do a proof by contradiction, you would write something like this:

We want to prove A.

Assume that A is false....
2 = 1 and 2 6= 1.
And “2 = 1 and 2 6= 1” is a contradiction.

So assuming that A is false has led us to a contradiction.

Therefore A is true. Q.E.D.
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WARNING

Having explained very precisely what a contradiction is, I have to warn you
that mathematicians will often say things like “ ‘2+2 = 7’ is a contradiction”.
This is not quite true, but when a mathematician says that every mathemati-
cian will understand what is really intended.
What the person who said “ ‘2 + 2 = 7’ is a contradiction” really meant is
something like this:

Now that I have proved that 2+2 = 7, I can easily get a contradic-
tion from that, because we all know how to prove that 2 + 2 6= 7,
and then we can deduce from these two formulas the sentence
“2 + 2 = 7 and 2 + 2 6= 7”, which is truly a contradiction.
In other words, once I get to “2+ 2 = 7”, it is clear to me, and to
every mathematician, how to get to a contradiction from there,
so there is no need to go ahead and do it, so I can stop here.

This is something mathematicians do very oftena: once we get to a point
where it is clear how to go on and finish the proof, we just stop there.

For a beginning student I would recommend that you actually write your proof

until you get a real contradiction, because this is the only way to make it clear

to the person reading (and grading) your work that you do understand what a

contradiction is.

aAnd not only mathematicians! In chess, once you get to a position from which
it is clear that you can take your rival’s King and win, you say “checkmate” and the
game stops there.

WHAT DOES “ASSUME” MEAN?

“Assume” means “imagine”. In order to prove that some statement
S is true, we imagine that it is not true, that is, we explore an imaginary
world W in which S is not true, and we prove that in this imaginary
world something impossible (such as a contradiction, “A is true and A is
not true”) would have to happen. And from this we draw the conclusion
that a world in which S is not true is impossible, so in the real world S
must be true.

2.5 What is a finite set? What is an infinite set?

We now explain what a “finite set” is.

Definition 8. Let S be a set,
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1. We say that S is finite if there exist a natural number n and a finite
list10

a = (a1, a2, . . . , an)

with n entries which is a list of all the members of S. (This means:
every member of S occurs in the list; that is, for every member x of S
there exists a natural number j such that j ≤ n and x = pj.)

2. We say that S is infinite if it is not finite. �

2.5.1 A simple lemma

A lemma is a statement that one proves in order to use it in the proof
of a theorem. In our proof of Euclid’s Theorem we are going to need the
following lemma:

Lemma 1. If a, b, c are integers, and c divides both a and b, then c divides
a+ b and a− b.

Proof. Since c|a and c|b, we may write

a = cj and b = ck , (2.14)

where j and k are integers.
But then

a+ b = c(j + k) and a− b = c(j − k) , (2.15)

and j + k and j − k are integers. So c|a+ b and c|a− b. Q.E.D.

2.6 The proof of Euclid’s Theorem

The proof I am going to present here is not exactly Euclid’s, but is based
essentially on the same idea.

First, here is Euclid’s result, again:

Theorem 5. The set of prime numbers is in-
finite.

And here is the proof.

10If you are wondering “what is a finite list?”, then I can tell you two things: (1) you
are asking a good question, (2) I will give you more information about “finite lists” later,
on page 29.
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Let S be the set of all prime numbers.
We want to prove that S is an infinite set.
We will prove this by contradiction.

Suppose S is not infinite.
Then S is a finite set.
Since S is finite, we may write a finite list

p = (p1, p2, . . . , pn)

of all the members of S, i.e., of all the prime numbers.

Let N = p1.p2. · · · .pn. (That is, N is the product of all the entries of
the list p.)
Let M = N + 1.
Then M ≥ 2, so by the prime factorization theorem (in section 2.3.2)
M is a product q1.q2. · · · .qk of prime numbers.
Then q1 is a prime number11, and q1 divides M (because M = q1u,

if u = q2.q3. · · · .qk).
On the other hand, since p is a list of all the prime numbers, and
q1 is a prime number, we can conclude that q1 is one of the entries
p1, p2, . . . , pn of the list p.
So we may write

q1 = pj ,

where j is one of the nmbers 1, 2, . . . , n.
It follows that q1 divides N (because pj divides N and q1 = pj).
Since q1 dividesM and q1 divides N , it follows that q1 dividesM −N ,
by Lemma 1.
But M −N = 1. So q1 divides 1 .
On the other hand, q1 is prime. It then follows from the definition of
“prime number” (Definition 4, on page 20) that q1 > 1.
Hence q1 6= 1.
But then q1 does not divide 1 , because the only natural number that
divides 1 is 1.
So q1 divides 1 and q1 does not divide 1 , which is a contradiction.

Hence the assumption that S is not an infinite set has led us to a contradic-
tion.
Therefore S is an infinite set . Q.E.D.

11All we need here is to have a prime number that divides M . We choose q1, but we
could equally well have chosen q2, or any of the other qj .
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2.6.1 What is “Q.E.D.”?

What does “Q.E.D.” mean?

“Q.E.D.” stands for the Latin phrase quod erat demonstran-
dum, meaning “which is what was to be proved”. It is used
to indicate the end of a proof.

Appendix: Finite lists
Finite lists have entries. Sets have members.
We can write12 finite lists as follows:

1. First we write a left parenthesis, i.e., the symbol “(”.

2. Then we write the names of the entries of the list, in order, beginning
with entry number 1, then entry number 2, and so on. The entries
must be separated by commas.

3. Then, finally, write a right parenthesis, i.e., the symbol “)”.

And we can write finite sets as follows:

1. First we write a left brace, i.e., the symbol “{”.
2. Then we write the names of the members of the set, in some order,

separated by commas.

3. Then, finally, we write a right brace, i.e., the symbol “}”.

WARNING

Be careful with the distinction between sets, written with braces (“{”
and “}”) and lists, written with parentheses ( “(“ and “)”).
For example, the sentence

(1, 2, 3) = (3, 1, 2)

is false, but the sentence

{1, 2, 3} = {3, 1, 2}

is true.

Example 5.

12I am saying “we can write” rather than “we write” because there are other ways to
write lists and sets. We will discuss those ways later.
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• Here is the list a of the first ten natural numbers, in increasing order:

a = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) . (2.16)

• Here is the list b of the first ten natural numbers, in decreasing order:

b = (10, 0, 8, 7, 6, 5, 4, 3, 2, 1) . (2.17)

And here is a list c of the first ten natural numbers, in a different
order:

c = (10, 1, 5, 8, 3, 2, 4, 9, 6, 7) . (2.18)

These three lists are different. For example, the second entry of a is 2,
whereas the second entry of b is 9 and that of c is 1.

Now let S be the set whose members are the first ten natural numbers.
Then we can write

S = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} , (2.19)

or
S = {10, 9, 8, 7, 6, 5, 4, 3, 2, 1} , (2.20)

or, for example,
S = {1, 3, 5, 7, 9, 2, 4, 6, 8, 10} , (2.21)

or
S = {4, 2, 7, 8, 10, 1, 9, 3, 5, 6} , (2.22)

or even
S = {4, 4, 2, 7, 7, 7, 5, 5, 5, 8, 10, 1, 9, 4, 3, 5, 6} . (2.23)

The sets S given by equations (2.19), (2.20), (2.21), (2.22), (2.23),
are all the same set, even though the formulas describing them are dif-
ferent. What the formulas do is tell us who the members of the set are. So,
for example, according to formula (2.19), 1 is a member of S, and 23 is not.
And the other formulas also say that 1 is a member of S, and 23 is not.

The key facts are these:

• Two sets S, T are the same set if they have the same members, that
is, if every member of S is a member of T and every member of T is
member of S.

• Two lists a, b are the same if the first entry of a is the same as the
first entry of b, the second entry of a is the same as the second entry
of b, and so on. That is, a = b if the j-th entry of a is the same as
the j-th entry of b for every j.
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Example 6. Let S be the set whose members are all the presidents of the
United States, from George Washington to Donald Trump.

Let a be the list of all the presidents of the United States, from George
Washington to Donald Trump, in chronological order, so

a = (a1, a2, . . . , a45) ,

where, for j = 1, 2, . . . , 45, aj is the j-th U.S. president.
Then a has 45 entries. How many members does S have?
If you think that the answer is 45, think again!
It turns out that Grover Cleveland served two nonconsecutive terms as

president, from 1885 to 1889 and from 1893 to 1897, and Congress decided
that Cleveland would count as both the 22nd and the 24th president of the
United States. So in the list a, the 22nd entry a22 and the 24th entry a24
are equal. So the set S has in fact 44 members, even though the list a has
5 entries. �

2.7 An analogy: twin primes

Let me tell you about another problem, very similar to the one we have just
discussed, for which the situation is completely different.

Definition 9. A twin prime is a prime number p such that p + 2 is also
prime. �

Example 7. Here are the first few twin primes:

3, 5, 11, 17, 29, 41, 59, 71, 101, 107 . �

Now we can ask the same question that we asked for primes: does the list
go on forever, or does it stop at some largest pair of twin primes?

In other words,

Are there infinitely many twin primes?

This looks very similar to the question whether there are infinitely many
primes. And yet, the situation in this case is completely different:

Nobody knows whether there are infinitely twin
primes. Mathematicians have been trying for more
than 2,000 years to solve this problem, by proving
that there are infinitely many twin primes, or that
that there aren’t, and so far they haven’t been suc-
cessful.
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The twin prime conjecture is the statement that there are infinitely many
pairs of twin primes. It was formulated by Euclid, about 2,300 years ago,
and it is still an open problem.

THE LARGEST KNOWN TWIN PRIME

According to Wikipedia, as of September 2018, the current largest
twin prime known was 2996863034895× 21290000 − 1, with 388, 342
decimal digits. It was discovered in September 2016. (The fact that
the number 2996863034895×21290000−1 is a twin prime means that
it is prime, and the number 2996863034895 × 21290000 + 1 is also
prime.)

2.8 A surprising fact: non-twin primes

How about primes that are not twin?

Definition 10. A non-twin prime is a prime number p such that p + 2 is
not prime. �

Example 8. Here are the first few non-twin primes:

2, 7, 13, 19, 23, 31, 37, 43, 47, 53,

61, 67, 73, 79, 83, 89, 97, 103 . �

And now we can ask, again, the same question that we asked for primes and
for twin primes: does the list go on forever, or does it stop at some largest
pair of twin primes?

In other words,

Are there infinitely many non-twin primes?

This looks very similar to the question whether there are infinitely many
twin primes. And yet, the situation in this case is completely different: it is
very easy to prove the following:

Theorem 6. The set of non-twin primes is infinite.

(I am asking you to do this proof. See Problem 16 below.)
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2.9 Problems

Problem 9. Using the definition of “divides” (Definition 3), explain pre-
cisely why the statements “1 divides 5”, “6 divides −6”, “6 divides 0”, and
“0 divides 0” are true, and the statements “5|6” and “0|6” are false. �

Problem 10. Indicate which of the statements in the following list are true
and which ones are false, and explain why. (That is, prove that the true
statements are true and the false ones are false.)

1. Every integer is divisible by 1.

2. Every integer is divisible by 2.

3. Every integer is divisible by 0.

4. Every integer divides 1.

5. Every integer divides 2.

6. Every integer divides 0.

Problem 11. Express each of the following numbers

• 37,

• 28,

• 236,

• 2247,

as a product of prime numbers. �

Problem 12. Give a precise mathematical definition of “prime number”.
�

Problem 13. Give a precise mathematical definition of “twin prime”. �

Problem 14. Give a precise mathematical definition of “finite set” and
“infinite set”. �

Problem 15. Give precise mathematical definitions of each of the following
concepts:

• divides,

• is divisible by,

• factor (as in “is a factor of”),

• multiple (as in “is a multiple of”). �
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Problem 16. Prove Theorem 6 (on page 32). �

Problem 17. Prove that if a, b, c are integers, a|b and b|c, then a|c. �

Problem 18. Prove that if a, b are integers, a|b and b|a, then a = b or
a = −b. �

Problem 19. The proof that was given in Section 2.6 of Euclid’s Theorem
uses the definition of “prime number” given on page 20. In this problem, we
change the definition of “prime number” and use the following definition:
A prime number is a natural number p such that p is not divisible by any
natural numbers other than 1 and p. That is, we do not require p to be > 1.
So according to this new definition 1 is now prime

Rewrite the proof of Euclid’s Theorem given in Section 2.6 using the
new definition of “prime number”. (What you have to do is basically copy
the proof, but making a few changes. For example, one of the steps of
the proof given in Section 2.6 says “It follows from the definition of ‘prime
number’ that q1 > 1”. This step is not valid now, because 1 is prime, so q1
could be 1. You have to make some slight changes in the proof to adapt it
to this new situation.) �

Problem 20. Prove that if p is a prime number and p 6= 2 then p is odd.

In the following problems, you may want to use the division theorem: If a, b
are integers and b 6= 0, then it is possible to write a = bq+ r, where
q, r are integers such that 0 ≤ r < |b|. (For example: if a is an integer
then we can write a = 3q + r where r = 0 or r = 1 or r = 2.)

Problem 21. Prove that if p is a prime number such that p+2 and p+4
are also prime, then p = 3.
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Problem 22.

1. Find at least ten different prime numbers p such that p + 4 is also
prime.

2. Prove that the only prime number p such that p + 4 and p + 8 are
also prime is p = 3.

3. Prove that there does not exist a prime number p such that p + 4,
p+ 8 and p+ 12 are also prime.

Problem 23.

1. Find at least ten different prime numbers p such that p + 6 is also
prime.

2. Find at least ten different prime numbers p such that p+6 and p+12
are also prime.

3. Find at least four13 different prime numbers p such that p+6, p+12
and p+ 18 are also prime.

4. Prove that there exists a unique prime number p such that p + 6,
p+ 12, p+ 18 and p+ 24 are also prime.

5. Prove that there does not exist a prime number p such that p + 6,
p+ 12, p+ 18, p+ 24 and p+ 30 are also prime.

Problem 24.

1. Express the integer 28 as a difference of two squares of integers. (That
is, find two integers m,n such that m2 − n2 = 28.)

2. Express the integer 29 as a difference of two squares of integers. (That
is, find two integers m,n such that m2 − n2 = 29.)

3. Prove that it is not possible to express the integer 30 as a difference
of two squares of integers. (That is, prove that there do not exist two
integers m,n such that m2 − n2 = 30.) �

13There are many more. I am just asking you to find four because I don’t want to make
you work too hard.
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3 The seven bridges of Königsberg: a totally dif-
ferent example of a proof by contradiction

In 1736, the great mathematician Leonhard Euler (1707-1783) wrote a paper
on the Königsberg bridge problem: Is it possible to walk through the city
of Königsberg crossing each of the town’s seven bridges once and only once?
The city was divided into two parts by a river crossing it, and in addition
there were two islands, so the city truly had four parts, joined by seven
bridges, as shown in the picture.

Euler’s solution of the bridges of Königsberg problem marhed the birth of
a new field of mathematics, now known as graph theory, which has evolved
into a major area of research, with an enormous variety of applications.

A

D

B

C

The seven bridges of Königsberg

Euler’s answer was that it is impossible to walk as proposed in the problem:
there is no way to walk through all seven bridges, crossing each bridge once
and only once. Furthermore, Euler’s proof is by contradiction, so it is most
appropriate to include it here, to show you an example of how a proof by
contradiction works.

Theorem 7. There is no way to walk through all the seven bridges of Königsberg
crossing each of the bridges once and only once.
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Proof.
We give a proof by contradiction.

Assume there is a way to walk through all the seven bridges, crossing
each bridge once and only once.

This walk starts in one of the four parts A, B, C, D into which the
city is divided by the river.

Call this starting part S, so S is either A or B or C or D.

Furthermore, the walk ends in one of the four parts A, B, C, D.

Call this part E, so E is either A or B or C or D, and E could be the
same as S, or not.

Let P be one of the four parts which is not S or E. (Such a part must
exist, because there are four parts, and at most two of them can be S
or E.)

Then our walk does not start or end at P , so it must enter P at some
point through one of the bridges connecting P to the other parts, and
then it must leave P through a different bridge. And, if it ever enters
P again, it must be through a third bridge. And then it must leave P
through a fourth bridge. And so on. So the total number of bridges
connecting P to other parts that are crossed by our walk has to be
even, because for every bridge used to enter P there must ne a different
bridge used to leave P .

But our walk crosses all the bridges. And this implies that

the number of bridges connecting P to one of the other parts is even .

On the other hand, for each the four parts the number of bridges
connecting that part to the others is odd. (For part A the number is
3, for part B it is 5, for part C it is 3, and for part D it is also 3.)

Let n be the number of bridges connecting P to one of the other parts.

Then n is odd.

But we have proved that n is even.

So n is odd and n is not odd , which is clearly a contradiction.

Hence the assumption that it is possible to walk through Königsberg crossing
each bridge once and only once has led us to a contradiction.
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Therefore such a walk is impossible . Q.E.D.

3.1 Comments of the Königsberg bridge problem

If you look at the argument given above, you see that the key point is that,
if there is a way to walk through a city which is divided into several ih a
number of bridges connecting

A

B

C

D

Königsberg with six bridges
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A

D

B

C

Königsberg with nine bridges

16 islands and 24 bridges
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20 islands and 32 bridges

4 More examples of proofs: irrationality of
√
2 and

of other numbers

4.1 Numbers and number systems

There are several different kinds of numbers, i.e., several different number
systems. It is convenient to give the number systems names, and to intro-
duce mathematical symbols to represent them.

4.1.1 The most common types of numbers

Here are some examples of number systems:

• the symbol IN stands for the set of natural numbers,
• the symbol Z stands for the set of integers,
• the symbol Q stands for the set of rational numbers,
• the symbol IR stands for the set of real numbers,
• the symbol C stands for the set of complex numbers,
• there are sets Z2, Z3, Z4, Z5, Z6, and, more generally, Zn—the set of
integers modulo n—for every natural number n such that n ≥ 2. (So,
for example, there are the systems Z2, Z3, Z10, Z11, Z5403.)
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Some of the above kinds of numbers should be familiar to you, and others
may be less so or not at all. Do not worry if you find on our list things that
you have never heard of before: we will be coming back to the list later, and
discussing all the items in much greater detail.

A number can belong to different number systems, in the same way as,
say, a person can belong to different associations. (For example, somebody
could be a member, say, of the American Association of University Profes-
sors, the Rutgers Alumni Association, and the Sierra Club. Similarly, the
number 3 belongs to lots of different number systems, such as, for example,
IN, Z, Q, and IR.)

At this point, we will just discuss IN, Z, Q, and IR, and we will do so
very briefly. We will talk much more about these systems later, and we will
also discuss later other number systems such as C, and the Zn.

The symbols IN, Z, Q, IR, C, are special math-
ematical symbols. They are not the capital let-
ters N, Z, Q, R, C.

(Why do we use these special symbols? It’s because mathematicians need to
use lots of letters in their proofs, so they do not want to take the letters C,
R, for example, and declare once and for all that they stand for “the set of
all complex numbers” and “the set of all real numbers”. For example, if they
are working with a circle, they want to have the freedom to call the circle
“C”, and to say “let R be the radius of C”, and this would not be allowed
if the symbols “C”, “R” already stood for something else. So they invented
the special symbols C, IR to stand for the set of complex numbers and the
set of real numbers, so that the ordinary letters C, R, will be available to
be used as variables.)

Please do not say “IN is the natural numbers”, or “Z is the integers”.
When we group things together to create a set, that set is one thing, not
many things. So IN cannot be “the natural numbers”. What you can,
and should, say is: “IN is the set of all natural numbers.”

4.1.2 The symbol “∈”

If S is a set and a is an object, we write

a ∈ S
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to indicate that a is a member of S.

And we write

a /∈ S
to indicate that a is not a member of S.

How to read the “∈” symbol

The expression “a ∈ S” is read in any of the following ways:

- a belongs to S,

- a is a member of S,

- a is in S.

The expression “a /∈ S” is read in any of the following ways:

- a does not belong to S,

- a is not a member of S,

- a is not in S.

Remark 4. Sometimes, “a ∈ S” is read as “a belonging to S”, or “a in S”,
rather than “a belongs to S”, or “a is in S.” For example, if we write

Pick an a ∈ S,

then it would be bad English grammar to say “pick an a belongs to S”. But
“pick an a belonging to S”, “pick an a in S”, or “pick an a that belongs to
S”, are fine. �

Never read “∈” as “is contained in”, or ”is included in”.
The words “contained” and “included” have different
meanings, that will be discussed later.
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4.1.3 The natural numbers

The symbol IN stands for the set of all natural numbers. (Natural numbers
are also called “positive integers”, or—sometimes—”whole numbers”, or
“counting numbers”.) The members of this set are the numbers 1, 2, 3 . . ..

More precisely:

The natural numbers are the numbers obtained from the number 1
by adding 1 any number of times. So, for example, the numbers 1, 1+1
(i.e., 2), 1 + 1 + 1 (i.e., 3), 1 + 1 + 1 + 1 (i.e., 4), are natural numbers.

And so are the numbers 4, 503, 46, 902, 444, 531, 322 and 1010
10

10
10

.
The symbol IN stands for the set of all natural numbers.

4.1.4 The integers

The symbol Z stands for the set of all integers.
The members of Z (i.e., the integers) are the natural numbers as well

as 0 and the negatives of natural numbers, i.e., the numbers −1, −2, −3,
etc. So, to say that a number n is an integer, we can write “n ∈ Z”, which
we read as “n belongs to the set of integers” or, even better, as “n is an
integer”.

So, for example, the following statements are true:

35 ∈ IN

35 ∈ Z

∼ −35 ∈ IN

−35 ∈ Z

35 /∈ Z

0 ∈ Z

∼ 0 ∈ IN

0 /∈ IN

0.37 /∈ Z

π /∈ Z .

4.1.5 The real numbers

The symbol IR stands for the set of all real numbers.
The real numbers are those numbers that you have used in Calculus.

They can be positive, negative, or zero.
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The positive real numbers have an “integer part”, and then a “decimal
expansion” that may terminate after a finite number of steps or may continue
forever. (So, for example, the number 4.23 is a real number, and so is the
number π. The decimal expansion of the number 4.23 terminates after two
decimal figures, but the decimal expansion of π goes on forever. Here, for
example, is the decimal expansion of π with 30 decimal digits:

3.141592653589793238462643383279 .

Using Google you can find π with one million digits. As of 2011, 10 tril-
lion digits of π had been computed, and nobody has found any pattern! Even
simple questions, such as whether every one of the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
appears infinitely many times, are unresolved.)

And the negative real numbers are the negatives of the positive real
numbers. So, for example, −4.23 and −π are negative real numbers.

4.1.6 Positive, negative, nonnegative, and nonpositive numbers

In this course, “positive” means “> 0” (i.e., “greater than zero”), and “non-
negative” means “≥ 0” (“greater than or equal to zero”). So, for example, 3
and 0.7 are positive (and nonnegative), and 0 is nonnegative but not positive.

Similarly, “negative” means “< 0”, and “nonpositive” means “≤ 0”. So,
for example, −3 and −0.7 are negative (and nonpositive), 0 is nonpositive
but not negative.

4.1.7 Subsets

Definition 11. A set A is a subset of a set B if every member of A
is a member of B.
We write “A ⊆ B” to indicate that A is a subset of B.

For example,

a. If, for example, S is the set of all people in the world, and T is the set
of all people who live in the United States, then T is a subset of S. So
the sentence “T ⊆ S” is true.

b. If A is the set of all animals, and G is the set of all giraffes, then G is
a subset of A, so the sentence “G ⊆ A” is true.

c. Let S be the set of all people who live in the United States, and let
C be the set of all U.S. citizens. Is C a subset of S? The answer is
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“no”, because there are U.S. citizens who do not live in the U.S., so
these people are members of C but not of S, so it’s not true that every
member of C belongs to S.

And here are some mathematical examples:

I. The following sentences are true:

IN ⊆ Z ,

IN ⊆ IR ,

Z ⊆ IR ,

because every natural number is an integer, every natural number is
a real number, and every integer is a real number.

II. And the following sentences are false:

Z ⊆ IN ,

IR ⊆ IN ,

IR ⊆ Z .

(For example, it is not true that Z ⊆ IN, because not every integer is a
natural number since, for example, 0 ∈ Z but 0 /∈ IN.)

4.1.8 The word “number”, in isolation, is too vague

As we have seen, there are different kinds of numbers. So, if you just say
that something is a “number”, without specifying what kind of number it
is, then this is too vague. In other words,

Never say that something is a “number”, unless you have made it
clear in some way what kind of “number” you are talking about.

For example, suppose you are asked to define “divisible”, and you write:

A number a is divisible by a number b if we can write a = bc
for some number c.

This is too vague! What kind of “numbers” are we talking about? Could
they be real numbers?. If this was the case, then 3 would be divisible by 5,
because 3 = 5.z, if we take z = 3/5. But we do not want 3 to be divisible
by 5. And we want the “numbers: we are talking about to be integers.

So here is a correct definition of “divisible”:
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Divisibility of integers: We say that an integer a is divisible by an integer
b (or that a is a multiple of b, or that b is a factor of a, or that b divides a),
if we can write

a = bc

for some integer c. �

For example, the following sentences are true:

3 divides 6 ,
−3 divides 6 ,

6 is divisible by 3 ,
6 is a multiple of 3 ,
3 is a factor of 6 .

4.2 Existential statements

In the definition of divisibility given above, we have used the words “we can
write”. This language makes it sound as though, in order to decide whether,
say, 3 divides 6, we need to have somebody there who “can write” things.
This should not be necessary: “3 divides 6” would be a true sentence even
if there was nobody around to do any writing. So it is much better to use a
more impersonal language:

Divisibility of integers

DEFINITION. An integer a is divisible by an integer
b (or a is a multiple of b, or b is a factor of a, or b divides
a), if there exists an integer c such that

a = bc .

The sentence “there exists an integer c such that a = bc” is an example
of nn existential sentence, i.e., a sentence that asserts that an object of
a certain kind exists. Later, when we learn to write mathematics in formal
language (that is, using only formulas), we will see that this sentence can
be written as follows:

(∃c ∈ Z)a = bc . (4.24)

The symbol “∃” is the existential quantifier symbol, and the expression
“(∃c ∈ Z)” is an existential quantifier, and is read as “there exists an
integer c such that”.
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So Sentence (4.24) is read as “there exists an integer c such that a = bc”.
And it can also be read as “a = bc for some integer c”, or “it is possible to
pick an integer c such that a = bc”. (I recommend the “it is possible to pick
...” reading.)

4.2.1 The rule for using existential statements (Rule ∃use)
Suppose you know that cows exist, that is that

(∃x)x is a cow . (4.25)

Then the rule for using existential statements says that we can introduce
into our conversation a cow, and give her name, by saying something like
“pick a cow and call her Suzy”.

In general,

• For a sentence (∃x)P (x), a witness is an object a such that P (a). (For
example: for the sentence (4.25), a witness is any a such that a is a
cow, that is, any cow.)

• For a sentence (∃x ∈ S)P (x), a witness is an object a which belongs
to S and is suchthat P (a). (For example, if C is the set of all cows,
then a witness for the sentence (∃x ∈ C)x is brown is any brown cow.)

The rule for using existential statements (Rule ∃use) says that, if
you know that an existential statement is true, then you can “pick
a witness and give it a name”.

For example: suppose you know that a natural number n is not prime and
is > 1. Then you know that the following is true: (∃m ∈ IN)(m|n and m 6=
1 and m 6= n). (That is, n has a factor which is a natural number and is
not equal to 1 or n.) Then Rule ∃use says that we can pick a witness and
call it a, that is, we can pick a natural number a such that a|n, a 6= 1 and
a 6= n.
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Rule ∃use

• From
(∃x)P (x)

you can go to “Let w be a witness for (∃x)P (x), so
P (w),” or “Pick a witness for (∃x)P (x) and call it
w”, or “Pick a w such that P (w).”

• From
(∃x ∈ S)P (x)

you can go to “Let w be a witness for (∃x ∈ S)P (x),
so w ∈ S and P (w),” or “Pick a witness for (∃x ∈
S)P (x) and call it w”, or “Pick a w such that w ∈ S

and P (w).”

For example:

i. If you know that Polonius has been killed, but you do not know who
did it, then you can talk about the person who killed Polonius and
give a name to that person, for example, call him (or her) “the killer”.

ii. if you know that an equation (say, the equation 3x2 + 5x = 8) has a
solution (that is, you know that the existential statement “there exists
a real number x such that 3x2 +5x = 8” is true) then you are allowed
to pick a solution and call it, for example14, “a”.

14Can you call this solution x? This is a complicated issue. Think of this as follows:
the letter x is really a slot where you can put in a number. A number that can be put in
the slot so as to make the formula true is called a “solution”. The solution and the slot
are two different things. So it is not a good idea to use the same name for both. If you
do things very carefully, it turns out that it is O.K. to call both the slot and a solution
with the same name, but I strongly recommend that you do not do it. For example the
equation 3x2 + 5x = 8 has are two solutions, namely, 1 and − 8

3
. Which one is “x”? You

cannot call both of them “x”, because they are different. So I think it is better to call one
of the solutions a (or A, or u, or U , or p, or P , or α, or ♥) and then call the other one a
different name (say b, or B, or v, or V , or q, or Q, or β, or ♣).
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4.3 Pythagoras’ Theorem and two of its proofs

Pythagoras’ Theorem is one of the oldest and most important theorems in
Mathematics. It is named after the Greek mathematician and philosopher
Pythagoras, who lived approximately from 570 to 495 BCE, although there
is a lot of evidence that the theorem (but probably not the proof) was known
before, by the ancient Babylonians.

The statement of the theorem is as follows:

Theorem 8. (Pythagoras’ Theorem) If T is a right triangle15, c is the length
of the hypothenuse16 of T , and a, b are the lengths of the other two sides,
then

a2 + b2 = c2 . (4.26)

There are many different proofs of Pythagoras’ Theorem. I am going to
give you two proofs.

Pythagoras’ proof. We draw a c× c square PQRS, and then attach at each
side a copy17 of T as shown in the picture.

15A right triangle is a triangle having one right angle
16The hypothenuse of a right triangle T is the side opposite to the right angle of T .
17For those who have studied Euclidean Geometry in high school: a copy of a figure F is

a figure F ′ congruent to F . “Congruent to F” means: “obtainable from F by combining
displacements and rotations. For example, the triangles QC3R, RC4S, and SC1P are all
congruent to PC2Q.
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The point P lies on the straight line segment from C1 to C2, because

1. If α1 is the angle at S of the triangle SC1P , and α2 is the angle at P
of the triangle PC2Q, then α1 = α2, because the triangles SC1P and
PC2Q re congruent.

2. Similarly, if β1 is the angle at P of the triangle SC1P , and β2 is the
angle at Q of the triangle PC2Q, then β1 = β2, because the triangles
SC1P and PC2Q are congruent.

3. Since SC1P and PC2Q are both right triangles, and the sum of the
angles of every triangle is 180o, we have

α1 + β1 + 90o = 180o and α2 + β2 + 90o = 180o ,

so
α1 + β1 = 90o and α2 + β2 = 90o .

4. Since α1 = α2, it follows that α2 + β1 = 90o,
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5. Hence the angle θ between the segments PC1 and PC2 is equal to
α2 + 90o + β1, i.e., to 180o. This proves that the segments PC1 and
PC2 lie on the same straight line, so P lies on the segment C1C2.

A similar argument shows that Q lies on the segment C2C3, R lies on the
segment C3C4, and S lies on the segment C4C1.

So the polygonal C1PC2QC3RC4SC1 is a square.
Let d = a+ b. Then the sides of the square C1C2C3C4 have length d.
Therefore the area of the square C1C2C3C4 is d2.
On the other hand, the smaller square PQRS has side of length c, so its

area is c2. Each of the four triangles has area ab
2 . So the area of C1C2C3C4

is equal to c2 + 4× ab
2 , i.e., to c

2 + 2ab.
It follows that

(a+ b)2 = d2

= c2 + 4× ab

2
= c2 + 2ab .

On the other hand, (a+ b)2 = a2 + b2 + 2ab. It follows that

a2 + b2 + 2ab = c2 + 2ab .

Subtracting 2ab from both sides, we get

a2 + b2 = c2 ,

which is the desired result. Q.E.D.

Proof using similar triangles. Let C be the vertex of T where the right angle
is located, and let A, B be the other two vertices.

Draw a line through C perpendicular to the line AB, and let H be the
point where this line intersects the line AB.
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Let α, β be the angles of T at A, B, so α+ β = 90o. The angle of ACH
at H is also 90o, and the angle at A is α. Hence the angle of ACH at C is
β. So the triangles ABC and ACH are similar. Hence the sides opposites
to equal angles are proportional. That is:

|AC|
|AH| =

|AB|
|AC| ,

from which it follows that

|AC|2 = |AH| · |AB| .

A similar argument shows that

|BC|2 = |BH| · |AB| .
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Adding both equalities we get

a2 + b2 = |AH| · |AB|+ |HB| · |AB|
=

(

|AH|+ |HB|) · |AB|
= |AB| · |AB|
= |AB|2
= c2 .

So a2 + b2 = c2, as desired. Q.E.D.

4.4 Rational and irrational numbers

In this section we will prove a very important fact, namely, that “the number√
2 is irrational”. This means, roughly, the same thing as “there does not

exist a rational number r such that r2 = 2.” (The two statements do not
say exactly the same thing. I will discuss how they differ later.)

But first I want to explain what this means and why this result is so
important. And to do this we need a small philosophical digression into the
question: what is a “number”?. (If you are not interested in philosophical
questions, you may skip this discussion and move on to subsection 4.4.4.)

4.4.1 What are “numbers”?

We have already been talking quite a bot about “numbers”, but I never told
you what a “number” is. The question “what is a number?” is not an easy
one to answer, and I will not even try. But there are some tings that can be
said.

1. Numbers are, basically, tags (or labels) that we use to specify the
amount or quantity of something, i.e., to answer the questions “how
much ...?” or “how many ...?”

2. Since ancient times, it was understood that there are at least two kinds
of “numbers”:

(a) The counting numbers, that we use to specify amounts of dis-
crete quantities, such as coins, people, animals, stones, books,
etc.

• counting numbers are used to count: 1, 2, 3, 4, 5, and so on,

• they are the ones that answer questions of the form
“how many ... are there?”;



Math 300, Fall 2020 54

• they vary in discrete steps: they start with the number 1,
then they “jump” from 1 to 2, and there is no other counting
number between 1 and 2, then they “jump” from 2 to 3, and
there is no other counting number between 2 and 3, and so
on.

(b) The measuring numbers, that we use to specify amounts that
can vary continuously, such as lengths, areas, volumes, weights.

• measuring numbers are used to measure continuously vary-
ing quantities;

• they are the ones that answer questions of the form
“how much ... is there?”;

• they vary continuously, so that, for example, when you
pour water into a cup, if at some time point there are 10
ounces in the cup, and later there are 12 ounces, it does not
occur to us that the amount of water in the cup may have
jumped directly from 10 to 12 ounces: we understand that at
some intermediate time there must have been 11 ounces, and
at some time before that there must have been 10.5 ounces,
and at some time before that there must have been 10.25
ounces, and at some time before the amount of water in the
cup was 10.15309834183218950482 ounces; and so on18. At
no time did the amount of water “jump”19 from some value
u to some larger value v.

• they can be subdivided indefinitely: for example

– You can take a segment of length 1 (assuming we have
fixed a unit of length), and divide it into seven equal
segments, each one of which has length 1

7 . And then you
can draw segments whose lengths are 3

7 , or
4
7 , or

9
7 , or

23
7 , thus getting fractional lengths.

18WARNING: The words “and so on” here are very imprecixse. It’s not at all what
they mean. When I talk about the counting numbers and I write “1, 2, 4, 5, and so
on”, you know exacrtly what comes next: it’s 6. But when I write “11, 10.5, 10.25,
10.15309834183218950482, and so on”, I haven’t the faintest idea what comes next! So
the “and so on” for counting numbers is acceptable, but the “and so on” for measuring
numbers is not, and when we do things rigorously and precisely we must get rid of it.

19To make this precise, one needs to use tha language of Calculus: if w(t) is the amount
of water at time t, then w is a continuous function of t. The trouble with this is: at this
point you only have a nonrigorous, not very precise idea of what a “continuous function”
is. You will learn to define the notion of “continuous function”, and work with it, and
prove things about it, in your next “Advanced Calculus” or “Real Analysis” course.
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– And, instead of 7, you can use any denominator you want,
and get lengths such as 5

2 ,
12
5 ,

29
17 ,

236,907
189,276 , and so on.

– Hence, if n and m are any natural numbers, then we can
(at least in principle) construct segments of length m

n
.

That is, we can construct segments of length f , for any
fraction f .

The measuring numbers such as 5
2 ,

12
5 ,

29
17 , or

236,907
189,276 , that can obtained

by dividing a counting number m into n equal parts, where n is another
counting number, are called fractions.

And this suggests an idea:

Idea 1: Perhaps the measuring numbers are exactly the same as the frac-
tions.

In other words: suppose we use the length u of some straight-line segment U
as the unit for measuring length. (That is, we call the lenght of this segment
“meter”, or “yard”, or “foot”, or “mile”, and then we try to express every
length in meters, or yards, or feet, or miles.) When we do that, we will
of course need fractions to expres some lenghts because, for example, if we
measure distances in miles, not every distance will be 1 mile, or 2 miles, or n
miles for some counting number n. Some distances will be, say, half a mile,
or three quarters of a mile, on thirteen hundredths of a mile, or forty-seven
thousandths of a mile20.

Then Idea 1 suggests that the length of every segment V should be
equal to a fraction m

n
times u (wnerem,n are natural numbers, i.e., counting

numbers). That means that if we divide the segment U into n equal segments
of length w = u

n
, then the length of U is n times w, and the length of V is

m times w. So U and V are commensurable. Since we can take U and V
to be any two segments we want, we find that If Idea 1 i true, then any
two segments are commensurable.

20Here is another important difference between counting and measuring numbers: to
count things using counting numbers you do not need units, but to measure amounts using
measuring numbers you do. If you are asked how many pills there are in a bottle, then
you answer “six”, or “twenty-five’, or whatever, and nobody is going to ask “six what?”.
But if you are asked how much water there are in the bottle, and you answer “six”, then
somebody is going to ask “six what?”, expecting that you will say something like “six
ounces”, or “six liters”, because if you do not specify the units of your measurement the
number you gave is meaningless.
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COMMENSURABLE LENGTHS

“Commensurable” means “measurable together”. Precisely:

Definition 12.

• Two segments U , V , are commensurable if you can use a ruler
of the same length w to “measure u and v together”, that is, to
express both lengths u and v as integer multiples mw, nw of the
unit of length w.

• Two segments U , V , are incommensurable if they are not com-
mensurable.

But then a momentous discovery of far-reaching consequences was made:

There are incommensurable lenghts.

That is, it is not true that any two lengths are commensurable.
Precisely: it is possible to construct geometrically21 a segment whose

length r satisfies r2 = 2. For example, if we draw a square whose sides have
length 1, then the length r of the diagonal of the square will satisfy r2 = 2,
by Pythagoras’ theorem.

21What does “constructing geometrically” mean? This is tricky. For Euclid (who lived
about 23 centuries ago), “constructing geometrically” meant “constructing with a ruler
and compass”. (See the Wikipedia article ”Compass and straightedge consrtuctions”.)
Using ruler and compass, one can construct lines and circles, but there are lots of other
curves—for example, ellipses—that cannot be constructed that way. On the other hand,
there are other equally “geometric” methods that can be used to construct some of those
curves. For example, ellipses can be constructed using pins and strings. (See the Wikipedia
article “Ellipses”.)
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And it was discovered that there is no fraction r such that r2 = 2. This
means that

I. If you believe that “number” means “fraction”, then there is no num-
ber that measures the length of the diagonal of a square whose sides
have lengt 1.

II. If you are willing to accept that there could be “numbers” that are not
fractions, then maybe there is a number r that measures the length of
the diagonal of a square whose sides have lengt 1, but that number r,
that we could call “

√
2”, is not a fraction.

Today we would say that

• Those numbers that are not fractions, such as
√
2, do indeed exist,

and we call them “real numbers”.

• The fractions, called “rational22 numbers”, are real numbers, but many

22The word “rational” here has nothing to do with “rationality” in the sense of “in
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real numbers are “irrational” numbers, that is, numbers that are not
rational.

• Actually, most23 real numbers are not rational.

• It took mathematicians more than 2,000 years after the discovery of
the irrationaly of

√
2 to come up with a truly rigorous definition of the

concept of “real number”. (The name “real number” was introduced
by Descartes in the 17th century. The first rigorous definition was
given by George Cantor in 1871, and the most widely used definitions
were proposed by Karl Weierstrass and Richard Dedekind.

4.4.2 Why was the irrationality of
√
2 so important?

The discovery of the inconmensurability of
√
2 was made, according to leg-

end, by Hippasus of Metapontum, who lived in the 5th century B.C.E
and was a member of the religious sect of the Pythagoreans, i.e., the fol-
lowers of the philosopher and mathematician Pythagoras24. And the legend
also says that the discovery was so shocking to the Pythagoreans that Hip-
pasus was drowned at sea, as punishment for having divulged the secret.
(But this is a legend, and there is no evidence that it is true.)

Why was the existence of inconmensurable magnitudes so upsetting to
the Pythagoreans? The reason is this: the Pythagoreans were a mystical-
religious cult.

accordance withb reason or logic”. It comes from the word “ratio”, which means “quo-
tient”. An “irrational number” is a number that is not the quotient (“‘ratio”) of two
integers. If you hear somebody say something like “scientists have shown that nature is
irrational: mathematicians have shown that irrationality is everywhere present, because
most numbers are irrational”, then you shoud realize that thit is an ignorant statement by
somebody who does not understand what “irratioanl numbers” are. The “irrationality” of
irrational numbers has nothing to do with their being unreasonable, absurd, or illogical;
it just means that they are not quotients of two integers.

23If this statement does not strike you as incomprehensible because you don’t know
what it means, you should think again, and ask yourself “what could it possibly mean to
say that most real numbers are irrational”? It turns out that this can be made precise,
but making it precise is hard.

24Yes, that’s the same Pythagoras of Pythagoras’s theorem.
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The Pythagoreans honored the effort put into mathematics, and
coordinated it with the observation of the cosmos in various ways,
for example: by including number in their reasoning from the
revolutions and their difference between them, by theorizing what
is possible and impossible in the organization of the cosmos from
what is mathematically possible and impossible, by conceiving the
heavenly cycles according to commensurate numbers with a cause,
and by determining measures of the heaven according to certain
mathematical ratios, as well as putting together the natural science
which is predictive on the basis of mathematics, and putting the
mathematical objects before the other observable objects in the
cosmos, as their principles.

From the Wikipedia article on Pythagore-

anism, which quotes the Protrepticus, by D.

S. Hutchinson and M. R. Johnson, a 2015 re-

construction of a lost dialogue of Aristotle.

In other words, for the Pythagoreans everything in the world was determined
by ratios (i.e. quotients) of “numbers”, and for them “number” meant
“natural number” (i.e., counting number). The discovery that some lengths
were not ratios of “numbers” undermined the Pythagorean system to such
an extent that the members of the sect felt it necessary to conceal this fact
from the general public.

But it is important to put all this in proper perspective: there is no real
proof that Hippasus truly was the discoverer of the irrationality of

√
2, or

that he was drowned at sea for that discovery.

4.4.3 What is a “real number”, really?

The discovery that there are lengths that are inconmensurable with one
another naturally forced mathematicians to ask a fundamental question:
what is a “number”, really?

And, as we have explained, it took more than 2,000 years until mathe-
maticians found a satisfactory answer.
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4.4.4 The most important number systems: real numbers vs.
integers and natural numbers; definition of “rational num-
ber”

Now let us look at the main number systems25 that mathematicians use
today.

1. The measuring numbers, together with their negatives, and zero, are
called real numbers.

2. The set of all real numbers is called IR. (It is also called “the set of all
real numbers”, or “the real line”.)

3. The counting numbers are called natural numbers. (They are also
called “positive integers”.)

4. The set of all natural numbers is called IN.

5. The natural numbers, together with their negatives and zero, are called
integers.

6. The set of all integers called Z.

7. The real numbers that are quotients of two integers are called rational
numbers. That is, we have the following key definition:

25There are many number systems. What we will do here is barely scratch the surface
of a very rich theory.
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Definition 13.

• A rational number is a real number r such that there
exist integers m,n for which:

(a) n 6= 0

(b) r = m
n .

• The set of all rational numbers is called Q. (So “x ∈
Q” is a way of saying “x is a rational number”.)

• In formal language: If r ∈ IR, then r ∈ Q ifa

(∃m∈Z)(∃n∈Z)
(

n 6=0 and r=
m

n

)

. (4.27)

• An irrational number is a real number r which is
not rational.

aFormula (4.27) is not yet completely formal, because it contains the word “and”.
Soon we are going to leanr the symbol “∧” for “and”, and then we will be able to

rewrite (4.27) as (∃m ∈ Z)(∃n ∈ Z)
(

n 6= 0 ∧ r = m
n

)

.

4.4.5 A remark about sets

We will spend a lot of time in this course studying sets. At this point, all
you need to know is that

• sets have members.

• If S is a set and x is an object (for example, a number or a person or
a giraffe or a set) then “x ∈ S” is a way of saying that x is a member
of S.

• “x ∈ S” is read as “x belongs to S”, or “x is in S”, or “x is a member
of S”.

• We write “x /∈ S” to indicate that x is not a member of S.

• So, for example,
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– If C is the set of all cows, then to say that Suzy is a cow we can
equally well say “Suzy∈ C”.

– You can read “Suzy∈ C in any of the following ways:

1. Suzy belongs to C,

2. Suzy is in C,

3. Suzy belongs to the set of all cows,

4. Suzy is a cow.

But the third reading, although correct, is very stupid, because
there is no reason to say “Suzy is a member of the set of all cows”
when you can say the same thing in a much shorter and simpler
way by saying “Suzy is a cow”.

– Similarly, you can read “Suzy/∈ C in any of the following ways:

1. Suzy does not belong to C,

2. Suzy is not in C,

3. Suzy does not belong to the set of all cows,

4. Suzy is not a cow.

And the third reading, though correct, sounds silly, so you would
never say it that way.

• Here is another example.

– “IN”, as we know, is the set of all natural numbers. So, to say
that 3 is a natural number we can equally well say “3 ∈ IN”.

– You can read “3 ∈ IN in any of the following ways:

1. 3 belongs to IN,

2. 3 is in IN,

3. 3 belongs to the set of all natural numbers,

4. 3 is a natural number.

But the third reading, although correct, is very stupid, because
there is no reason to say “3 is a member of the set of all natural
number” when you can say the same thing in a much shorter and
simpler way by saying “3 is a natural number”.

Problem 25. For each of the following formulas,

(a) translate the formula into English,

(b) indicate whether it is true or false.
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Give the best, most natural English translation. For example, the formula
“1 ∈ IN” could be translated as “1 belongs to the set of natural numbers”,
but this sounds very awkward. A much better way to say the same thing in
English is “1 is a natural number”, so this translation is to be preferred.

1. −3 ∈ IN,

2. 0 ∈ IN,

3. 0 /∈ Z,

4. 0 ∈ Z,

5. −3 ∈ IR,

6. 0 ∈ IR,

7. 0 /∈ IR,

8. 0 ∈ IR,

9. 0 ∈ Q,

10. 3 ∈ Q,

11. −3 ∈ Q,

12. 237
42 ∈ Q,

13.
√
2 ∈ Q,

14.
√
2 /∈ Q,

15. π ∈ Q.

4.5 The irrationality of
√
2

As explained before, we could state the theorem on the irrationality of
√
2

by saying that “
√
2 is irrational”. This, however, would mean that there is

a “number
√
2”, i.e., a number whose square is 2. But the issue whether

such a number exists is different from the one that concerns us here, namely,
whether there exists a rational number r such that r2 = 2. So I prefer to
state the theorem in a way that does not imply any a priori commitment to
the existence of a “number” r such that r2 = 2.

And, before we give the proof, we introduce a few concepts and state
some facts that will be used in the proof, (These facts will be proved later
in the course.)

4.5.1 Even and odd integers

THE DEFINITION OF “EVEN” AND “ODD” INTEGERS

Definition 14. Let a be an integer. We say that a is even if it is
divisible by 2. And we say that a is odd if it is not even.
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4.5.2 Coprime integers

The integers 1 are −1 are factors of every integer, because if n ∈ Z then
n = n× 1 and n = (−n)× (−1), so n is divisible by 1 and by −1. So 1 and
−1 are not very interesting factors, because they are always there. So we
refer to 1 and −1 as the trivial factors of an integer.

THE DEFINITION OF “COPRIME INTEGERS”

Definition 15.

• Let a, b be integers. We say that a and b are coprime if they do
not have any nontrivial common factors.

• We write “a ⊥ b” to indicate that a and b are coprime.

• In formal language, if a ∈ Z and b ∈ Z, then a ⊥ b if

∼ (∃k ∈ Z)(k|a and k|b and k 6= 1 and k 6= −1) .

Example 9. The integers 12 and 35 are coprime. Indeed:

• The factors of 12 are 1, −1, 2, −2, 3, −3, 4, −4, 6, −6, 12 and −12.

• The factors of 35 are 1, −1, 5, −5, 7, −7, 35 and −35.

So the only common factors are 1 and −1, i.e., the trivial factors. Hence 12
and 35 are coprime. �

4.5.3 Proof of the irrationality of
√
2

Now, finally, we are ready to prove that
√
2 is irrational.

We are going to use two facts:

Fact 1. Every rational number is equal to a quotient m
n

of two coprime
integers.

Fact 2. The product of two odd integers is odd.

Example 10. Here are some examples to illustrate what Fact 1 means:

• let a = −36
22 . The integers −36 and 22 are not coprime, because they

are both divisible by 2. But we can factor out the 2, and get a = −18
11 .

Now the numerator −18 and the denominator 11 are coprime.
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• let a = 630
840 . The natural numbers 630 and 840 are not coprime, because

they are both divisible, for example, by 2. We can factor out the 2,
and get a = 315

420 . The numerator 315 and the denominator 420 are not
yet coprime, because they are both divisible, for example, by 3. We
can factor out the 3, and get a = 105

140 . The numerator 105 and the
denominator 140 are not yet coprime, because they are both divisible,
for example, by 5. We can factor out the 5, and get a = 21

28 . The
numerator 21 and the denominator 28 are not yet coprime, because
they are both divisible by 7. We can factor the common factor 7 and
we get, finally, a = 3

4 . And now the numerator 3 and the denominator
4 are coprime. �

Theorem 9. There does not exist a rational number r such that r2 = 2.

Proof. We give a proof by contradiction .

Assume that there exists a rational number r such that r2 = 2.

Pick one such number and call it r. (Here we are using Rule ∃use.)

Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(Here we are using again Rule ∃use.)

Using Fact 1, we may actually choose m,n such that

(3) m and n are coprime.

Since r2 = 2, we have m2

n2 = 2.

Therefore m2 = 2n2.

So m2 is even.

But then m is even. (Reason: Assume26 that m is not even. Then m
is odd. So by Fact 2, m2 is odd. But we have proved that m2 is even.
So m2 is not odd. Therefore m2 is odd and m2 is not odd, which is a
contradiction.)

Since m is even, m is divisible by 2, that is, (∃k ∈ Z)m = 2k.

26Notice that we have a proof by contradiction within our main proof by contradiction.
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So we may pick an integer k such that m = 2k.

Then m2 = 4k2.

But m2 = 2n2.

Hence 2n2 = m2 = (2k)2 = 4k2.

Therefore n2 = 2k2.

So n2 is even.

But then n is even. (Reason: Assume27 that n is not even. Then n
is odd. So n2 is odd by Fact 2. But we have proved that n2 is even.
So n2 is not odd. Therefore n2 is odd and n2 is not odd, which is a
contradiction.)

So m is even and n is even.

Therefore m and n are divisible by 2.

So m and n have a nontrivial common factor.

Hence m and n are not coprime .

But m and n are coprime

So m and n are coprime and m and n are not coprime , which is a con-
tradiction.

So the assumption that there exists a rational number r such that r2 = 2
has led us to a contradiction.

Therefore there does not exist a rational number r such that r2 = 2 .Q.E.D.

4.6 More irrationality proofs

We now use the same technique to prove that
√
3 is irrational. The key point

here is to realize that “even vs. odd” now has to be replaced by “divisible by
3 vs. not divisible by 3”. And, in order to do the crucial step (the analogue
of “if m2 is divisible by 2 then m is divisible by 2”) we need a generalization
of Fact 2:

27Another proof by contradiction !
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Fact 3. If p is a prime number, then the product of two integers that are
not divisible by p is not divisible by p either.

(We will prove Fact 3 later.)

Theorem 10. There does not exist a rational number r such that r2 = 3.

Proof. We want to prove that ∼ (∃r ∈ Q)r2 = 3. We will do a proof by
contradiction .

Assume that (∃r ∈ Q)r2 = 3, i.e., there exists a rational number r
such that r2 = 3.

Pick one such number and call it r.

Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

Then, using Fact 1, we can actually choose m,n so that

(3) m and n are coprime.

Since r2 = 3, we have m2

n2 = 3.

Therefore m2 = 3n2.

So m2 is divisible by 3.

But thenm is divisible by 3. (Reason: By Fact 3, ifm was not divisible
by 3, it would follow that m2 is not divisible by 3 either. But m2 is
divisible by 3, and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 3n2.

Hence 3n2 = 9k2, so
n2 = 3k2 . (4.28)

So n2 is divisible by 3.
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But then n is divisible by 3. (Reason: By Fact 3, if n was not divisible
by 3, it would follow that n2 is not divisible by 3 either. But n2 is
divisible by 3, and we got a contradicition.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 3
has led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 3 .Q.E.D.

4.6.1 What happens when you make a mistake in a proof

Can we do the same that we did before to prove the following theorem?

THEOREM: There does not exist a rational number r such that r2 = 4.
Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 4.

Pick one such number and call it r.

Using Fact 1, we may pick integers m,n such that

(1) n 6= 0,

(2) r = m
n
,

(3) m and n have no nontrivial common factors.

Since r2 = 4, we have m2

n2 = 4.

Therefore m2 = 4n2.

So m2 is divisible by 4.

But thenm is divisible by 4. (Reason: By Fact 3, ifm was not divisible
by 4, it would follow that m2 is not divisible by 4 either. But m2 is
divisible by 4, and we got a contradicition.)
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Since m is divisible by 4, we may pick an integer k such that m = 4k.

Then m2 = 16k2.

But m2 = 4n2.

Hence n2 = 4k2, so
n2 = 3k2 . (4.29)

So n2 is divisible by 4.

But then n is divisible by 4. (Reason: By Fact 3, if n was not divisible
by 4, it would follow that n2 is not divisible by 3 either. But n2 is
divisible by 4, and we got a contradicition.)

So 3 is a factor of m and 4 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 4
has led us to a contradiction,

Therefore there does not exist a rational number r such that r2 = 4 .Q.E.D.

Same proof, right?

WRONG!!!!!

What is wrong here?

1. The result is false. It is not true that there does not exist a rational
number r such that r2 = 4. Indeed, if we take r = 2 then r is ratinal
and r2 = 4.

2. Since the conclusion of the proof is false, the proof itself must be wrong.
That is, whoever wrote this proof must have cheated28 in some step.

28Nothing personal here. “Cheat” means “violate the rules.” Of course, I haven’t told
you yet what the rules are, but let me anticipate one of them. You are allowed to use
a result that has been proved, but you are now allowed to make up a statement
that has not been proved and use it as if it was true.
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In our case, Fact 3 explicitly says that “if p is prime then if a is not
divisible by p it follows that a2 is not divisible by p”. So we are allowed
to apply Fact 3 if p is prime, but we are not allowed to apply it if p is
not prime.

So the two steps where we applied Fact 3 are wrong. In those steps,
we cheated, by violating the rules.

The general principle is this: If a proof is correct then you can
be sure that the conclusion is true.

And another way to say that is this: if the conclusion of a proof is
false, then the proof must be wrong. There has to be a mistake in
the proof itself.

So, if I give you a proof of a conclusion that is false, you have to be able
to find where in the proof the author cheated. I will not be satisfied with
a statement such as “the proof is wrong because the conclusion is false.” I
will want to know where in the proof a mistake was made.

Consider the following analogy: If I am trying to drive to Boston and
end up in New York, then of course I can conclude thta I did something
worng. But I will want to know what I did wrong, where I made a wrong
turn. The same happens with proofs.

4.6.2 More complicated irrationality proofs

I hope it is clear to you that the same method, exactly, will apply to prove
that

√
5,

√
7,

√
11, and, more generally,

√
p for any prime number, is irra-

tional.
Now let us try a more complicated case. Let us prove that

Theorem 11. There does not exist a rational number r such that r2 = 12.

Remark 5. The number 12 is not prime. (Actually, 12 = 4 × 3.) So we
cannot apply Fact 3 with 12 in the role of p.

Proof. We will do a proof by contradiction .

Assume that there exists a rational number r such that r2 = 12.

Pick one such number and call it r, so r2 = 12..

Using the fact that r ∈ Q, we may pick integers m,n such that

(1) n 6= 0,



Math 300, Fall 2020 71

(2) r = m
n
,

Then, using Fact 1, we may pick m,n such that

(3) m and n are coprime.

Since r2 = 12, we have m2

n2 = 12.

Therefore m2 = 12n2.

Hence m2 = 3× 4n2.

So m2 is divisible by 3.

But thenm is divisible by 3. (Reason: By Fact 3, ifm was not divisible
by 3, it would follow that m2 is not divisible by 3 either. But m2 is
divisible by 3, and we got a contradicition.)

Since m is divisible by 3, we may pick an integer k such that m = 3k.

Then m2 = 9k2.

But m2 = 12n2.

Hence 12n2 = 9k2, so
4n2 = 3k2 . (4.30)

So 4n2 is divisible by 3.

But then n is divisible by 3. (Reason: By Fact 3, assume n is not
divisible by 3; then by Fact 3 n2 is not divisible by 3; since 4 is not
divisible by 3, another application of Fact 3 tells us that 4n2 is not
divisible by 3. But 4n2 is divisible by 3, so we got a contradiction.)

So 3 is a factor of m and 3 is a factor of n.

Hence m and n have a nontrivial common factor.

So m and n are not coprime.

But m and n are coprime.

Therefore m and n are coprime and m and n are not coprime , which
is a contradiction,

So the assumption that there exists a rational number r such that r2 = 12
has led us to a contradiction,
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Therefore there does not exist a rational number r such that r2 = 12 .Q.E.D.

Problem 26. Prove that each of the following numbers is irrational:

1.
√
5,

2. 3
√
5,

3. 3
√
9,

4.
√
28,

5.
√

2 +
√
2,

6.
√

2
3 ,

7.
√

27
31 . �

Problem 27. Prove or disprove29 each of the following statements:

1. The sum of two rational numbers is a rational number.

2. The product of two rational numbers is a rational number.

3. The sum of two irrational numbers is an irrational number.

4. The product of two irrational numbers is an irrational number.

5. The sum of two irrational numbers is a rational number.

6. The product of two irrational numbers is a rational number.

7. The sum of a rational number and an irrational number is an irrational
number.

8. The product of a rational number and an irrational number is an
irrational number. �

Problem 28.

I. Explain why the following “proofs” that
√
2+

√
3 and

√
6 are irrational

(in which we are allowed to use the facts that
√
2 and

√
3 are irrational)

are wrong:

1. Proof that
√
2 +

√
3 is irrational:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

29To disprove a statement means “to prove that the statement is false”. For example,
when we proved that 1 is not even we disproved the statement ‘1 is even”.
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Hence the sum
√
2 +

√
3 is irrational. Q.E.D.

2. Proof that
√
6 is irrational:

We know that
√
2 is irrational.

We know that
√
3 is irrational.

Hence the product
√
2.
√
3 is irrational.

So
√
6 is irrational. Q.E.D.

II. Give correct proofs that
√
2 +

√
3 and

√
6 are irrational. �

Problem 29. Prove that
√
2 + 3

√
2 is irrational. �

Problem 30. Prove that
√
2+

√
3+

√
5 is irrational. (NOTE: This requires

some hard thinking on your part.) �

Problem 31. Prove that
√
2 +

√
3 +

√
5+

√
7 is irrational. (NOTE: This

requires quite a lot of thinking on your part.) �

Problem 32. Prove that, if n ∈ IN, and p1, p2, . . . , pn are n distinct primes,
then

√
p1 +

√
p2 + · · ·+√

pn is irrational. (NOTE: This is very difficult.) �
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5 What is a proof, really?

THIS SECTION IS STILL BEING WRITTEN. WHEN
IT IS FINISHED IT WILL BE INCLUDED IN THESE
NOTES.

5.1 Analysis of the proof of Theorem 5

THIS SECTION IS STILL BEING WRITTEN. WHEN
IT IS FINISHED IT WILL BE INCLUDED IN THESE
NOTES.
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6 The languages of mathematics: formal, natural,
and semiformal

In these notes, we will be talking mostly aboutmathematical objects, that
is, numbers of various kinds (natural numbers, integers, rational numbers,
real numbers, complex numbers, integers modulo n, etc.), sets, functions,
relations, graphs, geometric objects (such as points, lines, segments, angles,
circles, planes, curves and surfaces of various kinds, etc.), and many other
kinds of objects (such as groups, rings, fields, algebras, modules, vector
spaces, manifolds, bundles, Lie groups, etc.) that mathematicians have
invented and you will learn about in more advanced courses.

And we will talk about these mathematical objects using mathematical
language. But mathematical language is a special kind of language, in
many ways similar to other languages such as English, and in many ways
different. So, in order to talk about mathematical language we will want
to say a few words about language in general, so that we can explain what
makes mathematical language special.

Mathematical language, as commonly used, is semiformal language,
that is, a mixture of formal language and the natural language (English,
Chinese, French, whatever) that one uses in a particular country. (Formal
lamguage is a language consisting entirely of formulas. For example, the
statement “A = πR2” is an expression in formal language.)

For example, when we say

from the facts that 2 + 2 = 4 and 4 + 2 = 6 we deduce that (2 + 2) + 2 = 6
(6.31)

this is a mixture of formal mathematical language and English. (The formal
language part consists of the formulas “2+2 = 4”, “4+2 = 6”, and “4+2 =
6”. The English part is the rest.)

If we wanted to say the same thing in French, we would say

des faits que 2 + 2 = 4 et 4 + 2 = 6 on deduit que (2 + 2) + 2 = 6 . (6.32)

Notice that the formal language part does not change. That’s because
formal language is universal. The formula “2 + 2 = 4” is exactly the
same in English, French, Chinese, or any other language.

As we will see in the course, it is possible to formalize mathematics
fully, that is, to develop a formal language into which we can translate every
mathematical statement.

For example, statement (6.31) would become, in purely formal language:

(2 + 2 = 4 ∧ 4 + 2 = 6) =⇒ (2 + 2) + 2 = 6 . (6.33)
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And, once you get to this level, the texts you get are no longer in English or
Franch or Chinese, because formal language is the same everywhere,
exactly as the formula “1 + 1 = 2’ is the same everywhere and can be
understood by all people, no matter what language they speak.

This means that if we could write all of mathematics in formal language,
we would have a language that permits people of all nationalities, speaking
all kinds of lamguages, to communicate easily: if a mathematician who
speaks Chinese says something, and a mathematician who speaks English
does not understand, then all these two mathematicians have to do is switch
to formal language, and then they would have no problem communicating.

Formal language has other advantages that we will talk about soon. So
you would think that mathematicians must use formal language all the time.
But in fact we do not. We use a semiformal language which is a mixture
of formal language and our own natural languages, because formal language
is too dry and to hard to read. But formal language remains the means of
communication of last resort: if I don’t understand something you wrote,
then I would ask you to say it in formal language. I you cannot say it in
formal language, then what you wrote is meaningless. If you can say it in
formal language, then I will understand what you said, and I will be able to
decide if it is right or wrong.

Example 11. Suppose you are trying to define “prime number”, and write
“a prime number is a number that is only divisible by 1 and itself”. Then
I do not understand what you are saying, so I cannot tell if it is right or
wrong.

Why do I not understand?

• Fisrt of all, I do not understand what “number” means. There are
lots of different kinds of numbers: natural numbers, integers, ratio-
nal numbers, real numbers, complex numbers, integers modulo n, etc.
When you say “number”, which one do you mean?

• Also: what does “only divisible” mean? You may say that when yoy
write “p is only divisible by 1 and itself”, what you mean is that “the
only factors of p are 1 and p”. But then I would reply: “so 3 is not
prime, because the factors of 3 are 3, 1, −1 and −3, so it’s not true
that the only factors are 1 and 3; so 3 is not prime.” Then you would
probably reply: “I did not mean to count negative factors as factors”,
And I would aswer: “why didn’t you say that?”

If I ask you to write your statement in formal language, then that will force
you to make your meanings precise. For example, you will write something



Math 300, Fall 2020 77

like30

if p ∈ IN , then p is prime if (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

. (6.34)

This is now completely clear, so at this point I will finally have understood
what you are saying. And then I will be able to tell if this is right or wrong.

The answer is: as a definition of “prime number”, this is wrong, because
1 is not prime, but according to (6.34) 1 is prime.

But we can make it right by writing:

if p ∈ IN , then p is prime if p > 1 ∧ (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

.

(6.35)

6.1 Things and their names

In any language, whether it is English, French, Russian, Spanish, Chinese, or
formal or semiformal mathematical language, we talk about things (objects,
entities), and in order to do that we give them names.

30This is not yet a fully formal definition. To make it fully formal we need to introduce
a symbolic way to say “p is prime”. We can do this by using “P (x)” for “x is prime”, and

then your statement would become: (∀p ∈ IN)

(

P (p) ⇐⇒ (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k =

p)
)

)

. This is not yet a correct definition of “prime number” but at least it is pefectly

clear.
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THINGS

In these notes, the word thing refers to an object of any kind: a concrete
inanimate material object such as a table or a molecule or a planet, a
“living thing” such as a plant, an animal, a person, or an amoeba, or an
abstract thing such as a mathematical object.
So, in these notes, Mount Everest is a thing, and the chair on which you
are sitting is a thing, and a book is a thing, but so are a giraffe, a spider,
and you, and I, and my uncle Jim, and the number four, and the set IN
of all natural numbers.
Some students don’t like using the word “thing” to refer to people,
perhaps because they are thinking that “people are not things”. My
answers to that are:

1. We can use words in any way we like, as long as we do it con-
sistently. So in this course we can decide how to use the word
“thing”, and there should be no problem as long as what we mean
is clear to everybody.

2. We often do talk about “living things”, and that includes people.

3. If you don’t like using the word “thing” in this way, there is a word
that’s perfect for you: you can talk about “entities” instead. An
entity is anything that exists. It can be a table, a river, a planet,
an atom, a cell, a plant, a giraffe, a person, a number, a triangle,
a matrix, a set, or a function. So just substitute the word “entity”
for “thing” throughout these notes, and you will be fine.

6.1.1 Giving things individual names

The simplest way to give names to things is to give each thing an individ-
ual name, as when you call people with names such as “Mary”, “John”,
or “George Washington”, you give cities names such as “New York City”,
“Paris”, or “London”, or you give mountains names such as “Mount Ever-
est” or “Mount Aconcagua”.

But this way of naming things is not very convenient, because in our
daily life we have to talk about an enormous number of things of many
different kinds, and it would be truly impossible to give an individual name
to each one.

Just imagine if every fork, every knife, every spoon, every plate, every
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glass, every cup, every napkin, every table, every pencil, every pen, every
cell phone, every toothbrush, every animal, every plant, every cell in every
person’s or animal’s or plant’s body, every molecule and every atom in the
Universe, every electron and every proton and every neutron and every
particle of every kind, had to have its own individual name, and you had to
know the name of each of those things before you can talk about it! Imagine
how difficult life would be if every time you want to ask a waiter for a spoon
you had to find out first the name of that particular spoon!

6.1.2 Variable noun phrases

So languages have developed a special device for naming things without
having to give each individual thing its own name. We do this by using
variables, that is, noun phrases that can be temporarily designated to
stand for a particular thing but can then be re-used, as needed, to stand
for a different thing.

NOUN PHRASES

A noun phrase is a word or phrase that stands for or is the name
of something or somebody. For example: “he”, “she”, “the giraffe”,
“my uncle Jimmy’, “Mount Everest”, “the pencil”, “the Math 300 final
exam”, “the table that I bought yesterday”, “the President of the United
States”, “Mary”, “New York City”, “the most expensive restaurant in
New York City”, “the owner of the most expensive restaurant in New
York City”, are all noun phrases.

Example 12.When I say “I am going to open the door and let you in”, the
noun phrases “I”, “the door”, and “you” stand, respectively, for the speaker,
a door, and the person that the speaker is talking to. But later, if somebody
else says the same thing to somebody else, the words “I”, “the door”, and
“you” will stand for two different people and a different door.

These noun phrases are variables: at each particular time they are
used they stand for some definite thing or person, called the referent, or
the value of the variable. In each particular instance, it must be clear what
the value is. (For example, if you and I are on a beach, and there is no door
in sight, then when I say “I am going to open the door and let you in” you
will not understand what I am talking about31.). �

31Unless my statement is part of some larger context that makes the value of the noun
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Variable noun phrases are re-usable: after I have used “the door”
to refer to one particular door, I may use “the door” again later to refer to
a different door.

Example 13. In a court of law, the noun phrase “the defendant” is used as
a variable. When a trial begins, someone announces in some way that, for
the duration of this trial, the words “the defendant” will refer to a certain
specific person. Then, during the trial, everybody refers to that person
as “the defendant”. When the trial is over, the variable “the defendant”
becomes free, that is, not attached to any particular person, and is free to
be used to refer to a new defendant when a new trial begins. �

Example 14. When you buy a house, the contract will probably contain
a clause at the beginning declaring the words “the buyer” to stand for you
for that particular contract. This means that the phrase “the buyer” is
a variable, whose value is you for this contract. Later, for a new house
sale, where the buyer is a different person, a new contract will be signed, in
which the phrase “the buyer” has a totally different value. So the value of
the phrase “the buyer” is fixed only within a specific contract, and changes
when you go to another contract. �

6.1.3 Declaring the value of a variable

When we communicate our thoughts by speaking or writing, we use variable
noun phrases all the time. But in order to be understood we also have to
communicate to the reader or listener what each variable stands for each
time we use it. That is, we have to declare the values of the variables we
use. How is that done?

In English, values of variables are declared in dozens of different ways.
For example,

• Often, we first mention a person by his or her name, and then when
we use the pronouns “he”, “him”, “his”, “she”, “her”, it is understood
that the pronoun stands for that person. For example, suppose I write

George Washington was the first president of the United
States, and he served as president for two terms. He was
succeeded by John Adams, who served only one term. When
Adams ran for reelection to a second term, he was the object
of malicious attacks by his opponents, and eventually lost
the election to Thomas Jefferson.

phrase “the door” clear. For example, I could be telling you that later, when we get home,
I will open the door and let you in. In that context, the value of “the door” is clear.



Math 300, Fall 2020 81

In this text, the pronoun “he” appears three times. The first two times,
it clearly refers to George Washington, but the third time it refers to
John Adams. The mention of John Adams undoes the declaration
that “he” stands for George Washington, and assigns the new value
“John Adams” to the pronoun.

• The pronoun “I” is understood to stand for whoever is speaking or
writing.

• The pronoun “you” is understood to stand for whoever the speakers
or writers are addressing themselves to.

• Values of variables are often declared by pointing. For example, if I
say “please give me that book”, and I point to a book, then that book
is the value of the variable “the book”.

• Sometimes, the value of a variable is clearly determined by the fact
that there is only one thing within sight that the variable can stand
for. For example, if I say “please give me the book”, and there is only
one book within sight, then that book is the value.

• Often, the value of a variable is announced explicitly, as in the exam-
ples we gave above of the variable “the defendant” in a trial, and “the
buyer” in a contract.

6.1.4 Using variables to name things in mathematical language

In mathematical language, it is customary to use letters as variables. The
most commonly used letters are

• lower case letters such as x, y, r, p, q, a, b, atc.,

• capital letters such as X, Y , P , Q, A, B, etc.,

• lower case Greek letters (α, β, ϕ, ψ, σ, etc.),

• capital Greek letters32 (Φ, Ψ, Σ, etc.).

But it is perfectly possible to use as variables other symbols such as

• longer strings such as “abb” or “the number I have been talking about”,

32Some capital Greek letters are not used, because they are identical to their Latin
counterparts. For example, A (capital alpha) and B (capital beta) are identical to the
Latin A and B.
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• other symbols, such as ⋄, or ♣.

Actually, you can use as a variable any symbol or string of symbols
you want (except only for symbols such as =, <, ≤, >, ≥, +, ×, →, ⇒,
∧, ∨, ⇔, etc., that already stand for something else), provided that you
declare its value (i.e. tell the reader clearly what the symbol or string of
symbols stands for).

Remark 6. The symbols π and e stand for the well known real numbers
3.141592653589793238 . . . and 2.718281828459045235 . . ., respectively. But
even those symbols can be (and sometimes are) used as variables with other
values, provided that the reader is told clearly what these symbols stand
for33. �

6.1.5 Free (i.e. open) vs. bound (i.e. closed) variables

A free variable (or “open variable”) in a text is a letter (or string of symbols)
that is “unattached”, in the sense that it has not been assigned a value, and
is therefore free to be assigned any value we want.

A bound variable (or “closed variable”) is a variable that has been as-
signed a value.

For instance, suppose a student starts a proof by writing:

(*)
x2 = 1 + x .

or

(**) I am going to prove that x2 = 1 + x .

In these texts, the letter x is a free variable. The formula says that “x-
squared is equal to x + 1”, but it does not tell us who x is. So we have no
way to know whether the formula is true or false. Therefore texts such as
(*) or (**) are unacceptable, because they are meaningless.

On the other hand, suppose a student writes

(***)
Let x = 1+

√
5

2 .
Then

x2 = 1 + x .

33For example: the symbol π is sometimes used to stand for a permutation; the expres-
sion πk(S) stands for the k-th homotopy group of a space S; the letter e is sometimes
used for the charge of an electron.
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In this text, the phrase “let x = 1+
√
5

2 ” effectively declares the vari-

able x to have the value 1+
√
5

2 .

So, after this value declaration, “x” stands for the number 1+
√
5

2 .
Then the meaning of (***) is perfectly clear, so (***) is acceptable,

because in it the variable x is used correctly: before it is used, a
value for it is declared.

And then the meaning of (***) is perfectly clear: (***) is just a round-
about way to say that

(1 +
√
5

2

)2
= 1 +

1 +
√
5

2
.

Once this particular use of the variable x is over, you could, if you want
to, use the same letter to represent some other number or object of any kind.
But in that case it would have to be very clear that the old declaration that

x = 1+
√
5

2 no longer applies.
You could do this, for example, by saying something like

(****)
Let x = 1+

√
5

2 . Then x2 = 1 + x.

Now suppose, instead, that x = 1−
√
5

2 . Then it is also true that
x2 = 1 + x.

In (****), the word “now” serves the purpose of telling the reader that “we
are starting all over again, and the old declared value of x no longer applies.”
(And the word “instead”, which is unnecessary, strictly speaking, reinforces
that.)

6.1.6 What does “arbitrary” mean

There is another way to assign a value to a variable: we can declare the
value to be an arbitrary object of a certain kind.
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ARBITRARY THINGS

An arbitrary thing of a certain kind is a fixed thing about which we
know nothing, except that it is of that kind. For example, an “arbitrary
integer” is an integer about which you know nothing other than that it
is an integer.
The way you should think about “arbitrary things ” is as follows.

• Imagine that you are playing a game against somebody (a friend,
or a computer, or an alien from another planet) that we will call
the CAT (“creator of arbitrary things”).

• The CAT’s job is as follows: every time you say or write “let a be
an arbitrary thing of such and such kind,” the CAT picks one such
thing, writes down what that thing is on a piece of paper, puts the
paper in an envelope, and seals the envelope.

So, for example, if you say “let a be an arbitrary natural number”
then the CAT will pick a natural number and write down what it
is on a piece of paper that will go inside the envelope.

• Later. after you have finished talking or writing, you or the CAT
will open the envelope, and you will know who a really was.

• At that point,

– if what you said about a turns out to be true, then you win,
and the CAT loses.

– if what you said about a is not true, then the CAT wins, and
you lose.

The key fact is this: In order to win, you have to be sure that
everything you say about a is true of all the things of the given
kind, because if there is just one thing for which what you said is not
true, then a could turn out to be that thing, and then you will have
been proved wrong, and will lose.
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Example 15. Suppose you say:

Let n be an arbitrary integer.

What can you say after that, being sure that it is true?

Certainly, you cannot say that n = 2, because n could be 1, or −7, or 25.

And you cannot say that n is even, because n could be odd.

But here are a few things you can say:
• n = n.

• |n| ≥ 0.

• n is either a natural number, or the negative of a natural number, or
zero.

• n + n2 is even. (Reason: n is either even or odd. If n is even, then
n2 is also even, so the sum n+ n2 is even. If n is odd, then n2 is also
odd, and the sum of two odd integers is even, so n + n2 is even. So,
no matter who n is, whether it is even, or odd, positive or negative,
yuuo can be sure that n+ n2 is even.)

• n2 ≥ 0. (Reason: the square of every real number, and in particular
of every integer, is ≥ 0.)

• If n is even then n2 is divisible by 4. (This sentence is true for every
natural number n. Indeed, the sentence is an implication: n is even=⇒
n2 is divisible by 4. The integer n could be even or odd, and you have
no control over that, because the CAT chooses n, and the CAT can
choose n any way he or she wamts to. But: if n is odd, then the
implication “n is even=⇒ n2 is divisible by 4” is true, because the
premise “n is even” is false; and if n even then we may pick an integer
k such that n = 2k, and then n2 = 4k2, so n2 is divisible; by 4, so the
conclusion “‘n2 is divisible by 4” is true. So the sentence is true for
every n.)

• n(n+ 1)(n+ 2) is divisible by 6.

• If n > 4 then n2 > n+11. (Reason: as we will see later, an implication
“If A then B” is true if A is false or if B is true. Using this: if n ≤ 4
then the implication “if n > 4 then n2 > n + 11” is true because
“‘n > 4” is false. And if n > 4 then the implication “if n > 4 then
n2 > n+ 11” is true because n2 > n+ 11’ is true.)

On the other hand, you cannot say “n2 > 0”, because if you say that then
the CAT will pick n to be 0, and you lose. �

Example 16. Suppose you say:
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Let m, n be arbitrary natural numbers.

What can you say after that, being sure that it is true?

Certainly, you cannot say that m = n, because m and n could be different.

And you cannot say that m 6= n, because m and n could be equal.

And you cannot say that m > n, because m could be smaller than n.

But here are a few things you can say:

• m+ n ≥ 2. (Reason: m ≥ 1 and n ≥ 1, so m+ n ≥ 2.)

• m.n is a natural number.

• (m+ n)2 = m2 + 2m+ n2.

• (m+ n)3 = m3 + 3m2n+ 3mn2 + n3.

• m2 − n2 = (m− n)(m+ n).

• n+ n2 and m+m2 are even.

• Either m > n or m = n or m < n. �

6.1.7 Universal quantifiers and arbitrary things

Suppose you want to make sure (that is, prove) that something is true for
all the members of some set S. For example, you may want to make sure
that every student in a class knows that there is an exam next Tuesday.

You could do this in two ways:

1. You can use the exhaustive search method: chack, one by one, all
the memers of S, and verify that they all know about the exam.

2. You can use general reasoning: you try to come up with an ar-
gument that shows that every student knows about the exam. (For
example: maybe you have sent an e-mail to a mailing list of all the
students, telling them about the exam. And yyou are sure that all the
students get the messages to this mailing list, and that they all read
them. Then you can be sure that they all know about the exam.)

If the set S is very large then it may be very difficult to use the exhaustive
search method. And if the set is infinite then using exhaustive search is
impossible. And this is the situation we encounter most of the time in
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Mathematics: the sets S about we want to make sure that statements of
the form “P (x) is true for every member x of S” are usually infinite, or
finite but very large. So the only way to prove that something is true for all
members of some set S is to use reasoning:

This is why, in order to prove universal sentences (∀x ∈ S)P (x), we use
the following method:

• we imagine that we have an arbitrary member x of S,

• we reason about x, prove facts about x,

• and, maybe, eventually, we prove that P (x), the fact about x that we
wanted to make sure is true, is indeed true.

If we can do that for an arbitrary member of S, then we have established
that P (x) is true for every x ∈ S, that is, that (∀x ∈ S)P (x). (“(∀x ∈
S)P (x)” is a “universally quantified sentence”. We will study such sentences
in great detail in Section 8, on page 93.)

The method for proving universally quantified sentences (∀x ∈ S)P (x)
by proving that P (x) is true for an arbitrary member x of S is the Rule for

proving universal sentences, that we will call Rule ∀prove , This rule

will be discussed in section 8.5, on page 105 below.

Problem 33. Indicate whether each of the following statements about n is
true for an arbitrary integer n. If the answer is “yes”, prove it. If the answer
is “no”, prove it by giving a counterxample, that is, a particular value of n
for which the statement is false.

1. n is even.

2. n is even or n is odd.

3. n is even and n is odd.

4. n is even or n+ 1 is even.

5. n(n+ 1) is even.

6. n(n+ 1)(n+ 2) is divisible by 3.

7. n(n+ 1)(n+ 2) is divisible by 6.

8. n2 > 0.

9. n2 ≥ 0.
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10. n(n+ 1) ≥ 0.

11. (∀m ∈ Z)(n < m =⇒ n2 < m2).

12. (∀m ∈ Z)(n > m =⇒ n2 > m2).

13. (∀m ∈ Z)(n = m =⇒ n2 = m2).

14. (∀m ∈ Z)(n2 = m2 =⇒ n = m).
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7 Dealing with equality

Throughout these notes, the symbols “=” and “6=” will be used.

• The symbol “=” is read as “is equal to”.

• The symbol “6=” is read as “is not equal to”.

The meaning of “=” in mathematics is quite simple: if a and b are any two
things, then “a = b” (read as “a is equal to b”, or “a equals b”) means that
a and b are the same thing.

Example 17.

• The sentence “3 = 2 + 1” is read as “three is equal to two plus one”.

• The sentence “3 = 2 + 2” is read as “three is equal to two plus two”.

• The sentence “3 6= 2 + 1” is read as “three is not equal to two plus
one”.

• The sentence “3 6= 2 + 2” is read as “three is not equal to two plus
two”.

• The sentences “3 = 2 + 1” and “3 6= 2 + 2” are true.

• The sentences “3 = 2 + 2” and “3 6= 2 + 1” are false. �

7.1 The substitution rule (Rule SEE, a.k.a. Rule =use) and
the axiom (∀x)x = x

There are two basic facts you need to know about equality.
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THE TWO BASIC FACTS ABOUT EQUALITY

First, there is the substitution rule, which tells you that in a proof
you can always “substitute equals for equals”:

RULE SEE (substitution of equals for equals): If in a step of a
proof you have an equality s = t or t = s, and in another step you have
a sentence P , then you can write as a step any statement obtained by
substituting t for s in one or several of the occurrences of s in P .

The second thing you need to know is the following axiom:

EQUALITY AXIOM (The “everything is equal to itself” axiom):

x = x for every x .

Example 18. In the sentence “2 + 2 = 4”, the symbol “2” occurs twice.
Suppose you have “2 + 2 = 4” as one of the steps in a proof. And suppose
that in another step you have “1+ 1 = 2”. Then you can substitute “1+ 1”
for “2” in the first occurrence of “2” in the sentence “2 + 2 = 4”, thus
getting “(1 + 1) + 2 = 4”. Or you can substitute “1 + 1” for “2” in the
second occurrence of “2” in “2 + 2 = 4”, thus getting “2 + (1 + 1) = 4”. Or
you can substitute “1+1” for “2” in both occurrences of “2” in “2+2 = 4”,
thus getting “(1 + 1) + (1 + 1) = 4”. Or you can substitute “1 + 1” for “2”
in none of occurrences, in which case you get back “2 + 2 = 4”. �

Example 19. The following are true thanks to the equality axiom:

1. 3 = 3,

2. (345 + 1, 031)× 27 = (345 + 1, 031)× 27,

3. Jupiter=Jupiter34

4. π = π.

5. My uncle Billy=My uncle Billy. �

34But you have to be very careful here! There are at least three different things
named “Jupiter”: a planet, a Roman god, and a Mozart symphony. When you write
“Jupiter=Jupiter”, you have to make sure that the two “Jupiter” in the equation have
the same meaning. It would be false if you said that the planet Jupiter is the same as the
Roman god Jupiter!



Math 300, Fall 2020 91

7.2 Equality is reflexive, symmetric, and transitive

Most textbooks will tell you that equality has the following three properties:

I. Equality is a reflexive relation. That is:

for every x , x = x . (7.36)

II. Equality is a symmetric relation. That is:

for every x , y , if x = y then y = x . (7.37)

III. Equality is a transitive relation. That is:

for every x , y , z , if x = y and y = z then x = z (7.38)

And, in addition, they will also tell you that the following important prop-
erty holds:

IV. If two things are equal to a third thing then they are equal to
each other. That is,

for every x , y , z , if x = z and y = z then x = y . (7.39)

We could have put these properties as axioms, but we are not doing that
because all these facts can easily be proved from our two basic facts about
equality.

Theorem 12. Facts I, II, III, and IV above follow from the two basic facts
about equality described in the box on page 90 above.

Proof. Fact I is exactly our Equality Axiom, so you don’t need to prove it.
And now I am doing to do the proof of Fact II for you. So what you

have to do is prove III and IV.

Proof of Fact II.

Let x, y be arbitrary.

Assume x = y.

We want to prove that y = x.

By the Equality Axiom, x = x.
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Since we have “x = y”, Rule SEE tells us that, in the sentence
“x = x”, we can substitute “y” for any of the two occurrences of
x in “x = x”. So we choose to substitute “y” for the first of the
two xs that occur in “x = x”.

This yields y = x .

Since we have proved that y = x assuming that x = y, we have shown
that

if x = y then y = x . (7.40)

(This is because of Rule =⇒prove, discussed later in these notes.)

Since we have proved (7.40) for arbitrary x, y, it follows that

For all x, y, if x = y then y = x . (7.41)

(This is because of Rule ∀prove, discussed later in these notes in section 8.5
on page 105.) This completes our proof. Q.E.D.

Proof of Facts III and IV. YOU DO THEM.

Problem 34. Write proofs of Fact III and Fact IV, following the model of
the proof given here for Fact II. �
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8 Universal sentences and how to prove and use
them

A universal sentence is a sentence that says that something is true for
every object x of a certain kind.

For example, the sentence

every natural number is either even or odd (8.42)

says that every natural number has the property of being even or odd.
So this is a universal sentence.
Other examples of universal sentences are:

• Every natural number is an integer.

• Every real number has a square root35.

• Every real number has a cube root36.

• If n is any natural number then n is even or odd. �

• Every cow has four legs.

• Every cow has nine legs37.

• All humans are thinking beings.

• All giraffes have a long neck.

• Every giraffe has a long neck.

• Every real number is positive38.

• Every natural number can be written as the sum of three squares of
integers39.

• Every natural number can be written as the sum of four squares of
integers40.

35False!
36True!
37Sure, this one is false. But it is a universal sentence.
38This one is false.
39False again!
40This one, believe it or not, is true. But it is very hard to prove, and precisely for that

reason, if you are interested in mathematics, I recommend that you read the proof. It is
truly beautiful. The result is called “Lagrange’s four squares theorem”.
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• Every integer is even41.

• If a, b, c are integers, then if a divides b and c it follows that a divides
b+ c.

Universal sentences can always be rephrased is terms of “arbitrary things”.
For example, sentence (8.42) says

If n is an arbitrary natural number then n is either even or odd . (8.43)

We can say this in a more formal (and shorter) way by using the uni-
versal quantifier symbol:

∀
(This symbol is an inverted “A”. The symbol is chosen to remind us that
“∀” stand for “for all”.)

Precisely, the symbol is used as follows:

• Using the universal quantifier symbol, we form restricted universal
quantifiers, that is, expressions of the form

(∀x ∈ S) ,
where

– x is a variable,

– S is the name of a set.

• It is also possible to form unrestricted universal quantifiers, that
is, expressions of the form

(∀x) ,
where x is a variable,

• A restricted or unrestricted universal quantifier can be attached to a
sentence by writing it before the sentence. This operation is called
universal quantification, and the result is a universally quanti-
fied sentence.

41Also false.
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• So,

If S is a set, and P (x) is a statement involving the vari-
able x, then

(∀x ∈ S)P (x)

is a universally quantified sentence, obtained by univer-
sally quantifying the sentence P (x).

If P (x) is a statement involving the variable x, then

(∀x)P (x)

is a universally quantified sentence, obtained by univer-
sally quantifying the sentence P (x).

8.1 How to read universal sentences

8.1.1 Sentences with restricted universal quantifiers

The universal sentence
(∀x ∈ S)P (x)

can be read as follows:

• for every member x of S, P (x) is true42,

or as

• for every member x of S, P (x),

or as

• for all members x of S, P (x) is true,

or as

• for all members x of S, P (x),

or as

• if x is an arbitrary member of S then P (x) is true,

or as

• if x is an arbitrary member of S then P (x) .

42See Remark 7 below.
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8.1.2 Sentences with restricted universal quantifiers

The universal sentence
(∀x)P (x)

can be read as follows:

• for every x, P (x) is true43,

or as

• for every x, P (x),

or as

• for all x, P (x) is true,

or as

• for all x, P (x),

or as

• if x is arbitrary then P (x) is true,

or as

• if x is arbitrary then P (x) .

8.1.3 A recommendation

Of all these ways of reading “(∀x ∈ S)P (x)” and “(∀x)P (x)”, I strongly
recommend the ones involving “arbitrary” x, because once you get
used to reading universal statements that way it becomes very clear how to
go about proving them.

Remark 7. If A is any sentence, then saying “A is true” is just another way
of asserting A. For example, saying that

“all animals are made of cells′′ is true (8.44)

is just another way of saying

all animals are made of cells . (8.45)

43See Remark 7 below.
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Similarly, saying
P (n) is true (8.46)

is just another way of saying
P (n) . (8.47)

This is why the sentence “(∀n ∈ Z)P (n)” can be read either as “if n is an
arbitrary integer then P (n) is true”, or as “if n is an arbitrary integer then
P (n)”. �

8.2 Using the universal quantifier symbol to write universal
statements

8.2.1 What is formal language?

As we explained before, formal language is a language in which you use
only formulas, and no words.

For example, you know from your early childhood how to take the En-
glish sentence “two plus two equals four” and say the same thing in formal
language. i.e., with a formula. You just write

2 + 2 = 4 . (8.48)

We can say more complicated things in formal language by introducing more
symbols. For example, here is the definition if “divisible” that we saw earlier:

DEFINITION Let a, b be integers. We say that a is divisible by b (or that
b is a factor of a) if there exists an integer k such that a = bk. �

Then, we can agree to introduce the new symbol “|” to stand for “is a

factor of”, and write

b|a (8.49)

instead of “b is a factor or a”, or “a is divisible by b”.
In particular, we can now say “x is even” in formal language, as follows:

“2|x”. So, for example the assertion that “the sum of two even integers is
even” becomes, in formal language:

(∀a ∈ Z)(∀b ∈ Z)
(

(2|a ∧ 2|b) =⇒ 2|a+ b
)

. (8.50)

Can you say more complicated things in formal language? For example,
can you rewrite the English sentence
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(#)
If we take any two real numbers and compute the
square of their sum, then you get the same result as
when you add the squares of the two numbers plus
twice their product.

in formal language?
You know since high school that you can take a big part of (#) and

rewrite it in formal language. The trick is to give names to the two integers
that you want to talk about. Then you can write

(#1)
If we take any two real numbers and call them a and
b, then

(a+ b)2 = a2 + b2 + 2ab ,

or

(#2)
If a, b are arbitrary real numbers, then

(a+ b)2 = a2 + b2 + 2ab .

Naturally, you could use any names you want, For example, you could
equally well have written

(#3)
If x, y are arbitrary real numbers, then

(x+ y)2 = x2 + y2 + 2xy .

or

(#4)
If we take any two real numbers and call them x and
y, then

(x+ y)2 = x2 + y2 + 2xy .

Sentences (#1), (#2), (#3), (#4) are statements in semiformal language:
they are a mixture of formal language and ordinary English.

These statements are universal sentences. And now you have learned
how to formalize44 universal statements. So you can write

(#5) (∀a ∈ IR)(∀b ∈ IR)(a+ b)2 = a2 + b2 + 2ab .

or
44that is, how to say in formal language
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(#6) (∀x ∈ IR)(∀y ∈ IR)(x+ y)2 = x2 + y2 + 2xy .

Statements (#5) and (#6) are formal sentences, that is, formulas with
no words.

8.2.2 The road to full formalization.

What we have done is get started moving towards full formalization.
You started doing this in your childhood, when you learned how to for-

malize “two plus two equals four” by writing “2 + 2 = 4”.
And now you have learned how to formalize more complicated sentences,

Using the universal quantifier symbol, you are now able to say many more
things in formal language.

Example 20. Suppose you wanted to say “every natural number is posi-
tive”. You can write

(∀n ∈ IN)n > 0 . (8.51)

This is a formula, that is, a sentence in formal language. �

Example 21. Although we do not know yet how to write something like

(#7)
If we have any two integers, when say that the first one
is divisible by the second one what we mean is that
there exists an integer that multiplied by the second
one results in the first one.

in full formal language, we are able, using what we know so far, to go a long
way, and rewrite (#7) in semiformal language, with very few words, i.e.,
getting very close to a fully formal sentence. We can write

(#8) (∀a ∈ Z)(∀b ∈ Z)(“a|b” means “there exists k such
that k ∈ Z and b = ak.”)

�

Example 22. Let us say “If a, b, c are integers, then if a divides b and c it
follows that a divides b+ c” in semiformal language.

We can say:

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

if a|b and a|c then a|b+ c
)

, (8.52)

which is, again, a sentence in semiformal language. �
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Later, when we learn how to say “means”, “there exists”, “if . . . then” and
“and”, we will be able to say (#8) and (8.52) in fully formal language, as
follows:

• We can translate (#8) into fully formal language as

(∀a ∈ Z)(∀b ∈ Z)(a|b⇐⇒ (∃k ∈ Z)b = ak) . (8.53)

• We can translate (8.52) into fully formal language as

(∀a ∈ Z)(∀b ∈ Z)(∀c ∈ Z)
(

(a|b ∧ a|c) =⇒ a|b+ c
)

, (8.54)

8.3 Open and closed variables and quantified sentences

Let us recall that

A free variable is a letter (or string of symbols) that is “unattached”,
in the sense that it has no particular value, and is free to be assigned
any value we want.
A bound variable is a variable that has been assigned a specific value,
by means of a value declaration.
We can turn a free variable into a temporary constant by declaring
its value.

Let me add a couple of points to that:

• Free variables are also called open variables.

• Bound variables are also called closed variables.

(They are called “bound” variables because they are “bound”, at-
tached to a value, by contrast with free variables, that are free to be
assigned any value because they do not have a value already assigned
to them. And they are called “closed” because they are not open to
be assigned a value, since they already have one.)

• A value declaration is valid until it expires. When the value
declaration expires, the variable becomes free again, and you can assign
a new value to it.

Example 23. Here is an example of declaring a value for a variable, and of
making that declaration expire. You could write:
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1. Let x = 1+
√
5

2 .

2. Then x2 = 1 + x.

3. Now suppose, instead, that x = 1−
√
5

2 .

4. Then it is also true that x2 = 1 + x.

Here, step 1 assigns the value 1+
√
5

2 to the variable, so this variable, which

until then was open, is now attached to the value 1+
√
5

2 , so x is bound, no
longer free.

But then, in step 3, we are ssigning a new value to x, which means that
the previous value declaration has expired. The fact that the previous value
declaration has expired is signaled by the word “now”’, and reinforced by
the word “instead”.

Notice that if you had written

1. Let x = 1+
√
5

2 .

2. Then x2 = 1 + x.

3. Let x = 1−
√
5

2 .

4. Then it is also true that x2 = 1 + x.

this would have been confusing for many readers, because they would have

wondered: “wasn’t x equal to 1+
√
5

2 ? How come suddenly it seems to have
a different value?”

The words “now” and “instead” make it crystal clear to the reader that
the first value declaration has just expired and we are free to assign to x a
new value if we so desire. �

8.4 A general principle: two rules for each symbol

Every time we introduce a new symbol, we need two rules telling us how to
work with it:

• We need a rule that tells us how to use statements involving that
symbol.

and

• We need a rule that tells us how to prove statements involving that
symbol.
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Example 24. Let us look at the new symbol “|” (“divides”) that we in-
troduced in Part I of these notes. What is the “use” rule’? What is the
“prove” rule?

The “use” rule is:

If you get to a point in a proof where you have a statement

a|b ,

then you can go from this to

We may pick an integer k such that b = ak .

And the “prove” rule is:

If you get to a point in a proof where you have integers a, b, c and
you know that

b = ak ,

then you can go from this to

a|b .

These rules are just another way of stating the definition of “divides”. �

8.4.1 Naming sentences

Sentences are also things that we can talk about, so we can give them names.
One common way mathematicians use to name sentences is to give a

sentence a capital letter name, such as A, or B, or P , or Q, or S.
So we could talk about the sentence “x eats grass” by giving it a name,

that is, by picking a capital letter and declaring its value to be this sentence.
We could do this by writing

Let P be the sentence “x eats grass”.

However, there is a much more convenient way to do this: If a sentence
has an open variable, we include this open variable in the name
of the sentence, thus signaling to the reader that the sentence
contains that open variable.

So, for example, a good name for the sentence “x eats grass” could be
P (x) (or A(x), or S(x), etc.). We could declare the value of the variable
P (x) by saying
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(*) Let P (x) be the sentence “x eats grass”.

An important convention about names of sentences is this: suppose we
want to talk about the sentence obtained from P (x) by substituting (i.e.,
“plugging in”) the name of a particular thing for the open variable x. If we
already have a name for that thing, say “a”, then the name of the sentence
arising from the substitution is P (a).

So, for example, after we make the value declaration (*), then “P (Suzy)”
is the name of the sentence “Suzy eats grass”.

What if you have a sentence with, say, two or more open variables? You
do the same thing: if, for example, you want to give a name to the sentence
“x told y that z does not like w”, you can call that sentence P (x, y, z, w).
You could make the value declaration

Let P (x, y, z, w) be the sentence “x told y that z does not like
w”.”

And then,

• If you want want to talk about the sentence ”Alice told Jim that
Bill does not like Mary”, then that sentence would have the name
P (Alice, Jim,Bill,Mary).

• If you want want to talk about the sentence ”Alice told Jim that Bill
does not like her” (that is, does not like Alice), that sentence would
be called P (Alice, Jim,Bill,Alice).

• If you want want to talk about the sentence ”Alice told Jim that Bill
does not like him” (that is, does not like Jim), that sentence would be
called P (Alice, Jim,Bill, Jim).

• And, if, for some reason, you want to talk about the sentence with two
open variables ”x told y that Bill does not like Mary”, that sentence
would be P (x, y, Jim,Mary).

8.4.2 Universal sentences bound variables but at the end let them
free

If P (x) is a sentence with the open variable x, and C is a set, then the
sentence

(∀x ∈ C)P (x)

should be read as
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Let x be an arbitrary member of C; then P (x) is true; and now
the value declaration of “x” expires, and x is a free variable
again.

Why do we want to do this?
The reason is that the value declaration (“Let x be an arbitrary member

of C”) was made for the sole purpose of explaining which condition this
arbitrary member of C is supposed to satisfy. Once this has been explained,
there is no need to keep the variable x bound forever. It is better to let it
be free again, so that the next time we need a variable for something, we
can use x.

So, for example, when I explain to you that

(F) If x is an arbitrary integer then (x+ 1)2 = x2 + 2x+ 1 ,

the important thing that I want you to remember is that “if you take an
integer, add one to it, and square the result, then what you get is the sum
of the square of your integer, plus two times it, plus one”. There is no need
for you to remember, in addition, the name that I used for that integer for
the purpose of explaining Fact (F) to you. You should not have to waste
any time or effort trying to remember “was that fact that was explained to
me about x? Or was it about y? Or was it about n?” There is not need for
you to remember that, because it does not matter which variable was
used. And, more importantly: Fact (F) is not really about a specific
integer called x. It is a fact about an arbitrary integer, and it does
not matter whether you call it x, or y, or z, or n, or α, or β, or
⋄, or even “Suzy” or “my uncle Jimmy”. The letter x is used as
a device within the conversation in which you explain Fact (F) to
me, and once this conversation is over we can forget about x.

Example 25. Suppose you have written, in a proof:

(∀n ∈ Z)n(n+ 1) is even . (8.55)

Can you write, in the next step of your proof:

Since n(n+ 1) = n+ n2, it follows that n+ n2 is even. ?

The answer is no. Why? Because after the end of the sentence (8.55), n is
a free variable again, so it does not have a value, so when you use “n” in the
next step, nobody knows what you are talking about, so what you wrote is
meaningless, so it’s not acceptable.
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Suppose you want to go from (8.55) to

(∀n ∈ Z)n+ n2 is even . (8.56)

How can you do that? The answer is: you use the rules for using and proving
universal sentences. But you do it correctly. And for that you need to
read the next section. �

8.5 Proving and using universal sentences (Rules ∀prove and
∀use)

Now that we know that for every new symbol we introduce we need a “use”
rule and a “prove” rule, it is natural to ask: What are the “use” rule and
the “prove” rule for the universal quantifier symbol ∀ ?”

Both are very simple, very natural rules.
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Here is the “use” rule:

The rule for using universal sentences
(Rule ∀use, also known as

the “universal specialization rule”)

• If you have proved
(∀x)P (x) ,

and you have an object called a, then you can go to P (a).

• If you have proved
(∀x ∈ S)P (x) ,

and you have an object called a for which you know that
a ∈ S, then you can go to P (a).

The reason Rule ∀use is called called the universal specialization rule,
is that the rule says that if a statement is true in general (that is, for all
things that belong to some set S), then it is true in each special case (that
is, for a particular thing that belongs to S).

Example 26. If you know that (∀x)x = x, then you can conclude from
that, using Rule ∀use, that

3 = 3 ,

and that
5 + 3 = 5 + 3 .

Example 27. Suppose you know that

(&) All cows eat grass.

and that

(&&) Suzy is a cow.

Then, from (&) and (&&) you can conclude, thanks to the specialization
rule, that
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(&&) Suzy eats grass.

In formal language. you would say this as follows: Let P (x) be the sentence
“x eats grass”, and let C be the set of all cows. Then P (Suzy) is the sentence
“Suzy eats grass”. And (&) says

(&’) (∀x ∈ C)P (x) ,

whereas (&&) says

(&&’) Suzy ∈ C.

So we are precisely in the situation where we can apply the rule for using
universal sentences, and conclude that P (Suzy), that is that Suzy eats grass.
�.

And here is the “prove” rule:

The rule for proving universal sentences

• To prove (∀x)P (x), you start by writing

Let x be arbitrary,

and then prove P (x)

If you manage to do that, then you are allowed to write

(∀x)P (x)

in the next step of your proof.

• To prove (∀x ∈ S)P (x), you start by writing

Let x be an arbitrary member of S,

and then prove P (x)

If you manage to do that, then you are allowed to write

(∀x ∈ S)P (x)

in the next step of your proof.
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This rule is also called the generalization rule, because it says that if you
can prove a statement for an arbitrary object that belongs to a set S then
you can “generalize”, i.e., conclude that the statement is true in general, for
all members of S.

8.6 An example: Proof of the inequality x+ 1
x
≥ 2

Let us illustrate the use of the proof rules for universal quantifiers with an
example. We will first present a version of the proof with lots of comments.
The comments are explanations to help the reader follow what is going on,
but are not really necessary for the proof. We will then present another,
much shorter version, in which the comments are omitted.

Theorem 13. If x is a positive45 real number, then x + 1
x
≥ 2. (In formal

language: (∀x ∈ IR)(x > 0 =⇒ x+ 1
x
≥ 2).)

PROOF, WITH LOTS OF COMMENTS. (The comments are in Ital-
ics.)
The assertion we want to prove is a universal sentence, so we are going to
use Rule ∀prove. For that purpose, we imagine we have in our hands an
arbitrary real number called x, and we work with that number.

Let x be an arbitrary real number.

Now we want to prove that x > 0 =⇒ x+ 1
x
≥ 2. This is an implication.

So we are going to apply Rule =⇒prove. For that purpose, we assume
that the premise of our implication is true, i.e., that x > 0. The reason
for this is as follows: x is an arbitrary real number, so x could be any
ral number, and in particular x could be positive, negative, or zero. If
x is not positive, then the implication is true, because an implication
whose premise is false is true. So all we need is to look at the cases
when x > 0, and prove in that case that x+ 1

x
≥ 2.

Assume that x > 0.

We want to prove that

x+
1

x
≥ 2 . (8.57)

45The meaning of the word “positive” was discussed in Lecture 1, in a subsection called
“positive, negative, nonnegative, and nonpositive numbers”. As explained there, “posi-
tive” means “> 0”.
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We will prove this by contradiction.

Assume that (8.57) is not true.

Then

x+
1

x
< 2 . (8.58)

We now use a fact from real number arithmetic, namely, that
if we multiply both sides of a true inequality by a positive real
number then the result is a true inequality, that is:

(∀a ∈ IR)(∀b ∈ IR)(∀c ∈ IR)
(

(a < b ∧ c > 0) =⇒ ac < bc
)

.

(8.59)
In our case. we can use Rule ∀use to plug in x + 1

x
for a, 2

for b, and x for c in (8.59), and get

(

x+
1

x
< 2 ∧ x > 0

)

=⇒
(

x+
1

x

)

x < 2x . (8.60)

Since x + 1
x
< 2 ∧ x > 0 is true (because we are assuming

that x+ 1
x
< 2 and that x > 0), we can apply Rule =⇒use to

conclude that
(

x+ 1
x

)

x < 2x. But
(

x+ 1
x

)

x = x2+1, so we

have shown that x2 + 1 < 2x. Summarizing:

Since x > 0, we can multiply both sides of (8.58) by x, getting

x2 + 1 < 2x . (8.61)

Now we use another fact from real number arithmetic, namely,
that if we add a real number to both sides of a true inequality,
then the result is a true inequality, that is:

(∀a ∈ IR)(∀b ∈ IR)(∀c ∈ IR)(a < b =⇒ a+ c < b+ c) . (8.62)

In our case. we can use Rule ∀use to plug in x2 +1 for a, 2x
for b, and −2x for c in (8.62), and get

x2 + 1− 2x < 2x− 2x, . (8.63)

Since 2x − 2x = 0, we can conclude that x2 + 1 − 2x < 0.
Summarizing:

We add −2x to both sides, and get

x2 + 1− 2x < 0 . (8.64)
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But x2 + 1− 2x = (x− 1)2.

(This is easy to prove it. Try to do it.)

So
(x− 1)2 < 0 . (8.65)

Now we use a third fact from real number arithmetic, namely,
that the square of every real number is nonnegative, that is:

(∀u ∈ IR)u2 ≥ 0 . (8.66)

We use Rule ∀use to plug in x− 1 for u, and get

(x− 1)2 ≥ 0 . (8.67)

Next, we use a fourth fact from real number arithmetic,
namely, that if a real number is nonnegative then it it is
not negative46, that is:

(∀u ∈ IR)(u ≥ 0 =⇒∼ u < 0) . (8.68)

It then follows from (8.67) that

∼ (x− 1)2 < 0 . (8.69)

From (8.65) and (8.69), we get

(x− 1)2 < 0 ∧
(

∼ (x− 1)2 < 0
)

. (8.70)

So we have proved a contradiction.

We have proved that a world in which the inequality x+ 1
x
> 2 is

not true is an impossible world. Hence

x+ 1
x
> 2.

We have proved that x + 1
x
> 2 assuming that x > 0. Hence Rule

=⇒prove allows us to conclude that

x > 0 =⇒ x+
1

x
≥ 2 . (8.71)

Finally, we have proved (8.71) for an arbitrary real number x. Hence

(∀x ∈ IR)(x > 0 =⇒ x+
1

x
≥ 2) . (8.72)

Q.E.D.

46Remember that: “positive” means “> 0”, “negative” means “< 0”, “nonnegative”
means “≥ 0”, and “nonpositive” means “≤ 0”.
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THE SAME PROOF, WITHOUT THE COMMENTS.

Let x be an arbitrary real number.

Assume that x > 0.
We want to prove that

x+
1

x
≥ 2 . (8.73)

Assume that (8.73) is not true.
Then

x+
1

x
< 2 . (8.74)

Since x > 0, we can multiply both sides of (8.74) by x, getting

x2 + 1 < 2x . (8.75)

We add −2x to both sides, and get

x2 + 1− 2x < 0 . (8.76)

But x2 + 1− 2x = (x− 1)2. So

(x− 1)2 < 0 . (8.77)

Now we use the fact that the square of every real number is
nonnegative, that is:

(∀u ∈ IR)u2 ≥ 0 . (8.78)

We use Rule ∀use to plug in x− 1 for u, and get

(x− 1)2 ≥ 0 . (8.79)

Then
∼ (x− 1)2 < 0 . (8.80)
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From (8.77) and (8.80), we get

(x− 1)2 < 0 ∧
(

∼ (x− 1)2 < 0
)

. (8.81)

So we have proved a contradiction.

Hence x+ 1
x
> 2.

We have proved that x + 1
x
> 2 assuming that x > 0. Hence Rule

=⇒prove allows us to conclude that

x > 0 =⇒ x+
1

x
≥ 2 . (8.82)

Finally, we have proved (8.80) for an arbitrary real number x. Hence

(∀x ∈ IR)(x > 0 =⇒ x+
1

x
≥ 2) . (8.83)

Q.E.D.
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THE SAME PROOF, IN A MUCH SHORTER VERSION.

Let x be an arbitrary real number.

Assume that x > 0. We want to prove that

x+
1

x
≥ 2 . (8.84)

Assume that (8.84) is not true. Then

x+
1

x
< 2 . (8.85)

Since x > 0, (8.85) impliues

x2 + 1 < 2x . (8.86)

Therefore
x2 + 1− 2x < 0 . (8.87)

But x2 + 1− 2x = (x− 1)2. So

(x− 1)2 < 0 . (8.88)

On the other hand.

(x− 1)2 ≥ 0 . (8.89)

Clearly, (8.88) and (8.89) lead to a contradiction.
Hence
x+ 1

x
> 2.

Therefore

(∀x ∈ IR)(x > 0 =⇒ x+
1

x
≥ 2) . (8.90)

Q.E.D.
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8.6.1 A few more examples of proofs involving universal sen-
tences

Theorem 14. If a, b are real numbers, then

ab ≤ a2 + b2

2
.

(In formal language: (∀a ∈ IR)(∀b ∈ IR)ab ≤ a2+b2

2 .)

PROOF. YOU DO IT

Problem 35. Prove Theorem 14.

Problem 36. Explain what is wrong with the following proof of Theorem
14.

Take the inequality ab ≤ a2+b2

2 .
Multiplying both sides by 2, we get 2ab ≤ a2 + b2.
Subtracting 2ab from both sides, we get

0 ≤ a2 + b2 − 2ab .

But a2 + b2 − 2ab = (a− b)2. So we have 0 ≤ (a− b)2 , which is true.
So the inequality checks out. Q.E.D.

Theorem 15. If x, α, β are positive real numbers then

αx+
β

x
≥ 2
√

αβ .

(In formal language: (∀α ∈ IR)(∀β ∈ IR)(∀x ∈ IR)
(

(α > 0 ∧ β > 0 ∧ x >
0) =⇒ αx+ β

x
≥ 2

√
αβ
)

.)

I am going to give you two proofs. The first one follows the same pattern
as the proof of Theorem 13. The second one, much shorter, uses Theorem
13.

FIRST PROOF.

Let α, β, x be arbitrary positive real numbers47.

47In this one step I am conflating six real steps: let α be an arbitrary real number, let
β be an arbitrary real number, let x be an arbitrary real number, assume α > 0, assume
β > 0, assume x > 0.
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Let q = 2
√
αβ, so q2

4α = β..

Assume ∼ αx+ β
x
≥ q.

Then αx+ β
x
< q.

Therefore αx2 + β < qx.

Hence αx2 − qx+ β < 0.

But

αx2 − qx+ β = αx2 − 2
√
αx

q

2
√
α
+ β

= αx2 − 2
√
αx

q

2
√
α
+
q2

4α
− q2

4α
+ β

=
(√

αx− q

2
√
α

)2

≥ 0 .

So we obtain a contradiction, and then we can conclude that αx+ β
x
≥

q, i.e. that

αx+
β

x
≥ 2
√

αβ .

Q.E.D.

SECOND PROOF. Let us try to write αx + β
x

as p
(

u + 1
u

)

for some

positive u, and use the fact that u+ 1
u
≥ 2. Let x = hu, where h and u are

to be determined later.
Then αx+ β

x
= αhu+ β

hu
. If we could make αh = β

h
, we would get

αx+
β

x
= αhu+

β

hu

= αhu+ αh
1

u

= αh
(

u+
1

u

)

,

as desired.

So we need to chose h such that αh = β
h
, that is, such that h =

√
β
α
.
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With this choice of h, we get

αx+
β

x
= αh

(

u+
1

u

)

≥ 2αh

= 2α

√

β

α

= 2
√

αβ .

Q.E.D.

8.6.2 *The inequality xn

n
−ax ≥ −n−1

n
a

n
n−1 : a proof using Calculus

Theorem 16. Let a and b be positive real numbers, and let n be a positive
integer. Then

ab ≤ 1

n

(

an + (n− 1)b
n

n−1

)

. (8.91)

Remark 8. For n = 2, inequality (8.91) says that

ab ≤ a2 + b2

2
,

which is Theorem 14.
So (8.91) is a generalization of Theorem 14. �

Proof of Theorem 16. We will use Calculus.

Let a, b be arbitrary positive real numbers.

Define a function f by letting

f(x) =
xn

n
− bx for x ∈ IR , x ≥ 0 .

We would like to find the value of x where f has its minimum value
of f for all positive x. That is, we would like to find a positive real
number c such that f(c) ≤ f(x) for all positive x.

For this purpose, we compute the derivative f ′ of f .

We have
f ′(x) = xn−1 − b for every x ∈ IR .
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Let c = b
1

n−1 . Then cn−1 = b, so f ′(c) = cn−1 − b = 0.

This means that c is a candidate for our minimum. That is, it is
possible that c is where f has its minimum value, in which case it
would follow that

f(x) ≥ f(c) for all x ∈ IR such that x > 0 . (8.92)

We now prove (8.92) rigorously

If 0 < x < c, then xn−1 < cn−1 = b, so xn−1 − b < 0, so f ′(x) < 0.

This means that the function f is decreasing for 0 < x < c. So
f(x) ≥ f(c) for 0 < x < c.

If x > c, then xn−1 > cn−1 = b, so xn−1 − b > 0, so f ′(x) > 0.

This means that the function f is increasing for x > c. So f(x) ≥ f(c)
for x > c.

We have shown that f(x) ≥ f(c) when 0 < x < c and when x > c.
And clearly f(x) = f(c) when x = c. Hence (8.92) is true.

It follows from (8.92) that for every positive x ∈ IR we have f(x) ≥
f(c), that is,

xn

n
− bx ≥ cn

n
− bc . (8.93)

Since (8.93) holds for every positive x, we can use it for x = a, thereby
obtaining

an

n
− ab ≥ cn

n
− bc . (8.94)

Since c = b
1

n−1 and cn−1 = b, we have

cn

n
− bc =

b
n

n−1

n
− b× b

1

n−1

=
b

n
n−1

n
− b1+

1

n−1

=
b

n
n−1

n
− b

n
n−1

=
( 1

n
− 1
)

b
n

n−1

= −n− 1

n
b

n
n−1 .
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In view of (8.94), we get

an

n
− ab ≥ −n− 1

n
b

n
n−1 , (8.95)

that is,
an

n
− ab+

n− 1

n
b

n
n−1 ≥ 0 , (8.96)

from which it follows that

ab ≤ an

n
+
n− 1

n
b

n
n−1 , (8.97)

that is,

ab ≤ 1

n

(

an + (n− 1)b
n

n−1

)

, (8.98)

which is exactly what we were trying to prove. Q.E.D.
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9 Existential sentences

9.1 Existential quantifiers

• The symbol

∃
is the existential quantifier symbol.

• An existential quantifier is an expression “(∃x)” or “(∃x ∈ S)” (if
S is a set). More precisely,

“(∃x)” is an unrestricted existential quantifier,

and

“(∃x ∈ S)” is a restricted existential quantifier.

• Existential quantifiers are read as follows:

1. “(∃x)” is read as

∗ “there exists x such that”

or

∗ “for some x”

or

∗ “it is possible to pick x such that”.

2. “(∃x ∈ S)” is read as

∗ “there exists x belonging to S such that”

or

∗ “there exists a member x of S such that”

or

∗ “for some x in S”

or

∗ “it is possible to pick x in S such that”

or

∗ “it is possible to pick a member x of S such that”
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Example 28. The sentence

(∃x ∈ IR)x2 = 2 (9.99)

could be read as

There exists an x belonging to the set of real numbers such that
x2 = 2 .

But this is horrible! A much better way to read it is:

There exists a real number x such that x2 = 2 .

An even better way is

There exists a real number whose square is 2.

And the nicest way of all is

2 has a square root.

And you can also read (9.99) as:

It is possible to pick a real number x such that x2 = 2 .

I strongly recommend this reading, because when you read an existen-
tial sentence this way it becomes clear that the next thing to do is to actually
pick an x, that is, to apply the rule for using an existential sentence, i.e.
Rule ∃use �

9.1.1 How not to read existential quantifiers

Students sometimes read an existential sentence such as

(∃x ∈ IR)x2 = 2) (9.100)

as follows: there exists a real number x and x2 = 2.
This is completely wrong, and should be avoided at all costs, because

if you read an existential sentence that way you are going to be led to making
lots of other mistakes.

Why is this wrong?

• If you read (9.100) as “there exists a real number x and x2 = 2”, then
you give the impression that (9.100) makes two assertions:

1. that there exists a real number,
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2. that x2 = 2.

• But (9.100) does not say that at all! What it does is make one as-
sertion, namely, that there exists a real number x such that x2 = 2.
(“Such that” means “for which it is true that”.)

If you are asked to prove (9.100) and you read is as “there exists a real
number x and x2 = 2”, then you will think that you have to prove two
things, namely, (1) that there exists a real number, and (2) that x2 = 2.
But what you have to prove is one thing: that it is possible to pick a real
number whose square is 2.

The word “and” in this bad reading is particularly pernicious, because
it makes you see two sentences where there is only one sentence. The
quantifier (∃x ∈ IR) is not a sentence.

You can see this even more clearly if you read (9.100) as “for some real
numbers x, x2 = 2”. It is clear that “for some real numbers x” is not a
sentence. And it’s nonsense to say “for some real numbers x and x2 = 2”.

Since “for some real numbers x” is another way to read the quantifier
(∃x ∈ IR), it should be clear that there is no “and” in such a quantifier,

9.1.2 Witnesses

A witness for an existential sentence (∃x)P (x) is an object a such that P (a)
is true.

A witness for an existential sentence (∃x ∈ S)P (x), is an object a such
that a ∈ S and P (a) is true.

9.2 How do we work with existential sentences in proofs?

As you may have guessed, I am going to give you two rules, one for proving
existential sentences, and one for using them. And the names of these rules
are going to be—yes, you guessed it!—Rule ∃prove and Rule ∃use.

9.2.1 The rule for using existential sentences (Rule ∃use)
Rule ∃use says something very simple and natural: if you know that an
object of a certain kind exists, then you can pick one and give it
a name.

In other words, if you know that (∃x)P (x) or that (∃x ∈ S)P (x),
then you are allowed to pick a witness and give it a name.
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Example 29. Suppose “P (x)” stands for “x eats grass”, and C is the set
of all cows. Suppose you know that

(∃x ∈ C)P (x) , (9.101)

that is, you know that there are grass-eating cows.
Then the thing you can do, according to Rule ∃use, is pick a cow and

give her a name.
So, for example, you could write

Pick a cow that eats grass and call her Suzy.

Or you could write

Let Suzy be a witness for the sentence (9.101,
so Suzy is a grass-eating cow.

or

Let Suzy be a grass-eating cow.

Example 30. Suppose you have a real number x and you know that

(∃y ∈ IR)y5 − y3 = x . (9.102)

Then you can say, in the next step of your proof: :

Pick a witness for (9.102) and call it r, so r ∈ IR and r5 − r3 = 5.

or you could write

Let r be a real number such that r5 − r3 = 5.

And you could even say

Let y be a real number such that y5 − y3 = 5.

�

Remark 9. When you pick a witness, as in the previous example, you can
give it any name you want: you can call it r, k, m, u, r̂, a, α, ⋄, ♣, Alice,
Donald Duck, whatever.

You can even call it y, if you wish.
The key point is: the name you use cannot be already in use as

the name of something else.
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So “y” qualifies as an acceptable name because, within the sentence
“(∃y ∈ IR)y5 − y3 = x”, y is a bound variable, but as soon as the sentence
ends, “y” becomes a free variable, with no declared value, so you are allowed
to use it.

However, I recommend that you do not use the same letter that appeared
in the existential quantifier. �

There is, however, one thing that is absolutely forbidden:

You cannot give the new object that you are
picking a name that is already in use as the
name of another object.

The reason for this prohibition is very simple: if you could use the name
r to name this new object that you are introducing, while r is already the
name of some other object that was introduced before, then you would be
forcing these two objects to be the same. But there is no reason for them
to be the same, so you cannot give them the same name.

Example 31. Suppose you know that Mr. Winthrop has been murdered.
That means, if we use “P (x)” for the predicate “xmurdered Mr. Winthrop”.
that you know that (∃x)P (x) (that is, somebody murdered Mr. Winthrop).
Then you can introduce a new character into your discourse, and call this
person “the murderer”, or “the killer”. (This is useful, because you want to
be able to talk about that person, and say things such as “the murderer must
have had a key so as to be able to get into Mr. Winthrop’s apartment”.) But
you cannot call the murderer “Mrs. Winthrop”, because if you do so you
would be stipulating that it was Mrs. Winthrop that killed Mr. Winthrop,
which could be true but you do not know that it is. �
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And here is a precise statement48 of Rule ∃use:

Rule ∃use

(I) If

1. P (x) is a sentence,
2. the letter a is not in use as the name of anything,
3. you have proved (∃x)P (x),

then

* you can introduce a witness and call it a, so that this new
object will satisfy P (a)

(II) In addition, if S is a set, and you have proved that (∃x ∈ S)P (x),
then you can stipulate that a ∈ S as well.

9.2.2 The rule for proving existential sentences (Rule ∃prove)
This rule is very simple, and very easy to remember:

• to prove that there is money here, show me the money;

• to prove that cows exist, show me a cow;

• to prove that good students exist, show me a good student,

• to prove that incorruptible politicians exist, show me an in-
corruptible politician,

• to prove that prime numbers exist, show me a prime number,

and so on.

Example 32. Suppose you want to prove that (∃x ∈ Z)x2 + 3x = 10.
You can say “Take x = 2. Then x2 + 3x = 10, because x2 = 4 and

3x = 6, so x2 + 3x = 4 + 6 = 10”. So 2 is a witness for the sentence
(∃x ∈ Z)x2+3x = 10. Then Rule ∃prove allows us to go to (∃x)x2+3·x = 10.
�

48In this statement, we use the same convention explained earlier: P (a) is the sentence
obtained from P (x) by substituting a for x. For example, if P (x) is the sentence “x
eats grass”, then P (Suzy) is the sentence “Suzy eats grass”. If P (x) is the sentence
“x+ 3y = x2”, then P (a) is the sentence “a+ 3y = a2”.
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And here is a precise statement of the witness rule:

Rule ∃prove

If:

1. P (x) is a sentence,

2. a is a witness for (∃x)P (x) (that is, you have proved that P (a)),

then

* you can go to (∃x)P (x).

In addition, if S is a set, and you have proved that a ∈ S, then you can
go to (∃x ∈ S)P (x).

In other words, Rule ∃prove says that you can prove the sentences
(∃x)P (x) or (∃x ∈ S)P (x) by producing a witness.

9.3 Examples of proofs involving existential sentences

9.3.1 Some simple examples

Problem 37. Consider the sentence

(∃x ∈ Z)(∃y ∈ Z)x2 − y2 = 17 . (9.103)

Is this sentence true or false? If it is true, prove it. If it is false, prove that
it is false (that is, prove its negation).

SOLUTION. Sentence (9.103) is true. Here is a proof:

Take x = 9, y = 8. Then x2 = 81 and y2 = 64. So x2 − y2 = 81− 64 = 17.
Therefore the pair (9, 8) is a witness for (9.103). By Rule ∃prove, this proves
(9.103). Q.E.D.

Problem 38. Consider the sentence

(∀m ∈ Z)(∃n ∈ Z)n < m . (9.104)

Is this sentence true or false? If it is true, prove it. If it is false, prove that
it is false (that is, prove its negation).
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SOLUTION. Sentence (9.104) is true. Here is a proof.

Let m be an arbitrary integer.

We want to prove that (∃n ∈ Z)n < m.

For this purpose, we produce a witness. First we say who the witness
is, and then we prove it works, that is, that it really is a witness.

Let n̂ = m− 1.

Then n̂ ∈ Z and n̂ < m. So the integer n̂ is a witness for the sentence
(∃n ∈ Z)n < m

Therefore (∃n ∈ Z)n < m. [Rule ∃prove]
Since we have proved that (∃n ∈ Z)n < m for an arbitrary integer m, we
can conclude that (∀m ∈ Z)(∃n ∈ Z)n < m. [Rule ∀prove] Q.E.D.

Problem 39. Consider the sentence

(∀m ∈ IN)(∃n ∈ IN)n < m . (9.105)

Is this sentence true or false? If it is true, prove it. If it is false, prove that
it is false (that is, prove its negation).

SOLUTION. Sentence (9.105) is false. Here is a proof.

Asssume (9.105) is true.

Them by Rule ∀use we can plug in a value for m, and the result wil be
a true sentence. So we plug in m = 1.

Them by Rule ∀use iimplies that (∃n ∈ IN)n < 1.

But there is no natural number that is less than 1, so so ∼ (∃n ∈
IN)n < 1.

So we have attained a contradcition.

Therefore (9.105) is false.

Problem 40. Consider the sentence

(∃n ∈ Z)(∀m ∈ Z)n < m . (9.106)

Is this sentence true or false? If it is true, prove it. If it is false, prove that
it is false (that is, prove its negation).
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SOLUTION. Sentence (9.106) is false. Here is a proof of its negation, that
is, of

∼ (∃n ∈ Z)(∀m ∈ Z)n < m . (9.107)

We are going to prove (9.107) by contradiction .

Assume that
(∃n ∈ Z)(∀m ∈ Z)n < m . (9.108)

Pick a witness for Statement (9.108), that is, an integer n for which
the statement “(∀m ∈ Z)n < m” holds, and call it n0. [Rule ∃use]

Then n0 ∈ Z and (∀m ∈ Z)n0 < m.

Since n0 ∈ Z, we can conclude that n0 < n0. [Rule ∀use, from

(∀m ∈ Z)n0 < m]

Then ∼ n0 = n0. [Trichotomy law]

But n0 = n0. [Equality Axiom (∀x)x = x.]

So we have proved a contradiction assuming (9.108). Hence, by the proof-
by-contradiction rule, (9.108) is false, that is, (9.107) is true. Q.E.D.

Problem 41. For each of the following sentences,

1. Indicate whether the sentence is true or false.

2. If it is true, prove it.

3. If it is false, prove that it is false (that is, prove its negation).

(∀m ∈ Z)(∃n ∈ IN)n > m , (9.109)

(∀m ∈ IN)(∃n ∈ IN)n < m , (9.110)

(∃n ∈ IN)(∀m ∈ Z)n < m , (9.111)

(∃n ∈ IN)(∀m ∈ IN)n < m , (9.112)

(∃n ∈ IN)(∀m ∈ IN)n ≤ m, (9.113)

(∃x ∈ IR)(∀m ∈ IN)x < m . (9.114)
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9.3.2 A detailed proof of an inequality with lots of comments

Problem 42. Let C be a circle with center (5, 1). Let L be the line with
equation y = x+ 4. Prove that if the radius of the circle is less than 5 then
C and L do not intersect.

Solution.
Let R be the radius of C.
COMMENT: This is very important. Every time you will have to deal re-
peatedly with some object—a number, a set, an equation, a statement—give
it a name.

Assume that R < 5.

We want to prove that

∼ (∃x ∈ IR)(∃y ∈ IR)
(

(x− 5)2+(y− 1)2 = R2 ∧ y = x+4
)

. (9.115)

Assume (9.115) isn’t true.

Then

(∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

. (9.116)

Pick witnesses for (9.116) and call them x, y.

COMMENT: Remember that after a quantified sentence ends the
quantified variables become free again, so they can be re-used.
That’s why it is perfectly legitimate to name the witnesses x and
y.

Then
(x− 5)2 + (y − 1)2 = R2 ∧ y = x+ 4 . (9.117)

In particular,
(x− 5)2 + (y − 1)2 = R2 . (9.118)

And also
y = x+ 4 . (9.119)

COMMENT: How did we go from (9.117) to (9.118) and (9.119)?
It’s clear, isn’t it? But in a proof every step must be justfied
(or justifiable) by the rules. So which is the rule used here?
The answer is: it’s the logical rule for using conjunctions, that is,
Rule ∧use: if you have a conjunction A∧B, then you can go to A,
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and you can go to B. You may think this is a very stupid rule, but
it is certainly a reasonable rule. When we went from (9.117) to
(9.118) and (9.119), it seemed obvious to you, didn’t it? That’s
because Rule ∧use is an obvious rule, so obvious that you use it all
the time without even noticing it. But that doesn’t mean that the
rule isn’t there. It is there. If you wanted to write a computer
program that checks proofs and tells you whether a proof is valid,
how would the program know that going from (9.117) to (9.118)
and (9.119) are valid steps? You have to put that in the program.
That is, you have to put Rule ∧use in your program.

Since y = x+4, we can substitute x+4 for y in (9.118), and get

(x− 5)2 + (x+ 4− 1)2 = R2 , (9.120)

that is
(x− 5)2 + (x+ 3)2 = R2 . (9.121)

But

(x− 5)2 + (x+ 3)2 = x2 − 10x+ 25 + x2 + 6x+ 9

= 2x2 − 4x+ 34

= 2(x2 − 2x+ 17)

= 2(x2 − 2x+ 1− 1 + 17)

= 2(x2 − 2x+ 1 + 16)

= 2
(

(x− 1)2 + 16
)

≥ 2× 16

= 32

so
(x− 5)2 + (x+ 3)2 ≥ 32 . (9.122)

But
(x− 5)2 + (x+ 3)2 = R2 . (9.123)

So
R2 ≥ 32 . (9.124)

COMMENT: How did we go from (9.122) and (9.123) to (9.124)?
It’s clear, isn’t it? But in a proof every step must be justfied
(or justifiable) by the rules. So which is the rule used here?
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The answer is: it’s the logical rule for using equality, that is, Rule
=use (also called Rule SEE, “susbtitution of equals for equals”):
if you know that an equality s = t—or t = s—holds, and you also
know that some statement P involving s holds, then you can go
to P (s → t), where P (s → t) is the statemenet pbtained from P
by substituting t for s in P . You may think this is a very stupid
rule, but it is certainly a reasonable rule. When we went from
(9.122) and (9.123) to (9.124), it seemed obvious to you, didn’t
it? That’s because Rule SEE is an obvious rule, so obvious that
you use it all the time without even noticing it. But that doesn’t
mean that the rule isn’t there. It is there.

If you wanted to write a computer program that checks proofs and
tells you whether a proof is valid, how would the program know
that going from (9.122) and (9.123) to (9.124) is a valid step?
You have to put that in the program. That is, you have to put
Rule SEE in your program.

But we are assuming that R < 5, and then R2 < 25.

COMMENT: That’s because R is positive. If all you know about
was that R is a real number and R < 5, then R could be −10, in
which case it would not follow that R2 > 25. But in our case R is
the radius of a circle, so R > 0, and the conclusion that R < 25
follows.

So ∼ R2 ≥ 32. But R2 ≥ 32. So we have proved a contradiction.

COMMENT: The contradiction is the statement “R2 ≥ 32∧ ∼
R2 ≥ 32”. This is a contradiction because it is fo the form Q∧ ∼
Q, where Q is the statement “R2 ≥ 32”.

So (9.115) is proved. Q.E.D.

9.3.3 The same proof without the comments

Proof. Let R be the radius of C.

Assume that R < 5.

We want to prove that

∼ (∃x ∈ IR)(∃y ∈ IR)
(

(x− 5)2+(y− 1)2 = R2 ∧ y = x+4
)

. (9.125)
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Assume (9.125) isn’t true. Then

(∃x ∈ IR)(∃y ∈ IR)
(

(x−5)2+(y−1)2 = R2∧y = x+4
)

. (9.126)

Pick witnesses for (9.126) and call them x, y.

Then (x− 5)2 + (y − 1)2 = R2 ∧ y = x+ 4, so in particular,

(x− 5)2 + (y − 1)2 = R2 . (9.127)

Since y = x+4, we can substitute x+4 for y in (9.127), and get
(x− 5)2 + (x+ 4− 1)2 = R2, that is

(x− 5)2 + (x+ 3)2 = R2 . (9.128)

But

(x− 5)2 + (x+ 3)2 = x2 − 10x+ 25 + x2 + 6x+ 9

= 2x2 − 4x+ 34

= 2(x2 − 2x+ 17)

= 2(x2 − 2x+ 1− 1 + 17)

= 2(x2 − 2x+ 1 + 16)

= 2
(

(x− 1)2 + 16
)

≥ 2× 16

= 32

so
(x− 5)2 + (x+ 3)2 ≥ 32 . (9.129)

But (x− 5)2 + (x+ 3)2 = R2, so R2 ≥ 32.

But we are assuming that R < 5, and then R2 < 25.

So ∼ R2 ≥ 32. But R2 ≥ 32. So we have proved a contradiction.

So (9.125) is proved. Q.E.D.
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9.4 Existence and uniqueness

Suppose P (x) is a one-variable predicate. We write

(∃!x)P (x)

for “there exists a unique x such that P (x).”
This means “there is one and only one x such that P (x)”.
The precise meaning of this is that

1. there exists an x such that P (x),

and

2. if x1, x2 are such that P (x1) ∧ P (x2), then x1 = x2.

In formal language:

(∃!x)P (x) ⇐⇒
(

(∃x)P (x) ∧
(

(∀x1)(∀x2)(P (x1) ∧ P (x2)) =⇒ x1 = x2

)
)

.

It follows that, in order to prove that there exists a unique x such that P (x),
you must prove two things:

Existence: There exists x such that P (x),

Uniqueness: Any two x’s that satisfy P (x) must be equal.

That is:

To prove
(∃!x)P (x)

it suffices to prove
(∃x)P (x) (9.130)

and

(∀x1)(∀x2)
(

(P (x1) ∧ P (x2)) =⇒ x1 = x2

)

. (9.131)

(Formula (9.130) is the existence assertion, and Formula
(9.131) is the uniqueness assertion.)
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Example 33. “I have one and only one mother” means:

• I have a mother,

and

• Any two people who are my mother must be the same person. (That
is: if u is my mother and v is my mother than u = v.) �

9.4.1 Examples of proofs of existence and uniqueness

Problem 43. Prove that there exists a unique natural number n such that
n3 = 2n− 1.

Solution. We want to prove that

(∃!n ∈ IN)n3 = 2n− 1 .

First let us prove existence. We have to prove that (∃n ∈ IN)n3 = 2n − 1.
To prove this, we exhibit a witness: we take n = 1. Then n is a natural
number, and n3 = 2n− 1. So (∃n ∈ IN)n3 = 2n− 1.

Next we prove uniqueness. We have to prove that if u, v are natural
numbers such that u3 = 2u− 1 and v3 = 2v − 1, then it follows that u = v.

So let u, v be natural numbers such that u3 = 2u − 1 and v3 = 2v − 1.
We want to prove that u = v.

Since u3 = 2u− 1 and v3 = 2v − 1, we have

u3 − v3 = 2u− 1− (2v − 1)

= 2u− 2v

= 2(u− v) ,

so
u3 − v3 − 2(u− v) = 0 .

But it is easy to verify that

u3 − v3 = (u− v)(u2 + uv + v2) .

(If you do not believe this, just multiply out the right-hand side and you
will find that the result equals u3 = v3.) Hence

0 = u3 − v3 − 2(u− v)

= (u− v)(u2 + uv + v2)− 2(u− v)

= (u− v)(u2 + uv + v2 − 2) .
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We know that if a product of two real numbers is zero then one of the
numbers must be zero. Hence

u− v = 0 or u2 + uv + v2 − 2 .

But u2 + uv + v2 − 2 cannot be equal to zero, because u2, uv and v2 are
natural numbers, so each of them is gretar than or equal to 1, and then
u2 + uv + v2 ≥ 3, so u2 + uv + v2 − 2 ≥ 1, and then u2 + uv + v2 − 2 6= 0.
Therefore u− v = 0, so u = v, and our proof of uniqueness is complete.

Problem 44. Prove that there exists a unique real number x such that

x7 + 3x5 + 23x = 6 .

You are allowed to use everything you know from Calculus. �
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10 A summary of Logic

10.1 Terms and sentences

10.1.1 Nouns and noun phrases in English

• According to Wikipedia, a noun is “a word that functions as the name
of some specific thing or set of things, such as living creatures, objects,
places, actions, qualities, states of existence, or ideas”.

• A noun phrase “is a phrase that has a noun (or indefinite pronoun) as
its head or performs the same grammatical function as such a phrase”.

So, for example, here is a list of noun phrases:

1. George Washington,

2. the first president of the United States,

3. the man who succeeded George Washington as prsdient of the United
States,

4. this table,

5. the table,

6. the table that I bought yesterday,

7. the table that I bought yesterday at Walmart’s and then brought home
in a truck that I had borrowed from my very good friend Alice,

8. I,

9. you,

10. she,

11. he,

12. the news,

13. the number five,

14. the number that results from adding two plus three,

15. the product of two and three,

16. the number that results from adding two plus three and then multi-
plying the result by four,

17. the number that results from adding two plus three, multiplying the
result by four, and then dividing the result of the multiplication by
the product of six times seven,

18. the sum of the cubes of all the natural numbers from eight to forty-
seven.



Math 300, Fall 2020 136

10.1.2 The “use-mention” distinction

Consider the following two sentences:

Clarabelle is a cow.

“Clarabelle” is a ten-letter word.

The first sentence talks about an animal and makes an assertion about that
animal: it tells us that that animal is a cow.

The second sentence does not talk about an animal. It does not say
anything about the animal called Clarabelle. It makes an assertion about a
word: it tells us that the word “Clarabelle” has ten letters.

The first sentence talks about the animal, so it mentions Clarabelle,
And, in order to mention (i.e., talk about) Clarabelle it uses the word
“Clarabelle”.

The second sentence talks about the word, so it mentions the word
“Clarabelle”.

So the first sentence uses the word “Clarabelle” and the second sentence
mentions it.

The distinction between use and mention is very important, and it is
useful to understand it in order to avoid making mistakes in writing that
sometimes might be confusing to the reader.

Let us be precise: word and groups of words are things, and like all
other things words and groups of words can be given names. the name of
a word or group of words is the word or groups of words enclosed
in quotation marks.

So, for example, the following are correct statements:

• Clarabelle is an animal.
• The name of Clarabelle is “Clarabelle”.
• “Clarabelle” is a word.
• “Clarabelle” is a French name, not a cow.
• Clarabelle is a cow, not a French name;
• Clarabelle eats grass.
• “Clarabelle” does not eat grass.
• The name of the word “Clarabelle” is “ “Clarabelle” ”.
• The name of the first president of the United States was “George
Washington”. (If you had written instead “the name of the first presi-
dent of the United States was George Washington”, then, since George
Washington was a general, it would follow that the name of the first
president of the United States was a general, which is quite ridiculous,
since a name is a word or group of words, and cannot be a general.)
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• The name of George Washington is49 “George Washington”.

• If I say “the name of that cow over there is Clarabelle”, then I am
saying among other things that the name of that cow over there is a
cow, which is not what I probably want to say50. I probably want to
say that that the name of that cow over there is the word “Clarabelle”,
so I must say: the name of that cow over there is “Clarabelle”.

When you say something about Clarabelle, the cow, you use the word
“Clarabelle” to talk about the cow, and by doing so you mention (i.e., talk
about) the cow.

When you say something about “Clarabelle”, the word, you mention
(i.e., talk about) the word “Clarabelle”, but you are not using the word to
talk about the animal.

When you use a word or group of words to talk about the thing
that the word stands for, you do not enclose the word or group of
words in quotation marks.
When you mention a word or groups of words (i.e.,. talk about
the word or gourp of words), you must enclose the word or group
of words in quotation marks.

When writing mathematics, it is important to keep the distinction be-
tween use and mention, by using quotation marks when appropriate.

For example,

• we can write
I will prove that 2 + 2 = 4

in the same was as we would write

Alice said that she likes coffee.

• but we should not write

I will prove 2 + 2 = 4

49So, strictly speaking, it is wrong to write: “my name is Alexander Hamilton”, or “my
name is Asher Lev”, or “my name is Eminem”. One should write “my name is “Alexander
Hamilton” ”, or “my name is “Asher Lev” ”, or “my name is “Eminem” ”. But this mistake
is so common that nobody pays attention to it.

50For example: Clarabelle eats grass. So, if the name of that cow over there is Clarabelle,
it follows that the name of that cow over there eats grass. And this is nonsense, of course:
cows eat grass, names do not.
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in the same was as we would not write

Alice said I like coffee.

We must write

Alice said “I like coffee”.

and

I will prove “2 + 2 = 4”,

or

I will prove that “2 + 2 = 4” is true,

or
I will prove that the sentence “2 + 2 = 4” is true,

or

I will prove the sentence “2 + 2 = 4”.

10.1.3 Terms in mathematical language

The noun phrases that we use in formal mathematical language are called
terms.

So a term is an expression that is the name of a thing. For example51

the terms “four”, “4”, “two plus two”, “2 + 2” , “three plus one”, 3 + 1” all
have the same value, namely, the number 4.

And usually mathematical terms are written with formulas, that is,
very concise expressions using special symbols. For example,

• instead of “the number five”, we write “5”;

• instead of “the number that results from adding two plus three”, we
write “2 + 3”;

• instead of “the product of two and three”, we write “2× 3”;

• instead of “the number that results from adding two plus three and
then multiplying the result by four”, we write “(2 + 3)× 4”;

51Notice the use of the quotation marks, in keeping with the use vs. mention distinction
explained in subsection 10.1.2. We can say correctly that 4 is a number, that 2 + 2 is a
number, that the term “4” has the value 4, that the term “2 + 2” has the value 4, that
2 + 2 = 4 (meaning that both terms “2 + 2” and “4” have the same value). But it would
be incorrect to write “4” = “2 + 2” because this says that the two terms “4” and “2 + 2”
are the same, which is not true. (For example, the term “4” consists of just one character,
whereas the term “2+2” consists of three characters, so they are manifestly not the same.)
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• instead of “the number that results from adding two plus three, mul-
tiplying the result by four, and then dividing the result by the sum of
twenty-three and the product of six times seven”; we write “ (2+3)×4

23+6×7 ”;

• instead of “the sum of the cubes of all the natural numbers from five
to ten” we write “

∑10
i=5 ”.

10.1.4 Examples of terms and sentences

Example 34. The following expressions are terms:

• New York City;

• Mount Everest;

• the table;

• the student who asked why an implication is true when the premise is
false;

• 2,

• 2 + 2,

• 2 + x,

• x+ y,

• (x+ y)2 + 3x+ 5,

• ∑n
k=1(k

3 + 1)

But the following expressions are sentences, not terms:

• 2 + 2 = 4,

• 2 + x = 4,

• x+ y = 0,

• x+ y = 0,

• x+ y > 0,

• (∃y ∈ IR)x+ y = 0,

• (∃y ∈ IR)x+ y < 0,
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• (∀y ∈ IR)x+ y = 0,

• (∀y ∈ IR)(∃z ∈ IR)y + z = x.

• (∀x ∈ IR)x.0 = 0,

• (∀x ∈ IR)(∃y ∈ IR)x+ y > 0,

• (∀x ∈ IR)x2 ≥ 0,

• ∑5
x=1 x

2 = y.

• (∀x ∈ IR)x.0 = 0,

• ∑x=1 5x
2 = y.

10.1.5 The value of a term

A term has a value, which is the thing that the term stands for. For
example,

• the value of the term “5” is the natural number 5, and we indicate this
by writing “5 = 5”;

• the value of the term “2+3” is the natural number 5, and we indicate
this by writing “2 + 3 = 5”;

• the value of the term “2× 3” is the natural number 6, and we indicate
this by writing “2× 3 = 6′′;

• the value of the term “(2 + 3)× 4” is the natural number 20, and we
indicate this by writing “(2 + 3)× 4 = 20”;

• the value of the term “ (2+3)×4
23+6×7 ” is the rational number (i.e., fraction)

20
65 , and we indicate this by writing “ (2+3)×4

23+6×7 = 20
65 ”; furthermore, the

number 20
65 is the same as the number 4

13 , so we could also written

“ (2+3)×4
23+6×7 = 4

13 ”;

• the value of the term “
∑10

i=5 i
3 ” is the natural number 2, 955, and we

indicate this by writing the equality “
∑10

i=5 i
3 = 2, 955”.

The values of terms can be all kinds of mathematical objects. Since the
mathematical objects that you are most familiar with are numbers (natural
numbers, integers, real numbers, complex numbers, etc.), you are probably
used to terms whose values are numbers. But there are millions of other
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kinds of mathematical objects, and we can write terms with values of any
of those kinds.

For example:

• The expression
[

1 2
−1 3

]

+

[
2 2
3 1

]

is a term whose value is a 2 by 2 matrix. The actual value of the term

is the matrix

[
3 4
2 4

]

, and we indicate this by writing:

[
1 2

−1 3

]

+

[
2 2
3 1

]

=

[
3 4
2 4

]

• Functions52 can be added (in some cases), and composed (in some
cases). If f and g are functions then the name of the sum of f and
g is “f + g”, the name of the product of f and g is “f · g”, and the
name of the composite “g followed by f” is “f ◦ g”. So, for example,
if f, g, h are three functions, then the expression “((f + g) · g) ◦ h” is
a term whose value is a function.

• Sets53 can be combined in various ways. For example, of A and B
are sets, then we can form the sets A ∪ B (the union of A and B),
A∩B (the intersection of A and B), A×B (the Cartesian product of
A and B). Then the value of the term “(IR × Z) ∩ (Z × IR)” is a set,
namely, the intersection of the Cartesian product of IR and Z with the
Cartesian product of Z and IR.

10.1.6 Terms as instructions for a computation, i.e., as programs

You should think of a mathematical term as a computing device that ex-
ecutes a program, i.e., follows with a list of instructions for computing a
result, called the value. For example,

• the term “2+3” is a device that executes the following program: “add
the number 3 to the number 2 and write down the result”;

• the term “2 × 3” is a device that executes the following program:
“multiply the number 2 by the number 3 and write down the result”;

52We will talk about functions later in the course.
53We will discuss sets in detail later later in the course.
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• the term “(2+3)×4” is a device that executes the following program:
“add the number 3 to the number 2, multiply the result by the number
4, and write down the result”;

• the term “ (2+3)×4
23+6×7 ”; is a device that executes the following program:

“add the number 2 to the number 3, multiply the result by the number
4, and divide the result by the number you get when you add to the
number twenty-three the product of six times seven, and write down
the result”;

• the term “
∑10

i=5(i
3 + 3i2 + 5) ” is a device that executes the following

program:

1. Look at all the natural numbers from 5 to 10.
2. For each such natural number, do the following:

(a) Call the number i.
(b) Compute (i3 + 3i2 + 5)2.

3. Add up all the results of the computation of (i3 + 3i2 + 5)2 for
all values of i.

4. Write the result of this sum as the final result of the computation.

10.1.7 Letter variables in terms

A term can contain variables, i.e. symbols that are not the names of definite
objects, but could be used to stand for different objects.

For example: The term “x + 3”, contains the letter variable x; it cor-
responds to the program: “add 3 to x and write down the result”. When
asked to compute x+3, the term does not know what to do, because it does
not know who x is. But if you give x a specific value, for example by saying
“Let x = 2”, then the term knows what to do: it gives x the value 2, and
becomes the term 2 + 3, which then know what to, and compues the value
5.

In other words: if a term t contains a variable x, then it is possible to
give a value to the variable, and the term then can compute a value.

You should think of a variable as a “slot” that can be filled by
plugging in a value. For example, the term “x+ 3” consists of (1) a slot
that can be filled in with a number; (2) the + sign, (3) the number 3.

A term may contain several variables. For example, the term

(x+ y + 3x2)y + y2(z2 + 3xz) + yex

contains the variables x, y, and z. The term has 10 slots. You can give a
value to each of the three variables. The term then instructs us to fill in
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the first, third, seventh and tenth slots (the “x-slots”) with the value we
have chosen for x, the second, fourth, fifth and ninth slots (the “y-slots”)
with the value we have chosen for y, and and the sixth and eight slots (the
“z-slots”) with the value we have chosen for z. We can do this by writing,
for example:

Let x = 3 , y = −1 , z = 4 .

Then (x+ y + 3x2)y + y2(z2 + 3xz) + yex = 33− e3 .

or
(

(x+ y + 3x2)y + y2(z2 + 3xz) + yex

)

x=3,y=−1,z=4

= 33− e3 .

In a term t, a letter variable that has no value de-
clared within the term and represents a slot that can be
filled in by giving it values is called a free variable, or
open variable.

10.1.8 Bound (dummy, closed) variables in terms

One of the main purposes of writing terms and sentences in formal language,
with symbols, rather than phrases with lots of words, is to be able to say
things much more concisely54. (This is quite clear: “ 2 + 2 = 4 ” is much
shorter than “two plus two equals four”. And try to say “ (a + b)2 = a2 +
2ab + b2 ” with words, rather than symbols, and you’ll se how much longer
it gets.)

54This is not the only purpose. Another purpose is precision: for example, if I say
“two plus three times five”, then this is ambiguous, because it could mean “two plus the
product of three and five”, or “the sum of three plus two, multiplied by five”. In formal
language, we write “(2 + 3) × 4” or “2 + (3 × 5)”, and each of these two expressions has
a clear and precise meaning. The ambigüity has disappeared. Furthermore, we agreed
on the convention that when a product such as 3 × 4 is combined with another term by
a “+” the parentheses surrounding the product can be omitted. So when we think we
ought to write “2 + (3× 4)” we write instead “2 + 3× 4”, and it is completely clear what
that means, because if we had wanted to say “(2 + 3)× 4” we would have had to enclose
“2 + 3” in parenthees. A third purpose is universality: to say “two plus two equals
four” in Spanish you have to say “dos más dos es igual a cuatro”, and in French you have
to say “deux plus deux égale quatre”. But in formal mathematical language you write
“2+ 2 = 4”, and this is understood by everybody, whether they speak English or Spanish
or French or Chinese or any other language.
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Further conciseness can be achieved by using letters to stand for expres-
sions that appear repeatedly in a term and are very long. For example, the
term

32 + 5
1 +

√
5

2
− 23

(

1 +
√
5

2

)2

++7

(

1 +
√
5

2

)3

+ 19

(

1 +
√
5

2

)4

(10.132)

can be written as

(32 + 5x− 23x2 + 7x3 + x4)
x= 1+

√
5

2

, (10.133)

which we read as the computing instruction “give x the value 1+
√
5

2 , then
compute 32 + 5x− 23x2 + 7x3 + x4, and write down the result”.

Another example is the term

13 + 23 + 33 + 43 + 53 + 63 + 73 + 83 + 93 + 103 , (10.134)

that can be written as
10∑

k=1

k3 , (10.135)

which we read as the computing instruction

1. Look at all the natural number values between 1 and 10.

2. For each such value, do the following:

(a) Call your number k.

(b) Compute k3.

3. Add up the results of these computations, for all natural numbers
between 1 and 10.

As you can see, the term (10.133) is much shorter than the term (10.132),
and the term (10.135) is much shorter than the term (10.134). And the
difference becomes even more dramatic if consider very long terms, in which
there is a computation that is repeated over and over. For example, suppose
you want to talk about the sum of the cubes of the first 10, 000 natural
numbers: using letters, we can write

10,000
∑

k=1

k3 . (10.136)
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If you wanted to write this without using the
∑

notation, you would have to
write a sum of 10, 000 terms, which would of course be enormously long55.

It is clear that:

• In (10.133), we could have used any other letter instead of x, and the
resulting term would execute exactly the same computation. So, for
example, if we had written

(32 + 5u− 23u2 + 7u3 + u4)
u= 1+

√
5

2

, (10.137)

this would describe exactly the same computationas (10.137), and the
term would have exactly the same value and (10.133).

• Similarly, in (10.135), we could have used any other letter instead of k,
and the resulting term would execute exactly the same computation.
So, for example, if we had written

10∑

i=1

i3 , or
10∑

j=1

j3 , or
10∑

x=1

x3 , or
10∑

α=1

α3 , or
10∑

⋄=1

⋄3 ,

the resulting term would correspond to exactly the same computation
and have the same value56.

• Actually, in the term “
∑10

k=1 k
3” the letter k “isn’t there”, in the sense

that we could describe the term without ever mentioning “k”. For
example, I could ask you to compute the value of this term without
mentioning k: by saying “compute the sum of the cubes of all the
natural numbers from 1 to 10”, and you would know exactly what to
do.

• A similar situation arises for the term

(32 + 5x− 23x2 + 7x3 + x4)
x= 1+

√
5

2

.

The letter x “isn’t there”, in the sense that we could describe the term
without ever mentioning “x”. For examle, I could ask you to compute
the value of this term without mentioning x: by saying

55Can you figure out what the value of this sum is? The answer is:
5, 001, 000, 050, 000, 000. Can you figure this out without having to compute 10, 000 cubes
and then add them? Later in the course we will see how to figure this out and get the
answer fairly fast.

56Using “x” here is not something one would normally do, because mathematicians
usually prefer to use “x” for real numbers rather than natural numbers; but it is not
forbidden to use x for a natural number.
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a. Add the following five numbers:

1. the number 32,

2. the number 5× 1+
√
5

2 ,

3. the number (−23)×
(
1+

√
5

2

)2
,

4. the number 7×
(
1+

√
5

2

)3
,

5. the number
(
1+

√
5

2

)4
.

b. Then write down the result.

10.1.9 What is a dummy (free, open) variable?

In a term t, a letter variable whose values are generated
within the term itself, so that we do not need to ask the
outside world what the value of that variable is in order
to be able to compute the value of the term, is called a
bound variable, or closed variable, or dummy variable.
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The three clear signs that a variable is dummy

The following are three obvious signs that a variable in an expression T is a
dummy variable:

(I) It is possible to substitute for the variable any other letter without chang-
ing the value of the expression. Indeed, the terms

N∑

j=1

j2 , (10.138)

N∑

x=1

x2 , (10.139)

N∑

q=1

q2 , (10.140)

all have the same value as “
∑N

k=1 k
2 ”, and this is a sign that in the term

“
∑N

k=1 k
2 ” the letter k is a dummy variable.

(II) If you ask somebody to execute the computation described by the ex-
pression T then this person does not need to be told what the value
of the variable is, because the computation itself generates the value or
values it needs for the variable. For example, if I ask you to compute
the value of “

∑N

k=1 k
2”, then you have to do this: you give k all natural

number values between 1 and N , for each such value you compute its
square, and then you add all the results. In order to be able to do this,
you have to ask “who is N?”, but you do not have to ask “who is
k?”, because you yourself, in the process of doing the computation, are
going to generate the values of k. This is a second sign that in the term
“
∑N

k=1 k
2” the letter k is a dummy variable.

(III) The expression T is equal or equivalent to another expression not

involving the variable at all. For example, “
∑N

k=1 k
2 ” is equal to

(2N+1)N(N+1)
6 , an expression that does not contain k. And this is a

third sign that in the term “
∑N

k=1 k
2” the letter k is a dummy variable.

10.1.10 Other examples of dummy variables in terms

The two examples of dummy variables that you probably know from pre-
vious courses are those occurring in expressions such as “

∑b
k=a . . .” and

“
∏b

k=a . . .”.
For example, the term “

∑5
k=1 k

2” executes the following computation:
look at all the natural numbers from 1 to 45, for each such number compute
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its square, add all the results and write down the sum”.
And the term “

∏5
k=1(k+1)2” executes the following computation: look

at all the natural numbers from 1 to 45, for each such number compute the
square of the sum of one plus the number, multiply all the results and write
down the sum”.

In both cases, the letter k is a dummy variable. You do not need to ask
“who is k’ ?” is order to carry out the computation. If you are asked to
compute

∑25
k=1 k

3 or
∏25

k=1(k+1), then you do not have to ask “who is k?”.
You yourself generate all the values of k from 1 to 25 and for each value
compute something (k3 in the first case, k+1 oin the second case), and then
do something with the results (add them all up in the first case, multiply
them in the second case).

Variables of integration. Another important example of a dummy vari-
able is a variable of integration. If I ask you to tell me what the value
of the integral

∫ b

a

x2 dx

is, you have to ask me “who are a and b” but you don’t have to ask “who is
x?”. That’s because x is a dummy variable. This is precisely the second of
the three “signs that a variable is a dummy variable”.

Let us look at the first sign: “It is possible to substitute the letter for
any other letter, without changing the value of the term”. This is indeed
true: if, instead of “

∫ b

a
(x+1)2 dx” I write “

∫ b

a
(y+1)2 dy”, or “

∫ b

a
(u+1)2 du”,

or “
∫ b

a
(q + 1)2 dq”, or “

∫ b

a
(α + 1)2 dα”, then all those integrals are exactly

the same.
Finally, let us look at the third sign: “The term T is equal to another

expression not involving the variable at all.” And this is indeed true: the

integral
∫ b

a
(x+1)2 dx is equal to (b+1)3

3 − (a+1)3

3 . And the expression “ (b+1)3

3 −
(a+1)3

3 ” does not contain x at all.

So, clearly, in the term “
∫ b

a
x2 dx”, the variable x is a dummy

variable. This means that the integral
∫ b

a
x2dx does not depend on x;

it depends on a and b but not on x, in the sense that if you want
me to give you a specific value for the term then you have to tell
me who a and b are, but not who x is.

Variables in the definition of a function We will be discussing func-
tions later. But let me tell you the basic facts:

• A function assigns to each object x belonging to a certain set S
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another object, called the value of the function at x. If f is a name
of the function, then we use f(x) to denote the value of f at x.

• The set S is called the domain of the function.

• In order to introduce and describe a function f , we can do this: we
explain how, for each member of the domain S, the value of f at this
member is computed or determined. To do this, we write things like

the function IR ∋ x 7→ 3(x+ 1)4 + ex , (10.141)

which says that (a) the domain of the function is the set IR, (b) for
each member of the domain IR, if we call that member x, then the
value f(x) is the number 3(x+ 1)4 + ex.

Notice that “x” is a name that we introduce in order to explain how to
compute f(x). We could equally well have written:

the function IR ∋ u 7→ 3(u+ 1)4 + eu,

and that would be exactly the same function.
So the variable x in a function definition such as (10.141) is

dummy.

Remark 10. An expression such as “the function IR ∋ x 7→ x2 ” is a term.
Its value is a function, namely, the function that takes each real number
and squares it. The term “the function IR ∋ x 7→ x2” contains the variable
x but, as we just explained, x is a dummy variable, because (a) the term
is equal to another term that does nto contain x at all (namely, the term
“the function that for each real number produces as value the square of the
number”, or “the function that takes each real number and suares it”); (b) if
we substitute another letter for x we get the same function. (For example,
“the function IR ∋ u 7→ u2” is exactly the same function: it’s “the function
that takes each real number and squares it”.)

The expressions “the function IR ∋ x 7→ x2” and “the function IR ∋ x 7→
(x + 1)2 − 2x − 1” are terms. Each of these terms has a value, which is a
function. Furthermore, those two functions are the same function, because
for every real number x the numbers x2 and (x + 1)2 − 2x − 1 are equal.
So the terms “the function IR ∋ x 7→ x2” and “the function IR ∋ x 7→
(x+ 1)2 − 2x− 1” have the same value, and we can assert that

The function IR ∋ x 7→ x2 = the function IR ∋ x 7→ (x+ 1)2 − 2x− 1.
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NOTE: It would be incorrect to write

“The function IR ∋ x 7→ x2” = “the function IR ∋ x 7→ (x+ 1)2 − 2x− 1”,

because this asserts that the two terms are the same, which is manifestly
not the case. If this is not clear tou consider the following examples:

Bill Clinton = William Jefferson Clinton

and

“Bill Clinton” = “William Jefferson Clinton”.

The first one says that that the values of the terms “Bill Clinton” and
“William Jefferson Clinton” are the same, i.e., that the person whose name
is “Bill Clinton” is the same as the person whose name is “William Jefferson
Clinton”.

But the seond one says that the names “Bill Clinton” and “William Jefferson
Clinton” are the same, i.e. that they conist of exactly the same letters in
the same order. nd this is clearly false. (For example, the name “William
Jefferson Clinton” contains a W and a J , but the name “Bill Clinton” does
not. �

10.1.11 Bound (dummy, closed) variables in sentences

Sentences are very similar to terms. Like terns, sentences have values.
The one big difference between terms and sentences is that the value of a
term is a thing and the value of a sentence is a truth value, i.e.,
“true” or “false”.

Example 35.

1. The expression “2 + 2” is a term. Its value is the number 4.

2. The expressions “2 + 2 = 4” and “2 + 2 = 5” are sentences. They are
both propositions, because they contain no open variables. So they
both have a truth value. The value of “2+2 = 4” is “true”. The value
of “2 + 2 = 5” is “false”.

3. The expression “(∀n ∈ Z)(2|n =⇒ 4|n2)” is a sentence. It contains
the variable n . But this variable is dummy (closed, bound), because
it satisfies all the three signs for dummy variables that we saw before:



Math 300, Fall 2020 151

(I) It is possible to substitute for the letter n any other letter, without
changing the value of the expression. Indeed, the sentences

(∀m ∈ Z)(2|m =⇒ 4|m2) , (10.142)

(∀q ∈ Z)(2|q =⇒ 4|q2) , (10.143)

(∀u ∈ Z)(2|u =⇒ 4|u2) , (10.144)

are all equivalent to “(∀n ∈ Z)(2|n =⇒ 4|n2)”.
(II) If you ask somebody to execute the computation described by this

sentence, then this person does not need to be told what the value
of the variable n, is, because the computation itself generates the
value or values it needs for the variable. (Indeed, to execute the
computation described by the sentence “(∀n ∈ Z)(2|n =⇒ 4|n2)”,
the person doing the computation has to do the following:

(a) look at all the integers, and for each integer do the following:

i. call the integer n,

ii. determine if “2|n =⇒ 4|n2 is true,

(b) then look at all the results of the computations, for all the
integers. If the are all “true” write “true”. If one of the
results is “false”, write ‘false”.

The key point here is that the person doing the computation
does need to ask “who is n?” because they themselves
will generate the values of n to be looked at.

(III) The sentence “(∀n ∈ Z)(2|n =⇒ 4|n2)” is equivalent to another
sentence not involving the variable n at all. Indeed: the sentence
“(∀n ∈ Z)(2|n =⇒ 4|n2)” is equivalent to ”if an integer is even
then its square is divisible by 4”.

Since the only variable that occurs in this sentence is bound, the sen-
tence contains no open variables. So it is a proposition. It has a
definite truth value, which turns oiut to be “true”.

4. The expression “(∀n ∈ Z)(a|n =⇒ b|n2)” is a sentence. It contains the
variables n, a, b . But b variable is dummy (closed, bound), because
it satisfies all the three signs for dummy variables that we saw before:

(I) It is possible to substitute for the letter n any other letter, without



Math 300, Fall 2020 152

changing the value of the expression. Indeed, the sentences

(∀m ∈ Z)(a|m =⇒ b|m2) , (10.145)

(∀q ∈ Z)(a|q =⇒ b|q2) , (10.146)

(∀u ∈ Z)(a|u =⇒ b|u2) , (10.147)

are all equivalent to “(∀n ∈ Z)(a|n =⇒ b|n2)”.
(II) If you ask somebody to execute the computation described by this

sentence, then this person does not need to be told what the value
of the variable n, is, because the computation itself generates the
value or values it needs for the variable. (Indeed, to execute the
computation described by the sentence “(∀n ∈ Z)(a|n =⇒ b|n2)”,
the person doing the computation has to do the following:

(a) look at all the integers, and for each integer do the following:

i. call the integer n,

ii. determine if “a|n =⇒ b|n2 is true,

(b) then look at all the results of the computations, for all the
integers. If the are all “true” write “true”. If one of the
results is “false”, write ‘false”.

The key point here is that the persons doing the computation
does need to ask “who is n?” because they themselves will
generate the values of n to be looked at.

This is to be contrasted with a and b. The person doing the
computation cannot do anything without asking first “‘who are
a and b?”. So a and b are free variables.

(III) The sentence “(∀n ∈ Z)(a|n =⇒ b|n2)” is equivalent to another
sentence not involving the variable n at all. Indeed: “(∀n ∈
Z)(a|n =⇒ b|n2)” is equivalent to ”if an integer is divisible a,
then its square is divisible by b”. And you can see that this
sentence contains a and b but not n.

5. The expression

p ∈ Z ∧ p > 1 ∧ (∀j ∈ IN)(∀k ∈ IN)
(

jk = p =⇒ (j = 1 ∨ k = 1)
)

(10.148)

is a sentence. It contains three variables, namely, p, j, and k. The
variable p is free, but j and k are bound. So it should be possible to
find an equivalent sentence that does not contain j and k at all. And,
indeed, here is the sentence: “p is a prime number”. This is not a
proposition: its truth value depends on p. The sentence is true for p
if p is a prime number, and is false if p is not a prime number.
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6. The sentence

(∀p ∈ Z)

(

p > 1∧(∀j ∈ IN)(∀k ∈ IN)
(

jk = p =⇒ (j = 1∨k = 1)
)
)

(10.149)

contains three variables, namely, p, j, and k. They are all bound.
So the sentence is a proposition, and has a definite truth value. The
sentence says “every integer is prime”, which is of course false.

Important remark. Many students, when asked to define “prime
number”, answer by writing57 (10.149). This, of course, is wrong.
The students want to say “p is prime if and only if (10.148) holds”,
but instead they end up saying “every integer is prime”, without un-
derstanding the difference. Please do not do that in your exam.
�

Example 36. In each of the following sentences, the variable n is bound:

• “(∀n ∈ Z)n2 − n is even”. (In this case, the sentence itself says: ”give
n all possible integer values; for each such value, compute n2−n, see if
it is even, and if the answer is “yes” for all value of n, then say “true”;
otherwise say “false”.)

• “(∃n ∈ Z)n2 = 9”. (In this case, the sentence itself says: ”give n all
possible integer values; for each such value, compute n2, and see if it
is equal to 9; and if the answer is “yes” for at least one value of n,
then say “true”; otherwise say “false”.)

• “
∑m

n=1 n
3 =

(
m(m+1)

2

)2
”. (In this case, the sentence says: give n all

possible integer values between 1 and m; for each such value, compute

n3; then add all the results, and see it the sum is equal to
(
m(m+1)

2

)2
;

if it is, say “true”; otherwise say “false”. NOTE: In order to execute
these instructions, you need to know who m is. So m is not a bound
variable; the sentence does not generate a value for m. We have to tell
the sentence who m is. So m is a free variable.)

• “(∀m ∈ IN)
∑m

n=1 n
3 =

(
m(m+1)

2

)2
”. (In this case, the sentence says:

give m all possible natural number values; for each such value, do
what was described in the previous example, to decide if “

∑m
n=1 n

3 =

57If you don’t believe me, I can show you exams in which several students wrote exactly
that. I don’t understand why this happens, but it does.
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(
m(m+1)

2

)2
” is true or not. If if the answer is “true” for all values of

m, then say “true”; otherwise say “false”.) So in this sentence m is
also a bound variable.

Example 37. The same letter variable can occur in a sentence as both
bound and free. So we really should not talk about a variable being free
or being bound in a sentence: we should tall about an occurrence of a
variable being free or bound.

For example, let S be the sentence

(∀n ∈ Z)2|n ∧ n = 7

This very weird sentence says “every integer is even, and n is equal to 7.”
The letter n occurs three times in it, so there are three occurrences of
n in S. The first two are bound, and the third one is free. �

10.1.12 A convention about naming sentences: the expression
P (x)

Sentences, like anything else, can be given letter names. And for sentences
we will usually use capital letters. So, for example, a sentence could be
called A, or B, or P , or Q, or X. But it will be convenient to sometimes
use more complicated names, such as P (x), or P (x, y).

And we will adopt the following very useful convention:

We are alloweda to call a sentence P (x), if x is free (i.e., not bound)
in the sentence, that is, if the sentence does not contain an x-
quantifier or any other expression (such as

∑

x=1 N , or
∏N

x=1) that
assigns values to x.
Similarly, we are allowed to call a sentence P (x, y), if the variables
x and y are free (i.e., not bound) in the sentence, that is, if the
sentence does not contain an x-quantifier or a y-quantifier or any
other expression (such as

∑N

x=1, or
∑N

y=1, or
∏N

x=1,
∏N

y=1), that
assigns values to x or y.

aI am saying “we are allowed to” rather “we have to”. If a sentence has x as
an open variable, we don’t have to call it P (x). We can call it P , if we want to.

Example 38.

• The following sentences can be called P (x):
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1. 2 + 2 = 4,

2. x > 5,

3. (x+ 2)2 = 7x− 3,

4. (y − x)2 ≥ 0,

5. y + 3 + y2,

6. (∀y ∈ IR)(y − x)2 ≥ 0,

7. (∀y ∈ IR)y2 ≥ 0,

8. (x+ y)2 = x2 + 2xy + y2,

9. (∃y ∈ IR)x+ y = 0,

10. (∀y ∈ IR)(∃z ∈ IR)y + z = x.

• and the following sentences cannot be called P (x):

1. (∀x ∈ IR)(x+ 1)2 = x2 + 2x+ 1,

2.
∑5

x=1 x
2 = 55,

3. (∀x ∈ IR)x.0 = 0.

• The following sentences can be called P (x, y):

1. 2 + 2 = 4,

2. x > 5,

3. (x+ 2)2 = 7x− 3,

4. (y − x)2 ≥ 0,

5. y + 3 + y2,

6. (x+ y)2 = x2 + 2xy + y2.

• and the following sentences cannot be called P (x, y):

• (∀y ∈ IR)(y − x)2 ≥ 0,

• (∀y ∈ IR)y2 ≥ 0,

• (∀y ∈ IR)x+ y = 0,

• (∀x ∈ IR)(x+ 1)2 = x2 + 2x+ 1,

• ∑5
x=1 x

2 = 55,

• (∃y ∈ IR)x+ y = 0,
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• (∀y ∈ IR)(∃z ∈ IR)y + z = x.

(NOTE: If it bothers you that we are allowing using the name P (x) for
“2 + 2 = 4” and “y + 3 + y2”, even though these sentences have no x in
them, the reason is very simple: all that matters is that x is not bound in
these sentences. Whether it appears in them or not is irrelevant.)



Math 300, Fall 2020 157

10.1.13 Some problems

Problem 45. Prove each of the following propositions:

1. (∀n ∈ IN)
(
∑n

k=1 k = n(n+1)
2 =⇒∑n+1

k=1 k = (n+1)(n+2)
2

)

.

2. (∀n ∈ IN)
(
∑n

k=1 k
2 = (2n+1)n(n+1)

6 =⇒∑n+1
k=1 k

2 = (2n+3)(n+1)(n+2)
6

)

.

3. (∀n ∈ IN)

(

∑n

k=1 k
3 =

(
n(n+1)

2

)2

=⇒∑n+1
k=1 k

3 =
(

(n+1)(n+2)
2

)2
)

.

4. (∀n ∈ IN)(n < 2n =⇒ n+ 1 < 2n+1) .
5. (∀n ∈ IN)

(

n2 < 2n + 2 =⇒ (n+ 1)2 < 2n+1 + 2
)

.

6. (∀n ∈ IN)
(

n3 < 2n + 257 =⇒ (n+ 1)3 < 2n+1 + 257
)

.

10.2 Substitution

Substitution

• If P (x) is a sentence and t is a term, then the sentence obtained
from P (x) by substituting t for x is called P (t).

Example. If P (x) is the sentence “2 + 2 = 2 + x”, and t is the
term “1 + 1”, then P (t) is the sentence “2 + 2 = 2 + (1 + 1)”.

• We only allow the substitution of t for x in P (x) when t
is is free in P (x), in the sense that P (x) does not contain
a quantifier or any other expression that assigns values
to any of the variables occurring in t.

Example. If P (x) is the sentence “ (∃y ∈ IR)y = x” (which is a sentence that

contains x as an open variable, so we are allowed to call this sentence “P (x) ”),

and t is the term “ y ”, then we are not allowed to substitute t for x in P (x)

and call the resulting sentence P (y). �

In the following example, I will show you why the restriction on term substi-
tution that we have just imposed in the box on “Substitution” is necessary.

Example 39. One of the rules of logic is Rule ∀use, which says that

(∀use) If we have proved (∀x ∈ S)P (x), and t is a term, then we can go to
P (t).
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Suppose we allowed this for any sentence P (x) and any term t, with no
restictions. Then we would be able to take P (x) to be the sentence “ (∃y ∈
IR)y = x ” and t to be the term “y + 1”.

The sentence “ (∀x ∈ IR)P (x) ” says

(∀x ∈ IR)(∃y ∈ IR)y = x .

It is easy to see that this sentence is in fact a true proposition. And it is
easy to prove it. (Proof: Let x be an arbitrary real number. Pick y to be x.
Then y is a witness for (∃y ∈ IR)y = x. So by Rule ∃prove we have proved
(∃y ∈ IR)y = x for arbirary x ∈ IR. Hence by Rule ∀prove we have proved
that (∀x ∈ IR)(∃y ∈ IR)y = x.)

Now that we have proved “ (∀x ∈ IR)P (x) ”, if we had no restriction on
substitutions, we would be able to substitute the term t for x in P (x), thus
getting the sentence P (t), that is, “ (∃y ∈ IR)y = y+1”. But this sentence is
clearly false. So we do not want to be able to prove it from a true sentence.
The only way to solve this problem is to avoid this kind of substitution. �

This is why, in order to avoid the problem that we presented in Example 39,
we impose the restriction explained earlier: in a sentence P (x) we can
only substitute for x a term t that does not contain any variables
that are bound in P (x).

So, for example, we can conclude from the sentence “(∀x ∈ IR)(∃y ∈
IR)y 6= x” that “(∃y ∈ IR)y 6= 5”, or “(∃y ∈ IR)y 6= x”, or “(∃y ∈ IR)y 6=
x2 + z + 35”, but not “(∃y ∈ IR)y 6= y”.

10.3 Forming sentences: the grammar of formal language

The English language has a grammar, i.e., a set of rules that restrict what
combinations of words are acceptable (“grammatically correct”) sentences.
For example, “cows eats grass” is not a grammatically correct English sen-
tence, because the subject is the noun “cows”, which is plural, and the verb
is “eats”, which is singular58

English grammar is very complicated, with lots of rules, an enormous
number of exceptions, and many cases where it is unclear whether some-
thing is a grammatically correct sentence. (For example, people argue about

58English grammar is crazy! Most nouns form their plural by adding an “s” at end, so
the plurals of “cow”, “duck”, “table” are “cows”, “ducks”, “tables”. But for most verbs
it’s the other way around: the singular ends with an “s” (as in “eats”, “swims”, “walks”)
and the plural is without the “s” (as in “eat”, “swim”, “walk”), so “cows eat grass” and
“ducks swim” are grammatically correct, but “cows eats grass” and “ducks swims” are
not. Go figure!
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whether a sentence such as “He is determined to completely destroy the ev-
idence”, containing a split infinitive, is correct or not.)

Formal mathematical language has a very simple grammar. Here is
the part of formal language grammar that has to do with the formation
of sentences. (There is another part that deals with the formation of atomic
sentences. That will be discussed later.)

• Sentences are formed by combining atomic sentences, connectives, and
parentheses.

• Atomic sentences are sentences.
• If A, B are sentences, then we can form the sentences A ∧ B, A ∨ B,
A =⇒ B, and A⇐⇒ B.

• If A is a sentence, then we can form the sentence ∼ A, the negation
of A,

• If A is a sentence and Q is a quantifier, then we can form the sentence
QA, known as an existential quantification of A, if Q is an existential
quantifier, and as a universal quantification of A, if Q is a universal
quantifier59

• When a sentence A is combined with other sentences or connectives to
form another sentence, then: if A is of the form P =⇒ Q, or P ∧Q, or
P ∨ Q, or P ⇐⇒ Q, then A has to be enclosed in parentheses before
we form the combination.

Example 40. Let us say that “if n is an integer then if n is even then n+1
is odd”. To say this, we use the atomic sentences “2|n” (“n is even”) and
“2|n + 1” (“n + 1 is even”) and the connectives “∼” and “(∀n ∈ Z)”. We
negate “2|n + 1” to form the sentence “∼ 2|n + 1”, which says “n + 1 is
odd”. Then we combine “2|n” and “∼ 2|n+1” using the connective “=⇒”,
and form the sentence “2|n =⇒∼ 2|n+1” (“if n is even then n+1 is odd”).
Finally, in order to assert that “2|n =⇒∼ 2|n+1” is true for every integer n,
we quantify “2|n =⇒∼ 2|n+ 1” by writing the quantifier “(∀n ∈ Z)” to its
left. But before we do that, since the sentence “2|n =⇒∼ 2|n+ 1” is of the
form A =⇒ B, we enclosed it in parentheses, by writing “(2|n =⇒∼ 2|n+1)”
. The final result is the sentence

(∀n ∈ Z)(2|n =⇒∼ 2|n+ 1) .

59Quantifers were discussed in Section 10.4.2, on page 161. Recall that: the symbols
“ ∀ ” and “ ∃ ” are the quantifier symbols. Using these symbols, we can form expressions
such as “ (∀x) ” and “ (∃x) ”, called unrestricted quantifiers, and “ (∀x ∈ S) ” and
“ (∃x ∈ S) ”, called restricted quantifiers.
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This sentence says precisely what we want, i.e., that the statement “if n is
even then n+ 1 is odd” is true for every integer n.

Example 41. Suppose we want to say

if a natural number p has the property that whenever
two integers a, b are such that p divides ab it follows
that p divides a or p divides b, then p is a prime number
or p = 1

in formal language.
We observe first that sentence clearly says that something is true for

every natural number p, so the sentence is of the form “ (∀n ∈ IN)A ”. Now,
A is of the form B =⇒ C, where B is the sentence “p has the property that
whenever two integers a, b are such that p divides ab it follows that p divides
a or p divides b”, and C is the sentence “p is a prime number or p = 1”.

Then, if formal language, A says

(∀a ∈ Z)(∀b ∈ Z)
(

p|ab =⇒ (p|a ∨ p|b)
)

,

and B says
p = is a prime number ∨ p = 1 .

So our sentence says

(∀p∈ IN)
(

(∀a∈Z)(∀b∈Z)
(

p|ab=⇒(p|a∨p|b)
)

=⇒(p is a prime number∨p=1)
)

.

This is not yet a completely formal sentence, because it has the words “is
a prime number”. In order to get a completely formal sentence, we can
substitute for “p is a prime number” the meaning of “p is a prime number”
in formal language, that is,

(∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

.

The result is

(∀p ∈ IN)

(

(∀a ∈ Z)(∀b ∈ Z)
(

p|ab =⇒ (p|a ∨ p|b)
)

=⇒
(

(∀k ∈ IN)
(
k|p =⇒ (k = 1 ∨ k = p)

)
∨ p = 1

)
)

.

Notice that this sentence contains several letter variables, namely, p, a, b,
and k, but they are all bound variables, so the sentence is a proposition.
And we can see this by rephrasing the sentence without using any letter
variables at all. as follows:
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if a natural number has the property that whenever it divides
the product of two integers it follows that it divides one
of them, then the natural number is either one or a prime
number.

10.4 How sentences are constucted

10.4.1 The seven logical connective symbols

There are seven logical connectivesa. They are:

1. ∼ : negation (”it’s not the case that”),

2. ∧ : conjunction (“and”),

3. ∨ : disjunction (“or”),

4. =⇒ : implication (“implies”, “if · · · then”),

5. ⇐⇒ : biconditionsl (”if and only if”),

6. universal quantifiers,

7. existential quantifiers.
aA Logical connective is a symbol that is used to combine sentences to form new

sentences.

10.4.2 The quantifiers
• A quantifier is an expression

(∀x) or (∀x ∈ S) or (∃x) or (∃x ∈ S) .

where x is a variable and S is a set.

• The symbol “∀” is called the universal quantifier symbol.

• The symbol “∃” is called the existential quantifier symbol.

• “(∀x)” is an unrestricted universal quantifier,

• “(∀x ∈ S)” is a restricted universal quantifier.

• “(∃x)” is an unrestricted existential quantifier,

• “(∃x ∈ S)” is a restricted existential quantifier,
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10.4.3 Sentence types

Every mathematical sentence is of one, and

only one, of the following eight types:

1. atomic,

2. negation (“∼ A”),

3. conjunction (“A ∧ B”),

4. disjunction (“A ∨ B”),

5. implication (“A =⇒ B”),

6. biconditional (“A ⇐⇒ B”),

7. universal (“(∀x)P (x)” or “(∀x ∈ S)P (x)”)

8. existential (“(∃x)P (x)” or “(∃x ∈ S)P (x)”).

10.5 Forming sentences

• Sentences are formed by combining atomic sentences, connectives, and
parentheses.

• Atomic sentences are sentences.

• If A, B are sentences, then we can form the sentences A ∧ B, A ∨ B,
A =⇒ B, and A⇐⇒ B.

• If A is a sentence, then we can form the sentence ∼ A, the negation
of A,

• If A is a sentence and Q is a quantifier, then we can form the sentence
QA, known as an existential quantification of A, if Q is an existential
quantifier, and as a universal quantification of A, if Q is a universal
quantifier.

• When a sentence A is combined with other sentences or connectives to
form another sentence, then: if A is of the form P =⇒ Q, or P ∧Q, or
P ∨ Q, or P ⇐⇒ Q, then A has to be enclosed in parentheses before
we form the combination.
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Example 42. Let us say that “if n is an integer then if n is even then n+1
is odd”. To say this, we use the atomic sentences “2|n” (“n is even”) and
“2|n + 1” (“n + 1 is even”) and the connectives “∼” and “(∀n ∈ Z)”. We
negate “2|n + 1” to form the sentence “∼ 2|n + 1”, which says “n + 1 is
odd”. Then we combine “2|n” and “∼ 2|n+1” using the connective “=⇒”,
and form the sentence “2|n =⇒∼ 2|n+1” (“if n is even then n+1 is odd”).
Finally, in order to assert that “2|n =⇒∼ 2|n+1” is true for every integer n,
we quantify “2|n =⇒∼ 2|n+ 1” by writing the quantifier “(∀n ∈ Z)” to its
left. But before we do that, since the sentence “2|n =⇒∼ 2|n+ 1” is of the
form A =⇒ B, we enclosed it in parentheses, by writing “(2|n =⇒∼ 2|n+1)”
. The final result is the sentence

(∀n ∈ Z)(2|n =⇒∼ 2|n+ 1) .

This sentence says precisely what we want, i.e., that the statement “if n is
even then n+ 1 is odd” is true for every integer n.

10.5.1 When do we put parentheses?

When a sentence A is combined with other sentences or
connectives to form another sentence, then: if A is of
the form P =⇒ Q, or P ∧ Q, or P ∨ Q, or P ⇐⇒ Q, then
A has to be enclosed in parentheses before we form the
combination.

Example 43. Suppose you want to say that

If an integer n is even, then n2 is divisible by 4.

You start with the atomic sentences “ 2|n ” (“n is even”) and “ 4|n2 ” (“n2

is divisible by 4 ”).
Then you combine these sentences using the implication connective, and

get
2|n =⇒ 4|n2 , (10.150)

that is, “if n is even, then n2 is divisible by 4 ”.
Finally, it is clear that the sentence is intended to be an assertion for

every integer n, so you quantify it with a universal quantifier. But before
you quantify, you have to remember that (10.150) is an implication, that is,
a sentence of the form A =⇒ B. So before you quantify it, you have to
enclose it in parentheses.
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The final result is the proposition

(∀n ∈ Z)(2|n =⇒ 4|n2) . (10.151)

What would have happened if you had not put the parentheses? You
would have ended up with

(∀n ∈ Z)2|n =⇒ 4|n2 , (10.152)

which is a completely different sentence! Sentence (10.152) says that the sen-
tence “(∀n ∈ Z)2|n ” implies the sentence “ 4|n2 ”. In other words, (10.152)
says: “if every integer is even, then n is divisible by 4”. This is not even a
proposition, because the third “n” is an open variable. �

10.6 The 14 logical rules

Here is the list of the fourteen logical rules.

1
Rule for using a conjunction (Rule ∧use)

If P , Q are sentences, and you have proved P ∧Q, then you
are allowed to go to P , and you are also allowed to go to Q.

2
Rule for proving a conjunction (Rule ∧prove)

If P , Q are sentences, and you have proved P and have proved
Q, then you are allowed to go to P ∧Q,

3
Rule for using an implication (Rule =⇒use, a.k.a.

Modus Ponens)

If P , Q are sentences, and you have proved P =⇒ Q and have
proved P , then you are allowed to go to Q.

4
Rule for proving an implication (Rule =⇒prove)

If P , Q are sentences, and you have proved Q assuming P ,
then you are allowed to go to P =⇒ Q.

5
Rule for using a biconditional (Rule ⇐⇒use)

If P , Q are sentences, and you have proved P ⇐⇒ Q, then
you can go to P =⇒ Q and to Q =⇒ P .
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6
Rule for proving a biconditional (Rule ⇐⇒prove)

If P , Q are sentences, and you have proved P =⇒ Q and
Q =⇒ P , then you are allowed to go to P ⇐⇒ Q.

7
Rule for using a disjunction (Rule ∨use, a.k.a. the

proof by cases rule)

If P , Q, R are sentences, and you have proved P∨Q, P =⇒ R,
and Q =⇒ R, then you can go to R.

8
Rule for proving a disjunction (Rule ∨prove)

Suppose P and Q are sentences. Then, if you have proved
∼ P =⇒ Q or ∼ Q =⇒ P then you can go to P ∨Q.

9

The proof by contradiction rule

(I) If, assuming A, we prove C, which is a contradiction,
then we can go to ∼ A.

(II) If, assuming ∼ A, we prove C, which is a contradiction,
then we can go to A.

10

Rule for using universal sentences (Rule ∀use, a.k.a.
the “universal specialization rule”)

If P (x) is a sentence and t is a term that does not contain
any variables that are bound in P (x), then

• if you have proved (∀x)P (x), you can go to P (t);

• If you have proved that (∀x ∈ S)P (x), and that t ∈ S,
then you can go to P (t).

11

Rule for proving universal sentences (Rule ∀prove,
a.k.a. the “universal generalization rule”)

(I) If, starting with “Let x be arbitrary”, you prove P (x),
then you are allowed to go to (∀x)P (x).

(II) If, starting with “Let x ∈ S be arbitrary”, or “Let x be
an arbitrary member of S”, you prove P (x), then you
are allowed to go to (∀x ∈ S)P (x).
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12

Rule for using existential sentences (Rule ∃use, a.k.a.
the “existential specialization rule”)

If P (x) is a sentence, and the letter a is not in use as the
name of anything, then:

• If you have proved (∃x)P (x), then you can introduce
a witness for (∃x)P (x), and call it a, so that this new
object will satisfy P (a).

• In addition, if S is a set, and you have proved that
(∃x ∈ S)P (x), then you can stipulate that a ∈ S as
well.

13

Rule for proving existential sentences, (Rule ∃prove,
a.k.a. the “existential generalization rule”)

Suppose P (x) is a sentence and w is a term that does not
contains any variables that are bound in P (x). Then

(I) If w is a witness for (∃x)P (x) (i.e., if P (w)), then you
can go to (∃x)P (x).

(II) If w is a witness for (∃x ∈ S)P (x) (i.e., if w ∈ S and
P (w)), then you can go to (∃x ∈ S)P (x).

14
“Substitution of equals for equals” (Rule SEE)

If P (x) is a sentence, s and t are terms, and you have proved
s = t or t = s, and you have also proved P (s), then you can
go to P (t).

10.7 Using the rules: examples of “pure logic” proofs

In this section I will illustrate how to use the rules of logic by giving several
examples of proofs that involve no mathematics, only the rules of logic.

Example 44. Let A, B, C be propositions. Prove, using the rules of logic,
that

(
A =⇒ (B =⇒ C)

)
⇐⇒

(

(A ∧B) =⇒ C
)
. (10.153)

Solution.

We want to prove a biconditional sentence. For that purpose. we use Rule ⇐⇒prove:
to prove P ⇐⇒ Q, prove P =⇒ Q and Q =⇒ P .
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Proof of “
(
A =⇒ (B =⇒ C)

)
=⇒

(

(A ∧B) =⇒ C
)

”.

Assume A =⇒ (B =⇒ C) . We want to prove (A ∧B) =⇒ C.

Assume A ∧B . We want to prove C.
It follows from A ∧B that A. [Rule ∧use]
It follows from A and A =⇒ (B =⇒ C) that B =⇒ C.

[Rule =⇒use]
It follows from A ∧B that B, [Rule ∧use]

It follows from B and B =⇒ C that C . [Rule =⇒use]

Since we have proved C assuming A∧B, we conclude that (A ∧B) =⇒ C .

[Rule =⇒prove]

Since we have proved (A ∧B) =⇒ C assuming A =⇒ (B =⇒ C), we can go to

(

A =⇒ (B =⇒ C)
)

=⇒
(
(A ∧B) =⇒ C

)
, (10.154)

completing the proof of “
(

A =⇒ (B =⇒ C)
)

=⇒
(
(A ∧B) =⇒ C

)
”.

Proof of “
(

(A ∧B) =⇒ C
)

=⇒
(

A =⇒ (B =⇒ C)
)

”.

Assume (A ∧B) =⇒ C . We want to prove A =⇒ (B =⇒ C).

Assume A . We want to prove B =⇒ C.

Assume B . We want to prove C.

Since we have A and B, we can go to A ∧B. [Rule ∧prove]

Since we have A ∧B and (A ∧B) =⇒ C, we can go to C .
[Rule =⇒use]

Since we have proved C assuming B, we can go to B =⇒ C .

[Rule =⇒use]

Since we have proved B =⇒ C assuming A, we can go to A =⇒ (B =⇒ C) .

[Rule =⇒use]

Since we have proved A =⇒ (B =⇒ C) assuming (A ∧B) =⇒ C, we can go to

(
(A ∧B) =⇒ C

)
=⇒

(

A =⇒ (B =⇒ C)
)

, (10.155)

completing the proof of “
(
(A ∧B) =⇒ C

)
=⇒

(

A =⇒ (B =⇒ C)
)

”.
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Since we have proved both implications (10.154) and (10.155), we can conclude
from Rule ⇐⇒prove that

(

A =⇒ (B =⇒ C)
)

⇐⇒
(
(A ∧B) =⇒ C

)
, (10.156)

Q.E.D.

Example 45. Let A be a proposition. Prove, using the rules of logic, that

A⇐⇒∼∼ A . (10.157)

Remark 11. Formula (10.157) captures our intuition that ∼∼ A is “the
same as A”. �

Solution.

In order to prove the biconditional sentence A ⇐⇒∼∼ A, we will prove the impli-
cations A =⇒∼∼ A and ∼∼ A =⇒ A.

Proof of “A =⇒∼∼ A”.
Assume A. We want to prove ∼∼ A.
We will prove ∼∼ A by contradiction.
Assume ∼ A.
Then A∧ ∼ A. [Rule ∧prove]

Since we have proved a contradiction assuming ∼ A, we get ∼∼ A. 11100000
[Proof by contradiction rule]

Since we have proved ∼∼ A assuming A, we get A =⇒∼∼ A . [Rule =⇒prove]
Now assume ∼∼ A. We want to prove A.
We will prove A by contradiction.
Assume ∼ A.
Then ∼ A∧ ∼∼ A. [Rule ∧prove]

Since we have proved a contradiction assuming ∼ A, we get A.
[Proof by contradiction rule]

Since we have proved A assuming ∼∼ A, we get ∼∼ A =⇒ A . [Rule =⇒prove]
Since we have proved A =⇒∼∼ A and ∼∼ A =⇒ A, we get A⇐⇒∼∼ A.

Q.E.D.

Example 46. Let A, B be propositions. Prove, using the rules of logic,
that

A =⇒ (A ∨B) . (10.158)

Remark 12. Formula (10.158) captures the obvious idea expressed that if
“A” is true then “A ∨B” must be true. �

Solution.
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In order to prove the implication “A =⇒ (A ∨B)”, we will use Rule =⇒prove.

For that purpose, we will assume that A and prove that A ∨B.
Assume that A. We want to prove that A ∨B.
In order to prove “A ∨B” we will use Rule ∨prove.
For that purpose, we will assume that ∼ A and prove that B.

Assume that ∼ A. We want to prove that B.
We will prove that B by contradiction.

Assume that ∼ B.
A∧ ∼ A.

Since we proved a contradiction assuming that ∼ B, we conclude that B.
[Proof by contradiction rule]

Since we have proved that B assuming that ∼ A, we conclude that A∨B.[∨prove]

Since we have proved thatA∨B assuming thatA, we conclude that A =⇒ (A ∨B) .

[Rule =⇒prove]

Q.E.D.

Example 47. Let A, B be propositions. Prove, using the rules of logic,
that

(A =⇒ B) ⇐⇒ (∼ A ∨B) . (10.159)

Remark 13. Formula (10.159) captures the idea expressed by the truth
table for the implication: “A =⇒ B” is true when A is false or B is true,
which means that “A =⇒ B” is “the same as ‘∼ A ∨B’ ”. �

Solution.

In order to prove the biconditional sentence “(A =⇒ B) ⇐⇒ (∼ A ∨ B)”, we will
prove the implications “(A =⇒ B) =⇒ (∼ A∨B)” and “(∼ A∨B) =⇒ (A =⇒ B)”.

Proof of “(A =⇒ B) =⇒ (∼ A ∨B)”.
Assume “A =⇒ B”. We want to prove “∼ A ∨B”.
For this purpose, we will use Rule ∨prove. We will prove “∼ B =⇒∼ A”.
Assume that ∼ B. We want to prove that ∼ A.
We will prove that ∼ A by contradiction.

Assume that A.
B [Rule =⇒use]
B∧ ∼ B [Rule ∧prove]

Since we have proved a contradiction assuming that A, we get ∼ A . [PCR]

Since we have proved that ∼ A assuming that ∼ B, we get ∼ A ∨B . [∨prove]

Since we proved “∼ A∨B” assuming “A =⇒ B”, we get (A =⇒ B) =⇒ (∼ A ∨B) .

[Rule =⇒prove]

Proof of “(∼ A ∨B) =⇒ (A =⇒ B)”.
Assume “∼ A ∨B”. We want to prove “A =⇒ B”.
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Assume that A. We want to prove that B.
To prove that B using “∼ A ∨B” we use Rule ∨use.
For that purpose, we must prove that ∼ A =⇒ B and B =⇒ B.
Proof that ∼ A =⇒ B.

Assume that ∼ A. We want to prove that B.
Assume that ∼ B.
A∧ ∼ A. [Rule ∧prove]

Since we have proved a contradiction assuming that ∼ B, we get B. [PCR]

Since we have proved “B” assuming “∼ A”. we get ∼ A =⇒ B . [=⇒prove]
Proof that B =⇒ B.

Assume that B.
Then B.

So B =⇒ B . [Rule =⇒prove]
Since we know that ∼ A ∨B, and we have proved that ∼ A =⇒ B and that
B =⇒ B, we can conclude that B. [Rule ∨use]

Since we have proved “B” assuming “A”, we conclude that A =⇒ B. [Rule
=⇒prove]
Since we have proved that A =⇒ B assuming “∼ A ∨ B”, we conclude that

(∼ A ∨B) =⇒ (A =⇒ B) . [Rule =⇒prove]

Since we have proved that (∼ A∨B) =⇒ (A =⇒ B) and (A =⇒ B) =⇒ (∼ A∨B),

we conclude that (A =⇒ B) =⇒ (∼ A ∨B) . [Rule ⇐⇒prove]

Q.E.D.

Example 48. Let A, B be propositions. Prove that the proposition

A =⇒ (A ∧B) (10.160)

cannot be proved using only the rules of logic.

Solution. If it was possible to prove (10.160) using only the rules of logic, then it
would follow that no matter which propositions we substitute for the letters A, B,
the resulting proposition is true.

However, suppose we take A to be the sentence “1 is odd”, and B to be the

sentence “1 is even”’. Then B is false, so “A ∧ B” is false. But A is true, so

“A =⇒ (A ∧B)” is false. Therefore “A =⇒ (A ∧B)” cannot be proved using only

the rules of logic. �

Example 49. Let P (x), Q(x), be one-variable predicates, and let S be a
set.

1. Prove, using the rules of logic, the sentence

(∀x ∈ S)(P (x)∧Q(x)) ⇐⇒
(

(∀x ∈ S)P (x)∧(∀x ∈ S)Q(x)
)

(10.161)
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(Here is an example: suppose S is the set of all people, “P (x)” stands
for “x likes tea” and “Q(x)” stands for “x likes coffee”. Then the sen-
tence “(∀x ∈ S)(P (x) ∧Q(x))” says “everybody likes tea and coffee”,
and the sentence “(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)” says “everybody
likes tea and everybody likes coffee”. It is clear that both sentences
say the same thing, so it is obvious that they are equivalent, so that
the sentence (10.161) is true.)

2. Prove that the sentence

(∀x ∈ S)(P (x)∨Q(x)) ⇐⇒
(

(∀x ∈ S)P (x)∨(∀x ∈ S)Q(x)
)

(10.162)

cannot be proved using the rules of logic. (HINT: Find an example of
a pair of predicates P (x), Q(x) for which (10.162) is false.)

Solution. First, we prove (10.161).

Sentence (10.161) is a biconditional, of the form A ⇐⇒ B. So, in order to
prove it, we will use Rule ⇐⇒prove, and prove both A =⇒ B and B =⇒ A.

Proof of “(∀x ∈ S)(P (x) ∧Q(x)) =⇒
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

”.

Assume that
(∀x ∈ S)(P (x) ∧Q(x)) . (10.163)

We want to prove that (∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x).

For this purpose, we will use Rule ∧prove, and prove the sentences
(∀x ∈ S)P (x) and (∀x ∈ S)Q(x).

Proof of (∀x ∈ S)P (x):

Let u be an arbitrary member of S.

Then P (u) ∧Q(u). [Rule ∀use, from (10.163)]

Therefore P (u). [Rule ∧use, from P (u) ∧Q(u).

So we have proved P (u) for an arbitary u ∈ S, and then (∀x ∈ S)P (x) .

[Rule ∀prove]
Proof of (∀x ∈ S)Q(x):

Let u be an arbitrary member of S.

Then P (u) ∧Q(u). [Rule ∀use, from (10.163)]

Therefore Q(u). [Rule ∧use, from P (u) ∧Q(u).
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So we have provedQ(u) for an arbitary u ∈ S, and then (∀x ∈ S)Q(x) .

[Rule ∀prove]

We have proved (∀x ∈ S)P (x) and (∀x ∈ S)Q(x). Therefore

(∀x ∈ S)P (x) ∧ (∀x ∈ S)P (x) , (10.164)

by Rule ∧prove.

Since we have proved 10.164) assuming (10.163), we can go to

(∀x ∈ S)(P (x) ∧Q(x)) =⇒
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

, (10.165)

completing the proof of (10.165).

Proof of “
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

=⇒ (∀x ∈ S)(P (x) ∧Q(x))”

Assume
(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x) . (10.166)

We want to prove (∀x ∈ S)(P (x) ∧Q(x)).

Let u be an arbitrary member of S.

It follows from (10.166) by Rule ∧use that (∀x ∈ S)P (x).

And it also follows that (∀x ∈ S)Q(x).

Since (∀x ∈ S)P (x), and u ∈ S, it follows by Rule ∀use that P (u).
Since (∀x ∈ S)Q(x), and u ∈ S, it follows by Rule ∀use that Q(u).

Since we have proved P (u) and Q(u), it follows by Rule ∧prove

that P (u) ∧Q(u) .

Since we have proved P (u) ∧ Q(u) for arbitrary u in S, it follows by
Rule ∀prove that

(∀x ∈ S)(P (x) ∧Q(x)) . (10.167)

Since we have proved (10.167) assuming (10.166), it follows from Rule =⇒prove

that
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

=⇒ (∀x ∈ S)(P (x) ∧Q(x)) . (10.168)

completing the proof of (10.168).
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Since we have proved (10.165) and (10.168), it follws by Rule ⇐⇒prove that

(∀x ∈ S)(P (x) ∧Q(x)) ⇐⇒
(

(∀x ∈ S)P (x) ∧ (∀x ∈ S)Q(x)
)

, (10.169)

Q.E.D.
We now prove that (10.162) cannot be proved. We do this by exhibitng

examples of a set S and predicates P (x), Q(x) for which (10.162) is false.
Let S be the set of all people. Let “P (x)” stand for “x likes tea” and

“Q(x)” stand for “x likes coffee”. Then the sentence “(∀x ∈ S)(P (x) ∨
Q(x))” says “everybody likes tea or coffee”, and the sentence “(∀x ∈ S)P (x)∨
(∀x ∈ S)Q(x)” says “everybody likes tea or everybody likes coffee”. It is
clear that both sentences say totally different things. The sentence “every-
body likes tea or everybody likes coffee” is certainly false, because it is a
disjunction “everybody likes tea ∨ everybody likes coffee”, and both dis-
juncts (“everybody likes tea” and “everybody likes coffee”) are false, so the
disjunction is false.

10.8 Some problems, with solutions

Problem 46. For the sentence

(∀n ∈ Z)(∃m ∈ Z)m > n , (10.170)

i. Translate the sentence into reasonable English.

ii. List all the variables that occur in the sentence, and indicate which
ones are free (i.e. open) and which ones are bound (i.e., dummy, or
closed). If a variable occcurs in the sentence more than once, it may
happen that some of the occurrences are free and others are boiund.
If this happens, say it.

iii. Indicate whether the sentence is a proposition (i.e., has no open vari-
ables) or not.

iv. If the sentence is a proposition, then

a. indicate whether it is true or false,
b. prove the assertion that you made to answer part a.

Solution.

i. Sentence (10.170) says: “for every integer n there exists an integer m
such that m > n”.

ii. The variables occurring in (10.170) are m and n. Both are bound.
The sentence has no free variables.



Math 300, Fall 2020 174

iii. The sentence is a proposition.

iv.a The sentence is true.

iv.b Proof of (10.170):

Let n ∈ Z be arbitrary.
We want to prove “(∃m ∈ Z)m > n”, and for that purpose we
are going to find a witness.
Chooe w = n+ 1.
Why do I choose w this way? Because it works. How do I know it
works? In this case, it is quite obvious: I need an integer greater
than n, so n+ 1 is a natural choice.
Then w ∈ Z and w > n.
So w is a witness for “(∃m ∈ Z)m > n”.
Hence (∃m ∈ Z)m > n. [Rule ∃prove]

So we have proved “(∃m ∈ Z)m > n” for arbitrary n ∈ Z.

Hence (∀n ∈ Z)(∃m ∈ Z)m > n . [Rule ∀prove] Q.E.D.

Problem 47. For the sentence

(∃m ∈ Z)m > n , (10.171)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem
46.

Solution.

i. Sentence (10.171) says: “there exists an integer m such that m > n”.

ii. The variables occurring in (10.171) are m and n. The variable m is
bound, and m is free.

iii. The sentence is a not a proposition.

iv.a,b Since the sentence is not a proposition, questions [iv.a] and [iv.b] do
not apply.

Problem 48. For the sentence

(∃m ∈ Z)(∀n ∈ Z)m > n , (10.172)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem
46.
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Solution.

i. Sentence (10.172) says: “there exists an integerm such thatm is larger
than every integer”.

ii. The variables occurring in (10.172) are m and n. Both are bound.
The sentence has no free variables.

iii. The sentence is a proposition.

iv.a The sentence is false.

iv.b Proof that (10.172) is false:

We want to prove that ∼ (∃m ∈ Z)(∀n ∈ Z)m > n.

We will do it by contradiction.

Assume that (∃m ∈ Z)(∀n ∈ Z)m > n.

Pick a witness w, so w ∈ Z and (∀n ∈ Z)m > n. [Rule ∃use]
Then w > w + 1. [Rule ∀use].
But (∀n ∈ Z)n ≤ n+ 1.

So w ≤ w + 1. [Rule ∀use]
Hence ∼ w > w + 1.

So w > w + 1∧ ∼ w > w + 1 [Rule ∧prove]

And “w > w + 1∧ ∼ w > w + 1” is a contradiction.

So we have proved a contradiction assuming that (∃m ∈ Z)(∀n ∈ Z)m > n.

Therefore ∼ (∃m ∈ Z)(∀n ∈ Z)m > n . [Proof by contradiction rule]

Q.E.D.

Problem 49. For the sentence

(∀n ∈ Z)(2|n =⇒ 4|n2), (10.173)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem
46.

Solution.

i. Sentence (10.173) says: “the square of every even integer is divisible
by 4”.

ii. The only variable occurring in (10.173) is n. And it is bound. The
sentence has no free variables.
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iii. The sentence is a proposition.

iv.a The sentence is true.

iv.b Proof of (10.173):

We want to prove the universal sentence (10.173), and we are going to do
it using Rule ∀prove.

Let n be an arbitrary integer.

We want to prove that 2|n =⇒ 4|n2. And for that purpose we are
going to use Rule =⇒prove.

Assume tbat 2|n.
Then (∃k ∈ Z)n = 2k.

Write n = 2k, k ∈ Z. [Rule ∃use]
Then n2 = (2k)2 = 4k2.

Furthermore, k2 ∈ Z. [Reason: k ∈ Z and (∀k ∈ Z)k2 ∈ Z.]

So k2 is a witness for (∃k ∈ Z)n2 = 4k.

Therefore (∃k ∈ Z)n2 = 4k. [Rule ∃prove]
So 4|n2. [Definition of “|”]

We have proved “4|n2” assuming “2|n”.

Hence 2|n =⇒ 4|n2. [Rule =⇒prove]

We have proved “2|n =⇒ 4|n2” for arbitrary n ∈ Z.

Hence (∀n ∈ Z)(2|n =⇒ 4|n2) [Rule ∀prove]
Q.E.D.

Problem 50. For the sentence

(∀n ∈ Z)2|n =⇒ 4|n2 , (10.174)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem
46.

Solution.

i. Sentence (10.174) says: “if every integer is even then n2 is divisible by
4”.
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ii. The only variable occurring in (10.170ax) is n. This variable occurs
in (10.174) three times; the first two occurrences are bound, and the
third one is free.

iii. The sentence is a not a proposition.

iv.a,b Since the sentence is not a proposition, questions [iv.a] and [iv.b] do
not apply.

Problem 51. For the sentence

(∀n ∈ Z)(2|n ∧ 4|n2), (10.175)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem
46.

Solution.

i. Sentence (10.175) says: “for every integer n, n is even and n2 is divis-
ible by 4”.

ii. The only variable occurring in (10.173) is n. And it is bound. The
sentence has no free variables.

iii. The sentence is a proposition.

iv.a The sentence is false.

iv.b Short proof that (10.175) is false:

If “(∀n ∈ Z)(2|n∧4|n2)” was true, then “2|n∧4|n2” would be true for
every n ∈ Z.

But “2|n ∧ 4|n2” is false for n = 1.

So “(∀n ∈ Z)(2|n ∧ 4|n2)” is false.

Q.E.D.

Problem 52. For the sentence

(∀n ∈ Z)(2|n ∨ 4|n2), (10.176)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem
46.
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Solution.

i. Sentence (10.176) says: “for every integer n, n is even or n2 is
divisible by 4”.

ii. The only variable occurring in (10.173) is n. And it is bound.
The sentence has no free variables.

iii. The sentence is a proposition.
iv.a The sentence is false.

iv.b Short proof that (10.176) is false:

If “(∀n ∈ Z)(2|n ∨ 4|n2)” was true, then “2|n ∨ 4|n2” would be
true for every n ∈ Z.

But “2|n ∨ 4|n2” is false for n = 1.

So “(∀n ∈ Z)(2|n ∨ 4|n2)” is false.

Q.E.D.

Problem 53. For the sentence

(∀n ∈ Z)(2|n⇐⇒ 4|n2), (10.177)

perform exactly the same tasks i., ii., iii., and iv. (a. and b.) as in Problem
46.

Solution.

i. Sentence (10.173) says: “for every even integer n, n is even if and only
if n2 is divisible by 4”.

ii. The only variable occurring in (10.173) is n. And it is bound. The
sentence has no free variables.

iii. The sentence is a proposition.

iv.a The sentence is true.

Short proof of (10.177):

We want to prove the universal sentence (10.177). According to Rule ∀prove,
we can do this by proving “(2|n⇐⇒ 4|n2)” for an arbitarry integer n.

Let n be an arbitrary integer.

We want to prove the biconditional sentence “2|n ⇐⇒ 4|n2”. Ac-
cording to Rule ⇐⇒prove, we can do this by proving the implications
“2|n =⇒ 4|n2” and “4|n2 =⇒ 2|n”.
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Short proof of “2|n =⇒ 4|n2”.

We have already proved that (∀n ∈ Z)(2|n =⇒ 4|n2) in our solution
of problem 49.

So “2|n =⇒ 4|n2” follows by Rule ∀use.

Short proof of “4|n2 =⇒ 2|n”.

Assume 4|n2.
We will prove “2|n” by contradiction.

Assume ∼ 2|n.
Then n is odd.

So n2 is odd. [Reason: the product of two odd integers is
odd]

That is, ∼ 2|n2.
But 4|n2, so n2 is even.

That is, 2|n2.
Hence 2|n2∧ ∼ 2|n2, which is a contradiction.

Since we have proved a contradiction assuming ∼ 2|n, we can
conclude that 2|n.
Since we have proved 2|n assuming 4|n2, we can conclude, thanks
to Rule =⇒prove, that 4|n2 =⇒ 2|n.

Since we have proved “2|n =⇒ 4|n2” and “4|n2 =⇒ 2|n”, we can
conclude, thanks to Rule ⇐⇒prove, that 2|n⇐⇒ 4|n2.

We have proved “2|n⇐⇒ 4|n2” for arbitrary n ∈ Z.

Hence (∀n ∈ Z)(2|n⇐⇒ 4|n2) [Rule ∀prove]
Q.E.D.
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11 A more detailed introduction to logic

11.1 First-order predicate calculus

The language most mathematicians use to talk about mathematical objects
(numbers of various kinds, sets, functions, lists, points, lines, planes, curves
of various kinds, spaces where we can do geometry, graphs, and millions of
other things) is a first-order predicate calculus.

So let us explain what this means.

• The language is a “predicate calculus” because we can use it to express
predicates.

So let us review what “predicates” are.

11.1.1 Predicates

Remember that

A predicate is a sentencea involving one or more (or zero) variables, in
such a way that the sentence has a definite truth valueb for each choice
of values of the variables.

a“Sentence” means the same as “statement”, or “assertion”.
bThe truth value of a sentence is “true” if the sentence is true and “false” if the

sentence is false.

For example:

• “Alice likes Mark” is a zero-variables predicate. It is either true or
false.

• “x likes Mark” is a one-variable predicate. It is true or false depending
on who x is. For example, suppose that Alice likes Mark but Andrew
does not like Mark. Then “x likes Mark” is true when x =Alice but
“x likes Mark” is false when x =Andrew.

If we call this predicate P (x), then P (Alice) is true and P (Andrew)
is false.

• “x likes y” is a two-variables predicate. It is true or false depending
on who x and y are. For example, suppose that Alice likes Mark,
Andrew does not like Mark, Andrew likes Alice, and Mark does not
like Andrew. Then “x likes y” is true when x =Alice and y =Mark,
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and when x =Andrew and y =Alice, but “x likes y” is false when
x =Andrew and y =Mark.

If we call this predicate P (x, y), then P (Alice,Mark) is true but on
the other hand P (Mark,Andrew) is false.

• If S is the set of all people, then “(∀x ∈ S)x likes y” says “everybody
likes y”. This is a one-variable predicate. We could call this predicate
Q(y), and then we could define Q(y) as follows:

if y ∈ S then Q(y) means (∀x ∈ S)P (x, y) , (11.178)

or, in purely formal language:

(∀y ∈ S)
(

Q(y) ⇐⇒ (∀x ∈ S)P (x, y)
)

(11.179)

• “x likes y more than x likes z” is a three-variables predicate.

• “2 + 2 = 4” and “2 + 2 = 5” are zero-variables predicates. They are
either true or false. (And, of course, “2+2 = 4” is true and “2+2 = 5”
is false.)

• “x > 0” and “2|n” are one-variable predicates. They are true or false
depending on who x (or n) is. For example, “x > 0” is true x = 3 but
is false for x = −5. And “2|n” is true for n = 4 but is false for n = 5.

• “x > y” and “m|n” are two-variables (i.e., binary) predicates. They
are true or false depending on who x and y (or m and n) are. For
example, “the sentence x > y” is true for x = 5 and y = 4, but is false
for x = 5 and y = 6. And “m|n” is true for m = 3 and y = 6, but is
not true for m = 3 and y = 7.

• “x+y = z”, “x+y > z”, and “n|m+q2” are three-variables predicates.
The predicate “x + y = z” is,true for x = 2, y = 3 and z = 5, but is
false for x = 2, y = 3 and z = 4. The predicate “x+ y > z” is true for
x = 2, y = 3 and z = 4. but is false for x = 2, y = 3 and z = 5. The
predicate “n|m+ q2” is true for n = 5, m = 9, and q = 6, but is false
n = 5, m = 7, and q = 6.

• “x+ 2y2 − z > u” and “a = bq + r and 0 ≤ r < |b|” are four-variables
predicates. The predicate “x+ 2y2 − z > u” is true for x = 2, y = 4.
z = 3, u = 4, but is false for x = 2, y = 1. z = 3, u = 3, The predicate
“a = bq+ r and 0 ≤ r < |b|” is true for a = 23, b = 5, q = 4 and r = 3,
but is false for a = 23, b = 5, q = 4 and r = 2.
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11.2 Free and bound variables, quantifiers, and the number
of variables of a predicate

As was explained in the previous section, in a predicate such as “x > y”,
the variables x, y are free variables, that is, variables that are free to be
given any value we want. We can plug in values for x and y, and for each
choice of values the resulting sentence has a definite truth value, that is, is
true or false.

You should think of a predicate as a processing device, with sev-
eral “input channels”. The input channels are the open variables.
Each input channel is open, in the sense that the entrance to the
channel is open so you can can put things in, or free, in the sense
that we are free to put things in there. Once you have put in a
value for, say, the variable x, then x is no longer open: it becomes
closed, or bound.
Once you have put in values in all the input channels, the device
processes these inputs, and produces a answer: true, or false.

If, on the other hand, the predicate “x > y” appears in a text after a
statement such as

Let x = 5, y = 3.

then the variables x and y are no longer free: they are bound variables60,
because they are “attached” to particular values.

We now look at another, very important way to turn free variables into
bound variables.

Let us consider, for example, the predicates

(∀y ∈ IR)x+ 2y2 − z > u (11.180)

and
(∃q ∈ Z)(∃r ∈ Z)(a = bq + r , and 0 ≤ r < |b|) . (11.181)

You may think that these are four-variables predicates, because each one of
them contains four variables. (Predicate (11.180) contains the variables x,
y, z and u. Predicate (11.181) contains the variables a, b, a and r.)

But this is not right:

60Bound variables are also called closed variables, because they are not open: the
“input channel” through which we can input values for the variables is closed.
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(11.180) is a three-variables predicate, and (11.181)
is two-variables predicate..

Let me explain.

11.2.1 An example: a predicate with three free variables and one
bound variable

We first look at the predicate

(∀y ∈ IR)x+ 2y2 − z > u . (11.182)

• The predicate (11.182) is built from the predicate “x+2y2−z > u” by
quantifying it, i.e., putting a universal quantifier (∀y ∈ IR) in front.

• The unquantified predicate “x + 2y2 − z > u” contains the variables
x, y, z, u. These are four open variables.

• So, if you are asked the “truth question”

Is “x+ 2y2 − z > u” true or false?

then you have to reply with a question of your own:

Who are x, y, z and u?

• But in the quantified predicate (11.182) the variable y is quantified.

• So, if you are asked the “truth question”

Is “(∀y ∈ IR)x+ 2y2 − z > u” true or false?

then you have to reply with the question:

Who are x, z and u?

• In the predicate “x + 2y2 − z > u”, the four variables x, y, z and u
are open variables, that is, “slots”, or “input channels”, where you can
put in (or “plug in”) values for each of the variables.
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• When you fill in the four slots by plugging in values for the variables,
you get a proposition, i.e., a sentence that has a definite truth value.

A proposition is a sentence with no open
variables

So a proposition is just true or false, whereas a predicate with
open variables is true or false depending on the values of the
variables.
Example:

1. The sentence “m ≥ n” has two open variables. It is true
if, for example, m = 3 and n = 1, and it is false if, for
example, m = 3 and n = 4.

2. The sentence “(∀m ∈ IN)m ≥ n” is true if, for example,
n = 1, and it is false if, for example, n = 2. So this
sentence has one open variable, namely, n.

3. The sentences

(∃n ∈ IN)(∀m ∈ IN)m ≥ n

and
(∀n ∈ IN)(∀m ∈ IN)m ≥ n

do not have any open variables. So they are propositions.
The first one is true. (Reason: Take n = 1. Then for
arbitrary m ∈ IN m ≥ 1.) The second one is false.
(Reason: Take m = 1, n = 2. Then it is not true that
m ≥ n.)

• So, for example, if you plug in the values x = 2, y = 4, z = 3, u = 4,
into the sentence

x+ 2y2 − z > u

you get the proposition
19 > 4, ,

which is true.
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• But in the quantified predicate “(∀y ∈ IR)x + 2y2 − z > u”, there is
no y-slot. The three variables x, z and u are open variables, that is,
slots or input channels where you can put in values. But y is not an
open variable.

• When you fill in the slots by plugging in values for the three open
variables, you get a proposition.

• So, for example, if you plug in the values x = 2, z = −3, u = 4, into
the sentence

(∀y ∈ IR)x+ 2y2 − z > u

then you get the sentence

(∀y ∈ IR)2 + 2y2 + 3 > 4

which is equivalent to the sentence

(∀y ∈ IR)2y2 + 5 > 4 .

And this sentence is true. (Proof: Let y ∈ IR be arbitrary. Then
2y2 ≥ 0. But 5 > 4. So 2y2 + 5 > 4. Hence “2y2 + 5 > 0” is true for
arbitrary y ∈ IR. Therefore “(∀y ∈ IR)2y2 + 5 > 4” is true.)

• The key point here is that the sentence “(∀y ∈ IR)x+ 2y2 − z > u”
does not have a y-slot where you can plug in a value of y.
That’s because the sentence itself decides which value or values
of y to plug in. The quantifier (∀y ∈ IR) says: “let y be an arbitrary
real number”. And then, with the values of x, z and u supplied by
you, the truth value of the resulting sentence is determined. There is
no need to ask “who is y?”

Another way to see this is as follows: when you universally quantify a
sentence by putting in front of it the universal quantifier “(∀y ∈ IR)”, this
adds to the sentence a “generator of y-values”, that is, a new component
that tells the sentence what value of y to use. More precisely, the universal
quantifier “(∀y ∈ IR)” says “Let y be an arbitrary real number”. And this
closes the y-input channel, so that it is no longer possible to plug a y-value
into the sentence from outside.
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The sentence x+ 2y2 − z > u is a processing device that has four input

channels: the x-channel, the y-channel, the z-channel, and the u-channel.
When values for the four variables are inputted into the sentence, the sentence
produces a truth value. The four variables x, y, z, u are open, or free. They
are open, because the input channels are open so that values of the variables
can be put into them. They are free, because the variables are not tied to any
particular value.
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The quantified sentence (∀y ∈ IR)x+ 2y2 − z > u is a combination of two

interconnected processing units: the original unquantified sentence “x+2y2−
z > u”, and the quantifier “(∀y ∈ IR)”. The quantifier generates a value for
the quantified variable y (by saying “let y be an arbitrary real number”) and,
by doing so, it closes the y input channel, so that y is no longer free; we
cannot choose a value for y and plug it in. The other three channels remain
open. So in this sentence x, z and u are open variables. but y is closed, or
bound.

The other three letter variables (x, z and u) remain open. So we can plug
in values for them in order to obtain propositions that have a definite truth
value.

Summarizing:

• Even though the predicate “(∀y ∈ IR)x + 2y2 − z > u” appears to
contain four letter variables, only three of these variables (x, z and u)
are open. The other variable, y, is bound, or closed.

• This means that the predicate “(∀y ∈ IR)x + 2y2 − z > u” is a three
variables, or three arguments, predicate. Therefore:

– For each choice of values for x, z and u, the predicate becomes a
proposition, i.e. a sentence with a definite truth value.
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– If we want to give a name to this predicate, then we can of course
call it P , but if we want to indicate the names of the free variables,
we should call it P (x, z, u).

– But we must not call it P (x, y, z, u), because if we give it such
a name we would erroneously be suggesting that this predicate
has a “y-channel” where we can input values for the variable y.

• For example, “(∀y ∈ IR)x + 2y2 − z > u” is true for x = 4, z = 2,
u = 1. (Proof: We want to prove that (∀y ∈ IR)4 + 2y2 − 2 > 1,
that is, that (∀y ∈ IR)2 + 2y2 > 1. Let y ∈ IR be arbitrary. Then
y2 ≥ 0, so 2y2 ≥ 0, so 2 + 2y2 ≥ 2, and 2 > 1, so 2 + 2y2 > 1. Since
“2+2y2 > 1” has been proved to be true for arbitrary real y, it follows
that (∀y ∈ IR)2 + 2y2 > 1. Q.E.D.)

• The predicate “(∀y ∈ IR)x + 2y2 − z > u” is false for x = 4, z = 2,
u = 8. (Proof: We want to prove that “(∀y ∈ IR)4 + 2y2 − 2 > 1” is
not true, i.e., that “(∀y ∈ IR)2 + 2y2 > 8” is not true. Take y = 0.
Then “2 + 2y2 > 8” is not true, because “2 + 0 > 8” is not true. So
“(∀y ∈ IR)4 + 2y2 − 2 > 1” is not true.Q.E.D.)

• The “truth question”, i.e., the extra question we need to ask is order
to be able to tell if “(∀y ∈ IR)x + 2y2 − z > u” is true or false, is the
question: “who are x, z and u?”

• in order to have enough information to determine if the sen-
tence “(∀y ∈ IR)x+2y2−z > u” is true or false, we do not have
to ask “who is y?”, because once you are given the values of
x, z and u, the quantified sentence itself determines if it is
true or false, because it is up to the sentence to decide if it’s
true for all y or not, and it’s not up to you to choose a value
for y.

11.2.2 A second example: a predicate with two free variables and
two bound variables

We now look at the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) . (11.183)

As I said before, on page 183, (11.181) is a two-variables predicate..

• Predicate (11.183) contains the variables a, b, q and r. But q and r
are quantified. So, if you are asked the “truth question”
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Is “(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)” true or false?

then you have to reply with a question of your own:

Who are a and b?

The variables a and b in (11.183) are “slots”, or “input channels”,
where you can put in (or “plug in”) a value for each of the variables,
and then you get a proposition.

• So, for example, if you plug in the values a = 23, b = 11, into the
sentence

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)
then you get the sentence

(∃q ∈ Z)(∃r ∈ Z)(23 = 11q + r ∧ 0 ≤ r < 11) .

And this sentence is true. (Proof: To prove an existential statement
we use rule ∃use: we exhibit values of q and r for which the proposition
“23 = 11q + r ∧ 0 ≤ r < 11” is true. Take q = 2, r = 1. Then 23 =
11q+ r and 0 ≤ r < 11. Hence “23 = 11q+ r ∧ 0 ≤ r < 11” is true for
some q, r ∈ Z. Therefore “(∃q ∈ Z)(∃r ∈ Z)(23 = 11q+r∧0 ≤ r < 11”
is true.)

• The key point here is that the sentence

(∃q ∈ Z)(∃r ∈ Z)(23 = 11q + r ∧ 0 ≤ r < 11)

does not have a q-slot or an r-slot where you can plug in
values for q and r. That’s because the sentence itself decides
which value or values of q and r to plug in. The sentence itself61

decides which values of q and r it has to look at, and then, with the
values of a and b supplied by you, the truth value of the resulting
sentence is determined.

61Remember: you must think of a sentence as a processing device. The unquantified
sentence “a = bq+r∧0 ≤ r < |b|” does the following: once it has been fed values for a, b, q
and r, it finds out if “a = bq+r∧0 ≤ r < |b|” is true or not; if it is true is says “yes”; if it is
false it says “no”. The quantified sentence “(∃q ∈ Z)(∃r ∈ Z)(23 = 11q+ r ∧ 0 ≤ r < 11)”
does a much more complicated job: once it has been fed values for a and b, the sentence
looks at all possible values of q and r, and sees whether it can find one choice of values of q
and r for which “23 = 11q+ r∧0 ≤ r < 11” is true; and then, if it find such values, it says
“yes”; and if it cannot find any values of q and r for which “23 = 11q+ r ∧ 0 ≤ r < 11” is
true, it says “no”.
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• Another way to see this is as follows: the sentence “a = bq + r ∧ 0 ≤
r < |b|” has four input channels that are open, or free, so you can put
into each channel a value of the corresponding variable.

But when you existentially quantify the sentence twice by putting in
front of it the two existential quantifiera “(∃q ∈ Z)” and “(∃r ∈ Z)”,
this adds to the sentence a “generator of q-values” and a “generator
of r-values”, that is, two new components that tell the sentence what
values of q and r to look at. More precisely, the existential quantifiers
“(∃q ∈ IR)” and “(∃r ∈ IR)” do the following:

– They look for a q-value and an r-value that make the sentence
“a = bq + r ∧ 0 ≤ r < |b|” true.

– If they find such values, then they send to the sentence the mes-
sage “yes, we have found values that make you true”, and then
the sentence produces the final verdict “yes, true”.

– If they do not find such values, then they send to the sentence
the message “no, we have not found values that make you true”,
and then the sentence produces the final verdict “no, not true”.
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 T or F

T0<r<|b|a=bq+r

a=bq+r 0<r<|b|

a

a=23
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The sentence a = bq + r ∧ 0 ≤ r < |b| is a processing device that has four

input channels:the a-channel, the q-channel, the r-channel, and the b-channel.
When values for the four variables are inputted into the sentence, the sentence
produces a truth value. The four variables a, q, r, b are open, or free. They
are open, because the input channels are open so that values of the variables
can be put into them. They are free, because the variables are not tied to any
particular value.
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The quantified sentence (∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) is a com-

bination of three interconnected processing units: the original unquantified
sentence “a = bq + r ∧ 0 ≤ r < |b|)”, and the two quantifiers “(∃q ∈ Z”,
“(∃r ∈ Z”. The quantifiers generate values for the quantified variablea q, r.
(They look for values of q, r that will make “a = bq+r∧0 ≤ r < |b|)” true. If
they find them, then they send one pair of such values to the main processing
unit “a = bq + r ∧ 0 ≤ r < |b|)”, which then says “yes, true”. If they do not
find them, then they send some values to the main processing unit, but these
values will not work, so the main processing unit wil say “no, not true”.) By
doing so, the quantifiers close the q and r input channels, so that q and f
are no longer free; we cannot choose values for q and r and plug them in.
The other two channels remain open. So in this sentence a and b are open
variables. but q and r are closed, or bound.

The other two letter variables (a and b) remain open. So we can plug
in values for them in order to obtain propositions that have a definite truth
value.

Summarizing:

• Even though the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)

appears to contain four letter variables, only two of these variables (a
and b) are open. The other variables, q and r, are bound, or closed.
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• This means that the predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)
is a two variables, or two arguments, predicate. Therefore:

– For each choice of values for a and b, the predicate becomes a
proposition, i.e. a sentence with a definite truth value. (And
the Division Theorem tells us that the truth value is “true” for
all choices of integers a and b such that b 6= 0, that is, that the
proposition62

(∀a ∈ Z)(∀b ∈ Z)
(

b 6= 0 =⇒

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)
)

(11.184)

is true.

– Suppose we want to give a name to the two-variables predicate

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) .
We can, of course, call it P . But if we want to indicate the names
of the free variables, we should call it P (a, b).

– But we must not call it P (a, b, q, r), because if we give it such
a name we would erroneously be suggesting that this predicate
has a “q-channel” and an “r-channel”, where we can input values
for the variables q, r.

• The “truth question”, i.e., the extra question we need to ask is order
to be able to tell if “(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|)” is
true or false, is the question: “who are a and b?”

• in order to have enough information to determine if the sen-
tence “(∃q ∈ Z)(∃r ∈ Z)(a = bq+ r∧0 ≤ r < |b|)” is true or false,
we do not have to ask “who are q and r?”, because once you
are given the values of a and b, the quantified sentence itself
determines if it is true or false, because it is up to the sen-
tence to decide if the required values of q and r exists or not,
and it’s not up to you to choose valuea for q and r.

62Notice that (11.184) is a proposition, i.e., a predicate with no open variables at all
(or, if you prefer, with zero open variables), because in (11.184) all four variables that
occur are quantified, so a, b, q and r are closed variables. For the sentence (11.184), if you
are asked “is this true”, you do not need to ask any “truth question”, because you do not
need values of any variables to determine if the sentence is true.
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11.2.3 Another example, illustrating the fact that only open vari-
ables really matter

Some natural numbers are products of two prime numbers; for example,
4 = 2 × 2, 6 = 2 × 3, 35 = 5 × 7, and so on, Other natural numbers are
not products of two prime numbers; for example, 18 = 2 × 3 × 3, and the
Fundamental Theorem of Arithmetic tells us that that there is no other way
to write 18 as a product of primes, so in particular 18 is not the product of
two primes.

So we can consider the predicate “n is a product of two prime numbers”.
And we can call this predicate A(n). (We could just have called is “A”, but
we choose the name “A(n)” to emphasize the fact that this predicate has
the open variable n.) Then, according to the conventions we made before
about naming predicates, A(6) is the proposition “6 is the product of two
primes”, and A(7) is the proposition “7 is the product of two primes”, so
A(6) is true, and A(7) is false.

You can think of the predicate A(n) as a “black box”: you input a value
of n, the predicate does some work, and produces an answer: “true” or
“false”. (For example, for n = 6 A(n) is true, and for n = 7 A(n) is false.)

But we can also look inside the box, and analyze in more detail how this
predicate works. That is, we can observe that A(n) says that

There exist prime numbers p, q such that n = pq.

So now our predicate has three variables, p, q, and n!
How come? Has the number of variables of A(n) suddenly changed? Has

A(n) become a three-variables predicate? You may think so, because now
A(n) seems to have three variables: p, q and n.

But the answer is: No! A(n) is still a one-variable predicate!
The variables p and q are bound, because they are quantified. Precisely,
A(n) says, in semiformal (almost formal) language:

(∃p ∈ IN)(∃q ∈ IN)(p is prime ∧ q is prime ∧ n = pq) . (11.185)

So, even though A(n) appears to have three variables, namely, p, q and n,
two of them are internal variables63, within the sentence (11.185). The
sentence itself generates the values of p and q that it needs in order to answer

63If you think of the sentence “(∃p ∈ IN)(∃q ∈ IN)(p is prime)” as a processing unit, you
will see that it has two existential quantifiers that generate values of p and q. But outside
the processing unit all one sees is that certain values of n are fed in and certain ‘true”s
and “false”s come out. The variables p and q are part of the internal operation of the
device.
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its true-false question, and when the sentence ends p and q are free variables
again. And, in particular, outside the sentence

(∃p ∈ IN)(∃q ∈ IN)(p is prime ∧ q is prime ∧ n = pq)

the variables p and q have no value.
Another way to see that p and q have no value, is to observe that A(n)

can equally well be written as

(∃x ∈ IN)(∃y ∈ IN)(x is prime ∧ y is prime ∧ n = xy) , (11.186)

or as

(∃u ∈ IN)(∃v ∈ IN)(u is prime ∧ v is prime ∧ n = uv) . (11.187)

Sentences (11.185), (11.186), and (11.187) say exactly the same
thing. The only difference is in the names of the variables that, inside the
box, the sentence uses to process the inputs and produce an output.

From outside the box, we do not see these variables. That’s why the
letters p, q in (11.185), as well as the letters x, y in (11.186), and
the letters u, v in (11.187), are internal variables, that have no
value outside the sentence.

And this is not the end of the story. “p is prime” is itself a complex
predicate. In fact, “p is prine” stands for

p > 1 ∧ (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)

. (11.188)

This means that A(n) can also be written as

(∃p ∈ IN)(∃q ∈ IN)

((

p > 1 ∧ (∀k ∈ IN)
(

k|p =⇒ (k = 1 ∨ k = p)
)
)

∧
(

q > 1 ∧ (∀k ∈ IN)
(

k|q =⇒ (k = 1 ∨ k = q)
)
)

∧ n = pq

)

.(11.189)

Now one may think that A(n) is a four-variables predicate, because it in-
volves the variables n, p, q and k. But by now you know better: the new
variable k is also bound, so the only open variable in (11.189)) is still n.
That means that even if you write it in the form (11.189), A(n) is
still a one-variable predicate.

Actually, the story doesn’t end here either. “k|p” is also a complex
preddcate with an internal structure of its own: is stands for “(∃j ∈ Z)p =
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kj”. So, if we substitute this for “k|p” in (11.189), we get an even more
detalied version of A(n), namely,

(∃p ∈ IN)(∃q ∈ IN)
((

p > 1 ∧ (∀k ∈ IN)
(

(∃j ∈ Z)p = kj =⇒ (k = 1 ∨ k = p)
)
)

∧
(

q > 1 ∧ (∀k ∈ IN)
(

(∃j ∈ Z)q = kj =⇒ (k = 1 ∨ k = q)
)
)

∧n = pq

)

. (11.190)

Now A(n) apears to involve five variables: n, p, q, k and j. But this time
you will have no problem figuring out that A(n) is still a one-variable
predicate, because the only open variable in (11.190) is still n, and
all the other variables are bound.

Problem 54. Draw a diagram of the sentence (11.190) as a processing unit,
similar to the diagrams that appear on pages 187 and 192.

Make sure that your diagram shows that there is only only one input
channel. �

11.2.4 Dummy variables

So far, we have seen that variables that appear in a sentence but are quanti-
fied are “internal variables”, or “closed variables”, or “bound variables”. If
you think of a sentence as a “processing unit”, or “processing device”, that
takes in certain inputs and produces “true-false” outputs, then the closed
(or bound, or internal) variables are variables that the sentence itself gen-
erates and uses to do its processing work. So the sentence does not need to
be fed the values of these variables, and does not produce values of those
variables that an outside obsevrer can see.

There is another way in which a variable appearing in a sentence can be
a closed (or bound, or internal) variable. The sentence may contain a part
that generates values of some variable in order to do a computation.

Consider. for example, the sentence

n∑

k=1

(a+ rk) = b , (11.191)

This sentence contains five letter variables, namely, a, r, b, k, and n.
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Which ones of these five variables are open?
The best way to answer this question is by thinking of (11.191) as a

processing device, opening it up to look into its internal structure, and
figuring out what the device does.

Suppose you ask the device the truth question:

Is it true that
∑n

k=1(a+ rk) = b?

Then the device will not know what to do, because in order to get started
the device needs to be given the values of a, b, r, and n. (Maybe we should
think of (11.191) as an inteligent device, that can ask questions. Then if you
ask the truth question, the device will answer with a question: who are a,
b, r and n?)

Suppose you do feed the device by inputting values for a, b,r and n.
Then the device will do the following:

1. First, the CPU (central procssing unit) will report to the summation
component Σ—that is, the component that computes the summation
∑n

k=1(a+ rk)—the values of a, b, r and n that it has received from
you.

2. Then Σ will perform the following calculation:

(a) First, it will write the list of all values of k, from 1 to n. (This
is something it can do, because it knows who n is, since it has
received this information from the CPU.)

(b) Then it will compute a+ rk for each of the values of k in the list.
(Again, Σ knows how to do this, because it knows who a and r
are.)

(c) Then it will take all those values of a+ rk that it has computed,
and add them.

(d) Finally, it will report the result to the CPU. (Maybe, in order
to facilitate communication between Σ and the CPU, they will
introduce letter variables. For example, they may decide to call
the result of the summation s, and then Σ will report the value
of s to the CPU. But we need not concern ourselves with the
variable s, because that’s an internal variable used within the
device for the various parts to communicate with each other.)

3. The CPU will then compare the result reported by the summation
unit with b, and determine if they are equal.
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4. If they are equal, the CPU will report to you the answer “true”.

5. If they are not equal, the CPU will report to you the answer “false”.

The main point of this is that k is an internal variable used by the
sentence to perform its calculation. The values of k are generated
by the sentence itself. So the sentence need not be given the value
of k. And that’s why

1. If asked the truth question, the sentence will ask “who are a, b, r and
n””.

2. The sentence will not ask “who is k?”, because the sentence itself
generates the values of k it needs.

3. k is not an open variable in (11.191)

4. The open variables of (11.191) are a, b, r and n.

Let’s just look at one more example. Let us analyze the following four
sentences

(∀n ∈ IN)
(

(∃m ∈ IN)
m∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p2
)

, (11.192)

(∀n ∈ IN)
(

(∃m ∈ IN)

m∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p3
)

, (11.193)

(∀n ∈ IN)(∃m ∈ IN)
( m∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p2
)

(11.194)

and

(∀n ∈ IN)(∃m ∈ IN)
( m∑

k=1

k3 = n =⇒ (∃p ∈ IN)n = p3
)

(11.195)

Each of these sentences contains four variables, namely, n, m, k, and p.
And I am sure that this time you can see right away what is going on: all

four variables are closed. Three of them (n, m, and p) are quantified.
and the variable k is also closed because the sentence itself generates the
values of k that it needs to perfom its calculations.

So the sentences (11.192), (11.193), (11.194), and (11.195),
are propositions.

And then of course each of the sentences is true or false. Which leads
me to a natural question, that I will ask you to answer.
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Problem 55. Which of the propositions (11.192), (11.193), (11.194), (11.195),
are true, and which ones are false?

NOTE: All these propositions are of the form (∀n ∈ IN)P (n), where P (n)
is a one-variable predicate having n as the open variable.

If you want to prove that a sentence of this form is true, then you need
a reasoned argument, starting with “Let n be an arbitrary natural num-
ber.” (You may also try a proof by induction, but in this case I would not
recommend that.) If you want to prove that it is false, then you need a
counterexample, i.e., an example of an n for which the one-variable sentence
P (n) is false.

HINT: The answer to this problem is actually very easy. All you have to do
is use the result of one of your earlier homework problems. (I can narrow
this down a bit further: it’s one of the problems in the third set of lecture
notes.) Using this, plus a little bit of logic (for example, truth values of
implications), each of the four propositions should just require a couple of
lines on your part.) �

A variable such as the k in
∑n

k=1 t(k) (where t(k) is some expression
containing k, such as k, or k2, or rk, or a+rk), is called a “dummy variable”.

Let us define this term precisely. (The definition I am about to give is
taken from Wolfram MathWorld.)

Definition 16. A dummy variable is a variable that appears in a cal-
culation only as a placeholder and which disappears completely in
the final result. �

And every dummy variable is bounded.

Example 50. Naturally, summations are not the only type of expressions
where some of the variables are bound variables

Examples of dummy variables are:

1. the k in a summation such as
∑n

k=1 t(k),

2. the k in a product such as
∏n

k=1 t(k),

3. the k in the name of a list, such as (pk)
n
k=1,

4. the x in the name {x : P (x)} of a set,

5. the x in an integral such as
∫ b

a
f(x)dx.

6. the x in a limit such as limx→a f(x). �
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Example 51. Let us look at the sentence

(∃a ∈ IR)(∃b ∈ IR)
(

{u ∈ IR : a ≤ u ≤ b} 6= ∅ ∧
∫ b

a

x2dx = c
)

. (11.196)

This sentence contains the letter variables a, b, u, x, and c.
Of these five letters, four are bound variables:

1. the variables a and b are bound because they are quantified;

2. the variable u is bound because it is a dummy variable, used as part
of the name {u ∈ IR : a ≤ u ≤ b} of a set;

3. the variable x is bound because it is a dummy variable, used as a
variable of integration.

It follows from this analysis that

1. Sentence (11.196) defines a one-variable predicate.

2. The open variable in sentence (11.196) is c.

3. If you think of sentence (11.196) as a processing device, then this
device will take values of c as inputs, and produce a true-false answer
as output.

4. If you ask the “truth question” is (11.196) true?, then the device
(11.196) cannot answer because it does not know who c is. So the
device will answer your question with another question: who is c?

5. But, in order to be able to answer the truth question, the device does
not need to ask “who is a?”, or “who is b?” or “who is u?”, or “who
is x?”. The device itself will generate the values of a, b, u and x it
needs, and these values will be part of the calculations that (11.196)
performs, and will not be seen by the outside world.

11.2.5 How to tell if a variable is dummy

Here are two ways to see that a variable is dummy.

1. The variable is dummy if “it isn’t really there”, in the sense that we
can eliminate it completely. For example,
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(a) The set {u ∈ IR : a ≤ u ≤< b} is an object very well known to
all of us: it is none other than the closed interval [a, b]. So we
can say the same thing as (11.196) by writing “[a, b]” instead of
“{u ∈ IR : a ≤ u ≤< b}”. And we get

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧
∫ b

a

x2dx = c
)

, (11.197)

which says exactly the same thing as (11.196). but now there is
no “u” anymore.

(b) The definite integral
∫ b

a
x2dx is a number that is completely de-

termined by a and b. We do not need to ask “who is x?” in
order to determine this number. Actually, the integral can be
computed, and the result is 1

3(b
3 − a3). So we can say the same

thing as (11.197) by writing “1
3(b

3 − a3)” instead of “
∫ b

a
x2dx”,

and we get

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ 1

3
(b3 − a3) = c

)

, (11.198)

or, more nicely,

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

, (11.199)

which say exactly the same thing as (11.197). but now there is
no “x” anymore.

2. A variable is dummy if it can be replaced by any other variable (except
with variables that are already being used for something else) without
changing the meaning of the sentence. For example,

(a) If instead of the expression “{u ∈ IR : a ≤ u ≤ b}” we use a
different letter and write something like “{v ∈ IR : a ≤ v ≤ b}”,
or “{z ∈ IR : a ≤ z ≤ b}”, or maybe “{α ∈ IR : a ≤ α ≤ b}”, or
“{⋄ ∈ IR : a ≤ ⋄ ≤ b}”, nothing changes. So, for example, we can
rewrite (11.196) as

(∃a ∈ IR)(∃b ∈ IR)
(

{q ∈ IR : a ≤ q ≤ b} 6= ∅ ∧
∫ b

a

x2dx = c
)

,

(11.200)
which says exactly the same thing as (11.196). but now there is
no u anymore.
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(b) If we replace the definite integral
∫ b

a
x2dx by the expression

∫ b

a
h2dh,

or
∫ b

a
σ2dσ, or

∫ b

a
m2dm, nothing changes. So, for example, we

can rewrite (11.200) as

(∃a∈ IR)(∃b∈ IR)
(

{q∈ IR : a≤q≤b} 6=∅ ∧
∫ b

a

k2dk = c
)

, (11.201)

which says exactly the same thing as (11.196). but now there is
no u and no x anymore.

Summarizing: Sentence (11.196) defines a one-variable predicate,
with the open variable c. So we can call this predicate P (c).

And then we may ask: can we tell what this predicate P (c) is? Can we
find a simpler expression for P (c)?

It turns out that, in this case, the answer is “yes, we can”:

P (c) just says “c ≥ 0” .

Proof. We want to prove that (∀c ∈ IR)(P (c) ⇐⇒ c ≥ 0).

Let c ∈ IR be arbitrary.

We want to prove that P (c) ⇐⇒ c ≥ 0.

For that purpose, we will prove the implications P (c) =⇒ c ≥ 0 and
c ≥ 0 =⇒ P (c).

Proof that P (c) =⇒ c ≥ 0.

Assume P (c).

This means that

(∃a ∈ IR)(∃b ∈ IR)
(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

.

Pick real numbers a, b such that a, b] 6= ∅ and b3 − a3 = 3c.

Since a, b] 6= ∅, it follows that a ≤ b. (Reason: if a > b then the
set [a, b], i.e., the set {u ∈ IR : a ≤ u ≤ b}, would be empty.)

Since a ≤ b, we have a3 ≤ b3.

So b3 − a3 ≥ 9.

So 3c ≥ 0.

Hence c ≥ 0 .

Proof that c ≥ 0 =⇒ P (c).

Assume that c ≥ 0.
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Let a = 0, b = 3
√
3c.

Then b ≥ 0.

So the closed interval [a, b] (i.e., the interval [0, b]) is nonemtpy.

And b3 − a3 = 3c.

Hence [a, b] 6= ∅ ∧ b3 − a3 = 3c.

So
(∃a ∈ IR)(∃b ∈ IR)

(

[a, b] 6= ∅ ∧ b3 − a3 = 3c
)

.

That is, P (c) holds.

Since we gave proved that P (c) =⇒ c ≥ 0 and that c ≥ 0 =⇒ P (c),
we can conclude that P (c) ⇐⇒ c ≥ 0.

Since we have proved that P (c) ⇐⇒ c ≥ 0 for arbitrary real c, we have

proved that (∀c ∈ IR)
(

P (c) ⇐⇒ c ≥ 0). Q.E.D.

11.3 First-order predicate calculus

The language we use in mathematics is a predicate calculus because it
enables us to predicates. And it is first-order because we can quantify
variables, and write things such as “(∀x ∈ P )x likes Mark” (meaning, if P is
the set of all people, “everybody likes Mark”), but we cannot quantify over
predicates. That is,

• We cannot say things such as “‘for every predicate P (x) and every
predicate Q(x) if (∀x)P (x) is true and (∀x)Q(x)) is true, then if
(∀x)(P (x) ∧Q(x)) is true.”

• We can say this for a particular pair of predicates P (x), Q(x) (for
example, we can say “if everybody likes coffee and everybody likes
milk then everybdoy likes coffee and milk”, or we can say “if everybody
studies and everybody reads books then everybdoy studies and reads
books”), but we cannot say the same thing for arbitrary predicates
P (x), Q(x).

It turns out that there are “second order” languages, in which you can say
things like “‘for every predicate P (x) and every predicate Q(x) if (∀x)P (x)
is true and (∀x)Q(x)) is true, then if (∀x)(P (x) ∧ Q(x)) is true.” But the
language we are using here is a first-order language, in which those things
cannot be said.
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11.4 Logical connectives

In firts-order predicate calculus, one or more sentences can be combined to
form other sentences. The symbols used to combine sentences are called the
logical connectives. And there are exactly seven of them

11.4.1 The seven logical connectives

And here they are, in all their glory:

The seven logical connectives

1. The negation symbol∼
(meaning “no”, “it’s not the case that”).

2. The conjunction symbol,∧
(meaning “and”).

3. The disjunction symbol,∨
(meaning “or”).

4. The implication symbol,=⇒
(meaning “implies”, or “if . . . then”).

5. The biconditional symbol,⇐⇒
(meaning “if and only if”).

6. The existential quantifier symbol,∃
(meaning “there exists . . . such that”, or “it is possible to pick . . .
such that”).

7. The universal quantifier symbol,∀
(meaning “for all”,or “for avery”, or “for an arbitrary”).

11.4.2 How the seven logical connectives are used to form sen-
tences

These seven symbols are used to form new sentences as follows:

1. The negation symbol ∼ is a one-argument connective: it can be
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put in front of a sentence A to form the sentence ∼ A (meaning “no
A”, or “it’s not the case that A”). For example: “∼ 3|5” means “3
does not divide 5”.

2. The conjunction symbol ∧ is a binary connective, or two-argument
connective: it can be put between two sentences A, B to form the
sentence A ∧ B, (meaning “A and B”). For example: “(∼ 3|5) ∧ 3|6”
means “3 does not divide 5 and 3 divides 6”.

3. The disjunction symbol ∧ is a binary connective, or two-argument
connective: it can be put between two sentences A, B to form the
sentence A ∨ B, (meaning “A or B”). For example: “x > 0 ∨ x < 0”
means “x > 0 or x < 0”.

4. The implication symbol =⇒ is a binary connective, or two-argument
connective: it can be put between two sentences A, B to form the
sentence A =⇒ B, (meaning “A implies B”, or “if A then B”). For
example: “x 6= 0 =⇒ x2 > 0” means “if x > 0 then x2 > 0”.

5. The biconditional symbol ⇐⇒ is a two-argument connective, that
is binary connective: it can be put between two sentences A, B to
form the sentence A ⇐⇒ B, (meaning “A if and only if B”). For
example: “(2|n ∧ 3|n) ⇐⇒ 6|n” means “2 divides n and 3 divides n if
and only if 6 divides n”.

6. The existential quantifier symbol ∃ has a more complicated grammar:

(a) Using ∃ we can form existential quantifiers.

(b) There are two kinds of existential quantifiers:

i. Unrestricted existential quantifiers are expressions

(∃x),
that is: left parenthesis, ∃, variable, right parenthesis.

ii. Restricted existential quantifiers are expressions

(∃x ∈ S),
that is: left parenthesis, ∃, variable, ∈, name of a set, right
parenthesis.

(c) Then we can take a sentence A (or A(x)) and put a restricted or
unrestricted existential quantifier in front, forming the sentences
(∃x)A (“there exists x such that A”, or “it is possible to pick
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x such that A”) and (∃x ∈ S)A (“there exists x belonging to S
such that A”, or “it is possible to pick x belonging to S such that
A”).

7. The universal quantifier symbol ∀ has a grammar similar to that of
the existential quantifier symbol:

(a) Using ∀ we can form universal quantifiers.

(b) There are two kinds of universal quantifiers:

i. Unrestricted universal quantifiers are expressions

(∀x),
that is: left parenthesis, ∀, variable, right parenthesis.

ii. Restricted universal quantifiers are expressions

(∀x ∈ S),
that is: left parenthesis, ∀, variable, ∈, name of a set, right
parenthesis.

(c) Then we can take a sentence A (or A(x)) and put a restricted or
unrestricted universal quantifier in front, forming the sentences
(∀x)A (“for all x, A”, or “A i strue for arbitrary x”) and (∀x ∈
S)A (“for all x belonging to S, A”, or “A is true for arbitrary x
in S”).

11.5 Conjunctions (“∧”, i.e., “and”)
The symbol

∧
is the conjunction symbol, and means “and”.

Hence,

• If P is the sentence

Today is Friday

and Q is the sentence

Tomorrow is Saturday
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then “P ∧Q” stands for the sentence

Today is Friday and tomorrow is Saturday.

• A sentence of the form P ∧Q is a conjunction.

• In a conjunction P ∧Q, the sentences P , Q are the conjuncts.

11.5.1 Proving a conjunction: a stupid but important rule

The rule for proving a conjunction (Rule ∧prove)

If P , Q are sentences, and you have proved P and you have proved Q,
then you are allowed to go to P ∧Q.

IMPORTANT REMARK. You may wonder “what is the point of such a
rule?” But you cannot dispute that it is a reasonable rule! Of course, if you
know that “today is Friday” and you also know that “tomorrow is Saturday”,
then you will have no doubt that “today is Friday and tomorrow is Saturday”
is true. So you should have no problem accepting (and remembering) this
rule. You may not understand why it is needed. So let me tell you why.
Suppose it was a computer doing proofs, rather than a human being like
you. Suppose the computer is told that today is Friday and then it is told
that tomorrow is Saturday. How will the computer know that it can write
“today is Friday and tomorrow is Saturday”. It won’t, unless you tell it.
Computers do not ”know” anything on their own. If you want the computer
to “know” that once it knows that “today is Friday” and also that “tomorrow
is Saturday”, then it can write “today is Friday and tomorrow is Saturday”,
then you have to tell the computer. In other words, you have to input Rule
∧prove into the computer. Proofs are mechanical manipulations of strings of
symbols, and should therefore be doable by a computer. So Rule ∧prove is
needed.

And now let’s go back to you, the human being. How do you know
that, once you find out that “today is Friday” and also that “tomorrow is
Saturday”, then you can say (or write) “today is Friday and tomorrow is
Saturday”. You know this because you know Rule ∧prove. You know
this rule so well, it is embedded so deeply in your mind, that you don’t even
realize that the rule is there. But the rule is there!

Here is another way to think about this. Suppose you didn’t know any
English at all. Then you would not know what the word “and” means, and
you would not know that, if you have two sentences P and Q, then you can
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say or write “P and Q”. As you learn English, at some point you would
learn the meaning of the word “and” and then you would learn that when
you have two sentences P and Q, then you can say or write “P and Q”.
(And I would even argue that this rule about that use of “and” is in fact
what “and” means, but I will not pursue this now.) The point is: there are
rules for using the word “and”, and those rules have to be learned, and they
only look obvious to you because you already learned them a long time ago
and have grown accustomed to them.

What we are doing in Logic is elucidating the laws of thought,
making them explicit, bringing them to the surface, as it were,
so that we can, for example, pass them on from our minds to a computer:
the computer does not “know” any of the things that you know, unless you
tell the computer those things. And this applies even to the rules that you
know so well that they are deeply embedded in your subconscious, so you
take them for granted without even realizing that there is something to be
known there.

Once you understand this, you will also see that it is not an accident
that modern Logic developed first, at the end of the 19th century
and the beginning of the 20th century, and computers came into
being soon afterwards. �

11.5.2 Using a conjunction: another stupid but important rule

The rule for using a conjunction (Rule ∧use)

If P , Q are sentences, and you have proved P ∧Q, then you are allowed
to go to P , and you are also allowed to go to Q.

IMPORTANT REMARK. This looks like a very stupid rule. But you
should reread the “Important Remark” on Page 207, where we talked about
another “stupid rule”, namely, Rule ∧prove. That remark also applies to
Rule ∧use. �

11.6 Disjunctions (“∨”, i.e., “or”)
The symbol

∨
is the disjunction symbol, and means “or”.

So, for example,
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• If P is the sentence

today is Friday

and Q is the sentence

today is Saturday

then “P ∨Q” stands for the sentence

today is Friday or today is Saturday.

• A sentence of the form P ∨Q is a disjunction.

• In a disjunction P ∨Q, the sentences P , Q are the disjuncts.



Math 300, Fall 2020 210

11.6.1 The meaning of “or” in mathematics

The meaning of “or” in mathematics

In English, when we use the word “or”, it can have two different mean-
ings:

1. Inclusive “or”, that is, “one or the other or both”.

or

2. Exclusive “or”, that is, “one or the other but not both”.

For example, if a store announces that

If you are a student or a senior citizen then you are
entitled to a 15% discount on your purchases.

then, obviously, anyone who is both a student and a senior citizen will
be entitled to a discount. So this is an example of inclusive or.
On the other hand, if a restaurant waiter asks you “would you like tea
or coffee?”, then it is clear that you can have one or the other but not
both, so this an example of exclusive or.

In mathematics, “or” is always inclusive.

So, if I say, for example,

if a and b are integers and a is even or b is even, then
the product ab is even,

then this also applies to the case when both a and b are even.

11.6.2 The truth table for “or”

We can summarize what we said about “or” in the previous section by means
of the following “truth table” for the connective “∨”:

P Q P ∨Q
T T T
T F T
F T T
F F F

This truth table says that, if P , Q are propositions, then:

1. “P ∨Q” is false when P and Q are both false;
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2. “P ∨Q” is true in all other cases, that is, when P and Q are both true,
or when one of them is true and the other one is false.

11.6.3 Using a disjunction: the “proof by cases” rule

The rule for using a disjunction, that we are going to call “Rule ∨use”, as
you may have guessed, is extremely important. It is also called the “proof
by cases rule”, and is one of the most widely used rules in theorem proving.

Before I state the rule, let us look at an example.

Example 52. Suppose you want to prove that

(∀x ∈ IR)(x 6= 0 =⇒ x2 > 0) . (11.202)

Then you could reason as follows. Since x 6= 0, there are two possibilities:
0 < x or x < 0. So

0 < x ∨ x < 0 . (11.203)

Sincde we have the disjunction (11.203), we are in a position to use Rule
∨use. To do this, we consider each of the two possibilities “0 < x” and
“x < 0” separately.

First we assume that 0 < x.

Then we use the fact that we can multiply both sides of an inequality
by a positive number64. Since 0 < x (because we are assuming that
0 < x), we can multiply both sides of “0 < x” by x, and get x.0 < x.x.

But x · 0 = 0 by a well-known theorem65

And x·x = x2. (This is because the definition of x2 says that x2 = x·x.)

So 0 < x2 .

Next we assume that x < 0.

Then we use the axiom that says that we can add a real number to
both sides of an inequality and the result is an inequality going in the
same direction66. So we add −x to both sides of “x < 0” and get
0 < −x.

64This is one of the axioms of real number theory, that we will discuss later. The axiom

says: (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)
(

(x < y ∧ 0 < z) =⇒ xz < yz
)

.
65The theorem says that (∀x ∈ IR)x.0 = 0.
66Precisely, the axiom says: (∀x ∈ IR)(∀y ∈ IR)(∀z ∈ IR)(x < y =⇒ x+ z < y + z

)

.
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Then we use the axiom about multiplication of both sides of an in-
equality by a positive number. Since −x is positive, because we have
proved that it is (under the assumption that x < 0), we can multiply
both sides of “0 < −x” by −x, and get (−x).0 < (−x).(−x).

But x · 0 = 0.

And (−x) · (−x) = x · x.

So 0 < x · x.

And x · x = x2, by the definition of “square”.

So 0 < x2 in this case as well.

So we have analyzed each of the two possibilities 0 < x and x < 0, and in
each case we arrived a the same conclusion, namely, that 0 < x2.

Hence we have proved that 0 < x2 .

What we have done in this example is this: we knew that a disjunction
A∨B was true. (In our example, A was “0 < x” and B was “x < 0”.) Then
we proved that a ceartain conclusion C must hold if A is true, and also if B
is true. (In our example, C was “0 < x2”.) Then we concluded that C must
be true. And the reason is quite simple: one of A, B is true, and in either
case C is true, so C is true.

This is exactly what the proof by cases rule says.

The rule for using a disjunction (Rule ∨use, a.k.a. the
proof by cases rule)

If P and Q are sentences, and you have proved P ∨Q in a previous step,
and then you prove another sentence R both assuming P and assuming
Q, then you can go to R.
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11.6.4 Proving a disjunction

The rule for proving a disjunction (Rule ∨prove)

Suppose P and Q are sentences, and you want to prove P ∨Q. Here is
what you can do. You look at the two possible cases, when P is true
and when P is false. If P is true then of course P ∨Q is true, so we are
O.K. So all we have to do is look at the other case, when P is false, and
prove that in that case Q is true.
So here is the rule:

I. If, assuming that P is false, you can prove Q,
then you can go to P ∨Q.

II. If, assuming that Q is false, you can prove P ,
then you can go to P ∨Q.

Example 53. Let us prove that

(∀n ∈ Z)(3|n ∨ 3|n2 − 1) . (11.204)

Proof.

Let n be an arbitrary integer.

We want to prove that 3|n ∨ 3|n2 − 1.

Assume that ∼ 3|n, that is, 3 does not divide n.

We want to prove that 3|n2 − 1.

Clearly, n2 − 1 = (n− 1)(n+ 1).

Furthermore, it is well known that if k, k + 1 and k + 2 are any
three consecutive integers, then one of them must be divisible by
3.

Applying this with k = n − 1, we see that one of the integers
n− 1, n, n+ 1 is divisible by 3.

But we are assuming that n is not divisible by 3.

Hence one of the numbers n− 1, n+ 1 is divisible by 3.

So the product (n− 1)(n+ 1) is divisible by 3.

That is, n2 − 1 is divisible by 3.
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So we have proved that 3|n2 − 1, assuming that ∼ 3|n.

By Rule ∨prove, it follows that 3|n ∨ 3|n2 − 1.

We have proved that 3|n ∨ 3|n2 − 1 for an arbitrary integer n.

Therefore (∀n ∈ Z)3|n ∨ 3|n2 − 1. Q.E.D.

11.7 Implications (“=⇒”, i.e., “if . . . then”)

Implication: The symbol

=⇒
is the implication symbol, and means “implies”.

A sentence “P =⇒ Q” is read as

P implies Q

or as

If P then Q .

Then

• If P is the sentence

Today is Friday

and Q is the sentence

Tomorrow is Saturday

then “P =⇒ Q” stands for the sentence

If today is Friday then tomorrow is Saturday.

• A sentence of the form P =⇒ Q is an implication, or a conditional
sentence.

• In a conditional sentence P =⇒ Q, P is the premiss (or antecedent),
and Q is the conclusion (or consequent.
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11.7.1 The rule for using an implication (Rule =⇒use, a.k.a. “Modus
Ponens”)

We now come to one of the most important rules in Logic: the rule for
using an implication. For us, this rule will be called— guess what!—“Rule
=⇒use”, but it also has a couple of much more impressive names: Modus
Ponens, and implication elimination67

The rule for using an implication
(Rule =⇒use, a.k.a. Modus Ponens)

Suppose that P and Q are sentences. Suppose that you have the
sentences P =⇒ Q” and “P” in previous steps of a proof. Then
you can go to Q.

Example 54. Suppose you know that

P1. If you are a student then you are entitled to a discount,

and you also know that

P2. you are a student.

Then you can conclude that

C. you are entitled to a discount. �

11.7.2 The “for all...implies” combination

One of the most important and widely used combinations of moves in proofs
is what we may call the “for all...implies” combination.

It works like this:

• First, you bring into your proof a statement S of the form “for every
x of some kind, if something happens then something else happens”.
That is, (∀x)(A(x) =⇒ B(x)), or

(∀x ∈ S)(A(x) =⇒ B(x)) . (11.205)

• Then, you bring into your proof an object a for which you know that
this object satisfies Property A, that is, you know that

A(a) . (11.206)

67“Modus Ponens” is an abbreviation of “modus ponendo ponens”, which is Latin for
“the way that affirms by affirming”.
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• Then you derive the conclusion that B(a) is true, in two steps:

Step 1: Use the specialization rule to go from (11.205) to

A(a) =⇒ B(a) . (11.207)

Step 2: Use Modus Ponens to go from (11.207) and (11.206) to

B(a) . (11.208)

This combination is used all the time in proofs. The reason is that many
theorems in Mathematics are of the form: “whenever something is true of
an object, then something else is also true of that object”, that is

(∀x)(A(x) =⇒ B(x)) . (11.209)

And what you often do in proofs is take one of those theorems and apply
it to a particular situation. And this is exactly what the “for all...implies”
combination does.

Here are some examples:

1. Take the statement that “Every positive real number has a real square
root”, which translates into

(∀x ∈ IR)(x > 0 =⇒ (∃y ∈ IR)y2 = x) .

This is exactly of the form (11.209), with “x > 0” in the role of A(x),
and “(∃y ∈ IR)y2 = x” in the role of B(x).

Then you can prove that 2 has a square root, by applying the “for all
... implies” combination, with a = 2, and getting “(∃y ∈ IR)y2 = 2”.

2. Suppose you know that “If x is a positive real number then x+ 1
x
≥ 2”,

that is, in formal language,

(∀x ∈ IR)(x > 0 =⇒ x+
1

x
≥ 2) .

(We will prove this later.) Suppose you have a real number a, and
have proved that a is positive (that is, a > 0). Then you can draw the
conclusion that a+ 1

a
≥ 2 by using the “for all...implies” combination,

as follows:

1. (∀x ∈ IR)(x > 0 =⇒ x+ 1
x
≥ 2) [Fact proven before]

2. a > 0 .[Known]

3. a > 0 =⇒ a+ 1
a
≥ 2 .[Rule ∀use, from Step 1]

4. a+ 1
a
≥ 2 .[Rule =⇒use, from Steps 2,3]
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11.7.3 Proving an implication (Rule =⇒prove)

The rule for proving an implication
(Rule =⇒prove)

Suppose P , Q are sentences. Suppose you start a proof with “Assume
P”, and you prove Q. Then you can go to P =⇒ Q.

Example 55. Say you are a Martian who just landed on Earth, you
know nothing about the days of the week, and you want to prove that
to your own satisfaction that “If today is Friday then tomorrow is Sat-
urday”. To apply Rule =⇒prove, you would begin by “assuming that
today is Friday.” This means that you would imagine that today is Fri-
day, and see what would happen in that case. For example, you could
go to a public library and look at lots of newspapers published on a
Friday, and you would see that every time such a paper talks about the
following day it says something like “tomorrow is Saturday.” Then you
would be reasonably confident that the sentence “If today is Friday then
tomorrow is Saturday” is true. And it would not matter whether today
is Friday or not. �

11.7.4 The connectives “∧” and “=⇒” are very different

Students sometimes think that “If P then Q” is basically the same as “P
and Q”, or “P then Q”. But this is very wrong and it important that you
should understand the difference between “P and Q” and “If P then Q”.

Take, for example, the sentences

Today is Friday and tomorrow is June 12.

and

If today is Friday then tomorrow is June 12.

Using “P” to represent the sentence “Today is Friday” and “Q” to represent
the sentence “Tomorrow is June 2”, the first sentence is P∧Q, and the second
one is P =⇒ Q.

What conditions have to be satisfied for P ∧Q to be true? What condi-
tions have to be satisfied for P =⇒ Q to be true?

The sentence P ∧ Q is true if both P and Q are true. In our
example, the only way the sentence “Today is Friday and tomorrow is June
12” can be true is if today is Friday and tomorrow is June 12, So the
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sentence “Today is Friday and tomorrow is June 12” is true if
today is Friday June 11, and in no other case.

On the other hand, The sentence P =⇒ Q when Q is true, and
also when P is false. And if neither one of these conditions hold
(that is, if Q is false and P is true) then P =⇒ Q is false. So, in our
example, the only possible situation when “If today is Friday then tomorrow
is June 12” would be false is if today is Friday but tomorrow is not June 12.
So the sentence “If today is Friday then tomorrow is June 12” is
true if today is not Friday, is also true if tomorrow is June 12,
and is false if today is Friday but tomorrow is not June 12.

We can summarize these observations by means of the following “truth
tables” for the connectives “∧” and “=⇒”:

P Q P ∧Q
T T T
T F F
F T F
F F F

P Q P =⇒ Q

T T T
T F F
F T T
F F T

The first table gives you the truth value68 of P ∧Q in terms of the truth
values of P and Q, and the second table gives you the truth value of P =⇒ Q
in terms of the truth values of P and Q.

Notice that what makes the truth tables for “wedge” and “=⇒”
is the last two lines. In particuler:

P =⇒ Q is always true when Q is true, no matter
whether P is true or false.

and
68Every sentence, when used correctly, has a truth value: the truth value is T is the

sentence is true, and F is the sentence is false. For example: the truth value of “3 > 5”
is F, the truth value of “3 < 5” is T. How about the truth value of “x < 5”. If you tell
me that x < 5 without having told me who x is, then I do not knwo the truth value of
“x < 5”. But this would be an incorrect us of “x < 5”. If you were writing a proof, then
you could never have “x < 5” as one of the steps, unless you have told the reader before,
in some previous step, who x is, and once you have done that, the truth value of “x < 5”

would be known. For example, if you said in a previous step “Let x = 1+
√
5

2
”, then I

would know that “x < 5” is true. (Proof:
√
5 < 5. So 1 +

√
5 < 6. So 1+

√
5

2
< 3. Hence

1+
√
5

2
< 5. So x < 5.)
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P =⇒ Q is always true when P is false, no mat-
ter whether Q is true or false.

So for example, the following sentences are true:

• If the Earth is a planet then 3 is a prime number.

• If the Earth is a comet then 3 is a prime number.

• If the Earth is a comet then 6 is a prime number.

The first one and the second one are true because the conclusion (that is, “3
is a prime number) is true. . (It does not matter, for the second sentence,
that the premiss—“the Earth is a comet”— is false.)

And the second one and third one are true because the premiss (“the
Earth in a comet” is false. (It does not matter whether for the second
sentence, that the conclusion—“6 is a prime number”— is false.)

On the other hand, the sentence “If the Earth is a planet then 6 is a
prime number” is false, because the premiss (“The Earth is a planet”) is
true, but the conclusion (“6 is a prime number”) is false.

11.7.5 Isn’t the truth table for =⇒ counterintuitive?

Students often ask questions about the implication connective =⇒ Q and in
partuclar about the truth table for the implication.

One often raise question is “how can ‘P =⇒ Q’ be true if P and Q have
nothing to do with each other?”.

For example, we said that the sentence “If the Earth is a planet then 3 is
a prime number” is true, but what does the fact that the Earth is a planet
have to do with 3 being a prime number? That sounds like a good question,
but let us think about it. I suggest that you do do this:

Think of “P =⇒ Q” as saying “it does not hap-
pen that P is true without Q also being true”.

In other words: what “P =⇒ Q” does is exclude the possibility that you
might ever run into a “bad situation”, menaing, “a situation where P is true
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but Q is not”. And this is the only possibilty excluded the implication. So,
in particular,

• if P is false then you will not be in a bad situation, so “P =⇒ Q” is
true.

• if Q is true then you will not be in a bad situation, so “P =⇒ Q” is
true.

Once you understand this, you will see that it does not matter very much
whether P and Q have something to do with each other. Maybe Pand Q
are totally unrelated, but if, for example, they both happen to be true then
“P =⇒ Q” is true. And also, “P =⇒ Q” will be true if both P and Q are
false, or if P is false and Q is true.

Example 56. Suppose a street sign says:

IF YOU ARE DRIVING AT MORE THAN
25MPH YOU WILL GET A FINE.

Supoose you want to prove to a friend of yours that the municipal govern-
ment that put up the sign isn’t really enforcing its own rule. What do you
have to do to prove this?

Let “P” represent the premiss, i.e., “you are driving at more than
25mph”, and let “Q” represent the conclusion, that is, “you will get a fine”.
Then the street sign asserts the implication “P =⇒ Q”.

Certainly,

• If you find someone driving at 20mph, that will do nothing to prove
your case. That’s because in that case the implication “P =⇒
Q” is true, according to the truth table for the implication.
It does not matter whether that driver got a fine or not69.

• If you find someone who got a fine, that will do nothing to prove your
case. That’s because in that case the implication “P =⇒ Q”
is true, according to the truth table for the implication. It

69The driver may have been given a fine for some other reason, e.g., using a cell phone
while driving.
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does not matter whether that driver was driving at more than 25mph
or not.70.

• The only way to prove that the injunction in the street sign is not
being enforced is to find cases of drivers that were driving at more
than 25mph but did not get a fine. That’s because the onlt case
when the implication “P =⇒ Q” is false, according to the
truth table for the implication, is when the premiss is true
but the conclusion is false.

Example 57. Alice is a cashier at a department store, and she has to follow
the rule that

IF A CUSTOMER PAYS CASH FOR A PUR-
CHASE THEN ALICE HAS TO PUT THE
MONEY SHE COLLECTED IN A DRAWER.

Suppose you are a detective and you want to prove that Alice is not
obeying the rule. What do you have to do?

• If you find a situation when there was not customer at all, or there was
customer that did not pay cash, then that will do nothing prove your
case. That’s because in that case the implication “P =⇒ Q” is
true, according to the truth table for the implication. It does
not matter whether Alice put money is the drawer or not71.

• If you find a situation where Alice put cash in the drawer even though
she did not collect any money from a customer, then that will do
nothing to prove your case. That’s because in that case the im-
plication “P =⇒ Q” is true, according to the truth table for
the implication. It does not matter that there was no customer
poaying cash72.

70The driver may have been driving at 20mph but may have been given a fine for some
other reason, e.g., using a cell phone while driving.

71Why would Alice have put money in the drawer if she did not collect any cash from
the customer? Who knows?

72Again, why would Alice put money in the drawer even if she did not collect the money
from a customer? Who knows? And who cares? The point is: even if she put money
in the drawer when there had been no customer that paid her the money, so P

was false but Q was true, she did not violate the rules.
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• The only way you can prove that Alice is violating the rules is by
showing that a customer paid cash but Alice did notput themoney in
the drawer.That’s because the only case when the implication
“P =⇒ Q” is false, according to the truth table for the im-
plication, is when the premiss is true but the conclusion is
false.

Example 58. Suppose you have a natural number n, but you do not know
which number it is. (For example, maybe someone gave you a sealed enve-
lope containing a card where the number is written. So the number is there,
it’s a fixed number, but you just do not knwo which specific number it is.)

Suppose you are asked to prove that

(*) If n is even then n2 is divisible by 4.

Then you could ask: could (*) possibly be false? Could there be a
possible value of n for which (*) is false. (Remember that you do not know
who n is. So if you want be able to assert for sure that (*) is true you have
to consider all possible values of n. If you find one value of n for which (*)
is not true, then you cannot be sure that n is true, because the number that
you have in the envelope could be the one you have found, the one for which
(*) is false. But if you can make sure that no such number exists, then you
can be sure that (*) is true, even though you do not know who n is.)

What would have to happen for (*) to be false? Well, according to
our truth table, the only case when the implication (*) is false is when the
premiss is true but the conclusion is not. So to make sure that (*) is true,
you have to consider numbers n that are even, because if n is not even then
(*) is true. You indicate that you are going to do that by writing:

Assume that n is even.

(In other words: you are allowed to assume that n is even because
if n is not even then (*) is automatically true thanks to the truth
table for the implication.)

And then you move on to prove that n2 is divisible by 4. (Since n is
even, we can pick a natural number k such that n = 2k. Then b2 = 4k2, so
n2 is divisible by 4.)

And now you can be sure that (*) is true. The number n is even or odd,
but in either case (*) is true, even though in each case it’s true for a different
reason: if n is not even, then (*) is true because of the truth table for the
implication, and if n is even then (*) ia true because in that case we have
proved that the conclusion (that is, “n2 is divisible by 4”) must be true.



Math 300, Fall 2020 223

Finally, we have prove that (*) must be true for any natural number,
because we have proved for n, but n could be any number. So we can
conclude that

(∀n ∈ IN)
(

n is even =⇒ n2 is divisible by 4
)

,

or, if you prefer,

(∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

So we can structure our proof as follows:

THEOREM. (∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

PROOF We want to prove that (∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

Let n ∈ IN be arbitrary.

We want to prove that 2|n =⇒ 4|n2.

Assume that 2|n.
Then (∃k ∈ IN)n = 2k.

Pick one such k and call it k∗.

Then k∗ ∈ IN and n = 2k∗.

Then n2 = (2k∗) · (2k∗) = 4k2∗.

Let q = k2∗.

Then n2 = 4q.

So (∃k)n2 = 4k.

Hence 4|n2.

We have proved that 4|n2 assuming that 2|n. Hence

2|n =⇒ 4|n2 .

We have proved that 2|n =⇒ 4|n2 for an arbitrary n. Therefore

(∀n ∈ IN)
(

2|n =⇒ 4|n2
)

.

Q.E.D.

I hope that these remarks will suffice to clarify they way implication
works. Implication will be discussed in great detail later.
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11.8 Biconditionals (“⇐⇒”, i.e., “if and only if”)

The biconditional is the symbol

⇐⇒.
It is a binary connective, like ∧, ∨, and =⇒. That means that ⇐⇒ can be
used to connect two sentences.

If P and Q are sentences, the sentence “P ⇐⇒ Q” is read as

P if and only if Q

or

P is equivalent to Q .

And mathematicians often use “iff” as shorthand for “if and only if”, so
they write “P iff Q.”

P iff Q .

The precise meaning of “equivalence” will be explained later. But, if you
want to know right away what it means, it’s very simple:

When you know that P is equivalent to Q then you can pass freely
from P to Q. That is, if you know that P is true then you can write
Q, and if you know that Q is true then you can write P .
So for all practical purposes if “P ⇐⇒ Q” is true then P and Q
are interchangeable.

11.8.1 The meaning of “if and only if”

You should think of “P iff Q” as meaning

(P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

That is, “P ⇐⇒ Q” means73

If P then Q and if Q then P ,

73This note is only for philosophically minded nitpickers. What does “means” mean?
The point of view adopted here is that the meaning of a word, phrase or symbol consists

of the rules for the use of that word, phrase or symbol. For example, the meaning of “and”
is the specification that if P , Q are two sentences, then (i) if you have “P and Q” you can
go to P and you can go to Q, and (ii) if you have P and you have Q then you can go to “P
and Q.” That is, the meaning of “and” is captured by Rules ∧use and ∧prove. Naturally,
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or

P implies Q and Q implies P .

In order to make this true, we will choose the rules for proving and using
biconditional sentences as follows:

• To prove “P ⇐⇒ Q” you do exactly the same thing that you
would do to prove (P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

• To use “P ⇐⇒ Q” you do exactly the same thing that you would
do to use (P ⇐⇒ Q) ∧ (Q ⇐⇒ P ) .

So, for example, suppose you want to prove that

(∀x ∈ IR)
(

x2 = 4 ⇐⇒ (x = 2 ∨ x = −2)
)

. (11.210)

Then you would start by introducing into your proof an arbitrary real num-
ber called x, and then you would prove that

(x2 = 4 ⇐⇒ (x = 2 ∨ x = −2) . (11.211)

And to prove (11.211), which is an “iff” sentence, you would prove both
implications x2 = 4 =⇒ (x = 2∨ x = −2) and (x = 2∨ x = −2) =⇒ x2 = 4.
(The proof of these two sentences is very simple: to prove that x2 = 4 =⇒
(x = 2∨x = −2), you use the fact that a positive real number r cannot have
more than two square roots74. Since 2 and −2 are two distinct square roots

this does not cover all the uses of “and” in our culture, such as, for example, to indicate
a progression (as in “this is getting better and better”), or to indicate a causal relation,
(as in “do that and I’ll hit you”), or the literary use full of nuances (as ‘in ‘tomorrow and
tomorrow and tomorrow”). And, most importantly for us, it does not cover the use of
“and” to connect nouns, as in “slings and arrows”. But it’s what “and” means in logic and
mathematics. If you want to program a computer so that it will know what “and” means,
you have to tell the computer how to use “and”. And this amounts to programming the
computer to use rules ∧use and ∧prove. And you don’t need to tell the computer anything
else. A similar situation arises with the biconditional. A computer that “knows” the rules
⇐⇒ use and ⇐⇒ prove “knows” all it needs to know to work with the biconditional, and
for that reason I believe that knowing the meaning of “⇐⇒ ” amounts to knowing the
two rules for working with it.

74This was proved in the notes for Lectures 2,3,4 but, just in case, here is a quick proof:
suppose r has three distinct square roots a, b, c. Then a2 = r, b2 = r and c2 = r. Hence
a2 − b2 = 0. So (a − b)(a + b) = 0. Therefore a − b = 0 or a + b = 0. Since a and b are
different, it cannot be the case that a − b = 0, so a + b must be zero, and then b = −a.
Now we can use exactly the same argument with c instead of b, and conclude that c = −a.
But then c = b, contradicting the fact that b 6= c.
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of 4, there cannot be a third square root. So, if x2 = 4, so x is a square root
of 4, it follows that x must be 2 or −2. So x2 = 4 =⇒ (x = 2 ∨ x = −2).
To prove the other implication, i.e., that (x = 2 ∨ x = −2) =⇒ x2 = 4, just
observe that if x = 2 then x2 = 4, and if x = −2 then x2 = 4 as well,)

11.8.2 The rules for proving and using biconditionals

Now let us state explicitly the rules for proving and using biconditional
sentences.

As I explained in the previous subsection, these rules are designed so
as to make “P ⇐⇒ Q” mean precisely what we want it to mean, that
is “(P =⇒ Q) ∧ (Q =⇒ P )”.

The rules are as follows.

Rule ⇐⇒ prove

If P , Q are sentences, and you have proved the sentences

P =⇒ Q

and

Q =⇒ P ,

then you can go to

P ⇐⇒ Q .

Rule ⇐⇒ use

If P , Q are sentences, and you have proved the sentence

P ⇐⇒ Q ,

then you can go to

P =⇒ Q

and you can also go to

Q =⇒ P .
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11.9 The other six rules

So far I have given you eight rules, two for each of the connectives ∧, ∨,
=⇒, and ⇐⇒.

In addition, there are six more rules that we have already discussed:

1. Rule ∀prove, the rule for proving a universal sentence. (This rule is
sometimes called “universal generalization”.)

2. Rule ∀use, the rule for using a universal sentence. (This is sometimes
called the “specialization rule”.)

3. Rule ∃prove, the rule for proving an existential sentence.. (This rule is
sometimes called the “existential generalization rule”.)

4. Rule ∃use, the rule for using a universal sentence. (This rule is some-
times called the “existential specialization rule”.)

5. The proof by contradiction rule.

6. Rule SEE, substitution of equals for equals (also called “Rule =use”).

So we now have all fourteen rules!
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11.10 Are the logical rules hard to understand and to learn
and remember ?

Most of the logical rules are very simple and easy to re-
member. For example,

• The rules for using and proving ∧ sentences are so stupid that
you might object to having them because they are so obvious,
but you certainly cannot find it hard to understand them.

• The rules for using and proving universal sentences are also
natural:

– if you know that all the items in this store cost 1 dollar,
and you pick an item in this store, you can be sure that
it costs 1 dollar. That’s all that Rule ∀use says.

– if you prove that a schmoo must be green, without using
any information about that schmoo other than the fact
that it is a schmoo, then you can conlude that all schmoos
are green. And that’s= all that Rule ∀prove says.

• And the rules for using and proving existential sentences are
natural as well:

– if you know that somewhere in this store there is a
schmoo, then you can go and get a schmoo and call it
any way you want, for example “my woderful schmoo”.
That’s all that Rule ∃use says.

– if you find a schmoo, then you can conclude that schmoos
exist. And that’s all that Rule ∃prove sats.
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11.10.1 Proofwriting and rules for proofs

Writing proofs is like playing chess, checkers, or some other board
game.

• There are rules that tell you which moves are allowed. (Notice
that the rules for proofs never say “you have to do this”. They
say “you are allowed to do this”. It’s exactly like the moves
you are allowed to make in a board game.)

• You have to obey the rules all the time.

• If you cheat, by violating the rules once, then you are out of
the game.

• If you know how to play, you will never make a move that
violates the rules.

• Once you know the moves, then the hard part begins: you
have to figure out how to choose which moves to make in order
to win. And that is where proofwriting becomes difficult and
challenging: some people are better than others at figuring
out how to win.

• From 1637 until 1995, many mathematicians tried very hard to
prove Fermat’s last theorem. Finally, Andrew Wiles suceeded
in doing it in 1995.

• But the proofs we do in this course are not that hard.
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12 Induction

12.1 Introduction to the Principle of Mathematical Induc-
tion

You know that the following is true:

(*) Every integer is even or odd, and not both.

How can we prove statement (*) ?

First, we have to make it clear what we mean by “even” and “odd”.

Definition 17.

1. An integer n is even if n is divisible by 2, that is, if there exists an
integer k such that n = 2k.

2. An integer n is odd if n− 1 is even, that is, if there exists an integer
k such that n = 2k + 1. �

Now that we know what it means for an integer to be “even” or “odd”,
we can try to prove some facts about even and odd integers. Here are some
simple examples of theorems about even and odd numbers that are easy to
prove:

Theorem 17. If m and n are even integers, then m+ n is even. (That is,
“the sum of two even integers is even”.)

Theorem 18. If m and n are odd integers, then m + n is even. (That is,
“the sum of two odd integers is even”.)

Theorem 19. If m and n are integers, m is even and n is odd, then m+ n
is odd. (That is, “the sum of an even integer and an odd integer is odd”.)

Theorem 20. If m and n are integers, and m or n is even, then m.n is
even. (That is, “the product of an even integer and an integer is an even
integer”.)

Theorem 21. If m and n are odd integers, then m.n is odd. (That is, “the
product of two odd integers is odd”.)

Theorem 22. The integer 1 is odd and is not even.
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Theorem 23. If an integer n is even, then the integers n+1 and n− 1 are
odd.

Theorem 24. If an integer n is odd, then the integers n+ 1 and n− 1 are
even.

All these theorems are very easy to prove. I will do two of the proofs,
and I will ask you to do all the others.

Proof of Theorem 18:

Let m, n be integers.

Assume m and n are odd.

We want to prove that m+ n is even.

Since m is odd, we can pick an integer j such that m = 2j + 1.

Since n is odd, we can pick an integer k such that n = 2k + 1.

Then m + n = (2j + 1) + (2k + 1), so m + n = 2j + 2k + 2 and
then m+ n = 2(j + k + 1).

Hence (∃i ∈ Z)m+ n = 2i.

So m+ n is even. Q.E.D.

Proof of Theorem 22: First, we show that 0 is even. To prove this, we
observe that 0 = 2.0, so (∃k ∈ Z)0 = 2k, and then 0 is even.

It then follows immediately that 1 is odd, because the definition of “odd
integer” says that “n is odd” means “n − 1 is even”, so in particular “1 is
odd” means “1 − 1 is even”, and this is true, because 1 − 1 = 0, and 0 is
even.

Finally, we have to show that 1 is not even. For this purpose, we have to
show that there is no integer k such that 2k = 1. But there is only one real
number k such that 2k = 1, and that number is 1

2 , which is not an integer.
So there is no integer k such that 2k = 1. Hence 1 is not even. Q.E.D.

Problem 56. Prove Theorems 17, 19, 20, 21, 23, and 24.
WARNING: We have not proved yet that “odd” is equivalent to “not

even”. This will be proved later, in Theorem 29 in Section 12.3.3. But
until we have proved it we cannot use it. So, for example, you are
not allowed to prove that an integer n is even by contradiction, by saying
“suppose n is not even, then n is odd.” You cannot do that because we have
not proved yet that “n is not even” is equivalent to “n is odd”. �
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What we actually want is to prove (*), i.e., to show that every integer is
even or odd and not both.

Let us call an integer “good” if it is even or odd and not both even and
odd. So we want to prove that

(**) Every integer is good.

We are going to prove first that every natural number is good, and then
we will take the extra step of proving that every natual number is good.

So let us start by trying to prove that every natural number is good.
We already know that 1 is good. How about 2?

Theorem 25. The number 2 is even and not odd. So 2 is good.

Proof. 1 is odd, so by Theorem 24, 1 + 1 is even, so 2 is even.
On the other hand, 2 cannot be odd, because if 2 was odd then 2 − 1

would be even by Theorem 24.
So 2 is even and not odd, and then 2 is good. Q.E.D.

How about 3?

Theorem 26. The number 3 is odd and not even. So 3 is good.

Proof. 2 is even. So by Theorem 23, 2 + 1 is odd, so 3 is odd.
On the other hand, 3 cannot be even, because if 3 was even then 3 − 1

would be odd by Theorem 23, i.e., 2 would be odd.
So 3 is odd and not even, and then 3 is good. Q.E.D.

It is clear that we could go on the same way, and prove that 4 is good, 5 is
good, 6 is good, and so on. And then we would conclude that every natural
number is good.

However, saying “and so on” is not a rigorous way to prove that every
natural number is good.

The key idea is this: we are going to prove that goodness is a prop-
erty that is passed on from each natural number n to the number
following it, i.e., n+ 1.

Precisely, we are going to prove:

Theorem 27. If n is natural number and n is good, then n+ 1 is good.

Once we have proved Theorem 27, since we have already proved Theorem
22, which says that 1 is good, we will be able to reason as follows:
We know that
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1. 1 is good.

2. Goodness is passed on from each natural number n to its
successor n + 1. (That is: if n ∈ IN and n is good, then n + 1 is
good.)

Then:

1. 2 is good, because 1 is good and 1 passes on the goodness property to 2,
2. 3 is good, because 2 is good and 2 passes on the goodness property to 3,
3. 4 is good, because 3 is good and 3 passes on the goodness property to 4,
4. 5 is good, because 4 is good and 4 passes on the goodness property to 5,

. . .
and so on,
so every natural number is good.

But it would be much better not to rely on vague phrases like “and so on”,
and to have instead a precise, rigorous way of doing the proof.

The key point is that all the natural numbers are eventually ar-
rived at by counting, so that, if we know that something is true for n = 1,
and when we count (that is, go from 1 to 2, then from 2 to 3, then from 3 to
4, “and so on”, each time passing from a natural number n to its successor
n + 1), then at each step the goodness property will be passed on from n
to n + 1, and eventually every natural number n will be reached by our
counting process, so n will be good.

This means that

Every property that is true of the number 1 and is passed
on from each natural number to its successor must be
true of all natural numbers.

And this is exactly what the Principle of Mathematical Induction
(PMI) says.

Example 59. Suppose you decide to paint natural numbers green according
to the following rule: first, you paint the number 1 green. And then every
time you paint a number n green, you go to its successor n + 1 and paint
it green. Then the PMI guarantees that every natural number is painted
green. �

Example 60. Suppose there is an infinitely long queue of people standing
in line: person No. 1, then person No. 2, then person No. 3, then person
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No. 4, and so on75. Suppose you have a flyer with an announcement that
you want all the people in the queue to read. (For example, a message saying
something like “if you come to my restaurant after the show you will get a
great meal with a 20% discount”). Suppose you want everybody to read the
flyer, but you have only one copy. Then all you have to do is

(1) Give the flyer to person No. 1,

and

(2) Make sure that each person passes on the flyer to the person next in
line after reading it76.

The PMI says the obvious thing: if you do (1) and (2) then everybody will
eventually get your flyer. �

12.2 The Principle of Mathematical Induction (PMI)

As explained in the previous section, the Principle of Mathematical
Induction (PMI) captures as a precise mathematical statement the intu-
itively clear fact that when we count we get all the natural numbers.

Remark 14. There are other numbers (that is, people have invented other
numbers), such as zero, the negative numbers −1, −2, etc., fractions such
as 2

3 ,
22
7 ,−5

2 , 2.75, −5.16, and even “irrational numbers”, that cannot be ex-
pressed as fractions. But we do not get these numbers by the counting
process.

So, if you prove by induction that a statement P (n) is true for all natural
numbers, then it does not follow that it will be true for n = 0, because 0 is
not a natural number, so if you count 1, 2, 3, 4, . . . you will never get to 0.

75Sure, I am talking about an infinitely long queue, with infinitely many people. And
you may object that this is impossible in reality. I have two answers to that. ANSWER
NO. 1: This may be impossible in reality, but you can certainly imagine it! It may be
impossible in reality for a person to jump 50 feet high, but you can certainly imagine
Wonder Woman doing it, so why not imagine an infinite queue? ANSWER 2: Suppose
you only have a finite queue, say 40 people. Then you can consider the following property
P (n) of a natural number: “person n got the message or there is no person n”. This
makes sense of every natural number n. If you guarantee that P (n) is true of every
natural number n, this will imply that persons 1, 2, 3, and so on up to person 40, will
get the message. Property P (n) will be true of every n but for different reasons: for
n = 1, 2, 3, 4, · · · , up to n = 40, it will be true because person n gets the message. And
for larger n it will be true because there is no person No. n.

76For example, you could include in the flyer, in big letters, the statement PLEASE
PASS THIS ON TO THE PERSON NEXT IN LINE TO YOU.
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And it does not follow either that P (n) will be true for n = 1
2 , because

1
2 is not a natural number, so if you count 1, 2, 3, 4, . . . you will never get to
1
2 . �

Imagine that you have some statement P (n) about natural numbers that
could be true or not for each natural number n. (For example, the statement
P (n) could be “n(n + 1) is even”, or “n is even or odd”, or “n is not both
even and odd”.) Suppose the following two facts are true:

I. The statement P (n) is true for n = 1. (That is, P (1) is true.)

II. Any time the statement P (n) is true for one particular n, it follows
that it is true for n + 1. (That is: if P (n) is true then P (n + 1) is
true.)

The PMI says that, under these circumstances, P (n) must be true for every
natural number n.

THE PRINCIPLE OF

MATHEMATICAL INDUCTION

Suppose P (n) is any sentence in which n is an open variable.

Suppose, furthermore, that

I. P (1) is true.

II. Any time P (n) is true for one particular n, it follows that
P (n+ 1) is true.)

Then P (n) is true for every natural number n.

Let us say the same thing in formal language:
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THE PRINCIPLE OF

MATHEMATICAL INDUCTION

(FORMAL LANGUAGE VERSION)

Suppose P (n) is a sentence in which n is an open variable. Then

(

P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n+ 1))
)

=⇒ (∀n ∈ IN)P (n) . (12.212)

12.3 The proof by induction that every natural number is
even or odd and not both

We are going to use Theorems 22 (which says that 1 is good) and 27 (which
says that goodness is passed on from each natural number n to its successor
n+ 1).

We have already proved Theorem 22, but we have not proved Theorem
27, so we have to do it now.

Proof of Theorem 27.

Let n be an arbitrary natural number.

Assume that n is good .

We are going to prove that n+ 1 is good.

Since n is good, n is even or odd, and n is not both even and
odd.

Assume that n is even .

Then n is not odd, because n is good.

It then follows from Theorem 23 that n+ 1 is odd.

It also follows from Theorem 23 that n+1 is not even. (Rea-
son: If n+ 1 was even, then (n+ 1)− 1 would be odd, that
is, n would be odd. But n isn’t odd77.)

So n+ 1 is odd and n+ 1 is not even.

So n+ 1 is good .

77Notice that this is a proof by contradiction
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So n is even=⇒ n+ 1 is good .

Now assume that n is odd .

Then n is not even, because n is good.

It then follows from Theorem 24 that n+ 1 is even.

It also follows from Theorem 24 that n+1 is not odd. (Rea-
son: If n + 1 was odd, then (n + 1) − 1 would be even that
is, n would be even. But n isn’t even78.)

So n+ 1 is even n+ 1 is not odd.

So n+ 1 is good .

So n is odd=⇒ n+ 1 is good .

Since we have “n is even∨n is odd”, “n is even=⇒ n + 1 is
good”, and “n is odd=⇒ n + 1 is good”, it follows from Rule

∨prove that n+ 1 is good .

Since we have proved “n+1 is good” assuming “n is good”, it follows
from Rule =⇒prove that

n is good =⇒ n+ 1 is good . (12.213)

Since we have proved (12.213) for an arbitrary natural number n, it follows
from Rule ∀prove that

(∀n ∈ IN)
(

n is good =⇒ n+ 1 is good
)

. (12.214)

We are now ready, finally, to prove the theorem that we had announced
before, that every natural number is even or odd and not both.

We will prove this by induction.

78Another proof by contradiction!
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THE FORMAT OF A PROOF BY INDUCTION

A proof by induction of a statement

(∀n ∈ IN)XXXX should look like this:

Let P (n) be the predicate XXXX.

Basis step. Proof of P (1).

. . . . . . . . . . . . . . . . . . . . . . . .

P (1) .

Inductive step. We prove that

(∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

.

Let n ∈ IN be arbitrary. We want to prove P (n) =⇒ P (n+ 1).

Assume P (n). We want to prove P (n+ 1).
. . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . .

P (n+ 1).

So P (n) =⇒ P (n+ 1). [Rule =⇒prove]

Hence (∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

[Rule ∀prove]

We have completed the basis step and the inductive step. Hence it follows
from the PMI that (∀n ∈ IN)P (n).

That is, (∀n ∈ IN)XXXX. Q.E.D.
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12.3.1 A remark on the importance of parentheses

PARENTHESES MATTER!!!

The sentence

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (a)

is not at all the same as the sentence

(∀n ∈ IN)P (n) =⇒ P (n+ 1) . (b)

Sentence (a) says that the implication “P (n) =⇒ P (n+ 1)” (that
is, “P is passed on from n to n + 1”) is true for every natural
number n. So (a) says “every natural number passes on Property
P to its successor”.
Sentence (b) is totally different. It says: “if it is true that all natu-
ral numbers have P then n+1 has P”. This is in fact meaningless,
because n is an open variable.

12.3.2 Our first proof by induction: proof that every natural
number is even or odd and not both

Theorem 28. If n is a natural number, then

1. n is even (that is, (∃k ∈ Z)n = 2k) or n is odd (that is, (∃k ∈ Z)n =
2k + 1);

2. n is not both even and odd.

Proof. As we have been doing in previous sections, let us call an integer n
“good” if n is even or odd and not both even and odd.

Let P (n) be the sentence “n is good”.
We want to prove that (∀n ∈ IN)P (n).

Basis step. We have to prove P (1), i.e., that 1 is good.

But we already know, from Theorem 22 that 1 good. So P (1) is true , and

this completes the basis step.

Inductive step. We have to prove that

(∀n ∈ IN)
(
P (n) =⇒ P (n+ 1)

)
.
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But we have alrady proved this, in Theorem 27, on page 232, which says
precisely that goodness is passed on from an integer n to its successor n+1.

Since we have proved both that P (1) and that

(∀n ∈ IN)
(
P (n) =⇒ P (n+ 1)

)
,

it follows from the PMI that

(∀n ∈ IN)G(n) , (12.215)

i.e., every natural number is good. Q.E.D.
Finally, we need to prove that every integer is good. It is very easy to

prove that if n ∈ Z and n is good then −n is good. (YOU DO THIS.)
Now, let n be an arbitrary integer. Then either n ∈ IN or −n ∈ IN or

n = 0, by Basic Fact BFN4.
If n ∈ IN then we already know that n is good.
If −n ∈ IN then −n is good, and then n is good as well.
So we have proved that the nonzero integers are good. If n = 0, then n

is good as well because, for example, we alreadyknow that −1 is good, and
goodness is passed on from each integer to its successor.

So we have proved that every integer is good. Q.E.D.

12.3.3 Proof that every integer is even or odd and not both

We now want to prove that every integer is good. That is, we want to prove:

Theorem 29. If n is an integer, then

1. n is even (that is, (∃k ∈ Z)n = 2k) or n is odd (that is, (∃k ∈ Z)n =
2k + 1);

2. n is not both even and odd.

In order to prove this, we need two very simple theorems.

Theorem 30. The integer 0 is even and not odd.

Theorem 31. If n is an integer then

1. If n is even then −n is even.

2. If n is odd then −n is odd.

3. If n is even and odd and not both, then −n is even or odd and not
both.
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Problem 57. Prove Theorems 30 and 31, using the theorems already
proved in this section. �

Proof of Theorem 29.

As we have been doing in previous sections, let us call an integer n “good”
if n is even or odd and not both even and odd.

We want to prove that every integer is good.

Let n ∈ Z be arbitrary.

Then either n ∈ IN, or −n ∈ IN, or n = 0.

If n ∈ IN, then n is good by Theorem 28.

If −n ∈ IN, then −n is good by Theorem 28, and this implies that n
is good by Theorem 31.

If n = 0 then n is good by Theorem 30.

So n is good. Q.E.D.
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13 Examples of proofs by induction

13.1 Some divisibility theorems

Theorem 32. If n is natural number, then 8n − 5n is divisible by 3.

Proof. We want to prove that

(∀n ∈ IN)3|8n − 5n . (13.216)

Let P (n) be the predicate “3|8n − 5n

.

We want to prove that (∀n ∈ IN)P (n).

We are going to prove this by induction.

Basis step:

We want to prove P (1).

P (1) aays “3|81 − 51”.

And 81 = 8, 51 = 5, so 81 − 51 = 3.

Therefore 3|81 − 51, so P (1) is true

Inductive step:

We want to prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n ∈ IN be arbitrary.

Assume P (n).

Then 3|8n − 5n.

So we can write

8n − 5n = 3k , k ∈ Z .. (13.217)

Then
8× (8n − 5n) = 3× 8k . (13.218)

So
8n+1 − 8× 5n = 3× 8k , (13.219)

and then
8n+1 = 8× 5n + 3× 8k , (13.220)
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But 8 = 5 + 3, so

8× 5n = 5× 5n + 3× 5n = 5n+1 + 3× 5n , (13.221)

so
8n+1 = 5n+1 + 3× 5n + 3× 8k , (13.222)

and then
8n+1 = 5n+1 + 3(5n + 8k) , (13.223)

so that
8n+1 − 5n+1 = 3(5n + 8k) , (13.224)

Let j = 5n + 8k. Then j ∈ Z and

8n+1 − 5n+1 = 3j . (13.225)

Hence 3|8n+1 − 5n+1. That is, P (n+ 1) .

Therefore P (n) =⇒ P (n+ 1) (by Rule =⇒prove).

So (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) (by Rule ∀prove).
This completes the inductive step.

Since we have proved P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) , it follows from

the PMI that (∀n ∈ IN)P (n), that is,. (∀n ∈ IN)3|8n − 5n . Q.E.D.

Here are a few examples of theorems similar to Theorem 32

Theorem 33. If n is natural number, then 11n − 4n is divisible by 7.

Theorem 34. If n is natural number, then 22n − 10n is divisible by 12.

Theorem 35. If n is natural number, then 31n − 18n is divisible by 13.

Problem 58. Prove Theorem 33. �

Problem 59. Prove Theorem 34. �

Problem 60. Prove Theorem 35. �

Problem 61. If, after reading the proof of Theorem 32 and solving
Problems 58, 59, 60, you get the feeling that these are all the same
thing, try to prove the following general theorem:

Theorem 36. If a, b are integers, then for every natural number n,
an − bn is divisible by a = b.

(This is done later, see Theorem 43 on page 260. But you shoud try to
prove it by yourself before you look at the proof.) �
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13.2 An inequality

Here is another example of a proof by induction.

Theorem 37. If n is a natural number, then 2n < n! + 3 .

Proof. We want to prove that

(∀n ∈ IN)2n < n! + 3 . (13.226)

Let P (n) be the predicate “ 2n < n! + 3 ”.

We want to prove that (∀n ∈ IN)P (n).

We are going to prove this by induction.

Basis step:

We want to prove P (1).

P (1) aays “ 21 < 1! + 3 ”.

And 21 = 2 and 1! + 3 = 4.

Therefore 21 < 1! + 3, so P (1) is true

Inductive step:

We want to prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n ∈ IN be arbitrary.

Assume P (n). We want to prove P (n+ 1).

Since P (n) holds, we have

2n < n! + 3 . (13.227)

Therefore, multiplying both sides of (13.227) by 2, we get

2n+1 < 2n! + 6 . (13.228)

On the other hand, n+ 1 = n− 1 + 2, so

(n+ 1)! = (n+ 1)n! = (n− 1)n! + 2n! . (13.229)

We are going to treat separately the cases n ≥ 3 and n < 3.

Assume that n ≥ 3.
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Then n− 1 ≥ 2 and n! ≥ 6, so (n− 1)n! ≥ 12 and a fortiori
(n− 1)n! > 3.

∗ Since (n+ 1)! = (n− 1)n! + 2n!, and (n− 1)n! > 3, we have
(n+ 1)! > 2n! + 3, that is

2n! + 3 < (n+ 1)! . (13.230)

Since 2n+1 < 2n! + 6, we have

2n+1 < 2n! + 6

= 2n! + 3 + 3

< (n+ 1)! + 3 ,

so 2n+1 < (n+ 1)! + 3.

That is, P (n+ 1) holds.

We now consider the case when n < 3.

Assume that n < 3.

Then n = 1 or n = 2,

If n = 1 then P (n + 1) says 22 < 2! + 3, that is 4 < 5. So
P (n+ 1) is true.

If n = 2 then P (n + 1) says 23 < 3! + 3, that is 8 < 9. So
P (n+ 1) is true.

So in both cases P (n+ 1) holds.

We have proved that P (n+1) holds in both case, when n ≥ 3

and when n < 3. So P (n+ 1).

Therefore P (n) =⇒ P (n+ 1) (by Rule =⇒prove).

So (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) (by Rule ∀prove).

This completes the inductive step.

Since we have proved P (1) ∧ (∀n ∈ IN)(P (n) =⇒ P (n+ 1)) , it follows from

the PMI that (∀n ∈ IN)P (n), that is,. (∀n ∈ IN)2n < n! + 3 . Q.E.D.

Problem 62.

1. Prove that if n is a natural number then 3n < n! + 124.

2. Is it true that if n is a natural number then 3n < n! + 123?
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13.3 More inequalities, with applications to the computation
of some limits

Let us use induction to prove an inequality:

Theorem 38. If x is a positive real number, and n is a natural number,
then

(1 + x)n ≥ 1 + nx . (13.231)

Proof. We want to prove that

(∀x ∈ IR)(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

. (13.232)

Let x be an arbitrary real number.

We want to prove that

(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

. (13.233)

We prove this by induction.

Let P (n) be the predicate “x > 0 =⇒ (1 + x)n ≥ 1 + nx”.

Base step. We have to prove P (1).

But P (1) says “x > 0 =⇒ 1 + x ≥ 1 + x”, and this implication is
obviously true, because its conclusion is true.

So P (1) is true, and we are done with the base case.

Inductive step. We have to prove

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (13.234)

Let n be an arbitrary natural number. We want to prove that
P (n) =⇒ P (n+ 1).

Assume P (n).

Then
x > 0 =⇒ (1 + x)n ≥ 1 + nx . (13.235)

We want to prove

x > 0 =⇒ (1 + x)n+1 ≥ 1 + (n+ 1)x . (13.236)
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Assume x > 0.

Then it follows from (13.235) (by Rule =⇒use) that

(1 + x)n ≥ 1 + nx . (13.237)

Multiplying both sides of (13.237) by 1+x (which is possible
because 1 + x > 0), we get

(1 + x)n+1 ≥ (1 + x)(1 + nx) . (13.238)

But

(1 + x)(1 + nx) = 1 + x+ nx+ nx2

= 1 + (n+ 1)x+ nx2

≥ 1 + (n+ 1)x .

(The fact that 1 + (n + 1)x + nx2 ≥ 1 + (n + 1)x follows
because nx2 ≥ 0 and then, adding 1+(n+1)x to both sides,
we get 1 + (n+ 1)x+ nx2 ≥ 1 + (n+ 1)x.)

So
(1 + x)n+1 ≥ 1 + (n+ 1)x . (13.239)

Since we proved (13.239) under the assumption that x > 0,
it follows that

x > 0 =⇒ (1 + x)n+1 ≥ 1 + (n+ 1)x . (13.240)

That is, P (n+ 1) holds.

Since we have proved P (n + 1) assuming P (n), Rule =⇒prove

allows us to conclude that P (n) =⇒ P (n+ 1).

So we have proved P (n) =⇒ P (n+1) for arbitrary n ∈ IN, Rule ∀prove
allows us to conclude that (13.234) holds.

This completes the inductive step.

Since we have also proved P (1), we can use the PMI to conclude that
(13.233) holds, i.e., that

(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

. (13.241)
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Since we have proved for an arbitrary real number x, we can conclude that

(∀x ∈ IR)(∀n ∈ IN)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

, (13.242)

which is exactly what we wanted to prove. Q.E.D.

Problem 63. In the proof of Theorem 38, we translated the statement to
be proved into formal language as Formula (13.232) and then followed the
rules of logic, plus the PMI, to prove it.

Suppose instead that we had translated the statement of Theorem 38 in
a different way, as

(∀n ∈ IN)(∀x ∈ IR)
(

x > 0 =⇒ (1 + x)n ≥ 1 + nx
)

. (13.243)

1. Prove that this translation is equivalent to Formula (13.232),
as a matter of pure logic. That is, prove that no matter what the 2-
variable predicate A(x, n) is, and what the sets S, T are, the formulas

(∀x ∈ S)(∀n ∈ T )A(x, n)

and
(∀n ∈ T )(∀x ∈ S)A(x, n)

are equivalent. (Two formulas U, V are equivalent if U ⇐⇒ V is true.)

2. Write a different proof of Theorem 38, using the translation (13.243)
instead of (13.232).

Problem 64. By looking carefully at the proof of Theorem 38, prove the
following stronger result:

Theorem 39. If x ∈ IR and x ≥ −1, and n is a natural number, then

(1 + x)n ≥ 1 + nx . (13.244)

With a little bit more work, it is possible to prove a result stronger than
Theorem 38:

Theorem 40. If x is a nonnegative real number, and n is a natural number,
then

(1 + x)n ≥ 1 + nx+
n(n− 1)

2
x2 . (13.245)

Proof.
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YOU DO THIS ONE.

HINT. Just repeat the proof of Theorem 38 up to the point when you
multiply by 1 + x, and at that point keep the x2 term. �

Problem 65. Prove Theorem 40. �

13.3.1 An application of Theorem 40: computing limn→∞ n
√
n

In this section we use the notion of “limit of a sequence”. All you need
to know about limits of seuences is the following sandwiching theorem”:
If {an}∞n=1, {bn}∞n=1, and {cn}∞n=1, are sequences of real numbers such
that an ≤ bn ≤ cn for every n ∈ IN, and L is a real number such that

lim
n→∞

an = L and lim
n→∞

cn = L ,

then limn→∞ bn.
Let us prove that

lim
n→∞

n
√
n = 1 . (13.246)

Define
αn = n

√
n− 1 .

To prove (13.246), we have to prove that

lim
n→∞

αn = 0 . (13.247)

It is clear that αn ≥ 0. (Reason: n
√
n ≥ 1, because if n

√
n was < 1, it would

follow that
(

n
√
n
)n

< 1, but
(

n
√
n
)n

= n, and n ≥ 1.)

Also, 1 + αn = n
√
n, so

(1 + αn)
n = n . (13.248)

Using the inequality of Theorem 40, we get

(1 + αn)
n ≥ 1 + nαn +

n(n− 1)

2
α2
n . (13.249)

So

n = (1 + αn)
n

≥ 1 + nαn +
n(n− 1)

2
α2
n

≥ n(n− 1)

2
α2
n .
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Hence

n ≥ n(n− 1)

2
α2
n ,

so

1 ≥ n− 1

2
α2
n ,

and then

α2
n ≤ 2

n− 1
,

so

αn ≤
√

2

n− 1
.

Hence the numbers αn satisfy

0 ≤ αn ≤
√

2

n− 1
.

So the αn are ‘sandwiched” between two sequences that converge to 0. Hence
limn→∞ αn = 0 by the sandwiching theorem.

Hence (13.246 is proved.

13.4 Some formulas for sums

In this section we use the notation “
∑n

k=1 ak” for “a1 + a2 + · · ·+ an”. (A
precise definition of “

∑n
k=1 ak”, without using · · · , is given in section 13.5.3

on page 257.)

Theorem 41. If n is an arbitrary natural number, then

n∑

k=1

k =
n(n+ 1)

2
. (13.250)

(That is, 1 + 2 + · · ·+ n = n(n+1)
2 .)

Proof. Let P (n) be the statement “
∑n

k=1 =
n(n+1)

2 ”.

We prove (∀n ∈ IN)P (n) by induction.

Base step. P (1) says “1 = 1(1+1)
2 ”, which is obviously true. So P (1) is

true.

Inductive step.
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We prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n be an arbitrary natural number.

Assume that P (n) is true.

Then
∑n

k=1 k = n(n+1)
2 .

Therefore

n+1∑

k=1

k = (
n∑

k=1

k) + (n+ 1)

=
n(n+ 1)

2
+ (n+ 1)

= (n+ 1)
[n

2
+ 1
]

= (n+ 1)× n+ 2

2

=
(n+ 1)(n+ 2)

2
.

So
n+1∑

k=1

k =
(n+ 1)(n+ 2)

2
.

That is, P (n+ 1) holds.

We have proved P (n+1) assuming P (n). Hence P (n) =⇒ P (n+ 1) .

We have preved P (n) =⇒ P (n + 1) for an arbitrary natural number n.
Therefore (∀n ∈ IN)(P (n) =⇒ P (n + 1)), which completes the inductive
step.
Hence, by the PMI, (∀n ∈ IN)P (n), that is,

(∀n ∈ IN)
n∑

k=1

k =
n(n+ 1)

2
.

Q.E.D.

Using the same method, many other formulas for sums can be proved.
Here is an exmaple of a rather remarkable one:
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Theorem 42. If n is a natural number, then

n∑

k=1

k3 =
[n(n+ 1)

2

]2
, (13.251)

that is:

13 + 23 + 33 + 43 + · · ·+ n3 =
[n(n+ 1)

2

]2
.

Proof. YOU DO THIS ONE.

Problem 66.

1. Compute the sum
∑n

k=1 k
3 for n = 1, 2, 3, 4, 5 and 6.

2. Verify that in each case the sum you got is a perfect square (i.e., the
square of an integer).

3. Prove Theorem 42. �

Problem 67.

1. Compute the sum
∑n

k=1 k
2 for n = 1, 2, 3, 4, 5 and 6.

2. Verify that in each case the sum you got agrees with the formula

n∑

k=1

k2 =
n+ 3n2 + 2n3

6
. (13.252)

3. Prove that Formula (13.252) holds for every natural number n. �

Problem 68.

1. Compute the sum
∑n

k=1 k for n = 1, 2, 3, 4, 5 and 6.

2. Verify that in each case the sum you got agrees with the formula

n∑

k=1

k =
n(n+ 1)

2
. (13.253)

3. Prove that Formula (13.253) holds for every natural number n. �

Problem 69.
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1. Compute the sum
∑n

k=1(2k − 1) for n = 1, 2, 3, 4, 5 and 6.

2. Verify that in each case the sum you got agrees with the formula

n∑

k=1

(2k − 1) = n2 . (13.254)

3. Prove that Formula (13.254) holds for every natural number n. �

Problem 70. Figure out a formula for the sum

n∑

k=1

(2k − 1)2 , (13.255)

and prove that your formula holds for every natural number n. �

Problem 71. Figure out a formula for the sum

n∑

k=1

(4k + 3)3 , (13.256)

and prove that your formula holds for every natural number n. �

13.5 Inductive definitions

In an earlier set of lectures, we defined “x2”, for a real number x, to mean
“x.x”. And we can define “x3” to mean “(x.x).x”, or, if you prefer, “x2.x”.
But how can we define “xn” for an arbitrary natural number n? One possi-
bility would be to write something like this

xn = x× x× · · · × x
︸ ︷︷ ︸

n times

Similarly, we would like to define the “factorial” n! of a natural number n
by the formula

n! = 1× 2× 3× · · · × n .

And we would like to define summations such as

1 + 2 + 3 + · · ·+ n

or
12 + 22 + 32 + · · ·+ n2 ,
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or products such that

2× 4× 6× 8× · · · × 200 .

With this notation, if we want to talk about the product of the first 20 prime
numbers, i.e., the number

2×3×5×7×11×13×17×19×23×29×31×37×41×43×47×53×59×61×67×71 ,

we could write
2× 3× · · · × 71 . (13.257)

But this is very unclear. I do not know what “· · · ” means, precisely (and if
you think you do, please tell me!). For example, in the expression (13.257),
how on Earth are we supposed to know which numbers should go in place
of the · · · ? Take a simple example of a similar situation: suppose I write

3× 5× 7× · · · × 71 . (13.258)

Is this supposed to be “the product of all odd numbers from 3 to 71”, or
“the product of all prime numbers from 3 to 71”, or “the product of all the
odd numbers from 3 to 71 that do not end in a 9”, or what?

Next, let us look at another example: suppose I write

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, . . . .

What is the next number, after 377? Well, if you have guessed the pattern,
then you will probably guess that each number, after the first two, is the
sum of the two preceding ones, so what comes after 377 is 233 + 377, that
is, 610. But, why couldn’t the pattern be this:

• Start with 1, and then another 1.

• Then each number is obtained by adding the two preceding ones.

• Yo go on like this until you get to 377, and then you switch to a
different rule: each number is obtained by adding 100 to the previous
one.

This is a perfectly legitimate rule for generating a sequence of numbers, and
if you use this rule then the numbers that come after 377 are 477, 577, and
so on. If you say “that’s not a true pattern”, then I will ask you to tell me
what you mean by “a true pattern”, and I will also ask “Why not? What
do you mean by ‘pattern’ ? ”. “Why is this not a true pattern?”.
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One last example. If I write

27, 82, 41, 124, 61, 184, 92, 46, · · ·

what comes next? I’ll let you think about this one.
The fact is: in general, “· · · ” is meaningless. So in mathematics we

just do not use it.
And, in any case, once we develop fully our way of writing all of math-

ematics formally (that is, with formulas and no words), the symbol “· · · ”
will not be there in the list of symbols we can use. So we do not want to
use “· · · ” at all.

What we are going to do instead is use inductive definitions.

13.5.1 The inductive definition of powers of a real number

The way to define the power “xn” correctly is by means of an inductive definition:
we first define x1 to be x, and then define xn+1 to be xn.x, for every n. That
is, we write:

Definition 18. (Inductive definition of positive integer powers of
a real number) For all a ∈ IR, we set

a1 = a ,

an+1 = an.a for n ∈ IN .

We also set a0 = 1. �

Using this definition, we can write down what an is for any n.
Suppose, for example, that we want to know what a5 is. By the second

line of our inductive definition of an,

a5 = a4.a.

This answers our question about a5, in terms of a4. And what is a4? Again,
using the second line of the inductive definition, we find

a4 = a3.a.

So
a5 = ((a3).a).a.

And what is a3? Once again, we can use the second line of the inductive
definition, and find

a3 = a2.a
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So
a5 = (((a2).a).a).a.

One more step yields
a2 = a1.a ,

so
a5 = (((a1.a).a).a).a.

And, finally, the first line of the inductive definition, tells us that a1 = a, so
we end up with

a5 = (((a.a).a).a).a.

Furthermore, since multiplication of real numbers has the associative prop-
erty, we can omit the parentheses and just write:

a5 = a.a.a.a.a.

13.5.2 The inductive definition of the factorial

The “factorial” of a natural number n is supposed to be the product 1 ×
2 × 3 × · · · × n. That is, the factorial of n is the product of all the natural
numbers from 1 to n. Here is the inductive definition:

Definition 19. The factorial of a natural number n is the number n! given
by

1! = 1 , (13.259)

(n+ 1)! = n!× (n+ 1) for n ∈ IN . (13.260)

In addition, we define
0! = 1 ,

so n! is defined for every nonnegative integer n. �

Example 61. Let us compute 7! using the inductive definition. Using
(13.260) we get 7! = 7 × 6!. Then using (13.260) again we get 6! = 6 × 5!,
so 7! = 7 × 6 × 5!. Continuing in the same way we get 5! = 5 × 4!, so
7! = 7 × 6 × 5 × 4!, and then 4! = 4 × 3!, so 7! = 7 × 6 × 5 × 4 × 3!.
Then 3! = 3 × 2!, so 7! = 7 × 6 × 5 × 4 × 3 × 2!. And 2! = 2 × 1!, so
7! = 7× 6× 5× 4× 3× 2× 1!. Finally, (13.259) tells us that 1! = 1, so we
end up with

7! = 7× 6× 5× 4× 3× 2× 1 ,

which is of course what 7! is supposed to be. �
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13.5.3 The inductive definition of summation.

Definition 20. Suppose we have a natural number n, and a list

a = (a1, a2, . . . , an)

of n real numbers. We define the sum (or summation) of the list a (also
called the sum of the aj for j from 1 to n) to be the number

∑n
j=1 aj deter-

mined as follows:

1∑

j=1

aj = a1 ,

n+1∑

j=1

aj =
( n∑

j=1

aj

)

+ an+1 for n ∈ IN .

And we also define
∑0

j=1 aj = 0.

Example 62. Let us compute
∑5

j=1 j
2. We have

5∑

j=1

j2 =
( 4∑

j=1

j2
)

+ 52

=

(
( 3∑

j=1

j2
)

+ 42

)

+ 52

=
( 3∑

j=1

j2
)

+ 42 + 52

=
( 2∑

j=1

j2
)

+ 3+42 + 52

=
( 1∑

j=1

j2
)

+ 22 + 3+42 + 52

= 12 + 22 + 3+42 + 52

= 1 + 4 + 9 + 16 + 25

= 55 .

13.5.4 Inductive definition of product.

Definition 21. For a natural number n, and a list a = (a1, a2, . . . , an) of
n real numbers, we define the product of the aj for j from 1 to n to be the
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number
∏n

j=1 aj determined as follows:

1∏

j=1

aj = a1 ,

n+1∏

j=1

aj =
( n∏

j=1

aj

)

× an+1 for n ∈ IN .

And we also define
∏0

j=1 aj = 1.

Example 63. If you compare the inductive definition of a product with the
inductive definition of the factorial, you can easily see that

n! =

n∏

j=1

j for every n ∈ IN .

13.5.5 A simple example of a proof by induction using inductive
definitions

Here is a simple example of a proof of an inequality by induction. Notice
how the proof uses the notion of “n-th power” of a real number exactly in
the form of the inductive definition.

Proposition 1. For all n ∈ IN, n < 2n.

Proof.
Let P (n) be the statement “n < 2n ”.
We are going to prove

(∀n ∈ IN)P (n) (13.261)

by induction

Basis step. P (1) is the statement “1 < 21”. But 21 = 2 by the inductive

definition, so P (1) says “1 < 2” which is clearly true. So P (1) is true.

Inductive step. We want to prove that

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (13.262)

Let n be an arbitrary natural number.

We want to prove that P (n) =⇒ P (n+ 1).
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Assume P (n).

Then n < 2n.

So 2n < 2n × 2 = 2n+1.

But 1 ≤ n, because n is a natural number. (Precisely: if n = 1
then 1 = n, so 1 ≤ n. And if n 6= 1 then ny Basic Fact BFZ9,
n− 1 ∈ IN, so 1 < n, and then 1 ≤ n.)

So n+ 1 ≤ n+ n, i.e., n+ 1 ≤ 2n.

Therefore n+ 1 < 2n+1.

So P (n+ 1) is true.

Since we have proved P (n+ 1) assuming P (n), we can conclude that
P (n) =⇒ P (n+ 1).

Since we have proved P (n) =⇒ P (n + 1) for arbitrary n, it follows that
(13.262) holds.
So we have completed the basis step and the inductive step, and then the
PMI tells us that (13.261 holds, that is, that (∀n ∈ IN)n < 2n. Q.E.D.

13.5.6 Another simple example of a proof by induction using
inductive definitions

Here is a slightly more involved example of a proof of an inequality by
induction. Notice how the proof uses the notion of “n-th power” of a real
number and the notion of “factorial” exactly in the form of their inductive
definitions.

We would like to prove the inequality “2n < n!”. This, however, isn’t
true for every natural number n. (For example, it is not true if n = 1 or
n = 2 or n = 3.) But it is true for n ≥ 4.

Proposition 2. For all n ∈ IN, if n ≥ 4 then 2n < n!.

Proof.
Let P (n) be the statement “ 2n < n! ”.
We are going to prove

(∀n ∈ IN)(n ≥ 4 =⇒ P (n)) . (13.263)

by induction. And we will start the induction at 4 rather than 1.

Basis step. P (4) is the statement “24 < 4!”. But 24 = 16, and 4! = 24. So

P (1) says “16 < 24’, which is clearly true. So P (4) is true.
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Inductive step. We want to prove that

(∀n ∈ IN)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n+ 1))
)

. (13.264)

Let n be an arbitrary natural number such that n ≥ 4..

We want to prove that P (n) =⇒ P (n+ 1).

Assume P (n).
Then 2n < n!.
So 2× 2n < 2n!.
But 2× 2n = 2n+1.
Hence 2n+1 < 2n!.
Also, 2 < n+ 1.
So 2n! < (n+ 1)n!.
But (n+1)n! = (n+1)! by the inductive definitionof “factorial”.

Therefore 2n! < (n+ 1)!.
So, finally, 2n+1 < (n+ 1)!.
So P (n+ 1) is true.

Since we have proved P (n+ 1) assuming P (n), we can conclude that
P (n) =⇒ P (n+ 1).

Since we have proved P (n) =⇒ P (n + 1) for arbitrary n, it follows that
(13.264) holds.
So we have completed the basis step and the inductive step, and then the

PMI tells us that (13.263) holds, that is, that (∀n ∈ IN)
(

n ≥ 4 =⇒ (2n <

n!)
)

. Q.E.D.

13.5.7 Another simple example: divisibility by 3, 9, and 11

Let us prove

Theorem 43. If a, b are arbitrary integers, then for every nonnegative in-
teger79 n the integer an − bn is divisible by a− b.

Example 64. Here are some examples of what the theorem says:

1. Take a = 8, b = 3. Then the theorem says that 8n − 3n is divisible by
5 for every n. (And you can check this. For example, 83 = 512, and
33 = 27, so 83 − 33 = 512− 27 = 495, which is indeed divisible by 5.

79Recall that the nonnegative integers are the natural numbers as well as zero.
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2. Take a = 10, b = 1. Then the theorem says that 10n − 1 is divisible
by 9, and you can check this. (For example, 101− 1 = 9, 102− 1 = 99,
103 − 1 = 999, 104 − 1 = 9, 999, and so on.)

3. Take a = 10, b = −1. Then the theorem says that 10n − (−1)n is
divisible by 11. And you can check this: 10−(−1) = 11, 102−(−1)2 =
99, 103 − (−1)3 = 1, 001, 104 − (−1)49, 999, and all these are divisible
by 11. �

Proof.

Let a, b be arbitrary integers.

We will prove that

(∀n ∈ IN)a− b|an − bn , (13.265)

and also that “a− b|an − bn” is true for n = 0.

First we prove (13.265) by induction.

Let P (n) be the statement80 “a− b divides an − bn”.

Basis Step. P (1) says “a− b divides a− b”, which is obviously
true.

This completes the basis step.

Inductive Step. We want to rpove

Inductive step. We want to prove that

(∀n ∈ IN)(P (n) =⇒ P (n+ 1)) . (13.266)

Let n be an arbitrary natural number.

We want to prove that P (n) =⇒ P (n+ 1).

Assume P (n).

Then a− b divides an − bn.

So we may pick an integer k such that

an − bn = (a− b)k . (13.267)

80We do not have to worry about the quesion “who are a and b?”, because we have fixed
a and b earlier. They are fixed integers. Arbitrary, but fixed.
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Then

an+1 − bn+1 = an+1 − abn + abn − bn+1

= aan − abn + abn − bbn

= a(an − bn) + (a− b)bn

= a(a− b)k + (a− b)bn

= (a− b)
(
ak + bn

)
.

Hence an+1 − bn+1 = (a− b)
(
ak + bn

)
.

Clearly, ak + bn is an integer81.

Therefore a− b divides an+1 − bn+1.

So P (n+ 1) is true.

Since we have proved P (n + 1) assuming P (n), we can con-
clude that P (n) =⇒ P (n+ 1).

Since we have proved P (n) =⇒ P (n+1) for arbitrary n, it follows
that (13.266) holds.

So we have completed the basis step and the inductive step, and
then the PMI tells us that (13.265 holds, that is, that if n is an
arbitrary natural number, then a− b divides an − bn.

This almost completes our proof. But there is a minor missing detail:
we also have to prove that a− b divides an − bn when n = 0.

But if n = 0 then an − bn is equal to zero, because the inductive
definition of the powers tells us that a0 = 1 and b0 = 1.

And 0 is divisible by any integer.

So a− b divides an − bn also when n = 0.

We have now proved that a− b|an − bn for every nonnegative integer
n.

And this has been proved for arbitrary integers a, b. So our proof is complete.
Q.E.D.

81Strictly speaking even a stupid, trivial, obvious statement like this needs proof. On
the other hand, it is so obvous that nobody would actually insult the reader’s intelligence
by putting in the proof. On the other hand, at this point we are just getting started with
proofs, so you shousl knwo how to prove this. So I am going to ask you to write down the
proof, as a homework problem. Sorry!.
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Problem 72.

1. Provide a detailed proof of the step that we skipped in the proof
of Theorem 43, namely, that ak + bn is an integer. (This will require
proving that if b ∈ Z then bn ∈ Z for every nonnegative integer n, and
the only way to do that is by induction, using the inductive definition
of the powers.)

2. Provide an alternative proof of Theorem 43, in which you do not
treat separately the cases n ∈ IN and n = 0, but do the whole thing in
one swoop, using the PMI starting at 0 rather than at 1.

3. Explain how you would answer the following objection that somebody
studying these notes might raise: In the theorem, you do not assume
that a 6= b, and you talk about “divisibility by a− b”. But if a = b then
a− b is zero, and we cannot divide by zero, so how come you allow a
to be equal to b? How can you say that “0 is divisible by 0”, given that
0
0 is not defined? �

Problem 73. One of the consequences of Theorem 43 is that 10n − 1 is
divisible by 9 for each nonnegative integer n. So, for example, if you look
at the number 438, and let s = 4 + 3 + 8, so s = 15, it follows that 438− s
is divisible by 9, because:

438− s

= 4× 100 + 3× 10 + 4× 1− (4 + 3 + 8)

= 4× 102 − 4 + 3× 10− 3 + 4× 1− 1

= 4× (102 − 1) + 3× (10− 1) + 4× (1− 1) ,

which is clearly divisible by 9.

1. Explain how this fact leads to the following two divisibility criteria:

Criterion for divisibilitly by 9: A natural number n is di-
visible by 9 if and only if the sum of its decimal figures is di-
visible by 9. (For example: 572, 265 is divisible by 9 because
5 + 7 + 2 + 2 + 6 + 5 = 27, which is divisible by 9. And 772, 265
is not divisible by 9 because 7 + 7 + 2 + 2 + 6 + 5 = 29, which is
not divisible by 9.)

Criterion for divisibilitly by 3: A natural number n is di-
visible by 3 if and only if the sum of its decimal figures is di-
visible by 3. (For example: 572, 265 is divisible by 3 because
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5 + 7 + 2 + 2 + 6 + 5 = 27, which is divisible by 3. And 772, 265
is not divisible by 3 because 7 + 7 + 2 + 2 + 6 + 5 = 29, which is
not divisible by 3.)

2. Explain, in a similar way, how the fact that 10n − (−1)n is divisible
by 11 leads to the following divisibility criterion:

Criterion for divisibilitly by 11: A natural number n is di-
visible by 11 if and only if the alternating sum82 of its decimal
figures is divisible by 11. (For example: 572, 473 is divisible by
11 because 5−7+2−4+7−3 = 0, which is divisible by 11. And
772, 463 is not divisible by 11 because 7− 7 + 2− 4 + 6− 3 = 1,
which is not divisible by 11.) �

13.5.8 Some problems

Problem 74. Prove, using the inductive definition of the powers an, that

1. (∀a ∈ IR)(∀b ∈ IR)(∀n ∈ IN)(ab)n = anbn,

2. (∀a ∈ IR)(∀m ∈ IN)(∀n ∈ IN)am+n = aman. �

Problem 75. Prove, using the inductive definition of summation, that if
n ∈ IN and (a1, a2, . . . , an) and
(b1, b2, . . . , bn), are finite lists of natural numbers of length n, then

n∑

k=1

ak +
n∑

k=1

bk =
n∑

k=1

(ak + bk) . (13.268)

82That is, the sum with alternating signs: first figure minus second figureplus third
figure minus fourth figure, etc, etc.
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14 Other forms of induction

14.1 Induction with a different starting point (sometimes
called “generalized induction”)

The PMI says that, if a property is true of 1, and is passed on to the right, so
each natural number n passes it on to its successor n+1, then the property
will hold of all the numbers that we reach by counting starting at 1.

It is clear that the same thing should be true if we start counting at some
other starting point s∗, that is, some other integer such as, for example, 3,
or 7, or 0, or −5, or −372. The general result is the following rather trivial
theorem:

THE PRINCIPLE OF MATHEMATICAL INDUCTION
WITH A GENERAL STARTING POINT

Theorem 44. Let P (n) be a statement about a variable integer n. Suppose we
fix an integer s∗. Let Z≥s∗ denote the set of all integers n such that n ≥ s∗.
Suppose, furthermore, that

I. P (s∗) is true.

II. Any time P (n) is true for one particular n ∈ Z≥s∗ , it follows that P (n+1)
is true.

Then P (n) is true for every integer n belonging to Z≥s∗ .

And we can say the same thing in more formal language:
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THE PRINCIPLE OF MATHEMATICAL INDUCTION
WITH A GENERAL STARTING POINT

(FORMAL LANGUAGE VERSION)

Theorem 44. Let P (n) be a statement about a variable integer n.
Suppose we fix an integer s∗. Let Z≥s∗ denote the set of all integers n
such that n ≥ s∗. Suppose, furthermore, that

P (s∗) (14.269)

and
(∀n ∈ Z≥s∗)

(
P (n) =⇒ P (n+ 1)

)
. (14.270)

Then
(∀n ∈ Z≥s∗)P (n) . (14.271)

And we can say the same thing in even more formal language:

THE PRINCIPLE OF MATHEMATICAL INDUCTION
WITH A GENERAL STARTING POINT

(VERY FORMAL LANGUAGE VERSION)

Theorem 44. Let P (n) be a statement about a variable integer n. Let
s∗ ∈ Z, and let

Z≥s∗ = {n ∈ Z : n ≥ s∗} . (14.272)

Then
(

P (s∗) ∧ (∀n ∈ Z≥s∗)
(
P (n) =⇒ P (n+ 1)

))

=⇒ (∀n ∈ Z≥s∗)P (n) . (14.273)

Proof of Theorem 44.
Assume that P (n) is a 1-variable predicate and s∗ is an arbitrary integer.

We want to prove that if (14.269) and (14.270) hold, then (14.271) holds.
So we assume that (14.269) and (14.270) hold, and we try to prove that

(14.271) holds.
We do the proof by “changing coordinates”. That is, we relabel the

integers so that s∗ becomes 1, s∗ + 1 becomes 2, and so on.
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.  .  .  .  .  .  ..  .  .  .  .  .  .

s
* n  =  m + s   − 1

*

m =  n − s  +1
*

1 2 3 4 5 6 7 8 9 10 11 12 130−1−2

−3−4−5−6 −2 −1 −1 2 3 4 5 6 7 8 90

m

n

Changing coordinates on Z so that
n = s∗ becomes m = 1

(In the picture, s∗ is −3.)

Precisely, we introduce a new variable m related to n by

m = n+ 1− s∗ . (14.274)

(That is: n = s∗ corresponds to m = 1, n = s∗ + 1 corresponds to m = 2,
and, in general, n = s∗ + k corresponds to m = k.)

We can express n in terms of m as follows:

n = m+ s∗ − 1 . (14.275)

We let Q(m) be P (n) expressed in terms of m. That is, we let Q(m) stand
for P (m+ s∗− 1). Then Q(1) is P (s∗), Q(2) is P (s∗+1), Q(3) is P (s∗+2),
and so on.

We want to prove that P (s∗), P (s∗ + 1), P (s∗ + 2), . . ., are all true.
But this amounts to proving that Q(1), Q(2), Q(3), . . . are true, i.e. that
(∀m ∈ IN)Q(m).

We prove this by induction. Q(1) is true because Q(1) is the same as
P (s∗), which we are assuming is true.

And Q(m) =⇒ Q(m + 1) is true for every m ∈ IN, because “Q(m) =⇒
Q(m + 1)” is equivalent to “P (m + s∗ − 1) =⇒ P (m + s∗)”, which is also
true because m+ s∗ − 1 is to the right of s∗, so P (m+ s∗ − 1) implies that
the successor m+ s∗ also has property P .
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So Q(m) satisfies all the conditions of the ordinary PMI, and we can
conclude thatQ(m) is true for everym ∈ IN. And this says that P (m+s∗−1)
is true for all m ∈ IN. Hence P (n) is true for all n such that n = m+ s∗ − 1
for some m ∈ IN. But “n = m + s∗ − 1 for some m ∈ IN” is equivalent to
“n ≥ s∗”

Hence P (n) is true for all n ∈ Z≥s∗ , and our proof is complete. Q.E.D.

Remark 15. Theorem 44 is a generalization of the PMI in the following
precise sense: according to our definition, the set Z≥1 is precisely IN. So
Theorem 44, if we take s∗ to be 1, is exactly the PMI. �

Example 65. Let us prove the following:

Theorem 45. If n is an integer such that n ≥ 4, then 2n < n!.

Proof. We want to prove that

(∀n ∈ Z)(n ≥ 4 =⇒ 2n < n!) . (14.276)

Let P (n) be the predicate “ 2n < n! ”.

We want to prove that (∀n ∈ Z)(n ≥ 4 =⇒ P (n)).

We are going to prove this by induction, using the PMI with a general
starting point.

And we are going to take the starting point s∗ to be 4.

Basis step:

We want to prove P (4).

P (4) says “24 < 4!”.

And 24 = 16, 4! = 24, so 24 < 4!.

Therefore P (4) is true

Inductive step:

We want to prove that

(∀n ∈ Z)
(

n ≥ 4 =⇒
(
P (n) =⇒ P (n+ 1)

))

. (14.277)

Let n ∈ Z be arbitrary.
We want to prove that

n ≥ 4 =⇒ (P (b) =⇒ P (n+ 1)) . (14.278)
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Assume that n ≥ 4. We want to prove that P (n) =⇒ P (n+
1).

Assume P (n). We want to prove P (n+ 1).
The inductive hypothesis P (n) tells us that 2n < n!.
Then

2n+1 < 2n! . (14.279)

But 2 ≤ n+ 1, so 2n! ≤ (n+ 1)n! = (n+ 1)!.
Then 2n+1 < (n+ 1)!.
So P (n+ 1) holds .

Therefore P (n) =⇒ P (n+ 1) (Rule =⇒prove).

So n ≥ 4 =⇒ (P (n) =⇒ P (n+ 1)) (Rule =⇒prove).

Hence (∀n ∈ Z)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n+ 1))
)

(by Rule ∀use).

This completes the inductive step.

Since we have proved that

P (4) ∧ (∀n ∈ Z)
(

n ≥ 4 =⇒ (P (n) =⇒ P (n+ 1))
)

,

it follows from the PMI with general starting point that (∀n ∈ Z)(n ≥ 4 =⇒
P (n)), that is,

(∀n ∈ Z)(n ≥ 4 =⇒ 2n < n!) . Q.E.D.

14.2 Induction going forward and backward

The PMI says that, if a property P is true of 1, and is passed on to the
right, so each natural number n passes it on to its successor n+1, then the
property will hold of all the numbers that we reach by counting starting at
1. And the “generalized” form says that the same is true for integers if you
start at any integer s∗.

It is clear that if in addition to being passed on to the right property P
is also passed on to the left, (that is, if the implication P (n + 1) =⇒ P (n)
holds for every n ∈ Z), then P (n) will be true for every integer n.
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INDUCTION GOING FORWARD AND BACKWARD

Theorem 46. Let P (n) be a statement about a variable integer n and
let s∗ be an integer. Suppose that

I. P (s∗) is true.

II. Any time P (n) is true for one particular integer n, it follows that
P (n+ 1) is true.

III. Any time P (n + 1) is true for one particular integer n, it follows
that P (n) is true.

Then P (n) is true for every integer n.

And we can say the same thing in more formal language:

INDUCTION GOING FORWARD AND BACKWARD
(FORMAL LANGUAGE VERSION)

Theorem 46. Let P (n) be a statement about a variable integer n and
let s∗ be an integer. Suppose that

P (s∗) (14.280)

and
(∀n ∈ Z)

(
P (n) ⇐⇒ P (n+ 1)

)
. (14.281)

Then
(∀n ∈ Z)P (n) . (14.282)

And we can say the same thing in even more formal language:
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INDUCTION GOING FORWARD AND BACKWARD
(VERY FORMAL LANGUAGE VERSION)

Theorem 46. Let P (n) be a statement about a variable integer n. Let
s∗ ∈ Z. Then

(

P (s∗) ∧ (∀n ∈ Z)
(
P (n) ⇐⇒ P (n+ 1)

))

=⇒ (∀n ∈ Z)P (n) . (14.283)

Problem 76. Prove Theorem 46. �

14.3 Examples of proofs using induction going forward and
backward

14.3.1 A very simple example

Here is a simple example of a proof using indcuction going forwad and
backward.

First let us review a fact that we already know:

(D3) if n ∈ Z, then n3 − n is divisible by 3.

(This is easy to prove: we have

n3 − n = n(n2 − 1) = n(n− 1)(n+ 1) = (n− 1)n(n+ 1) ,

so n3 − n is the product of three consecutive integers. One of these integers
must be divisible by 3, so the product is divisible by 3. Actually, it is also
true that n3 − n must be even, that is, divisible by 2, and then, since 2 and
3 are coprime, it follows that a stronger result is true: n3 − n is divisible by
6.)

In view of (D3), we may conjecture that a similar statement may be true
for 4 instead of 3:

(D4) if n ∈ Z, then n4 − n is divisible by 4.

This, however, is not true. (Proof: (D4) is a universal sentence; it says
that for all integers n 4 divides n3 − n. To prove that (D4) is not true, it
suffices to give a counterexample. Let us just take n = 2. Then 24 = 16, so
24 − 2 = 14, which is not divisible by 4.)

How about (D5)? This one turns out to be true, and we can prove it
using induction going backward and forward.
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Theorem 47. If n is an integer, then n5 − n is divisible by 5.

Proof. We are going to use the binomial formula for the fifth power of a
sum:

(a+ b)5 = a5 + 5a4b+ 10a3b2 + 10a2b3 + 5ab4 + b5 , (14.284)

which is valid for all integers a, b. (And also for real numbers or, more
generally, members of any commutative ring with identity.)

Using this formula we can write, for n ∈ Z,

(n+ 1)5 = n5 + 5n4 + 10n3 + 10n2 + 5n+ 1

(n+ 1)5 − n5 − 1 = 5n4 + 10n3 + 10n2 + 5n

= 5(n4 + 2n3 + 2n2 + n) ,

so (n+ 1)5 − n5 − 1 is divisible by 5.
But

(n+ 1)5 − (n+ 1) = ((n+ 1)5 − n5 − 1) + n5 − n .

This implies that, for all n ∈ Z,

5|(n+ 1)5 − (n+ 1) ⇐⇒ 5|n5 − n . (14.285)

In other words, the predicate “5 divides n5 − n” is passed on forward (from
n to n + 1) and backward (from n + 1 to n). This means that we are in a
perfect situation to do induction going forward and backward.

Let P (n) be the predicate “5 divides n5−n”. We will prove the statement
“(∀n ∈ Z)P (n)” by induction going forward and backward. We choose the
starting point s0 to be 0.

Basis step. P (0) says “5 divides 0”, which is true because every integer

divides 0. So P (0) is true .

Inductive step. We have to prove that

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n+ 1)

)

.

But Formula (14.285) says precisely that for every n ∈ Z P (n) ⇐⇒ P (n+1)
This completes the inductive step. Q.E.D.

Problem 77. Prove or disprove each of the following statements:

1. If n is an integer, then n6 − n is divisible by 6.
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2. If n is an integer, then n7 − n is divisible by 7.

3. If n is an integer, then n8 − n is divisible by 8.

4. If n is an integer, then n9 − n is divisible by 9.

5. If n is an integer, then n10 − n is divisible by 10.

6. If n is an integer, then n11 − n is divisible by 11.

You may find the following binomial formulas useful:

(a+ b)7 = a7 + 7a6b+ 21a5b2 + 35a4b3 + 35a3b4

+21a2b5 + 7ab6 + b7

(a+ b)11 = a11 + 11a10b+ 55a9b2 + 165a8b3 + 330a7b4

+462a6b4 + 462a5b6 + 330s4b7

+165a3b8 + 55a2b9 + 11ab10 + b11 .

Remark 16. If you have done problem 77 you will have discovered the cases
p = 3, 6, 7 and 11 of Fermat’s little theorem: If p is a prime numbet and
n is an arbitrary integer then np − n is divisible by p. (And the case p = 2
is trivial, because if n ∈ Z then n2 − n is always even.) �

14.3.2 Divisibility properties of products of consecutive integers

We now discuss several theorems on divisibility of a product of consecutive
integers:

1. It is easy to prove that a product n(n+1) of two consecutive integers
must be divisible by 2.

2. We will then look at the product n(n+ 1)(n+ 2) of three consecutive
integers, and prove that such a product is divisible by 6.

3. Then we will look at the product n(n + 1)(n + 2)(n + 3) of four con-
secutive integers, and prove that such a product is divisible by 24.

4. Since 2 = 2×1 = 2!, 6 = 3×2×1 = 3!, and 24 = 4×3×2×1 = 4!, this
will clearly be a good indication that there is a general pattern, namely,
that for every natural number k the product of k consecutive integers
is divisible by k!. (Recall the inductive definition of the factorial n! of



Math 300, Fall 2020 274

a natural number: 1! = 1 and (n + 1)! = n! × (n + 1) for n ∈ IN.) In
other words, the general result should be that

(∀k ∈ IN)(∀n ∈ Z)k!
∣
∣
∣n(n+ 1)(n+ 2) · · · (n+ k − 1) (14.286)

or, using a notation without the mysterious and incomprehensible sym-
bol “· · · ”:

(∀k ∈ IN)(∀n ∈ Z)k!
∣
∣
∣

k∏

j=1

(n+ j − 1) (14.287)

5. And we will indeed prove (14.287) eventually, but the proof will be
little but harder than other proofs we have done so far, because it will
use a double induction: we will prove (14.287) by induction with
respect to k, and for each k we will need induction with respect to n.

First let us start with the trivial result for k = 2:

Theorem 48. If n is an integer, then n(n+ 1) is even, i.e., divisible by 2.
That is,

(∀n ∈ IN)2|n(n+ 1) . (14.288)

Proof. As I said earlier, this result is trivial.

Let n be an arbitrary integer.

We know that n is either even or odd.

If n is even then n(n+ 1) is even .

And if n is odd then n+ 1 is even so n(n+ 1) is even .

So we have proved that n(n+1) is even in both cases, when n is even
and when n is odd. And we know that one of these two cases must

occur. So n(n+ 1) is even .

So we have proved that n(n+ 1) is even for an arbitrary integer n.

Hence (∀n ∈ Z)n(n+ 1) is even . Q.E.D.
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We now want to prove that the product n(n+1)(n+2) of three consecutive
integers is divisible by 6. And the strategy is going to be to prove the result
by induction going forward and backward.

Here is the result:

Theorem 49. If n is an integer, then n(n+1)(n+2) is divisible by 6. That
is,

(∀n ∈ Z)6|n(n+ 1)(n+ 2) . (14.289)

Proof. Let P (n) be the statement “ 6|n(n+ 1)(n+ 2) ”
We prove that (∀n ∈ Z)P (n) by induction going forward and backward.

Basis step. If n = 0, then n(n + 1)(n + 2) = 0, so P (0) is the statement

“6|0”, which is obviously true. So P (0) is true.

Inductive step. We want to prove that

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n+ 1)

)
. (14.290)

Let n be an arbitrary integer.

We want to prove that P (n) ⇐⇒ P (n+ 1).

We already know that n(n+ 1) is even. So we can write

n(n+ 1) = 2k , k ∈ Z .

Then

(n+ 1)(n+ 2)(n+ 3) = (n+ 3)(n+ 1)(n+ 2)

= n(n+ 1)(n+ 2)

+3(n+ 1)(n+ 2)

= n(n+ 1)(n+ 2) + 3× 2k

= n(n+ 1)(n+ 2) + 6k .

If 6 divides n(n+ 1)(n+ 2), then (n+ 1)(n+ 2)(n+ 3) is the sum of
two integers that are divisible by 6. So 6 divides (n+1)(n+2)(n+3).

If 6 divides (n+1)(n+2)(n+3), then n(n+1)(n+2) is the difference
of two integers that are divisible by 6. So 6 divides n(n+ 1)(n+ 2).

We have shown that

6|(n+ 1)(n+ 2)(n+ 3) ⇐⇒ 6|n(n+ 1)(n+ 2) ,

i.e., that P (n) ⇐⇒ P (n+ 1).
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Since we have shown that P (n) ⇐⇒ P (n+ 1) for an arbitrary integer n, it
follows that

(∀n ∈ Z)
(
P (n) ⇐⇒ P (n+ 1)

)
,

and this completes the inductive step.
It the follows from Theorem 46 that P (n) is true for all integers n. That

is, (14.289) holds. Q.E.D.

In the proof of Theorem 49 we used the fact that if n ∈ Z then n(n+1)
is divisible by 2. Similarly, to prove that (∀n ∈ Z)24|n(n+1)(n+2)(n+3),
the proof should use the result that (∀n ∈ Z)6|n(n+ 1)(n+ 2).

Similar results can be proved for the products of four and five consecutive
integers.

Theorem 50. If n is an integer, then the product n(n+ 1)(n+ 2)(n+ 3) is
divisible by 24. That is,

(∀n ∈ Z)24|n(n+ 1)(n+ 2)(n+ 3) . (14.291)

Proof. YOU DO THIS ONE.
In the proof of Theorem 49 we used the fact that if n ∈ Z then n(n+1)

is divisible by 2.
Similarly, to prove that

(∀n ∈ Z)24|n(n+ 1)(n+ 2)(n+ 3) ,

the proof should use the result of Theorem 49, that is, that (∀n ∈ Z)6|n(n+
1)(n+ 2).

Problem 78. Prove Theorem 50. You are not allowed to use Theorem
52.

NOTE: Theorem 50 is a special case of Theorem 52, for k = 4. But I
want you to prove Theorem 50 directly, without using Theorem 52. �

Theorem 51. If n is an integer, then the product n(n+1)(n+2)(n+3)(n+4)
is divisible by 120. That is,

(∀n ∈ Z)120|n(n+ 1)(n+ 2)(n+ 3)(n+ 4) . (14.292)

Proof. YOU DO THIS ONE.



Math 300, Fall 2020 277

In the proof of Theorem 50 we used the fact that if n ∈ Z then n(n +
1)(n+2) is divisible by 6. Similarly, to prove that (∀n ∈ Z)120|n(n+1)(n+
2)(n+ 3)(n+ 4), the proof should use the result that

(∀n ∈ Z)24|n(n+ 1)(n+ 2) .

Problem 79. Prove Theorem 51. You are not allowed to use Theorem
52.

NOTE: Theorem 51 is a special case of Theorem 52, for k = 5. But I
want you to prove Theorem 51 directly, without using Theorem 52. �

What we have done so far is clearly the beginning of a proof by induction.
We have proved the following:

(*) for k = 1, 2, 3, 4, 5 the product of k consecurive integers is divisible
by k!.

This makes it natural to make the following

Conjecture. For every natural number k the product of k consecutive
integers is divisible by k!.

But, of course, knowing that something is true for a few values of k in
no way proves that it is true for all k, If we want to be sure that a statement
about k is true for all k, we have to prove it.

So let us prove it.

Theorem 52. If k is a natural number then every product of k
consecutive integers is divisible by k!.

Proof. As usual, our first task is to rewrite the statement we want to prove
in precise formal language. And for that purpose we need to write a formula
for the product of k consecutive integers.

If we start with an integer n, then the k consecutive integers starting at
n are n, n+1, n+2, . . ., up to n+k−1. And the product of these k integers
is
∏k

j=1(n+ j − 1). (For example, for k = 3, the product is n(n+1)(n+2).
The first factor is n, that is n+ j−1 with j = 1, and the last factor is n+2,
that is, n+ j − 1 with j = 3.)
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Let us call this product an,k, so

an,k =
k∏

j=1

(n+ j − 1) , (14.293)

or, if you prefer,

an,k = n× (n+ 1)× (n+ 2)× · · · × (n+ k − 1) . (14.294)

So, for example,

a2,3 = 2× 3× 4 ,

a−5,7 = (−5)× (−4)× (−3)× (−2)× (−1)× 0× 1 ,

a4,9 = 4× 5× 6× 7× 8× 9× 10× 11× 12 .

Then what we want to prove is the following statement:

(∀k ∈ IN)(∀n ∈ Z) k!
∣
∣
∣ an,k . (14.295)

In order to prove this, we will use induction.
We let P (k) be the predicate “for every integer n, the product of k

consecutive integers starting with n is divisible by k!”. That, P (k) is the
predicate

(∀n ∈ Z) k!
∣
∣
∣ an,k . (14.296)

Basis step of the induction. We want to prove that P (1) is true. And P (1) is

true, for trivial reasons: P (1) says “(∀n ∈ Z)1!
∣
∣
∣ an,1”, i.e., “(∀n ∈ Z)1

∣
∣
∣n”,

and this is true because every integer is divisible by 1. So we have proved

P (1) .

Inductive step. We want to prove that

(∀k ∈ IN)
(
P (k) =⇒ P (k + 1)

)
. (14.297)

Let k ∈ IN be arbitrary. We want to prove that

P (k) =⇒ P (k + 1) . (14.298)

Assume P (k). That is, we assume that the product of k consec-
utive integers is divisible by k!.
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We want to prove P (k + 1). That is, we want to prove

(∀n ∈ Z) (k + 1)!
∣
∣
∣ an,k+1 . (14.299)

We are going to prove this by induction going forward and back-
ward. This means that

∗ We are going to do a second induction proof, with respect to
n, within the main proof by induction with respect to to k.

∗ We are going to call this “the n-induction”, to distinguish it
from the main induction, the “k-induction”.

So at this point

∗ we are within the k-induction,

∗ we are about to do the n-induction,

∗ we are assuming that P (k) is true,

∗ and we are trying to prove that P (k + 1) is true, that is, we
are trying to prove that (14.299) is true,

∗ and, since (14.299) is a universal sentence about “all integers
n”, we are going to do the proof by induction going forward
and backward.

We let Q(n) be the predicate

(k + 1)!
∣
∣
∣ an,k . (14.300)

We choose the starting point s∗ of our induction to be 0.

Basis step of the n-induction. We want to prove that Q(0) is
true. But Q(0) says

(k + 1)!
∣
∣
∣ a0,k+1 .

And a0,k+1 = 0, because a0,k+1 is a product of numbers the first

one of which is 0. So Q(0) says “(k + 1)!
∣
∣
∣0”, and this is true,

because 0 is divisible by every integer. So we have proved Q(0)” .

Inductive step of the n-induction. We want to prove that

(∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n+ 1)

)
. (14.301)

Let n ∈ Z be arbitrary. We want to prove

Q(n) ⇐⇒ Q(n+ 1) . (14.302)
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Q(n) says that (k + 1)! divides an,k+1.

And Q(n+ 1) says that (k + 1)! divides an+1,k+1.

We are going to prove that

(k+1)! divides an+1,k+1−an,k+1 . (14.303)

Before we do that, let me explain why this is a significant
fact.

Suppose that we have proved (14.303).

We are going to prove the two implicatios Q(n) =⇒ Q(n+1)
and Q(n+ 1) =⇒ Q(n).

First, assume that Q(n) holds.

Then an,k+1 is divisible by (k + 1)!.

Since an+1,k+1 − an,k+1 is also divisible by (k + 1)!, we
can conclude that the sum an,k+1 +

(
an+1,k+1 − an,k+1

)

is divisible by (k + 1)!.

But this sum is equal to an+1,k+1, So an+1,k+1 is divisible
by (k + 1)!.

That says that Q(n+ 1) holds.

Hence Q(n) =⇒ Q(n+ 1).

Conversely, assume Q(n + 1) holds. Then an+1,k+1 is
divisible by (k + 1)!.

Since the difference an+1,k+1− an,k+1 is divisible by (k+
1)!, we can conclude that an+1,k+1 −

(
an+1,k+1 − an,k+1

)

is divisible by (k + 1)!.

But

an+1,k+1 −
(
an+1,k+1 − an,k+1

)
= an,k+1 .

So an,k+1 is divisible by (k + 1)!.

That says that Q(n) holds.

So Q(n+ 1) =⇒ Q(n).

Summarizing, we have shown that, if the assertion (14.303)
is true, then both implications “Q(n) =⇒ Q(n + 1)” and
“Q(n + 1) =⇒ Q(n)” hold, so Q(n) ⇐⇒ Q(n + 1), which
is exactly what we are trying to prove to complete the n-
induction.

In other words: all we need to do is prove (14.303) and that
will complete our proof.
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We now prove (14.303).

The number an,k+1 is the product of k+1 consecutive integers
starting with n and ending with n+ k. That is,

an,k+1 = n× (n+ 1)× (n+ 2)× · · · × (n+ k − 1)× (n+ k) .

And then

an,k+1 = n×
(

(n+ 1)× (n+ 2)× · · · × (n+ k − 1)× (n+ k)
)

,

so an,k+1 is equal to n times the product (n+1)×(n+2)×· · ·×(n+k−1)×(n+k)
of k consecutive integers starting with n+ 1. That is,

an,k+1 = n× an+1,k . (14.304)

Similarly, the number an+1,k+1 is the product of k+1 consec-
utive integers starting with n+1 and ending with n+ k+1.
That is,

an+1,k+1 = (n+ 1)× (n+ 2)× · · · × (n+ k)× (n+ k + 1) .

So

an+1,k+1 =
(

(n+ 1)× (n+ 2)× · · · × (n+ k)
)

× (n+ k + 1) .

In other words, an+1,k+1 is equal to the product of k con-
secutive integers starting with n+1, multiplied by n+ k+1.
That is,

an+1,k+1 = an+1,k × (n+ 1 + k) . (14.305)

Therefore

an+1,k+1 − an,k+1

= an+1,k × (n+ 1 + k)− n× an+1,k

= (n+ k + 1)× an+1,k − n× an+1,k

=
(
(n+ k + 1)− n

)
× an+1,k

= (k + 1)× an+1,k .

So we get the key formula

an+1,k+1 − an,k+1 = (k + 1)× an+1,k . (14.306)

(see the example in the box below to get a better understand-
ing of this formula).
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THE FORMULA
an+1,k+1 − a,k+1 = (k + 1)× an+1,k:

AN EXAMPLE

Take n = 11, k = 5. Then

a11,6 = 11× 12× 13× 12× 15× 16 ,

a12,6 = 12× 13× 12× 15× 16× 17 ,

a11,6 = 11×
(

12× 13× 12× 15× 16
)

= 11× a12,5

a12,6 =
(

12× 13× 12× 15× 16
)

× 17

= 17×
(

12× 13× 12× 15× 16
)

= 17× a12,5 ,

so

a12,6 − a11,6 = (17− 11)× a12,5

= 6× a12,5 .

That is,

an+1,k+1 − an,k+1 = (k + 1)× an+1,k .

Now comes the crucial point of the proof: remember
that we are within the k-induction. We are assuming P (k)
and trying to prove P (k+1). So at this point we are allowed
to use P (k). And P (k) says that

(∀n ∈ Z) k!
∣
∣
∣an,k . (14.307)

So we can use (14.307).

Then k! divides an+1,k, so we can write

an,k = m× k!

for some m ∈ Z. Then

an+1,k+1 − an,k+1 = (k + 1)× k!×m

= (k + 1)!×m,
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so (k + 1)! divides an+1,k+1 − an,k+1.

That is, we have proved (14.303) and, as was explained be-
fore, it follows from this that

Q(n) ⇐⇒ Q(n+ 1) .

Since we have proved that Q(n) ⇐⇒ Q(n + 1) for an arbitrary

integer n, we can conclude that (∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n+ 1)

)
.

This completes the inductive step of the n-induction.

We have proved that Q(0) and also that

(∀n ∈ Z)
(
Q(n) ⇐⇒ Q(n+ 1)

)
. By the PMI Going Forward and

Backward, it follows that

(∀n ∈ Z)Q(n) . (14.308)

Since Q(n) is the predicate “(k + 1)!
∣
∣
∣an,k+1”, we have proved

(∀n ∈ Z)(k + 1)!
∣
∣
∣an,k+1 , (14.309)

that is, we have proved P (k + 1).

Since we have proved P (k + 1) assuming P (k), it follows that

P (k) =⇒ P (k + 1) . (14.310)

Since we have proved (14.310) for an arbitrary natural numebr k, it follows
that

(∀k ∈ IN)
(
P (k) =⇒ P (k + 1)

)
. (14.311)

So we have proved P (1), and we have also proved that (∀k ∈ IN)
(
P (k) =⇒

P (k + 1)
)
. It follows from the PMI that

(∀k ∈ IN)P (k) . (14.312)

But P (k) is the predicate “(∀n ∈ Z) k!
∣
∣
∣an,k”.

So we have proved

(∀k ∈ IN)(∀n ∈ Z) k!
∣
∣
∣an,k , (14.313)

which is exactly what we wanted to prove. Q.E.D.
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14.4 An application of Theorem 52: integrality of the bino-
mial coefficients

An important application of Theorem 52, on the divisibility of a product
of k consecutive integers, is to give a second proof of Theorem 54, different
from the one suggested in the hints for Problem 80.

14.4.1 The binomial coefficients

The binomial coefficients
(
n
k

)
are defined as follows:

Definition 22. If n, k are nonnegative integers83 such that k ≤ n, then the

binomial coefficient

(
n
k

)

is defined by the formula

(
n

k

)

=
n!

k!(n− k)!
. (14.314)

Remark 17. One of the most important facts about the numbers

(
n
k

)

is

that they are always integers.
It is not obvious at all from Definition 22 that

(
n
k

)
is always an integer.

For example: why should
(
17
9

)
be an integer? Why does 17! have

to be divisible by 9! × 8!? There is no doubt that 17! has to be divisible
by 9!, because 17! = 17× 16× 15× 14× 13× 12× 11× 10× 9!. But why is
the quotient

17!

9!
= 17× 16× 15× 14× 13× 12× 11× 10

divisible by 8!? In this particular example, it is easy to do the cancellations,

83A nonnegative integer is an integer n such that n ≥ 0. So the nonnegative integers
are the natural numbers, together with the integer 0, which is not a natural number.
The set of all nonnegative integers is denoted by the expression “IN ∪ {0}”. Therefore
“n ∈ IN∪{0}” is a way of saying that n ∈ IN∨n = 0, i.e., that n is a nonnegative integer.
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and get

17!

8!9!
=

17× 16× 15× 14× 13× 12× 11× 10

8× 7× 6× 5× 4× 3× 2

=
17× 15× 14× 13× 12× 11× 10

7× 6× 5× 4× 3

=
17× 14× 13× 12× 11× 10

7× 6× 4

=
17× 14× 13× 12× 11× 5

7× 6× 2

=
17× 13× 12× 11× 5

6
= 17× 13× 2× 11× 5 .

So in this particular case it is clear that

(
17
9

)

is an integer, but it is not

clear yet why it should be true in general that

(
n
k

)

is an integer

for all n, k ∈ IN ∪ {0} such that k ≤ n.
The following two theorems give one answer to this question. �

Theorem 53. Let n, k ∈ IN ∪ {0} be such that 1 ≤ k ≤ n. Then

(
n+ 1
k

)

=

(
n

k − 1

)

+

(
n
k

)

. (14.315)

Proof. YOU DO IT.

Theorem 54. If n, k are nonnegative integers such that k ≤ n, then the

binomial coefficient

(
n
k

)

is an integer.

Proof. YOU DO IT.

Problem 80. Prove Theorems 53 and 54.
The proof of Theorem 53 should be very easy: you just add the fractions

n!
(k−1)!(n−(k−1))! and

n!
k!(n−k)! and the answer turns out to be (n+1)!

k!(n−k)! . This
is not a proof by induction.

The proof of Theorem 54 should be very easy, by induction. Theorem

53 easily implies that if all the binomial coefficients

(
n
k

)

are integers for
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a given n, then all the binomial coefficients

(
n+ 1
k

)

are integers as well.

And this is basically the inductive step.
But you should write the proof carefully and correctly. In partic-

ular, pay attention to the fact that what you want to prove is a statement
with two quantifiers, but in a proof by induction of (∀n ∈ IN ∪ {0})P (n),
the sentence P (n) has to have n as an open variable, and no other open
variables. So you cannot take P (n) to be a closed formula such as

(∀n ∈ IN ∪ {0})(∀j ∈ IN ∪ {0})
(

k ≤ n =⇒
(
n
k

)

∈ Z

)

,

and you cannot take P (n) to be “k ≤ n =⇒
(
n
k

)

∈ Z” either, because

this formula has two open variables.
Also, you should pay attention in your inductive step to the fact that

Formula (14.315) cannot be applied if k = 0, so you will have to consider
the case when k = 0 separately. �

14.4.2 A second proof of the integrality of the binomial coeffi-
cients

We want to prove that the binomial coefficients

(
n
k

)

are integers, for

n, k ∈ IN ∪ {0} and k ≤ n.
First we write

n! = 1× 2× · · · × (n− k)× (n+ 1− k)× · · · × n

=
(
1×2×· · ·×(n− k)

)
×
(
(n+ 1− k)×· · ·×n

)

= (n− k)!×
(
(n+ 1− k)× · · · × n

)
.

We then observe that (n + 1 − k) × · · · × n is the product of k consecutive
integers starting at n + 1 − k, which is the number that in the proof of
Theorem 52 we called an+1−k,k.

In other words,
n! = (n− k)!× an+1−k,k . (14.316)

Finally, we use Theorem 52 to conclude that an+1−k,k is divisible by k!.
Hence we can write

an+1−k,k = k!×m,

where m is an integer.
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It then follows that

n! = (n− k)!× k!×m

=
(
(n− k)!× k!

)
×m.

so n! is divisible by (n− k)!× k!, and this completes the proof of Theorem
54. Q.E.D.

14.5 Strong induction (a.k.a. “complete induction”)

Suppose we are trying to prove a proposition that is of the form (∀n ∈
IN)P (n). It may happen that we cannot prove the implication P (n) =⇒
P (n+ 1), because property P is not inherited by n+ 1 from n for every n,
but the property is inherited by n+ 1 from some previous natural number,
such as n− 1, or n− 2. Then it still follows that (∀n ∈ IN)P (n).

Example 66. Let P (n) be the predicate84 “n = 1∨n is a product of prime
numbers”.

We would like to prove that

(∀n ∈ IN)P (n) , (14.317)

that is, that

(∀n ∈ IN)
(
n = 1 ∨ n is a product of prime numbers ,

or, equivalently,

(∀n ∈ IN)
(

n ≥ 2 =⇒
(
n is a product of prime numbers

))

.

(That is, “if n is a natural number and n ≥ 2 then n is a product of prime
numbers.)

To prove this, we would like to use induction. The basis step is easy:
P (1) is true, because P (1) says “1 = 1 ∨ 1 is a product of prime numbers”,
and this is obviously true because 1 = 1.

But when we get to the inductive step, and we try to prove that impli-
cation P (n) =⇒ P (n+ 1) for every n, we get into trouble.

Look, for example, at n = 47 and n = 60. We want to prove that
P (47) =⇒ P (48) and P (60) =⇒ P (61). But, although P (48) and P (61)
are true (because 48 = 2 × 2 × 2 × 3, and 61 is prime, so both 48 and 61
are products of primes), the reasons that P (48) and P (61) are true have
nothing to do with the facts that P (47) and P (60) are true.

84The precise meaning of “is a product of prime numbers” was defined in section 2.3.3,
Definition 6, on page 22. In particular, we insist on the fact that a single prime number
is a product of primes according to our definition.
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Indeed:

• P (48) is true because

– 48 = 8× 6,

– 8 and 6, are both products of primes, because all the natural
numbers that are ≤ 47 are products of primes,

– so 48 is a product of primes.

• And P (61) is true because

– 61 is prime. �

So, as Example 66 shows, it is not going to be possible to prove the
implication P (n) =⇒ P (n+ 1) for every n.

On the other hand, if we associate to the predicate P (n) another predi-
cate, Q(n), defined by

Q(n) means “P (1) ∧ P (2) ∧ · · · ∧ P (n)” ,

that is,

Q(n) means “(∀k ∈ IN)
(
k ≤ n =⇒ P (k)

)
”.

then it is clear that

(*) if we prove that (∀n ∈ IN)Q(n), then it follows that (∀n ∈
IN)P (n).

(Why? Suppose that (∀n ∈ IN)Q(n). Let n ∈ IN be arbitrary. Then Q(n)
is true, by Rule ∀use. Therefore the proposition P (1) ∧ P (2) ∧ · · · ∧ P (n) is
true, so in particular P (n) is true. Hence (∀n ∈ IN)P (n).)

Furthermore,

(**)
To prove that (∀n ∈ IN)Q(n) by induction, in the inductive
step, when we want to prove that the implication Q(n) =⇒
Q(n+1) is true, it suffices to prove that the weaker implica-
tion Q(n) =⇒ P (n+ 1) is true.

(Why? Let us assume that Q(n). We want to prove that Q(n+1). That is,
we need to prove the conjunction “P (1)∧P (2)∧· · ·∧P (n)∧P (n+1)”. But
we already know that “P (1)∧P (2)∧· · ·∧P (n)” is true, because that is what
Q(n) is. So all we need in order to prove Q(n+ 1) is to prove P (n+ 1).)
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Strong Induction (a.k.a. “complete induction”)

Let P (n) be a one-variable predicate.
Let Q(n) be the predicate

P (1) ∧ P (2) ∧ · · · ∧ P (n) ,

so that Q(n) means

(∀k ∈ IN)
(
k ≤ n =⇒ P (k)

)
.

Then, if
P (1)

and
(∀n ∈ IN)

(
Q(n) =⇒ P (n+ 1)

)
,

it follows that (∀n ∈ IN)P (n).

Example 67. Let us prove

Theorem 55. If n is a natural number and n ≥ 2 then n is a product of
prime numbers.

Proof. Let P (n) be the predicate “if n ≥ 2 then n is a product of prime
numbers”.

Let Q(n) be the predicate “P (k) is true for all natural numbers k such
that k ≤ n”.

We prove (∀n ∈ IN)P (n) using strong induction.
For this purpose, we prove the two propositions P (1) and (∀n ∈ IN)

(
Q(n) =⇒

P (n+ 1)
)
.

Basis step. We have to prove P (1). But P (1) says “if 1 ≥ 2 then 1 is a
product of prime numbers”, and this is an implication with a false premise.
So P (1) is true.

Inductive step. We have to prove that

(∀n ∈ IN)
(
Q(n) =⇒ P (n+ 1)

)
. (14.318)

Let n ∈ IN be arbitrary. We want to prove that Q(n) =⇒ P (n+ 1).

Assume Q(n). We want to prove P (n+ 1).
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So we want to prove that n+ 1 is a product of prime numbers.

But n+ 1 is either prime, or not prime.

If n+1 is prime, then it is a product of primes, and P (n+1)
holds.

If n + 1 is not prime, then, since n + 1 6= 1, it follows that
n + 1 is the product j × k of two natural numbers that are
both > 1.

Clearly, then, j ≤ n and k ≤ n. (If j was

> n, then j would be≥n+1 and, since k>1, it would follow
that jk > n+1. But this is not possible, because jk = n+1.
So j ≤ n. A similar argument proves that k ≤ n.)

Since Q(n) holds, both j and k are products of primes.

And then n+ 1, the product of j and k, is also a product of
primes.

So P (n+ 1) holds.

We have proved that P (n+1) holds in both cases, when n+1 is
prime and when n+ 1 is not prime.

Hence we have proved P (n+ 1), assuming Q(n).

So we have proved that Q(n) =⇒ P (n + 1), assuming that n is an
arbitrary natural number.

Hence we have proved (∀n ∈ IN)
(
Q(n) =⇒ P (n+1)

)
, completing the induc-

tive step.
Since we have proved both P (1) and (∀n ∈ IN)

(
Q(n) =⇒ P (n + 1)

)
,

it follows from the strong principle of mathemtical induction that (∀n ∈
IN)P (n), that is,

(∀n ∈ IN)
(
n ≥ 2 =⇒ n , is a product of primes .

This completes our proof. Q.E.D.

14.5.1 Stronger and weaker statements

Remark 18. Why did I say that the implication Q(n) =⇒ P (n + 1) is
“weaker” than the implication P (n) =⇒ P (n+ 1)?

Intuitively, a proposition A is weaker than a proposition B if it gives less
information. This means that knowing that B is true tells us that A is true,
so if we know that B is true then we know that A is true. (So if we know B
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then we know B and A, but if we know A we only know A; we don’t know
B.)

More formally, we have

Definition 23. A proposition A is weaker than a proposition B if the propo-
sition B =⇒ A is true. And in that case we also say that B is stronger than
A. �

Example 68. Let A be the proposition “you got a passing grade”, let B
be the proposition “you got an ‘A’ grade”. Which one gives you more
information? Obviously, B does. So A should be weaker than B, and B
should be stronger than A.

And, indeed, the proposition B =⇒ A is clearly true. So A is weaker
than B according to our definition. �

Returning now to P (n) and Q(n), it is clear that

(

P (n) =⇒ P (n+ 1)
)

=⇒
(

Q(n) =⇒ P (n+ 1)
)

. (14.319)

(Proof: Assume that P (n) =⇒ P (n+ 1). We want to prove that Q(n) =⇒
P (n+1). AssumeQ(n). We want to prove P (n+1). Clearly, Q(n) =⇒ P (n).
Since we are assuming Q(n), it follows from the Modus Ponens rule—i.e.,
Rule =⇒use—that P (n) is true. Since we are assuming that P (n) =⇒
P (n + 1), it follows again from the Modus Ponens rule that P (n + 1). So
we have proved Q(n) =⇒ P (n + 1), assuming P (n) =⇒ P (n + 1). Hence
(14.319) holds.)

So we see that “Q(n) =⇒ P (n+1)” is weaker than “P (n) =⇒ P (n+1)”
in the very precise sense of Definition 23. �

Problem 81. For each of the following pairs A, B of propositions, indicate
which one is stronger and which one is weaker. (You may assume that n
and f are arbitrary objects that have been given to you, that is, they are
fixed objects but you do not know who they are.)

1. A is “n is a natural number” and B is “n is an integer”.

2. A is “if n is a natural number then n > 0” and B is “if n is an integer
then n > 0”.

3. A is “f is a continuous function on an interval [a, b]” and B is “f is a
differentiable function on an interval [a, b]”.



Math 300, Fall 2020 292

4. A is “every continuous function on an interval [a, b] has a maximum
and a minimum on [a, b]”, and B is “every differentiable function on
an interval [a, b] has a maximum and a minimum on [a, b]”. �

Problem 82. Prove, using the 14 rules of logic, that

1. If A, B, C are propositions, then if A is weaker than B then A =⇒ C
is stronger than B =⇒ C. (See also Example 69 below.)

2. If A, B, C are propositions, then if B is stronger than C it follows
that A =⇒ B is stronger than A =⇒ C.

3. If A, B, C, D are propositions, then if B is stronger than A and C is
stronger than D it follows that A =⇒ C is stronger than B =⇒ D.

4. If A, B, C are propositions, then if A is weaker than B then A∧C is
weaker than B ∧ C.

5. If X(n) and Y (n) are predicates with the open variable n (so that for
each fixed n X(n) and Y (n) are propositions) then if X(n) is weaker
that Y (n) for each n in some set S, it follows that the proposition
“(∀n ∈ S)X(n)” is weaker than “(∀n ∈ S)Y (n)” and the proposition
“(∃n ∈ S)X(n)” is weaker than “(∃n ∈ S)Y (n)”. �

Example 69. Why is strong induction called “strong induction”?
The reason is this:

• Clearly, for each n ∈ IN the proposition Q(n) is stronger than P (n).

• Hence for each n ∈ IN the implication “Q(n) =⇒ P (n+ 1)” is weaker
than “P (n) =⇒ P (n+ 1)” (because of the first result of Problem 82).

• So “(∀n ∈ IN)
(
Q(n) =⇒ P (n+1)

)
” is weaker than “(∀n ∈ IN)

(
P (n) =⇒

P (n+ 1)
)
” (because of the third result of Problem 82).

• Hence “P (1)∧ (∀n ∈ IN)
(
Q(n) =⇒ P (n+1)

)
” is weaker than “P (1)∧

(∀n ∈ IN)
(
P (n) =⇒ P (n+1)

)
” (because of the second result of Prob-

lem 82).

• And then the implication

(

P (1) ∧ (∀n ∈ IN)
(
Q(n) =⇒ P (n+ 1)

))

=⇒ (∀n ∈ IN)P (n) (14.320)
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is stronger than the implication

(

P (1) ∧ (∀n ∈ IN)
(
P (n) =⇒ P (n+ 1)

))

=⇒ (∀n ∈ IN)P (n) . (14.321)

But (14.321) is the ordinary Principle of Mathematical Induction, and
(14.320) is the strong Principle of Mathematical Induction.

So the strong PMI is indeed stronger than the ordinary PMI. �



Math 300, Fall 2020 294

15 The main theorems of elementary integer arith-
metic I: the division theorem

We now study the phenomena that make the natural numbers and the in-
tegers different in crucial ways from the real numbers. The root of this
difference is that the division operation on IN and Z is very different from
division on IR.

15.1 What is the division theorem about?

The first important fact about the integers is the division theorem. It
deals with an issue that you know very well, namely, what happens if you
have an integer a and an integer b and you want to “divide” a by b:

1. First of all: dividing by zero is never a good idea, so we have to work
with integers a and b such that b 6= 0.

2. Dividing a by b should amount, roughly, to finding a number q, called
the “quotient of a by b”, such that

a = bq . (15.322)

3. If we were dealing with real numbers rather than integers, then it is
always possible85 to find q. The real number q that satisfies (15.322) is
denoted by the expression a

b
, that we read as “a over b”, or “a divided

by b”.

4. The situation is different when we are dealing with integers rather than
real numbers. In this case, it is not always possible to find an integer
q for which (15.322) is satisfied exactly. But we can come close: we
can find an integer q for which (15.322) is satisfied approximately.

5. Precisely, let us rewrite (15.322) as follows:

a = bq + r and r = 0 . (15.323)

Then what happens is this: we cannot satisfy (15.323), but we can
satisfy

a = bq + r and r is small . (15.324)

85Assuming, of course, that b 6= 0.
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6. And the precise meaning of “small”, if b > 0, is “0 ≤ r < b”. So what
you will be satisfying (if b > 0) is

a = bq + r and 0 ≤ r < b . (15.325)

7. The number q is called the quotient of the division of a by b, and
the number r is called the remainder of the division of a by b.

8. The reason that r is called the “remainder” is very straightforward:
suppose you have, say, 27 dollar bills, and you want to divide them
equally among 5 people. Then the best you can do is give 5 dollars to
each of the five people, and when you do that 2 dollars will “remain”.

9. Notice that, if instead of 27 dollar bills you were dealing with, say, 27
gallons of water, then you would be able to divide the water equally, by
giving 5.4 gallons to each of the five people. But with dollar bills you
cannot do that. That’s because dollar bills are countable, whereas
water is uncountable. In other words,

• You can talk about the amount of water in a tank, and amounts
of water are measured in terms of real numbers.

• And you cannot talk about the number of water in a tank.

• You can talk about the number of dollar bills in your wallet, and
numbers of dollar bills are measured in terms of natural
numbers. (And if you want to consider negative amounts as
well, e.g. to talk about debts, you would use integers.)

• And you cannot 86 talk about the amount of dollar bills in your
wallet.

• If you have a units of a countable quantity such as dollar bills or
coins, and b persons among whom you want to divide your a units
equally, then the best you can do is give q units to each of the
b persons, where q is the quotient of the division of a by b, and
when you do that there will be a remainder of r undistributed
dollar bills, where r is the remainder of the division of a by b.

86I really mean “you shouldn’t, because it’s wrong”. Strictly speaking, you can say
anything you want, in this free counrty of ours. But there are rules of grammar, and
according to those rules it is wrong to say things like “a large amount of people were at
the rally”, or “she has a large amount of dollar bills”. But it’s O.K. to ta;lk about “a
large amount of money”. “People”, like “dollar bills”, or “coins”, is countable. “Water”,
like “money”, is uncountable.
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• What happens if b is negative? Well, in this case you certainly
cannot have 0 ≤ r < b, because if b < 0 this is impossible. But
you can ask for a remainder r such that 0 ≤ r < |b|, where |b| is
the absolute value of b, that is, the number defined by

|x| =
{

x if x ≥ 0
−x if x < 0

. (15.326)

• So the final condition is

a = bq + r and 0 ≤ r < |b| . (15.327)

The division theorem says precisely that given integers a, b, there exist
integers q, r such that (15.327) holds, provided, of course, that b is not
equal to zero. And in addition it makes the very important and very useful
assertion that q and r are unique, that is, there is only one possible choice
of q and r.

15.1.1 An example: even and odd integers

Example 70. Let us apply the division theorem to the case when b = 2.
Suppose a is an integer.

What does the division theorem tell us about a?
The theorem makes two assertions, namely,

1. that the quotient and remainder exist (that’s the existence part),

2. that the quotient and remainder are unique (that’s the uniqueness
part).

So let us look at each of these two parts, and see what it tells us about
a.

The existence part of the theorem tells us that we can find integers q and
r such that

a = 2q + r and 0 ≤ r < 2 .

Since 0 ≤ r < 2 and r is an integer, it follows that r = 0 or r = 1.
If r = 0 then a = 2q, so a is divisible by 2, that is, a is even.
If r = 1 then a = 2q + 1, so a− 1 = 2q, and then a− 1 is divisible by 2,

that is, a− 1 is even, and, according to our definition of “odd”, this implies
that a is odd.

So we have shown that: either r = 0, in which case a is even, or r = 1,
in which case a is odd. So the existence part of the division theorem
tells us that a must be even or odd.
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The uniqueness part of the theorem tells us that we cannot find integers
q, r such that

a = 2q + r and 0 ≤ r < 2 ,

and also find different integers q′, r′ such that

a = 2q′ + r′ and 0 ≤ r′ < 2 .

In particular, it is not possible to find integers q, q′ such that

a = 2q and a = 2q′ + 1 .

In other words, a cannot be both even and odd. So the uniqueness part
of the division theorem tells us that a cannot be both even and
odd.

Summarizing: the division theorem, for b = 2, tells us that an
integer a has to be even or odd and cannot be both even and odd.
And this is exactly Theorem 26, that we had to work so hard to prove!

In other words: The division theorem (that is, Theorem 56 be-
low) is a generalization of the theorem that says that every
integer is even or odd and not both. �

Now that we understand what the division theorem says for b = 2, let us
look at what it says for general values of b.

• The division theorem says that, when you try to divide an integer a
by 2, then one and only one of two things will happen:

1. you will be able to divide a by 2 exactly, with a remainder equal
to zero, and conclude that a is even,

2. you will not be able to divide a by 2 exactly, but you will be able
to do it with a remainder equal to 1, and conclude that a − 1 is
divisible by 2, so a is odd.

In other words, the division theorem, applied with b = 2, says exactly
that that every integer is even or odd and not both. Furthermore:

1. the existence part of the theorem says that every integer is even
or odd;

2. the uniquenss part of the theorem says that an integer cannot be
both even and odd.
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• The division theorem, applied with b = 3, says that, when you try to
divide an integer a by 3, then one and only one of three things will
happen:

1. you will be able to divide a by 3 exactly, with a remainder equal
to zero, and conclude that a is divisible by 3,

2. you will not be able to divide a by 3 exactly, but you will be able
to do it with a remainder equal to 1, and conclude that a = 3q+1
for some integer q, so a− 1 is divisible by 3.

3. you will not be able to divide a by 3 exactly, but you will be able
to do it with a remainder equal to 2, and conclude that a = 3q+2
for some integer q, so a− 2 is divisible by 3.

• The division theorem, applied with b = 4, says that, when you try
to divide an integer a by 4, then one and only one of four things will
happen: 4|a, 4|a− 1, 4|a− 2, 4|a− 3.

• The division theorem, applied with b = 5, says that, when you try
to divide an integer a by 5, then one and only one of five things will
happen: 5|a, 5|a− 1, 5|a− 2, 5|a− 3, 5|a− 4.

• · · ·

• The division theorem, applied with b = 29, says that, when you try
to divide an integer a by 29, then one and only one of 29 things will
happen: 29|a− j for j ∈ Z, 0 ≤ j < 29.

• · · ·

• The division theorem, applied with b = 372, 508, says that, when you
try to divide an integer a by 372, 508, then one and only one of 372, 508
things will happen: 372, 508|a− j for j ∈ Z, 0 ≤ j < 372, 508.
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15.2 Precise statement of the division theorem

And here is, finally, the division theorem:

The division theorem for
integers

Theorem 56. If a, b are inte-
gers, and b 6= 0, then there exist
unique integers q, r such that

a = bq + r and 0 ≤ r < |b| .
15.2.1 The quotient and the remainder

Definition 24. If a, b are integers, and b 6= 0, then the unique integers q, r
such that

a = bq + r and 0 ≤ r < |b|
called, respectively, the quotient and the remainder of the division of a by b.

We use QUO(a, b) and REM(a, b) to denote the quotient and the remain-
der of the division of a by b. �

It follows from Definition 24 that, if a ∈ Z, b ∈ Z, and b 6= 0, then

1. a = b×QUO(a, b) + REM(a, b),

2. QUO(a, b) ∈ Z,

3. REM(a, b) ∈ Z and 0 ≤ REM(a, b) < |b|,

4. if q, r are integers such that a = bq+ r and 0 ≤ r < |b|, then q =
QUO(a, b) and r = REM(a, b).
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15.2.2 Some problems

Problem 83. Prove the following theorem.

Theorem 57. If n is an integer, then there exist unique integers q, r such
that

n2 = 4q + r and r = 0 ∨ r = 1 .

(HINT: First write n = 4k + s, with 0 ≤ s < 4, and then prove that
REM(n2, 4) must be 0 or 1.) �

Problem 84. Prove the following theorem.

Theorem 58. If m, n are integers, then there exist unique integers q, r
such that

m2 + n2 = 4q + r and r = 0 ∨ r = 1 ∨ r = 2 .

(HINT: Use Theorem 57.) �

Problem 85. Prove that if n = 3, 409, 583, then there do not exist integers
p, q such that p2 + q2 = n. �

15.3 Proof of the division theorem

The proof of the division theorem will be split up into two parts.

1. We will first prove the existence part. That is, we will prove

Theorem 56.I. If a, b are integers and b 6= 0 then there exist integers
q, r such that a = bq + r and 0 ≤ r < |b|.

2. Then, after we have proved the existence result —i.e.., Theorem 56.I—
- we will prove the uniqueness result. That is, we will prove

Theorem 56.II. If a, b are integers and b 6= 0, and q, r, q′, r′ are
integers such that

a = bq + r and 0 ≤ r < |b| ,

and
a = bq′ + r′ and 0 ≤ r′ < |b| ,

then q = q′ and r = r′.
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15.3.1 Proof of the existence part of the division theorem, using
induction going forward and backward

We want to prove that

(∀a∈Z)(∀b∈Z)
(

b 6=0 =⇒ (∃q∈Z)(∃r∈Z)(a = bq + r ∧ 0 ≤ r < |b|)
)

. (15.328)

This is logically equivalent87 to

(∀b∈Z)(∀a∈Z)
(

b 6=0 =⇒ (∃q∈Z)(∃r∈Z)(a = bq + r ∧ 0 ≤ r < |b|)
)

. (15.329)

and to

(∀b∈Z)
(

b 6=0 =⇒ (∀a∈Z)(∃q∈Z)(∃r∈Z)(a = bq + r ∧ 0 ≤ r < |b|)
)

. (15.330)

So we are going to prove (15.330).

Let b be an arbitrary integer. We want to prove

b 6=0 =⇒ (∀a∈Z)(∃q∈Z)(∃r∈Z)(a = bq + r ∧ 0 ≤ r < |b|) . (15.331)

Assume that b 6= 0. We want to prove

(∀a∈Z)(∃q∈Z)(∃r∈Z)(a = bq + r ∧ 0 ≤ r < |b|) . (15.332)

Proposition (15.332) is a universal sentence whose universal quantifier
is “(∀a ∈ Z)”. So we have the option of using induction forward and
backward, and we are going to do it that way.

We let P (a) be the statement

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) . (15.333)

We are going to prove (∀a ∈ Z)P (a) by induction going forward and
backward.

Basis step. We have to prove P (0).

Clearly, P (0) says that

(∃q ∈ Z)(∃r ∈ Z)(0 = bq + r ∧ 0 ≤ r < |b|) , (15.334)

which is an existential sentence.

87Two propositions A, B are logically equivalent if the proposition A ⇐⇒ B can be
proved by pure logic, that is, using only the rules of logic. It is an easy exercise to see that,
if P (x, y) is a 2-variables predicate (that is, a sentence with the open variables x, y) and S

is a set, then (∀x ∈ S)(∀y ∈ S)P (x, y) is logically equivalent to (∀y ∈ S)(∀x ∈ S)P (x, y).
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To prove 15.334, we can use Rule ∃prove, and for that purpose we have
to produce witnesses, i.e., integers q, r such that

0 = bq + r and 0 ≤ r < |b| . (15.335)

And this is very easy: just take q = 0, r = 0.

Then, with this choice of q, r, it is clear that (15.335) holds. (Notice
that here we are using the fact that b 6= 0, to conclude that r < |b|.)
Hence (15.334) is true, and we have proved P (0) , and completed the

basis step.

Inductive step. We have to prove that

(∀a ∈ Z)
(
P (a) ⇐⇒ P (a+ 1)

)
. (15.336)

Let a be an arbitrary integer.

We want to prove “P (a) ⇐⇒ P (a+ 1)”.

For this purpose, we are going use Rule ⇐⇒prove, and this requires
that we prove the pair of implications “P (a) =⇒ P (a + 1)” and
“P (a+ 1) ⇐⇒ P (a)”.

Proof of “P (a) =⇒ P (a+ 1)”.

Assume P (a).

Then

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) . (15.337)

So we may pick integers q, r such that

a = bq + r ∧ 0 ≤ r < |b| . (15.338)

We want to prove that P (a+ 1) is true, i.e., that

(∃q ∈ Z)(∃r ∈ Z)(a+ 1 = bq + r ∧ 0 ≤ r < |b|) , (15.339)

and for that purpose we need witnesses q′, r′ for (15.339).

The most obvious choice would be to take q′ = q, r′ = r + 1.

Then a + 1 = bq′ + r′. But we cannot prove that r′ < |b|,
because from “r < |b|” all we can conclude is that r′ ≤ |b|, and
that’s not what we need.

On the other hand, if we knew that r + 1 < |b|, then the
conclusion “r′ < |b|” would follow.

Therefore, so we have found the desired witnesses q′, r′, and
proved (15.339), under the assumption that r + 1 < |b|.
We now have to take care of the possibility that r + 1 ≥ |b|.
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In that case, since r < |b|, it follows that r + 1 = |b|. (REA-
SON: r and |b| are integers, so if r < |b| then r+1 ≤ |b|. So if
r + 1 ≥ |b| it follows that r + 1 = |b|.)
Then

a+ 1 = bq + r + 1

= bq + |b| .

Define an integer µ as follows:

µ =

{
1 if b > 0

−1 if b < 0 .

Then |b| = µb.

Therefore

a+ 1 = bq + |b|
= bq + µb

= b(q + µ)

= b(q + µ) + 0 .

Hence, if we choose our witnesses q′, r′ by letting q′ = q + µ
and r′ = 0, it follows that a+1 = bq′ + r′ and 0 ≤ r′ < |b|. So
we have also proved (15.339).

So we have proved (15.339) in both cases, when r+1 < |b| and
when r + 1 ≥ |b|.
Hence we have proved (15.339), i.e., we have proved P (a+1).

Since we have proved P (a+ 1) assuming P (a), it follows from

Rule =⇒prove that we have proved P (a) =⇒ P (a+ 1) .

Proof of “P (a+ 1) =⇒ P (a)”.

Assume P (a+ 1).

Then

(∃q ∈ Z)(∃r ∈ Z)(a+ 1 = bq + r ∧ 0 ≤ r < |b|) , (15.340)

So we may pick integers q, r such that

a+ 1 = bq + r ∧ 0 ≤ r < |b| . (15.341)

We want to prove that P (a) holds, i.e., that

(∃q ∈ Z)(∃r ∈ Z)(a = bq + r ∧ 0 ≤ r < |b|) , (15.342)

and for that purpose we need witnesses q′, r′ for (15.342).

The most obvious choice is to take q′ = q, r′ = r − 1.
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Then a = bq′+r′ (because a+1 = bq+r, q′ = q, and r′ = r−1).
And r′ < |b| (because r < |b| and r′ < r.) But we cannot prove
that r′ ≥ 0, because r could be 0, in which case r′ would be
−1.

On the other hand, if we knew that r > 0, then the conclusion
“0 ≤ r′ < |b|” follows.

So we have found the desired witnesses q′, r′, and proved (15.342),
under the assumption that r > 0.

We now have to take care of the possibility that r = 0 .

In that case, we have

a+ 1 = bq + r

= bq .

So

a = bq − 1

= bq − |b|+ |b| − 1

= bq − µb+ |b| − 1

= b(q − µ) + |b| − 1 ,

where µ is the number defined earlier.

Hence, if we choose our witnesses q′, r′ by letting q′ = q − µ
and r′ = |b| − 1, it follows that a = bq′ + r′ and 0 ≤ r′ < |b|.
So we have also proved (15.342).

So we have proved (15.342) in both cases, when r > 0 and
when r = 0.

Hence we have proved (15.342), i.e., we have proved P (a).

Since we have proved P (a) assuming P (a+1), it follows from Rule

=⇒prove that we have proved P (a+ 1) =⇒ P (a) .

Since we have proved the implications P (a) =⇒ P (a + 1) and
P (a + 1) =⇒ P (a), it follows from Rule ⇐⇒prove that we have

proved P (a) ⇐⇒ P (a+ 1) .

Since we have proved P (a + 1) ⇐⇒ P (a) for an arbitrary integer a, it
follows from Rule ∀prove that

(∀a ∈ Z)
(
P (a) ⇐⇒ P (a+ 1)

)
. (15.343)

Then the principle of mathematical induction going forward and back-
ward implies that (∀a ∈ Z)P (a), that is,

(∀a∈Z)(∃q∈Z)(∃r∈Z)(a = bq + r ∧ 0 ≤ r < |b|) . (15.344)
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Proposition (15.344) was proved under the assumption that b 6= 0. Hence

b 6= 0 =⇒
(

(∀a∈Z)(∃q∈Z)(∃r∈Z)(a = bq + r ∧ 0 ≤ r < |b|)
)

. (15.345)

Proposition (15.345) was proved for an arbitrary integer b. Hence

(∀b ∈Z)

(

b 6= 0 =⇒
(

(∀a∈Z)(∃q∈Z)(∃r∈Z)(a = bq+r∧0 ≤ r < |b|)
)
)

. (15.346)

And this completes the existence proof. Q.E.D.

15.3.2 Proof of the uniqueness part of the division theorem

We now prove, finally,

Theorem 56.II. If a and b are integers and b 6= 0, then the integers q, r
such that a = bq + r and 0 ≤ r < |b| are unique.
Proof.

Let a ∈ Z be arbitrary. Let b ∈ Z be arbitrary.

Assume that b 6= 0. We want to prove that

(*) If q, q′, r, r′ are integers such that

a = bq + r , (15.347)

0 ≤ r < b , (15.348)

a = bq′ + r′ , (15.349)

0 ≤ r′ < b , (15.350)

then q = q′ and r = r′.

Let q, q′, r, r′ be integers such that (15.347), (15.348), (15.349), and
(15.350) hold.

We will prove that q = q′ and r = r′.

Without loss of generality, we may assume that r ≥ r′. (Reason: if r
was < r′, just change the names of r, r′ and call them r′ and r.)

Then
0 ≤ r − r′ < b . (15.351)

(Reason: 0 is ≤ r−r′ because r ≥ r′. And r−r′ < b because r−r′ ≤ r,
since r′ ≥ 0, and r < b.)

On the other hand, a = bq + r and a = bq′ + r′, so

bq + r = bq′ + r′ .
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Therefore
b(q′ − q) = r − r′ . (15.352)

Then
|b| · |q′ − q| = |r − r′| , (15.353)

because |xy| = |x| · |y| for arbitrary real numbers x, y.

Since q and q′ are integers, the number |q− q′| is a nonnegative integer.

We now prove88 that q = q′.

Assume that q 6= q′.

Then the nonnegative integer |q − q′| is not zero, so it is a natural
number.

And then |q − q′| ≥ 1.

Therefore (15.353) implies that |r − r′| ≥ |b|.
But r − r′ ≥ 0, because r ≥ r′.

Hence |r − r′| = r − r′.

It follows that r − r′ ≥ |b|.
So it’s not true that r − r′ < |b|.
But (15.351) tells us that r − r′ < |b|.
So r − r′ < |b| and ∼ r − r′ < |b|, which is a contradiction.

This proves that q = q′ .

And then (15.353) implies that r = r′ .

So we have proved (**), for arbitrary integers a, b such that b 6= 0.

This completes the proof of the uniqueness part. So our proof is complete.Q.E.D.

88by contradiction , naturally.
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16 The Well-ordering Principle

The well-ordering principle (WOP) is a very simple consequence of the
PMI, and is a very powerful tool for proving properties of the integers.

16.1 Statement of the Well-ordering Principle

In order to state the WOP, we need to know what is meant by “a smallest
member” of a set of integers (or of real numbers).

16.1.1 The smallest member of a set of integers

Definition 25. If S is a subset89 of90 Z, a smallest member of S is a mem-
ber s of S such that

(∀t ∈ S)s ≤ t . (16.354)

Example 71.

• Let S be the set of all prime numbers. Then S is a set of natural
numbers, and the smallest member of S is 2.

• Let S be the set of all integers. Then S has no smallest member.
(Proof: suppose s was a smallest member of S. Then s ∈ Z, and
s ≤ t for every integer t. In particular, s ≤ t − 1. But s > t − 1, so
s ≤ t− 1∧ ∼ s ≤ t− 1, which is a contradiction.)

• Let S be the set of all real numbers. Then S has no smallest member.
(Proof: suppose s was a smallest member of S. Then s ∈ IR, and s ≤ t
for every real number t. In particular, s ≤ t − 1. But s > t − 1, so
s ≤ t− 1∧ ∼ s ≤ t− 1, which is a contradiction.)

• Let S be the set of all nonnegative real numbers. In other words,
S = {x ∈ IR : x ≥ 0}. Then the smallest member of S is 0.

• Let S be the set of all positive real numbers. In other words,
S = {x ∈ IR : x > 0}.) Then S has no smallest member. (Proof:
suppose s was a smallest member of S. Then s ∈ IR, s > 0, and s ≤ t
for every t ∈ IR such that t > 0. In particular, s ≤ s

2 , so 2s ≤ s. But
2s > s, because 2 > 1 and we can multiply both sides by s, since s > 0,
thus getting 2s > s. So 2s ≤ s∧ ∼ 2s ≤ s, which is a contradiction.)�

89The meaning of “subset” is discussed in section 4.1.7, on page 44.
90or of Q, or of IR, or of any set equipped with an order relation ≤.
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16.1.2 Uniqueness of the smallest member of a set

In Definition 25 we explained what it means for an integer s to be a smallest
member of a set S of integers.

Can we talk about the smallest member of S?
The answer to this type of question, in general, is that

• we can talk about the ZZZ if there exists only one ZZZ,

• we cannot talk about the ZZZ, and we talk instead about a ZZZ, if
there exist more than one ZZZ.

Example 72.

1. We can say that Jeff Bezos91 is the richest person in the world, because
there is only one richest person in the world.

2. But we do not say that Michael Bloomberg92 is the billionaire, because
there are lots of billionaires; we can say that Michael Bloomberg is a
billionaire.

3. We can say that 2 is the smallest prime number, because there is only
one smallest prime number.

4. But we do not say that 2 is the prime number, because there are lots
of prime numbers; we say that 2 is a prime number. �

The following theorem states the obvious fact that if a set has a smallest
member, then that smallest member is unique. This is a completely obvious
fact, but in Mathematics everything has to be proved. If is is obvious, then
there should exist a simple proof.

Trivial theorem. If a subset S of Z (or of Q, or of IR) has a smallest
member, then it has only one smallest member.
Proof. Let s1, s2 be smallest members of S. Since s1 is a smallest member
of S, s1 ≤ t for every t ∈ S. In particular, since s2 ∈ S, s1 ≤ s2.

Similarly, s2 ≤ s1. So s1 = s2. Q.E.D.

91Or maybe it’s Bill Gates?
92Or Donald Trump, whoever you like best
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16.1.3 Statement of the Well-ordering Principle: The Standard
Version

The standard version of the well-ordering principle, the one that you will
find in most textbooks, says that every nonempty set of natural numbers
has a smallest member:

THE WELL-ORDERING
PRINCIPLE (WOP)

STANDARD VERSION

Theorem 59. Every nonempty set of
natural numbers has a smallest mem-
ber.

In formal language, Theorem 59 says that

(∀S)
((

S ⊆ IN ∧ S 6= ∅
)
=⇒ (∃s ∈ S)(∀t ∈ S)s ≤ t

)

, (16.355)

16.1.4 Sets that are bounded below

Definition 26. A subset S of Z is bounded below if there exists an integer
s∗ such that S ⊆ Z≥s∗, i.e., that (∀s ∈ S)s ≥ s∗. �

Definition 27. A subset S of Z is bounded above if there exists an integer
s∗ such that (∀s ∈ S)s ≤ s∗. �

So a set S of integers is bounded below if there is an integer s∗ such that
all the members of S are to the right93 of s∗.

And, similarly, a set S of integers is bounded above if there is an integer
s∗ such that all the members of S are to the left of s∗. “

93Let us be precise: “to the right of” means “≥”; “to the left of” means “≤”; “strictly
to the right of” means “>”; and “strictly to the left of” means “<”.
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Problem 86. Prove that a set S of integers is bounded above if and only
if the set −S given by

−S = {s ∈ Z : −s ∈ S}

is bounded below.

16.1.5 Statement of the Well-ordering Principle: A More Gen-
eral Version

There is a sligthly more general version that is often more useful than the
standard one: instead of subsets of IN, we can consider equally well sets that
are subsets of Z≥s∗ for some s∗ ∈ Z. (Recall that, if s∗ ∈ Z, then Z≥s∗ is
the set of all integers n such that n ≥ s∗. That is,

Z≥s∗ = {n ∈ Z : n ≥ s∗} . (16.356)

as explained earlier in these notes.)
We are now ready to state the WOP:

THE WELL-ORDERING
PRINCIPLE (WOP)
GENERAL VERSION

Theorem 60. Every nonempty set of inte-
gers which is bounded below has a smallest
member.

In formal language, Theorem 60 says that

(∀s∗∈Z)(∀S)
((

S ⊆ Z≥s∗ ∧ S 6= ∅
)
=⇒ (∃s∈S)(∀t∈S)s ≤ t

)

. (16.357)
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16.2 Proof of the Well-Ordering Principle

We want to prove (16.357). So we fix an arbitrary integer s∗, and try to prove that

(∀S)
(

(S ⊆ Z≥s∗ ∧ S 6= ∅) =⇒ (∃s ∈ S)(∀t ∈ S)s ≤ t
)

. (16.358)

We will first prove a lemma.

Lemma. If n ∈ Z, S ⊆ Z≥s∗ and n ∈ S, then S ha a smallest member.

In formal language, the lemma says:

(∀n ∈ Z≥s∗)(∀S)
(
(

S ⊆ Z≥s∗ ∧ n ∈ S
)

=⇒ (∃s ∈ S)(∀t ∈ S)s ≤ t

)

. (16.359)

Before we prove the lemma, let us show how Theorem 60—i.e., formula (16.358—
follows immediately from it.

Proof of formula (16.358) using the lemma:
Let S be a nonempty subset of Z≥s∗ . Since S 6= ∅, we may pick a member n of
S. Then S ⊆ Z≥s∗ and n ∈ S. So by the lemma, S has a smallest member, This
proves Theorem 60.

Proof of the lemma.
We will do a proof by induction starting at s∗.

In the proof, we will write H(S) for “S has a smallest member”.
Let P (n) be the predicate “for every subset S of Z≥s∗ such that n ∈ S has a
smallest member”. That is, P (n) stands for

(∀S)
(
(

S ⊆ Z≥s∗ ∧ n ∈ S
)

=⇒ H(S)

)

. (16.360)

We will prove (∀n ∈ Z≥s∗)P (n), which is exactly formula (16.359), by induction
starting with n = s∗.

Basis step. We have to prove P (s∗). But P (s∗) says “if S ⊆ Z≥s∗ and s∗ ∈ S, then
H(S)”. And this is obvious because if s∗ ∈ S and S ⊆ Z≥s∗ , then all the members
of S are ≥ s∗, so s∗ is the smallest member of S, and then H(S) is true. Hence

P (s∗) holds.

Inductive srep. We have to prove

(∀n ∈ Z≥s∗)
(
P (n) =⇒ P (n+ 1)

)
. (16.361)

Let n ∈ Z≥s∗ be arbitrary.

We want to prove the implication P (n) =⇒ P (n+ 1).
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Assume P (n). We want to prove that P (n+ 1).

But P (n+1) says “if S is an arbitrary subset of Z≥s∗ such that n+1 ∈ S,
then H(S)”.

Let S be an arbitrary subset of Z≥s∗ such that n+1 ∈ S. We want
to prove that H(S).

There are two possibilities, namely, n ∈ S or n /∈ S .

We first consider the case when n ∈ S.

Assume n ∈ S .

Then, since we are assuming that P (n) holds, H(S) .

So n ∈ S =⇒ H(S) . [Rule ∀prove]
We next consider the case when n /∈ S.

Assume n /∈ S .

Let 94 T = S ∪ {n}.
Then T ⊆ Z≥s∗ , because S ⊆ Z≥s∗ and n ∈ Z≥s∗ .

Furthermore, n ∈ T . Since we are assuming that P (n) holds,
and P (n) says ”if a subset of Z≥s∗ contains n, then the subset
has a smallest member”, it follows that H(T ).

Let t̄ be the smallest member of T . Then

t̄ ∈ T ∧ (∀t ∈ T )t̄ ≤ t . (16.362)

In particular, since S ⊆ T , (16.362) implies

(∀t ∈ S)t̄ ≤ t , (16.363)

So t̄ is less than or equal to every member of S.

If t̄ ∈ S , then t̄ is the smallest member of S, so H(S) .

If t̄ /∈ S , then t̄ = n, because T = S ∪ {n} and t̄ ∈ T .

Furthermore, every member t of S satisfies t ≥ t̄, by (16.362).

So, if t ∈ S then t ≥ t̄, i.e., t ≥ n, but t cannot be equal to
n, because t ∈ S and n /∈ S (since n = t̄ and t̄ /∈ S). Hence
t > n, and then t ≥ n+ 1.

So we have proved that every member t of S satisfies t ≥ n+1.
Since n + 1 ∈ S, it follows that n + 1 is the smallest member

of S, so H(S) .

Since we have shown that H(S) both when t̄ ∈ S and when

t̄ /∈ S, we have proved H(S) .

94That is, T is the set obtained from S by adding n as a new member to S.
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Since we have proved H(S) assuming n /∈ S, we can conclude that

n /∈ S =⇒ H(S) .

Since we have proved n ∈ S =⇒ H(S) and n /∈ S =⇒ H(S) , it

follows that H(S) .

So we have proved H(S) for an arbitrary subset S of Z≥s∗ such that

n+ 1 ∈ S. And this proves that P (n+ 1) holds.

So we have proved P (n+ 1) assuming P (n). Hence P (n) =⇒ P (n+ 1) .

And, since we proved that P (n) =⇒ P (n + 1) for arbitrary n ∈ Z≥s∗ , it follows
that

(∀n ∈ Z≥s)∗

(
P (n) =⇒ P (n+ 1)

)
. (16.364)

which is exactly (16.361).

This completes the inductive step. Since we have also carried out the basic step,
the PMI enables us to conclude that

(∀n ∈ Z≥s)∗P (n) , (16.365)

which is exactly the statement of the lemma.

So we have proved the lemma and, as explained above, Theorem 60 is proved.

Problem 87. A largest member of a set S of integers (or of real numbers)
is a member s of S such that (∀t ∈ S)t ≤ s.

Prove the following theorems:

Theorem 61. If a set S of integers (or of real numbers) has a largest mem-
ber, then this largest member is unique.

Theorem 62. Every nonempty set of integers which is bounded above has
a largest member.

HINT for Theorem 62: use the well-ordering principle (Theorem 60) and
the result of Problem 86. �

16.3 A simple example of a proof using well-ordering: exis-
tence of prime factors

As an illustration of the power of the well-ordering pincple, let us use it to
prove the following

Theorem 63. If n is any natural number such that n > 1, then n has a
prime factor. (That is, there exists a prime number p such that p is a factor
of n, i.e., equivalently, p|n.)
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Idea of the proof. Let n ∈ IN be arbitrary. Assume that n > 1. Then n has
at least one nontrivial95 natural number factor m. (Reason: n itself is one
such factor.)

Let p be smallest of all the nontrivial natural number factors of n. Then
p must be prime, because if p was not prime then p would have a smaller
nontrivial factor q, and then q would be a nonrivlal natural number factor
of n smaller than p.

And now we write this down in a more detailed fashion.
Proof.
Let n be a natural number such that n > 1.
Let F be the set of all natural numbers m such that m > 1 and m is a factor
of n.
Then F is nonempty. (Proof: The number n is obviously a factor of n. And
n > 1. So n ∈ F .)
Also, F is a subset of Z, and F is bounded below (because F ⊆ IN).
By the well-ordering principle, F has a smallest member.
Let q be the smallest member of F .
Then q is a factor of n, and q > 1.
Furthermore, we claim that q is prime.

Proof that q is prime.

Suppose q was not prime.
Then either q=1 or q has a natural number factor other than 1 and q.
Pick one such factor and call it r.
Then r is a factor of q, so q=rk for some natural number k.
And q is a factor of n, so n=qj for some natural number j.
So n = qj = (rk)j = r(jk).
So r is a factor of n.
But r < q, because r is a factor of q and r is not q.
And r > 1, because r is a factor of q and r is not 1.
Since r is factor of n and r > 1, it follows that r ∈ F .
Since r < q and r ∈ F , q is not the smallest member of F .
But q is the smallest member of F .
So we have reached a contradiction.
So q is prime.

Hence q is a prime number which is a factor of n. So n has a prime factor.
Q.E.D.

95“Nontrivial” means “not equal to 1”.
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16.4 More examples of simple proofs using well-ordering

Every proof that can be done by induction can also be done using well
ordering. Indeed, suppose P (n) is a one-variable predicate, and you can
prove P (1) and (∀n ∈ IN)

(
P (n) =⇒ P (n+ 1)

)
.

Then, instead of invoking the PMI, you could argue by well-ordering as
follows. Call a natural number “bad” if P (n) is not true. We want to prove
that there are no bad numbers. Let B be the set of all bad natural numbers.
We want to prove that B is empty. Suppose B is not empty. Then by the
WOP B has a smallest member b. So b is bad but every natural number c
such that c < b is good (i.e., not bad). Then b cannot be 1, because P (1)
is true, so 1 is good. Since b ∈ IN and b 6= 1, b − 1 is a natural number.
And b − 1 is not bad, because b is the smallest bad natural number. So
b − 1 is good, that is, P (b − 1) is true. But then, since the implication
P (n) =⇒ P (n + 1) is true for every n ∈ IN, it is true for n = b − 1, which
means that P (b− 1) =⇒ P (b) is true. Since P (b− 1) is true, t follows that
P (b) is true. So b is good, and we have derived a contradiction. Hence
B = ∅.

Example 73. Let us prove using well-ordering that if n is natural number,
then 8n − 5n is divisible by 3.

(We have already proved this by induction. I want to show that it can
be done using well-ordering, and it’s almost the same proof.)
Proof. We want to prove that

(∀n ∈ IN)3|8n − 5n . (16.366)

Call a natural number n “bad” if 3 does not divide 8n − 5n.
Ler B be the set of all bad natural numbers. We want to prove that

B = ∅.
Assume that B 6= ∅.
Then, by the WOP, B has a smallest member b.
Then b is bad, so 8b − 5b is not divisible by 3.
In paericular, this means that b 6= 1, because 81− 51 is divisible by 3.
So b− 1 is a natural number, and 8b−1 − 5b−1 is divisible by 3.
So we can write

8b−1 − 5b−1 = 3k , k ∈ Z .. (16.367)

Then
8× (8b−1 − 5b−1) = 3× 8k . (16.368)
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So
8b − 8× 5b−1 = 3× 8k , (16.369)

and then
8b = 8× 5b−1 + 3× 8k , (16.370)

But 8 = 5 + 3, so

8× 5b−1 = 5× 5b−1 + 3× 5b−1 = 5b + 3× 5b−1 , (16.371)

so
8b = 5b + 3× 5b−1 + 3× 8k , (16.372)

and then
8b = 5b + 3(5b−1 + 8k) , (16.373)

so that
8b − 5b = 3(5b−1 + 8k) , (16.374)

Let j = 5b−1 + 8k. Then j ∈ Z and

8b − 5b = 3j . (16.375)

Hence 3|8b − 5b. That is, b is good .

But b is bad. So we have arrived at a contradiction.

The contradiction arose from assuming that B was nonemoty.

Hence B is empty, and our theorem is proved. Q.E.D.

Problem 88. Prove, using well-ordering, that

(∀n ∈ IN)5|8n − 3n . (16.376)

HINT: Use the same method as in the proof of statement (16.366), in Eaxm-
ple 73. �
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16.5 An example of a proof using well-ordering: proof of
the existence of a coprime representation (a.k.a. “co-
prime expression”, or “irreducible representation”) of
a rational number

If r is a rational numnber, the definition of “rational number” tells us that
there exist integers m,n such that n 6= 0 and r = m

n
.

It turns out that we can always pickm,n in such a way that the following
facts are also true:

CR1 n > 0,

CR2 m ⊥ n.

and, of course,

CR3 r = m
n
.

Remark 19. What does “m ⊥ n” mean? It means “m and n are coprime”.
The definition of “coprime integers” has been given before, on page 64.

(See Definition 15.) �

Definition 28. Let r be a rational number. A coprime representation of r
is a pair m,n of integrers such that conditions CR1, CR2, CR3 hold.

Example 74.

• If r = 48
18 , then a coprime representation of r is given by writing r = 8

3 .

• If r = −3
−2 , then a coprime representation of r is given by writing r = 3

2 .

• If r = 3
−2 , then a coprime representation of r is given by writing

r = −3
2 . �

The precise statement of the result announced above is as follows:

Theorem 64. If r is a rational number, then there exists a coprime repre-
sentation of r. That is,

(∀r ∈ Q)(∃m ∈ Z)(∃n ∈ Z)
(

n > 0 ∧m ⊥ n ∧ r = m

n

)

. (16.377)

Proof.

Let r be an arbitrary rational number.
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Let
S =

{

n ∈ IN : rn ∈ Z

}

. (16.378)

Then, clearly, S ⊆ IN. (That is, S is a set of natural numbers.)

Claim: S is not empty.

Proof: Since r is rational, we can write r = a
b
, where a and b are

integers and b 6= 0.

Let

n =

{
b if b > 0 ,

−b if b < 0 ,

m =

{
a if b > 0 ,

−a if b < 0 .

Then m ∈ Z, n ∈ Z, n > 0, and r = m
n
.

Hence rn = m, so rn ∈ Z.

Furthermore, n ∈ IN.

Hence n ∈ S.

So S is not empty. This completes the proof of the claim.

Since S is a nonempty set of natural numbers, the Well-ordering prin-
ciple tells us that S has a smallest member. (Furthermore, we know
from the “Trivial Theorem” on page 308 that the smallest member of
a nonempty set of real numbers, when it exists, is unique, so we can
talk about the smallest member of S.)

Let q be the smallest member of S.

Let p = rq.

Then p is an integer, because q ∈ S.

Also, q ∈ IN (because q ∈ S).

And r = p
q
, because rq = p.

Claim: p ⊥ q.



Math 300, Fall 2020 319

Proof: Suppose ∼ p ⊥ q.

Then p and q have a common factor k ∈ Z such that k > 1.

Siince k|p and k|q, we may write

p = ku and q = kv , where u ∈ Z ∧ v ∈ Z .

Then v ∈ Z and v > 0 (because kv = q, k > 0, and q > 0).

Also, r = p
q
= ku

kv
= u

v
.

Therefore rv = u.

Since rv = u, u ∈ Z, and v ∈ IN, it follows that v ∈ S.

But v < q, because q = kv and k > 1.

Since v ∈ S and v < q, it follows that q is not the smallest
member of S.

So q is the smallest member of S and q is not the smallest member
of S.

So we have derived a contradiction from the assumption that p and q
are not coprime.

Hence p and q are coprime.

So r = p
q
, p ∈ Z, q ∈ Z, q > 0, and p ⊥ q.

Therefore, we have found a coprime representation of r.

So r has a coprime representation.

We have proved that if r is an arbitary rational number then r has a coprime
representaion. This completes our proof. Q.E.D.

16.5.1 Is the coprime representation unique?

We have just proved that every rational number r has a coprime represen-
tation.

Is that coprime representation unique?
It turns out that this is an important question. We will see in Section

18.5 that the uniqueness of the coprime representation has important appli-
cations. So we should be able to prove that the coprime represenation of a
rational number is unique.
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Unfortunately, we cannot do it right now. We need a new technique,
called Bézout’s lemma, which will enable us to prove Euclid’s lemma.
These results will be proved in Sections 17 and 18.

And then, armed with these powerfull tools, we will be able to prove the
uniqueness of the coprime representation in section 18.4 and then use it in
section 18.5.

16.6 Another example of a proof using well-ordering: a sec-
ond proof of the existence part of the fundamental the-
orem of arithmetic

In this section we prove the existence part of the fundamental theorem
of arithmetic (FTA). This theorem is one of the most important results
in integer arithmetic. It says that every natural number n such that n ≥ 2
can be written as a product of primes in a unique way. (That is, not only
is the number equal to a product of primes, but there is only one way to
write it as a product of primes.) We will prove a part of the FTA, namely,
the assertion that if n ∈ IN and n ≥ 2 then n can be written as a product
of primes.

The proof of uniqueness requires more sophisticated tools, and will be
done later.

Theorem 65. Every natural number n such that n ≥ 2 is a product of prime
numbers

Remark 20. The precise meaning of “is a product of prime numbers” was
dicussed in detail earlier, in section 2.3.3, on page 22.

In particular, as we explained there, a single prime number is a
product of prime numbers. So, for example, 2, 3, 5, 7, are products of
prime numbers. �

16.6.1 Outline of the strategy for proving the theorem

Call a natural number n “bad” if n > 1 and n is not a product of primes.
What we want is to prove is that there are no bad natural numbers.
The strategy is going to be this: we let B be the set of all bad numbers,

so our goal is to prove that B is empty. For this purpose, we assume it
is nonempty, and use the well-ordering Principle to conclude that it has a
smallest member b. Then b is bad, and in addition b is the smallest bad
natural number. But then b cannot be prime, because if it is prime then it
is a product of primes, so b would not be bad. Since b > 1, and b is not
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prime, b must be a product cd of two smaller natural numbers. But then c
and d cannot be bad. So c is a product p1 × p2 × · · · × pk of primes, and d
is a product q1 × q2 × · · · × qj of primes. So

b = cd = p1 × p2 × · · · × pk × q1 × q2 × · · · × qj .

But then b is a product of primes, so b is not bad. But b is bad, and we got
a contradiction. Hence B is empty, and that means that there are no bad
numbers.

16.6.2 The proof

Let B be the set of all natural numbers n such that n ≥ 2 and n is not a
product of primes.

We want to prove that the set B is empty. For this purpose, we assume
that B is not empty and try to get a contradiction.

So assume that B 6= ∅. By the well-ordering principle, B has a smallest
member b. Then b ∈ B, so

a. b is a natural number,

b. b ≥ 2,

c. b is not a product of primes .

And, in addition,

d. b is the smallest member of B, that is,

(∀m)(m ∈ B =⇒ m ≥ b) .

Since b is not a product of primes, it follows in particular that b is not prime.
(Reason: if b was prime, then b would be a product of primes according to
our definition.)

Since b is not prime, there are two possibilities: either b = 1 or b has a factor
k which is a natural number such that k 6= 1 and k 6= b.

But the fist possibility (b = 1) cannot arise, because b ≥ 2.

Hence the second possibility occurs. That is, we can pick a natural number
k such that k divides b, k 6= 1, and k 6= b.
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Since k|b, we can pick an integer j such that

b = jk .

And then j has to be a natural number. (Reason: we know that k ∈ IN, so
k > 0. If j was ≤ 0, it would follow that kj ≤ 0. But kj − b and b > 0.)

Then j 6= 1 and j 6= b. (Reason: j cannot be 1 because if j = 1 then it
would follow from b = jk that k = b, and we know that k 6= b. And j cannot
be b because if j = b then it would follow from b = jk that k = 1, and we
know that k 6= 1.)

Then j < b and k < b. (Reason: k ≥ 1, because k ∈ IN; so k > 1, because
k 6= 1; so k ≥ 2; and then if j was ≥ b it would follow that jk ≥ 2j > j > b,
but jk = b. The proof that k < b is exactly the same.)

Hence j /∈ B (because b is the smallest member of B, and j < b). And j ≥ 2
(because j > 1). This means that j is a product of primes (because if j
wasn’t a product of primes it would be in B).

Similarly, k is a product of primes. So we can write

j =
m∏

i=1

pi and k =

µ
∏

ℓ=1

qℓ ,

where m ∈ IN, µ ∈ IN, and the pi and the qℓ are primes. But then

b =
( m∏

i=1

pi

)

×
( µ
∏

ℓ=1

qℓ

)

,

so b is a product of primes . (Precisely: define uj , for j ∈ IN, 1 ≤ j ≤ m+µ,
by the formula

uj =

{
pj if 1 ≤ j ≤ m

qj−m if m+ 1 ≤ j ≤ m+ µ
.

Then

b =

m+µ
∏

i=1

uj .

And the uj are prime, because each uj is either one of the pis or one of the
qℓs.)

So b is a product of primes .



Math 300, Fall 2020 323

But we know that b is not a product of primes . So we got two contradic-
tory statements.

This contradiction was derived by assuming that B 6= ∅. So B = ∅, and
this proves that every natural number n such that n ≥ 2 is a product of
primes, which is our desired conclusion. Q.E.D.

16.6.3 The uniqueness question for the FTA

Remark 21. The fundamental theorem of arithmetic (FTA) says that
every natural number greater than 2 can be written as a product of primes in
a unique way. (That is, not only is the number equal to a product of primes,
but there is only one way to write it as a product of primes.) Theorem 65
is a part of the FTA, namely, the assertion that if n ∈ IN and n ≥ 2 then n
can be written as a product of primes.

What we have not proved is the uniqueness of the factorization. This is
much more delicate, and we will prove it later.

At this point, just notice that even defining what “uniqueness” of the
factorization of a natural number n into primes means is not a trivial ques-
tion. For example, we can write the number 6 as a product of primes in this
way:

6 = 2× 3 ,

but we can also write it as
6 = 3× 2 .

Are these two expressions different ways of factoring 6 as a product of primes,
or are they “the same”? Obviously, they must be “the same”, because if
they were different then the factorization of 6 as a product of primes would
not be unique, and the FTA would not be true.

This means that we will have to be very precise, and define very carefully
what “writing a number as a product of primes in a unique way” means.
And this will be done later. �
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17 The main theorems of elementary integer arith-
metic II: the greatest common divisor of two
integers and Bézout’s lemma

Elementary integer arithmetic

Integer arithmetic is the study of the integers.
Elementary integer arithmetic is the study of the most basic
facts about the integers. It is a body of theory that

• involves a number of important concepts, such as

(**) divisibility,

(**) prime numbers,

(##) greatest common divisor,

• contains interesting and sometimes surprising results, such
as

(*#) the fundamental theorem of arithmetic,

(##) Bézout’s lemma,

(##) Euclid’s lemma,

(**) Euclid’s theorem on the existence of infinitely many
prime numbers,

and uses several powerful tools, such as

(**) the principle of mathematical induction (PMI),

(**) the well-ordering principle (WOP),

(**) the division theorem.

(The items marked “(**)” have already been discussed in these
notes. The items marked “(##)” will be discussed in this section.
One item is marked “(*#)”, because we have already proved one
half of it, whereas the other half has not yet been proved, but will
be proved in this section.
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We now explain the concepts and results from the above list that have
not been discussed yet, and prove the theorems.

17.1 The greatest common divisor of two integers

The first item in the list that is new to us is the concept of “greatest common
divisor”, so we begin by explainimg what this means.

In order to define “geatest common divisor”,

1. We will first define “common divisor”. This is going to be a three-
argument predicate (because “c is a common divisor of a and b” is a
statement about a, b and c that can be true or false depending on who
a, b, c are).

2. Having defined “common divisor”, the definition of “greatest common
divisor” will just say the most obvious thing: a greatest common divi-
sor of a and b is a common divisor that is the largest of all commmon
divisors.

And here, finally, are the definitions:

The greatest common divisor of two integers

Definition 29. Let a, b, g be integers. We say that c is a
common divisor (or common factor) of a and b if c divides a and c
divides b. �

In other words,

c is a common divisor of a and b ⇐⇒ (c|a ∧ c|b) . (17.379)

Definition 30. Let a, b, g be integers. We say that g is a
greatest common divisor of a and b if

1. g is a common divisor of a and b.

2. If c is any common divisor of a and b, then c ≤ g. �

In other words: a greatest common divisor of the integers
a, b, is a common divisor that is greater that or equal to
every common divisor of a and b.
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We are going to use “GCD” as an abbreviation for “greatest common divisor.
Then

(∀a ∈ Z)(∀b ∈ Z)(∀g ∈ Z)

(

g is a GCD of a and b

⇐⇒
(

g|a ∧ g|b ∧ (∀c ∈ Z)
(
(c|a ∧ c|b) =⇒ c ≤ g

))
)

. (17.380)

17.1.1 When do we use “a” and when do we use “the”?

The question whether we can talk about the smallest member of a set, or we
have to say “a” smallest member, was discussed in Section 16.1.2, on page
308. Here we deal with the same issue in the context of the greatest common
divisor: can we talk about the greatest common divisor of a and b, or do we
have to say “a” greatest common divisor of a and b?

The general answer we gave in Section 16.1.2 was: we talk about “the
ZZZ” if there is only one ZZZ, and we talk about “a ZZZ” if there is more
that one ZZZ.

17.1.2 Uniqueness of the greatest common divisor

So which one is it? Shall we talk about “the” greatest common divisor of
two integers, or about “a” greatest common divisor?

So far, in Definition 30, I talked about a greatest common divisor, be-
cause we didn’t know yet if there is only one or more than one greatest
common divisor of two given integers.

But now we are going to prove that the greatest common divisor, if it
exists, is unique. And once we know that, we will be able to talk about the
greatest common divisor of two integers.

Theorem 66. Let a, b be integers. Then, if a greatest common divisor of a
and b exists, it follows that a and b have only one greatest common divisor.

Proof. To prove that there is only one GCD of a and b, we assume that g1
and g2 are GCDs of a and b, and prove that g1 = g2.

Since g1 is a GCD of a and b, the definition of “GCD” tells us that g1|a
and g1|b.

Since g2 is a GCD of a and b, the definition of “GCD” tells us that if
c is any integer such that c|a and c|b, then c ≤ g2. And we can apply this
with g1 in the role of c. Since g1|a and g1|b, it follows that g1 ≤ g2.

Exactly the same argument works to prove that g2 ≤ g1.
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Since g1 ≤ g2 and g2 ≤ g1, it follows that g1 = g2. Q.E.D.

So from now on we can talk about “the GDC of a and b”. And we can give
it a name. So we shall call it “GCD(a, b)”.

If a, b are integers, and the greatest common divisor
of a and b exists, then “GDC(a, b)” is the name of
the GCD of a and b.

Example 75.

1. GCD(5, 7) = 1. Reason: The only common divisors of 5 and 7 are 1
and −1. And 1 is the largest of the two, so 1 = GCD(5, 7).

2. GCD(5, 15) = 5. Reason: The common divisors of 5 and 15 are 1,
−1, 5 and −5. And 5 is the largest of these four integers, so 5 =
GCD(5, 15).

3. GCD(18, 30) = 6. Reason: The common divisors of 18 and 30 are 1,
−1, 2, −2, 3, −3, 6, and −6. And 6 is the largest of these integers, so
6 = GCD(18, 30).

4. GCD(28, 73) = 1. Reason: 73 is prime. So the only factors of 73 are
1, −1, 73 and −73. But 73 and −73 are not factors of 28. So the only
common divisors of 28 and 73 are 1 and −1. And 1 is the largest one.
So 1 = GCD(28, 73).

5. GCD(28, 0) = 28. Reason: Every integer k is a factor of 0, because
0 = 0 × k, so (∃u ∈ Z)0 = uk, so k|0. So the common factors of 28
and 0 are the factors of 28. And the largest of those factors is 28. So
28 = GCD(28, 0).

6. GCD(−28, 0) = 28. Reason: Every integer k is a factor of 0, as
explained before. So the common factors of −28 and 0 are the factors
of −28. And the largest of those factors is 28. So 28 = GCD(−28, 0).

In all the examples in the previous list, the GDC turned out to be posi-
tive. We can prove easily that this is a general fact:

Theorem 67. Let a, b be integers such that the greatest common divisor
GCD(a, b) exists. Then

GCD(a, b) ≥ 1 .

Proof. GCD(a, b) is greater than or equal to every common factor of a and
b. And 1 is a common factor of a and b. So GCD(a, b) ≥ 1. Q.E.D.
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17.2 Bézout’s lemma

An extremely important, and rather surprining, fact about geratest common
divisors is Bézout’s lemma.

Before I discuss the general statement of Bézout’s lemma, let us look at
an example.

17.3 Bézout’s lemma: an example

Problem 89. Suppose you have two bottles. One of the bottles has a
volume of exactly 500 milliliter and the other one has a volume of 700
milliliter. In addition, you have a large container and you can pour water
from the bottles to the container or from the container to the bottles.

Show how, using these two bottles, you can end up with exactly 100
milliliter of water in the container.

Solution. The greatest common divisor of 500 and 700 is 100. By Bézout’s
Lemma, there exist integers u, v such that

100 = 500u+ 700v . (17.381)

Integers u, v for which (17.381) holds can be oomputed, for example, using
the Euclidean algorithm. We find that u = 3, v = −2 are possible values96

of u and v. So
100 = (−2)× 700 + 3× 500 .

So we can measure exactly 100 milliliters if water as follows:

• Fill the bottle whose volume is 500 milliliters with water, and then
empty the bottle by pouring its contents into the large container. Do
this three times.

• You will end up with 1500 milliliters in the container.

• Now pour water from the container into the bottle whose volume is
700 milliliters, until you fill it, and then empty the bottle. Do this
twice. This will remove 1400 milliliters from the large container.

• So you will end up with 100 milliliters in the container, as desired

96But they are not the only possible values. Other values are, for example, u = −4,
v = 3.
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17.3.1 Bézout’s lemma: the statement

And now, here is Bézout’s Lemma.

Bézout’s lemma

If a and b are two integers that are not both equal to
zero, then

1. the GCD of a and b exists,

2. the GCD of a and b is equal to the sum of a multiple
of a and a multiple of b. That is, there exist integers
u, v such that

GCD(a, b) = ua+ vb . (17.382)

17.3.2 Integer linear combinations

Definition 31. If a, b, c are integers, we say that c is an integer linear combination
of a and b if there exist integers u, v such that

c = ua+ vb . (17.383)

We are going to use “ILC” as an abbreviation for “integer linear combi-
nation”.

Example 76.

1. 6 is an ILC of 9 and 33, because 6 = 8× 9 + (−2)× 33.

2. 1 is an ILC of 61 and 12, because 1 = 1× 61 + (−5)× 12.

3. 0 is an ILC of any two integers a, b, because 0 = b× a+ (−a)× b.

4. 3 is an ILC of −7 and 2, because 3 = 1× (−7) + 5]times2.

Definition 32. A positive integer linear combination of two integers a, b
is an integer c such that c > 0 and c is an ILC of a and b. �
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17.3.3 A stronger version of Bézout’s lemma

Bézout’s lemma, stronger version

Theorem 68. Let a, b be integers.
Then:

1. If a = 0 and b = 0, then a greatest
common divisor of a and b in the
sense of Definition 30 does not ex-
ist.

2. If a 6= 0 or b 6= 0, then

(a) The greatest common divisor
GCD(a, b) of a and b exists,

(b) GCD(a, b) is the smallest of all
positive integers that are integer
linear combinations of a and b.

Example 77. Let a = 12, b = 21. Then the greatest common divisor of a
and b is clearly 3.

Is 3 a positive ILC of a and b? Indeed,

3 = 2× 12 + (−1)× 21 ,

so 3 is an ILC of a and b, and 3 is positive, so 3 is a positive ILC of a and b?
Are there and positive ILC’s of a and b that are smaller than 3? Clearly,

there are not, because any ILC of 12 and 21 must be divisible by 3, so a
positive ILC of 12 and 21 must be at least equal to 3.
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So 3 is the smallest positive ILC of a and b. �

17.3.4 Bézout’s lemma: the proof

Proof of Theorem 68.

Let us start by giving a name to the set of all integers c such that c is an
integer linear combination of a and b. Let us call this set “ILC(a, b)”.

So the set ILC(a, b) is defined as follows:

ILC(a, b) = { c ∈ Z : (∃u ∈ Z)(∃v ∈ Z)c = ua+ bv } . (17.384)

And now that we have defined the set ILC(a, b), we can say “c ∈ ILC(a, b)”
instead of “c is an integer linear combination of a and b”.

First let us look at the case when a = 0 and b = 0. In this case, every
integer is a common factor of a and b, because every integer divides 0. So
there is no largest integer that is a common factor of a and b. That is, the
GDC of a and b does not exist.

Now let us look at the case when a 6= 0 or b 6= 0. Let S be the set of all
positive ILC’s of a and b. That is, let

S = {n ∈ IN : n ∈ ILC(a, b)} .

It is clear that one of the four numbers a,−a, b,−bmust be positive. (If a 6= 0
then either a > 0 or −a > 0. If b 6= 0 then either b > 0 or −b > 0.) And
all four numbers belong to ILC(a, b). So one of the four numbers belongs
to ILC(a, b) and is positive. Hence S is a nonempty set of natural numbers.
By the well-ordering principle, S has a smallest member. And, in addition,
we know that the smallest member of a subset of IR, if it exists, is unique.
So we can talk about the smallest member of S.

Let us give a name to this smallest member; let us call it g. So

g ∈ S ∧ (∀n ∈ S) g ≤ n . (17.385)

We want to prove that

(*) g is the greatest common divisor of a and b.

In order to prove (*), the definition of “greatest common divisor” tells us
that we have to prove the following two things:

(*1) g is a common divisor of a and b; that is,

g|a ∧ g|b . (17.386)
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(*2) g is the largest of all common divisors of a and b; that is,

(∀c ∈ Z)
(

(c|a ∧ c|b) =⇒ c ≤ g
)

. (17.387)

Since g ∈ ILC(a, b), we can pick integers u, v such that

g = ua+ vb . (17.388)

Proof of (*1). Using the division theorem, we can divide a by g with a
remainder r. That is, we can pick integers q, r such that

a = gq + r and 0 ≤ r < g . (17.389)

(The division theorem says “0 ≤ r < |g|”. But in our case we know that
g ∈ IN, so |g| = g.)

Then

r = a− gq

= a− (ua+ vb)q

= a− uqa− vqb

= (1− uq)a+ (−vq)b .

So
r ∈ ILC(a, b) . (17.390)

We know that r ≥ 0. Let us prove that r = 0, by contradition.

Assume that r 6= 0.
Since r ≥ 0, it follows that r > 0.
So r is an integer and r > 0.
Since r ∈ ILC(a, b), it follows that r ∈ S.
In addition, (17.389) tells us that r < g.
So g is not the smallest member of S, because r is a member of S and
r < g.
But g is the smallest member of S.
Hence

g is the smallest member of S and g is not the smallest member of S,

which is a contradiction.

So we have derived a contradiction from the assumption that r 6= 0. Hence
r = 0. Since r = 0 and a = gq + r, we can conclude that a = gq. Therefore
g|a.
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The proof that g|b is identical, and we omit it.

So g|a ∧ g|b , and this completes the proof of (*1).

Proof of (*2). We want to prove the universal sentence (17.387).

Let c ∈ Z be arbitrary.

Assume that c|a ∧ c|b.
Then we can pick integers j, k such that

a = cj and b = ck .

Since g = ua+ vb, we get

g = ua+ vb

= ucj + vck

= c(uj + vk) .

Furthermore, uj + vk is an integer, because u, v, j and k are
integers.

Hence c divides g.

Our goal is to prove that c ≤ g. And for that purpose we distin-
guish two cases: either c ≤ 0 or c > 0.

Case 1: c ≤ 0. In this case, the conclusion that c ≤ g is obvious,
because c ≤ 0 and g > 0, since g ∈ IN.

Case 2: c > 0. In this case, we have

g = ℓc ,

where ℓ = uj + vk. Then ℓ is an integer.

Then ℓ must be > 0. (Reason: if ℓ was ≤ 0 then ℓc would be
≤ 0, since c > 0. But ℓc = g, and g > 0. So ℓ cannot be ≤ 0. So
ℓ > 0.)

Since ℓ is an integer, and ℓ > 0, it follows that ℓ is a natural
number. Hence ℓ ≥ 1.

Since ℓ ≥ 1 and ℓc = g, it must be the case that c ≤ g . (Reason:
if c > g, then it would follow that ℓc > g, because ℓc ≥ c—since
ℓ ≥ 1—and c > g. But ℓc = g.)

So we have shown that c ≤ g. And this completes our proof.
Q.E.D.
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17.4 The Euclidean Algorithm

Bézout’s Lemma says that, if a, b are integers and are not both sero, then

(a) the gratest common divisor g of a and b can be written as an integer
linear combination

g = ua+ vb (17.391)

of a and b,

(b) g is actually the smallest positive integer linear combination of a and
b.

The Euclidean algorithm is a method for computing g and finding the
coefficients u, v of the expression (17.391) of g as an integer linear combina-
tion of a and b.

17.4.1 Description of the algorithm for the computation of the
greatest common divisor

We are given two integers a, b, and we want to find their greatest common
divisor g. And, in addition, we may also want to find an expression of g as
an integer linear combination of a and b.

We first observe that the greatest common divisor of a and b is the same
as the greatest common divisor of |a| and |b|. So we might as well asume
that a and b aare nonnegative.

Second, if a = b =, the greatest common divisor does not exist. Sp we
will assume that 6= 0 or b 6= 0.

Third, if a > 0 and b = 0, then g = a, and an expression of g as an
integer linear combination of a and b is

g = a× 1 + b× 0 .

So we have the results we want and there is no need to do any computations.
Similarly, if a = 0 and b > 0, then g = b, and an expression of g as an

integer linear combination of a and b is

g = a× 0 + b× 1 ,

so again there is no need to do any computations.
Finally, if a and b are equal, then g = a (or g = b), and an expression of

g as an integer linear combination of a and b is

g = a× 1 + b× 0 ,
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so again there is no need to do any computations.
So we are going to assume from now on that the integers a, b are positive

and not equal. After relabeling them, if necessary, we assume that a > b > 0.
Here is how the alogorithm proceeds to find the greatest common divisor

of a and b:

• We compute a sequence r0, r1, r2, . . ., rk of positive integers as follows:

– r0 = a, r1 = b, and then

– if r1 6= 0, then we write97

r0 = r1q2 + r2 , where q2 ∈ Z , r2 ∈ Z , 0 ≤ r2 < r1

(that is, we divide r0 by r1, and let q2 be the quotient and r2 be
the remainde of the division);

– if r2 6= 0, then we write

r1 = r2q3 + r3 , where q3 ∈ Z , r3 ∈ Z , 0 ≤ r3 < r2

(that is, we divide r1 by r2, and let q3 be the quotient and r3 be
the remainder of the division);

– if r3 6= 0, then we write

r2 = r3q4 + r4 , where q4 ∈ Z , r4 ∈ Z , 0 ≤ r4 < r3

(that is, we divide r2 by r3, and let q4 be the quotient and r4 be
the remained of the division);

– as so on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

– once we have computed r0, r1, . . . , rk and q2, . . . , qk, if rk 6= 0,
then we write

rk−1 = rkqk+1+rk+1 , where qk+1 ∈ Z , rk+1 ∈ Z , 0 ≤ rk+1 < r3

(that is, we divide rk−1 by rk, and let qk+1 be the quotient and
rk+1 be the remainder of the division);

– as so on . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

• the first time we get to rk+1 = 0, the process stops.

97Naturally, this is possible because of the division theorem, which not only tells us that
q2 and r2 exist, but also guarantess that they are unique.
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• The reason that we necessarily have to get to rk+1 = 0 at some point is
this: if the process went on for ever, we would be generating numbers
r0, r1, r2, r3 that are always positive and in addition are decreasing
(that is, r0 > r1 > r2 > r3 > · · · , and rj > 0 for every j). But this
is not possible because of the well-ordering principle: let S be the set
whose members are all the rj that are > 0. Then S is a nonempty set
of natural numbers. By the WOP, S has a smallest member s. But
then s = rk for some k. And then rk+1 must be zero, because if rk+1

was 6= 0 then it would be > 0, so it would be a member of S smaller
than rk, contradicting the fact that rk is the smallest member of S.

• Then rk is the greatest common divisor of a and b.

17.4.2 Proof that the algorithm works to compute the greatest
common divisor of a and b

Since rk−1 = rkqk+1 + rk+1, and rk+1 = 0, we have

rk−1 = rkqk+1 ,

so rk divides rk−1.
Since rk−2 = rk−1qk + rk, and rk divides rk−1, it follows that rk divides

rk−2 as well.
Since rk−3 = rk−2qk−1 + rk−1, and rk divides rk−1, and rk−2, it follows

that rk divides rk−3 as well.
Continuing in this way, we show that rk divides rk−1, rk−2, . . ., until

eventually we find that rk divides r0 and r1, that is, rk divides a and b.
So rk is a common divisor of a and b.
Now we need to prove that rk is the greatest common divisor of a and

b. For this purpose, we have to prove that if c is any common divisor of a
and b then c ≤ rk.

So let c ∈ Z be a common divisor of a and b. Then c divides r0 and c
divides r1.

Since r0 = r1q2 + r2, we have r2 = r0 − r1q1 and, since c divides r0 and
r1, it follows that c divides r2.

Since r1 = r2q3 + r3, we have r3 = r1 − r2q3 and, since c divides r1 and
r2, it follows that c divides r3.

Continuing in this way, we prove that c divides r0, r1, r2, r3, r4, and so
on, until we end up proving that c divides rk.

Since c divides rk, it follows that c ≤ rk. (Proof: if c ≤ 0 then c ≤ rk,
because rk > 0. If c > 0, then c and rk are both positive integers. Since
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c|rk, we may write rk = cm, m ∈ Z. But then m > 0, so m ∈ IN, and then
m ≥ 1. It follows that rk = mc ≥ c. So c ≤ rk.)

So we have proved that rk satisfies the two conditions in the definition
of “greatest common divisor of a and b”: it divides both a and b, and it is
≥ c for every common divisor c of a and b.

Therefore rk is the greatest common divisor of a and b. Q.E.D.

17.4.3 How the algorithm can be used to write the greatest com-
mon divisor as an integer linear combination of a and b

Having computed the greatest common divisor rk of a and b, it turns out
that, if we are interested, we can also use our computation to express rk as
an integer linear combination of a and b.

The key point is this: whenever two integers u, v are integer linear com-
binations of a and b, it follows that every integer w which is an integer linear
combination of u and v can be expressed as an integer linear combination of
a and b.

(This how this can be done: write

u = ma+ nb , v = pa+ qb , w = ru+ sv , m, n, p, q, r, s ∈ Z .

Then

w = ru+ sv

= r(ma+ nb) + s(pa+ qb)

= rma+ rnb+ spa+ sqb

= (rm+ sp)a+ (rn+ sq)b ,

so w = (rm+ sp)a+ (rn+ sq)b is the desired expression of w as an integer
linear combination of a and b.)

Using this, we can successively express r0, r1, r2, r3, . . ., as integer linear
combinations of a and b as follows:

• r0 and r1 are integer linear combinations of a and b, because r0 = a
and r1 = b;

• r2 is an integer linear combination of r0 and r1, because r2 = r0−r1q1,
so r2 is an integer linear combination of a and b,

• r3 is an integer linear combination of r1 and r2, because r3 = r1−r2q2;
since r1 and r2 are integer linear combinations of a and b, it follows
that r3 is an integer linear combination of a and b,
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• r4 is an integer linear combination of r2 and r3, because r4 = r2−r3q4;
since r2 and r3 are integer linear combinations of a and b, it follows
that r4 is an integer linear combination of a and b,

• continuing in this way, we end up finding an expression for rk as an
integer linear combination of a and b.

Example 78. Let us find the greatest common divisor of a and b, if a = 700,
b = 500, using the Euclidean algorithm.

We let r0 = 700, r1 = 500. We then divide r0 by r1, and find q2, r2 such
that r0 = r1q2 + r2. We get

700 = 500× 1 + 200 ,

so q2 = 1, r2 = 200.
We then divide r1 by r2, and find q3, r3 such that r1 = r2q3+ r3. We get

500 = 200× 2 + 100 ,

so q3 = 2, r3 = 100.
Next, we r2 by r3, and find q4, r4 such that r2 = r3q4 + r4. We get

200 = 100× 2 + 0 ,

so q4 = 2, r4 = −0.
Since r4 = 0, the process stops here, and the greatest common divisor is

r3, that is, 100.
To express the greatest common divisor as an integer linear combina-

tion of 700 and 500, we successively express r0, r1, r2, r3 as integer linear
combinations of 700 and 500:

r0 = 700 ,

r1 = 500 ,

r2 = r0 − r1q2

= 700− 500 ,

r3 = r1 − r2q3

= 500− (700− 500)× 2

= 3× 500 + (−2)× 700 ,

so we end up with 100 = 3× 500 + (−2)× 700 , which is the expression of

the greatest common divisor 100 as an integer linear combination of 500 and
700 that we used in our solution of problem 89. �
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Problem 90. Prove that if a, b are nonzero integers, g is the greatest
common divisor of a and b, and |a| > 1 and |b| > 1, then g can be expressed
as an integer linear combination

g = ua+ vb , u ∈ Z , v ∈ Z ,

in such a way that |u| < |b| and |v| < |a|.
Here is an example: Take a = 5, b = 3. Then g = 1. We can write

g = 7× 3 + (−4)× 5, so we can take u = 7 and v = −4. But these numbers
are too big. Since 7 = 5 + 2, we have

g = 7× 3 + (−4)× 5

= (5 + 2)× 3 + (−4)× 5

= 2× 3 + (3 + (−4))× 5

= 2× 3 + (−1)× 5 ,

so we now hav g = ua+ vb with |u| < |b| and |v| < |a|.
Your job is to prove that this method for making u and v smaller always

works. �
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18 The main theorems of elementary integer arith-
metic III: Prime numbers, Euclid’s lemma, co-
prime integers

18.1 The definition of “prime number”

We repeat the definition of “prime number”, given in section 4, on page 20

Definition of “prime number”. A prime number is a natural number p
such that

I. p > 1,

II. p does not have any natural number factors other than 1 and p. �

And here is another way of saying the same thing, in case you do not want
to talk about “factors”.

Another version of the definition of “prime number”. A prime number
is a natural number p such that

I. p > 1,

II. There do not exist natural numbers j, k such that j > 1, k > 1, and
p = jk. �

18.2 Euclid’s lemma: an important application of Bézout’s
lemma

Euclid’s lemma is one of the most important technical results in elemen-
tary integer arithmetic. For example, Euclid’s lemma is the key fact
needed to prove the missing half of the Fundamental Theorem of
Arithmetic (FTA), that is, the uniqueness of the prime factoriza-
tion.

And, as you will see, the key fact that makes the proof of Euclid’s lemma
work is Bézout’s lemma.

Euclid’s lemma is about the following question:

Question 3. Suppose an integer p divides the product ab of two integers a,
b. Does it follow that p must divide a or p must divide b? �

The answer is “no” if a, b and p are arbitrary integers.

Example 79. 6 divides 2×3 (because 6 = 2×3) but 6 doesn’t divide 2 and
6 does not divide 3. �
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But it turns out that the answer s “yes” if p is prime, and this is what
Euclid’s lemma says:

Theorem 69. (Euclid’s lemma) If a, b, p are integers, such that p is
prime and p divides the product ab, then p divides a or p divides b.

Proof. To prove that p|a ∨ p|b, we prove98 that (∼ p|a) =⇒ p|b. i.e., that if
p does not divide a then p divides b.

Assume that p does not divide a. Since p is prime, the only natural
numbers that are factors of p are 1 and p. And p is not a factor of a,
because we are assuming that p does not divide a.

Therefore the greatest common divisor of p and a is equal to 1.
It then follows from Bézout’s lemma that 1 is equal to the sum of a

multiple of p and a multiple of a. That is, we can pick integers u, v such
that

1 = up+ va .

On the other hand, since p divides ab, we may pick an integer k such that

ab = pk .

Then

b = b× 1

= b× (up+ va)

= ubp+ vab

= ubp+ vpk

= (ub+ vk)p ,

so p divides b. Q.E.D.

98Why do we do that? This is so because of Rule ∨prove, the rule for proving “∨”
sentences: if, assuming ∼ A, you prove B, then you can go to A ∨B. And the reason for
Rule ∨prove is this: suppose we want to prove A∨B. There are two possibilities: either A
is true or A is not true. If A is true then A∨B is true, and we are done. If A is false then,
since we know how to prove B assuming ∼ A, B follows, so “A ∨ B” is true in this case
as well. Here is another way to see this: “A ∨B” is false if and only if both A and B are
false. And the implication “(∼ A) =⇒ B” is false only if and only if the premise is true
and the conclusion is false, that is, if and only if A is false and B is false. So “A ∨ B” is
false if and only if “(∼ A) =⇒ B” is false. So “A∨B” is true if and only if “(∼ A) =⇒ B”
is true. So proving “A ∨ B” amounts to the same thing as proving “(∼ A) =⇒ B”. And
to prove “(∼ A) =⇒ B” we assume ∼ A and prove B.
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18.3 Coprime integers

Coprime integers were defined in section 4.5.2, on page 64.
Here we review the definition, and reformulate the concept of coprime-

ness using the gratest common divisor.
Suppose a, b are two integers. A common factor of a and b is an integer

that divides both a and b.
Clearly, every integer is divisible by 1 and by −1. So 1 and −1 are

common factors of a and b, no matter who the integers a and b are. Since 1
and −1 are always common factors, they are not very interesting common
factors. We call them the trivial common factors of a and b, because it
is a trivial fact that they are always common factors.

The truly interesting question is whether a and b have other, nontrivial
common factors. Two integers that do not have nontrivial common factors
are said to be coprime.

Definition 33. If a, b are integers, we say that a
and b are coprime (or that “a is coprime with b”,
or that “b is coprime with a”) if a and b have no
nontrivial common factors (that is, if the only in-
tegers f such that f |a and f |b are 1 and −1). �

It follows trivially from Definition 33 that

Corollary 1. If a and b are integers, then a and b are coprime if and only
if they are not both equal to zero and GCD(a, b) = 1. �

We now introduce a symbol for coprimeness:
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If a and b are integers, we write

a ⊥ b

for “a and b are coprime”.
For example:

3 ⊥ 7 −12 ⊥ 55 1 ⊥ 0
∼ 22 ⊥ 14 ∼ 78 ⊥ −15 ∼ 49 ⊥ 77

.

18.3.1 An extension of Euclid’s lemma: if p|ab and p ⊥ a then p|b
In this section we look at the following question:

Question 4. If

1. p, a, b are integers,

2. p divides ab,

3. p does not divide a,

can we conclude that p must divide b?

Euclid’s lemma tells us that the answer is “yes” if p is prime.

But if p is not prime the answer could be “no”, as we showed in Example
79.

It turns out that, using exactly the same strategy—nased on Bézout’s
lemma—that we used to prove Euclid’s lemma, we can extend Euclid’s
lemma by proving that the answer is “yes” not only when p is prime but
also in some cases when p is not prime.

What is needed is that p and a should be coprime. This will always
be the case when p is prime, because when p is prime and p does not divide
a it follows that p and a are coprime.
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Theorem 70. If

• a, b, p, are integers,

• p is coprime with a,

• p divides the product ab,

then p divides b.

Proof. Since p ⊥ a, the greatest common divisor GCD(p, a) is equal to 1.
Using Bézout’s lemma, we can pick integers u, v such that

ua+ vp = 1 . (18.392)

Then, if we multiply both sides of (18.392) by b, we get

uab+ vpb = b .

Since p divides ab, we can pick an integer k such that

ab = kp .

Then

b = uab+ vpb

= ukp+ vpb

= (uk + vb)p ,

so p divides b. Q.E.D.

18.3.2 An important application of the theorem of section

18.3.3 Why is Theorem 70 “an extension of Euclid’s lemma”?

We said before that Theorem 70 is “an extension of Euclid’s lemma”. To
see why this is so, let me show how, once you have Theorem 70, Euclid’s
lemma follows easily:
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An easy derivation of Euclid’s lemma from Theorem 70: Suppose p
is prime and p divides the product ab of two integers a, b. We want to prove
that p|a or p|b. For this purpose, we assume that p does not divide a and
try to prove that p divides b.

Since p is prime and p does not divide a, p is coprime with a. Then
Theorem 70 tells us that p divides b, which is exactly what we want to prove
in order to prove Euclid’s Lemma. Q.E.D.

18.3.4 Another extension of Euclid’s lemma: if an integer is co-
prime with two integers, then it is coprime with their
product

In addition to providing an easy way to prove Euclid’s lemma, Theorem 70
has another important consequence:

Theorem 71. If a, b, p, are integers, and p is coprime with a and with b,
then p is coprime with the product ab.

Theorem 71 is easy to remember: it says that

If p ⊥ a and p ⊥ b then p ⊥ ab .

Proof of Theorem 71.

Assume that p is not coprime with ab. Then p and ab have a common factor
m such that m > 1.

Since m|p, and p ⊥ a, m must be coprime with a as well. (Reason: any
common factor of m and a would be a common factor of p and a, since m|p.
Since p and a do not have nontrivial common factors, m and a cannot have
nontrivial common factors either.)

On the other hand, m divides ab, because m|p and p|ab.
So m divides ab and m is coprime with a. By Theorem 70, m divides b.
Hencem|b, m|p, andm > 1. Therefore p and b have a nontrivial common

factor.
It follows that p and b are not coprime .

But p and b are coprime .
So we have reached a contradiction, and this was the result of assuming

that p is not coprime with ab.
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Hence p is coprime with ab. Q.E.D.

Why is Theorem 71 “an extension of Euclid’s lemma”? The reason is, once
again, that from Theorem 71 one can easily derive Euclid’s lemma.

An easy derivation of Euclid’s lemma from Theorem 71: Suppose p
is prime and p divides the product ab of two integers a, b. We want to prove
that p|a∨ p|b. For this purpose, we assume that it is not true that p|a∨ p|b.
Then p does not divide a and p does not divide b. Since p is prime and p does
not divide a, p is coprime with a. Since p is prime and p does not divide b,
p is coprime with b. Then Theorem 71 tells us that p is coprime with ab .

On the other hand, we are assuming that p|ab, so p and ab have a non-

trivial common factor99, namely, p. So p is not coprime with ab .
So we have reached a contradiction, and this happened because we as-

sumed that it is not true that p|a ∨ p|b. Hence p|a ∨ p|b . Q.E.D.

18.4 Uniqueness of the coprime representation of a rational
number

In section 16.5 we defined “coprime representation” (cf. Definition 28 and
proved that every rational number has a coprime representation (cf. Theo-
rem 64). But we did not prove that the coprime representation of a rational
number is unique. We now prove the uniqueness result.

Theorem 72. If r is a rational number, then the coprime representation of
r, whose existence was established in Theorem 64, is unique.

Proof. Let r be an arbitrary rational number.

Assume that r has two coprime representations,

r =
m

n
and r =

m′

n′
, (18.393)

where m,n,m′, n′ are integers, n > 0, n′ > 0, m ⊥ n, and m′ ⊥ n′.

We want to prove that m = m′ and n = n′.

It follows from 18.393 that

m

n
=
m′

n′
. (18.394)

99Why is p a nontrivial common factor? Because p is prime, so p > 1.
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Then
mn′ = m′n . (18.395)

Then n′|m′n.

Since n′ ⊥ m′, it follows from Theorem 70 that n′|n.

So we can pick an integer j such that n = n′j.

Similarly, we can pick an integer k such that n′ = nk.

Then n = n′j = (nk)j = n(kj), so n = n(kj).

Since n 6= 0, it follows that kj = 1.

Then either k = j = 1 or k = j = −1.

But n > 0 and n′ > 0, so j = k = 1.

Therefore n = n′ .

And then (18.395) implies that m = m′ . Q.E.D.

18.5 A general theorem on irrationality of square roots: an
important application of Bézout’s lemma and Euclid’s
lemma

After having proved that various numbers such as
√
2,

√
3,

√
5,

√
28,

√
2
3 ,

√
27
31 are irrational, can we prove once and for all a general theorem that

will include all these cases? The answer is “yes”, and here is the theorem.
Notice that all the irrationality results about square roots that we proved
before follow easily from this theorem. (For example: if r = 2, then r = 2

1
and 2 ⊥ 1, so Theorem 73 tells us that

√
r is irrational, because 2 is not the

square of an integer; similarly, if r = 2
3 , then Theorem 73 tells us that

√
r is

irrational, because 2 ⊥ 3 and 2 and 3 are not squares of integers.)

Theorem 73. Let r be a rational number written as a quotient

r =
m

n
, (18.396)

where m and n are coprime integers and n > 0. Then either
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(1) there does not exist a rational number s such that s2 = r.

or

(2) m and n are both squares of integers.

Proof of Theorem 73:
Let r be an arbitrary rational number. We want to prove that either (1)

or (2) is true. Using Rule ∨prove, we will assume that (1) is false, and prove
that (2) is true.

Assume that (1) is false.

Then we can pick a rational number s such that s2 = r.

Using Theorem 64 (on page 317), the number s has a coprime repre-
sentation.

That is, we can pick integers p, q such that

i. q > 0,
ii. p ⊥ q,
iii. s = p

q
.

Then s2 = p2

q2
, so

r =
p2

q2
. (18.397)

Since p ⊥ q, Theorem 71 implies that p ⊥ q2. And then, since q2 ⊥ p,
using Theorem 71 once more we find that

p2 ⊥ q2 .

Furthermore, q2 is clearly positive.

So (18.396) and (18.397) are coprime representations of r.

Using the uniqueness of the coprime representation (Theorem 72), we
conclude that

m = p2 and n = q2 . (18.398)

So (2) holds.

So, assuming that (1) is false we proved (2). By Rule ∨prove, it follows that
(1)∨(2) is true. Q.E.D.
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Theorem 73 can be generalized to powers greater that 2. For example, we
have:

Theorem 74. Let r be a rational number written as a quotient

r =
m

n
, (18.399)

where m and n are coprime integers and n > 0. Then either

(1) there does not exist a rational number s such that s3 = r.

or

(2) m and n are both cubes of integers (that is, (∃p ∈ Z)(∃p ∈ Z)(m =
p3 ∧ n = q3)).

Proof of Theorem 73:

YOU DO IT.

Problem 91. Prove Theorem 74. �

And, even more generally, we have

Theorem 75. Let r be a rational number written as a quotient

r =
m

n
, (18.400)

where m and n are coprime integers and n > 0, and let k be a natural
number. Then either

(1) there does not exist a rational number s such that sk = r.

or

(2) m and n are both k-th powers of integers (that is, (∃p ∈ Z)(∃p ∈
Z)(m = pk ∧ n = qk)).

Proof of Theorem 75:

YOU DO IT.

Problem 92. Prove Theorem 75. �
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18.6 Divisibility properties of products of several integers

18.6.1 An important notational convention: the sets INk

In what follows we will be making lots of statements about “the natural
numbers 1, 2, . . . , k”, that is “all the natural numbers j such that j ≤ k”.
So it will be convenient to give a name to the set of all such js.

THE SETS INk (A.K.A. {1, 2, . . . , k})

The expression “INk” stands for the set of all natural
numbers that are less than or equal to k. That is,

INk = {n ∈ IN : n ≤ k} . (18.401)

Another notation often used for this set is “{1, . . . , k}”,
or “{1, 2, . . . , k}”.
We will use “INk” when k is a natural number, and also
when k = 0. (So INk makes sense when k ∈ IN ∪ {0}.)
Naturally, for n = 0 the set defined by (18.401) has no
members, because there are no natural numbers k such
that k ≤ 0. So

IN0 = ∅ . (18.402)

For example:

IN0 = ∅ , IN1 = {1} , IN2 = {1, 2} ,
IN3 = {1, 2, 3} , IN4 = {1, 2, 3, 4} , IN5 = {1, 2, 3, 4, 5} .

Then

j ∈ INk

is just another way of saying “j ∈ IN and j ≤ k”.
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18.6.2 The generalized Euclid lemma

Theorem 69 (that is, Euclid’s lemma) tells us that if p is a prime and a, b
are integers such that p is prime and p divides the product ab, then p divides
a or p divides b.

The generalized Euclid lemma answers the following more general
question:

Question 5. What happens if instead of two integers a, b we have three
integers a, b, c? Is it still true that if p|abc then p|a or p|b or p|c?

What if we have four integers a, b, c, d. Is it still true that if p|abcd then
p|a or p|b or p|c or p|d? �

The answer is “yes”, for three, four, or any number of integers, as shown by
the following result.

Theorem 76. Let k be a natural number, and let p, a1, a2, . . . , ak be integers
such that

1. p is a prime number,

2. p divides the product
∏k

j=1 aj.

Then p divides one of the factors. That is, (∃j ∈ INk)p|aj,

Proof. We will prove this by induction.
We want to prove

(∀k ∈ IN)(∀p, a1, a2, . . . , ak ∈ Z)
(
(

p is a prime number ∧ p
∣
∣
∣

k∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj
)

. (18.403)

Sentence (18.403) is a closed sentence. i.e., a sentence with no open variables,
because the sentence contains the variables k, p, a1, a2, . . . , ak and j, but they
are all quantified, so no variables are open.

We can express sentence (18.403) as “(∀k ∈ IN)P (k)”, where P (k) be
the sentence

(∀p, a1, a2, . . . , ak ∈ Z)
(
(

p is a prime number ∧ p
∣
∣
∣

k∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj
)

. (18.404)
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Then P (k) is a sentence with one open variable, and the open variable is k.
So P (k) is exactly the kind of sentence for which we can expect to be able
to prove “(∀k ∈ IN)P (k)” by induction.

Now let us prove “(∀k ∈ IN)P (k)” by induction.

Base step. We have to prove P (1). But P (1) says

(∀p, a1∈Z)

(
(

p is a prime number ∧ p
∣
∣
∣

1∏

j=1

aj

)

=⇒(∃j∈ IN1)p|aj
)

.

(18.405)
But IN1 is just the set {1}, so “(∃j ∈ IN1)p|aj” just amounts to saying “p|a1”.

Furthermore.
∏1

j=1 aj = a1. So P (1) actually says

(∀p, a1 ∈ Z)

(
(

p is a prime number ∧ p|a1
)

=⇒ p|a1
)

. (18.406)

And this is clearly true. So (18.406) is true.
Hence P (1) is true.

Inductive step. We want to prove that

(∀k ∈ IN)(P (k) =⇒ P (k + 1)) . (18.407)

Let k ∈ IN be arbitrary.

Assume that P (k) is true.

Then

(∀p, a1, a2, . . . , ak ∈ Z)
(
(

p is a prime number ∧ p
∣
∣
∣

k∏

j=1

aj

)

=⇒ (∃j ∈ INk)p|aj
)

. (18.408)

We want to prove P (k + 1), that is,

(∀p, a1, a2, . . . , ak, ak+1 ∈ Z)
(
(

p is a prime number ∧ p
∣
∣
∣

k+1∏

j=1

aj

)

=⇒ (∃j ∈ INk+1)p|aj
)

. (18.409)

So let p, a1, a2, . . . , ak, ak+1 be arbitrary integers such that

1. p is a prime number.
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2. p divides
∏k+1

j=1 aj .

We want to prove that (∃j ∈ INk+1)p|aj . i.e., that p|aj for some
j ∈ INk+1.

The inductive definition of “
∏
” tells us that

k+1∏

j=1

aj =
( k∏

j=1

aj

)

ak+1 .

So

p
∣
∣
∣

( k∏

j=1

aj

)

ak+1 .

Euclid’s lemma tells us, since p is prime, that if p divides a prod-
uct uv of two integers then p|u or p|v. In our case, if we take
u =

∏k
j=1 aj and v = ak+1, the lemma tells us that either

(i) p divides
∏k

j=1 aj

or

(ii) p divides ak+1..

We now see what happens in each of these two cases.

Case (i): Assume that p divides
∏k

j=1 aj . Then we can use P (k)
and conclude that p divides one of the factors, that is, we can
conlude that (∃j ∈ INk)p|aj . So we may pick j in INk such that

p|aj . Then obviously j ∈ INk+1, so (∃j ∈ INk+1)p|aj .
Case (ii): Assume that p divides ak+1. Then it is is also true

that (∃j ∈ INk+1)p|aj .
So in both cases (∃j ∈ INk+1)p|aj , so we have established the

conclusion that (∃j ∈ INk+1)p|aj .

We have proved this for arbitrary integers p, a1, a2, . . . , ak, ak+1 such
that p is a prime number and p divides

∏k+1
j=1 aj .

Hence we have proved P (k + 1).

Since we have proved P (k+1) assuming P (k), we have proved the implication
P (k) =⇒ P (k + 1).

Since we have proved P (k) =⇒ P (k+1) for arbitray k ∈ IN, we have proved
(∀k ∈ IN)(P (k) =⇒ P (k + 1)).
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This completes the inductive step.

So we have proved (∀k ∈ IN)P (k). Q.E.D.

18.6.3 A further extension of Euclid’s lemma: if an integer p
is coprime with several integers, then it is coprime with
their product

Theorem 71 tells us that if an integer p is coprime with two integers a, b,
then it is coprime with the product ab.

We now consider the following question:

Question 6. What happens if instead of two integers a, b we have three
integers a, b, c? Is it still true that if p ⊥ a, p ⊥ b, and p ⊥ c, then p ⊥ abc?

What if we have four integers a, b, c, d. Is it still true that if p ⊥ a, p ⊥ b,
p ⊥ c, and p ⊥ d, then p ⊥ abcd? �

The answer is “yes”, for three, four, or any number of integers, as the
following general theorem states.

Theorem 77. Let n be a natural number, and let p, a1, a2, . . . , an be integers
such that p is coprime with aj for every j ∈ INn. Then p is coprime with
the product

∏n
j=1 aj.

Proof. YOU DO THIS.

Problem 93. Prove Theorem 77 by induction. Use the inductive definition
of
∏n

j=1 aj , and use Theorem 71.
HINT: The proof is very similar to the proof of Theorem 76. I suggest

that you read the proof of Theorem 76 carefully and use exactly the same
pattern to prove Theorem 77. �

18.6.4 Another proof of the generalized Euclid lemma

Theorem 69 (that is, Euclid’s lemma) tells us that If p is a prime and a, b,
are integers such that p is prime and p divides the product ab, then p divides
a or p divides b.

The generalized Euclid lemma answers the more general question
“what happens if instead of two integers a, b we have three integers a, b, c?
Or four integers a, b, c, d” Or, more generally, any number n of integers.

We answered this question by proving the generalized Euclid lemma
(Theorem 76). Here I am giving you another proof of Theorem 76, based
on Theorem 77.
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Proof of Theorem 76 using Theorem 77.

Let p, a1, a2, . . . , ak be integers such that p is prime and p divides
∏k

j=1 aj .
We want to prove that p divides one of the aj .

Assume that p does not divide any of the aj .

Then, for each j, p is coprime with aj . (Reason: since p is prime the
only natural numbers that divide p are 1 and p. Since p does not
divide aj , the only natural number that divides both p and aj is 1. So
the greatest common divisor of p and aj is 1. Then p ⊥ aj .)

According to Theorem 77, it follows that p ⊥∏k
j=1 aj .

But then p does not divide the product
∏k

j=1 aj .

But p divides the product
∏k

j=1 aj .

So we have reached a contradiction, by assuming that p does not divide any
of the aj . So p must divide one of the aj . Q.E.D.

18.7 Divisibility of an integer by the product of two or more
integers

In this section we look at the following question:
Question 7. If an integer q is divisible by several integers a1, a2, . . . , an
when can we conclude that q is divisible by the product a1 · a2 · . . . · an? �

It is clear that the answer is “not always”.

Example 80. Let a = 6, b = 4, q = 12. Then 12 is divisible by a and by b,
but it is clearly not divisible by ab, since ab = 24. �

18.7.1 Divisibility of an integer by the product of two integers

We now answer Question 7 for n = 2, i.e., for the case of two integers. is: if
a|q and b|q, then we can conclude that q is divisible by the product
ab if a and b are coprime.

Indeed, we can prove:

Theorem 78. If
1. a, b, q are integers,
2. a divides q and b divides q,
3. a and b are coprime,

then ab divides q.

Proof. Since a and b are coprime, we may pick integers u, v such that
1 = ua+ vb .
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Since q is divisible by a and by b, we can pick integers j, k such that q = aj
and q = bk. Then

q = q × 1

= q × (ua+ vb)

= qua+ qvb

= (bk)ua+ (aj)vb

= ab(ku+ jv) .

Since ku+ jv is an integer, it follows that ab divides q. Q.E.D.

18.7.2 Divisibility of an integer by the product of several integers

Supose an integer n is divisible by three integers a, b, c. Can we conclude
that n is divisible by the product abc?

What if n is divisible by four integers a, b, c, d? Can we conclude that
n is divisible by the product abcd?

In general, let us look at the following question:

Question 8. Suppose that

1. n is an integer,
2. k is a natural number,
3. a1, a2, . . . , ak are integers,
4. n is divisible by all the aj; that is, (∀j ∈ INk)aj |n .

Can we conclude that the product
∏k

j=1 divides n? �

For the case of two integers a1, a2, we know that the answer is “yes”
if a1 and a2 are coprime. The answer for several integers a1, a2, . . . , ak is
similar: we have to require that a1, a2, . . . , ak be pairwise coprime. This
means that a1 ⊥ a2, a1 ⊥ a3, a2 ⊥ a3, a1 ⊥ a4, a2 ⊥ a4, and so on. Every
pair ai, aj has to be coprime (except of course when i = j; we do not want
to demand, for example, that a1 be coprime with a1, because that would
amount to requiring that a1 be equal to 1). .

Definition 34. Let k ∈ IN, and let a1, a2, . . . , ak be integers. We say that
a1, a2, . . . , ak are pairwise coprime if for every i ∈ INk and every j ∈ INk, if
i 6= j then ai and aj are coprime. �

Theorem 79. Assume that n, a1, a2, . . . , ak are integers, k is a natural num-
ber, and
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1. n is divisible by all the aj; that is, (∀j ∈ INk)aj |n,
2. a1, a2, . . . , ak are pairwise coprime, that is,

ai ⊥ aj whenever i, j ∈ INk , i 6= j ,

or, in more formal language, (∀i, j ∈ INk)(i 6= j =⇒ ai ⊥ aj) .

Then the product
∏k

j=1 aj divides n.

Proof. YOU DO IT.

Problem 94. Prove Theorem 79 by induction on k.

HINT: Let P (k) be the statement

(♦) If n, a1, a2, . . . , ak are integers such that each aj divides n, and the aj
are pairwise coprime, then the product

∏k
j=1 aj divides n,

so, in formal language, P (k) is

(∀n, a1, a2, . . . , ak ∈ Z)
(
(

(∀j ∈ INk)aj |n ∧ (∀i, j ∈ INk)(i 6= j =⇒ ai ⊥ aj)
)

=⇒
k∏

j=1

aj |n
)

.(18.410)

Formula (18.410) contains the variables n, i, j, k, a1, a2, . . . , ak. But all these
variables, except k, are quantified. So k is the only open variable. Hence
(18.410) is a one-variable predicate, and the open variable is k. That’s why
we can call the predicate (18.410) P (k), and you should prove by induction
on k that (∀k ∈ IN)P (k).

In the inductive step of the proof, you should use Theorem 77 to conclude
that ak+1 is coprime with

∏k
j=1 aj , then use Theorem 78 to conclude, since

∏k
j=1 aj divides n, and ak+1 divides n, that

∏k+1
j=1 aj

∣
∣
∣n . �
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19 The main theorems of elementary integer arith-
metic IV: The fundamental theorem of arith-
metic

19.1 Introduction to the fundamental theorem of arithmetic

The fundamental theorem of arithmetic (FTA) says, roughly, that

(I) Every natural number n such that n ≥ 2 is a product of prime numbers.

(II) The expression of n as a product of prime numbers is unique.

Statement (I) is an existence result: it says that

(E) For every n ∈ IN such that n ≥ 2 there exists a list

L = (p1, p2, . . . , pk)

such that p1, p2, . . . , pk are prime numbers, and

n =
k∏

j=

pj . (19.411)

And we have already proved this, in Theorem 59.

The second half of the FTA is Statement (II), the uniqueness assertion: the
list L such that (19.411) holds is unique.

We now have to prove (II). But before we do that, we have to make it
precise. One possible meaning of (II) would be this:

(II1) If n ∈ IN and n ≥ 2, then, if

L = (p1, p2, . . . , pk)

and
M = (q1, q2, . . . , qm)

are two lists of prime numbers such that

n =
k∏

j=1

pj and n =
m∏

i=1

qi , (19.412)

then L = M . (That means “m = k, and qj = pj for every j ∈ INk” ,
that is, q1 = p1, q2 = p2, . . ., qk = pk.)
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But it is easy to see that statement (II1) cannot be true.

Example 81. Let n = 6, p1 = 2, p2 = 3, q1 = 3, q2 = 2. Then

6 = 2× 3 and 6 = 3× 2 ,

so that
6 = p1p2 and 6 = q1q2 ,

but it is not true that p1 = q1 and p2 = q2. �

In this example, it is clear what is really going on: it is not necessarily
true that p1 = q1 and p2 = q2. It could be the case that p1 = q2 and
p2 = q1. In other words, “the pjs have to be the same as the qjs, but not
necessarily in the same order”.

How can we say this precisely? Let us try a second option:

(II2) If n ∈ IN and n ≥ 2, then, if

L = (p1, p2, . . . , pk)

and
M = (q1, q2, . . . , qm)

are two lists of prime numbers such that

n =
k∏

j=1

pj and n =
m∏

j=1

qj , (19.413)

then m = k and the set P whose members are the pj ; that is, the set

P = {p ∈ IN : (∃j ∈ INk)p = pj} , (19.414)

is the same as the set Q whose members are the qj , that is, the set

Q = {q ∈ IN : (∃j ∈ INm)q = qj} . (19.415)

But it is easy to see that this cannot be the right formulation either.

Example 82. Let

n = 72 , that is n = 2× 2× 2× 3× 3 . (19.416)
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Then Formula (19.416) gives us a factorization of n as product of primes,
namely,

n = p1p2p3p4p5 , where p1 = 2 , p2 = 2 , p3 = 2 , p4 = 3 , p5 = 3 .

We would like to say that, if we have any other factorization

n = q1q2 · · · qm ,

then the qjs must be “the same” as the pjs, meaning first of all, that m = 5,
and second, that three of the qjs must be equal to 2, and two of the qjs must
be equal to 3.

And just saying that the set of the pj is the same as the set of the qj is
not enough. The set P defined by Equation (19.414) is just the set {2, 3},
i.e., the set whose members are 2 and 3. (Remember that, for a set P , an
object p is a member of P or is not a member of P ; there is no such thing
as “being a member of P twice”, or “being a member of P three times”.)

We want the qjs to be “the same” as the pjs not just in the set sense
(that is, the set Q is also the set {2, 3}), but in the much stronger sense
that “there are five qjs; three of them are 2s and two of them are 3s”. And
Formulation (II2) does not capture that. �

So, how shall we say what we want to say? Let us go back to our
examples.

Example 83. For the factorization

6 = p1p2 where p1 = 2 and p2 = 3 ,

we want to say that if q1, q2, · · · , qm are primes and 6 = q1q2 · · · qm, then

• m must be 2, so the equation “6 = q1q2 · · · qm”becomes “6 = q1q2”.

• q1 must be 2 and q2 must be 3.

We can achieve this if we limit ourselves to ordered factorizations of 6,
i.e., factorizations of 6 in which 6 is expressed as a product q1q2 · · · qm of
primes, but the qj are required to be in increasing order, that is, to be
such that q1 ≤ q2 ≤ q3 ≤ · · · ≤ qm. This excludes the factorization 6 = 3×2,
and leaves 6 = 2× 3 as the only possible prime factorization of 6. �

Example 84. For the factorization

72 = p1p2p3p4p5 where p1 = 2 , p2 = 2 , p3 = 2 , p4 = 3 , p5 = 3 ,
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we want to say that if q1, q2, · · · , qm are primes and 72 = q1q2 · · · qm, then
m must be 5, three of the qj must be 2, and two of the qj must be 3. Again,
we can achieve that if we limit ourselves to ordered factorizations of 72,
i.e., factorizations of 72 in which 72 is expressed as a product q1q2 · · · qm of
primes, but the qj are required to be in increasing order, that is, to be such
that q1 ≤ q2 ≤ q3 ≤ · · · ≤ qm. This excludes other factorizations such as
72 = 3×3×2×2×2, or 72 = 3×2×2×3×2, and leaves 72 = 2×2×2×3×3
as the only possible prime factorization of 72. �

Examples 83 and 84 show us the path: we have to define ”ordered factor-
ization” precisely, and then the statement of the FTA will be: every natural
number n such that n ≥ 2 has a unique ordered factorization as a product
of prime numbers.

19.1.1 Precise statetement of the fundamental theorem of arith-
metic

19.1.2 Is a prime factorization a set of primes?

If we are going to say that “every natural number n such that n ≥ 2 has
a unique prime factorization”, then, to begin with, we have to answer the
following question:

Question 9. What do we mean, exactly, by a prime factorization of an
integer n? �

A prime factorization is, of course, something like “several primes that mul-
tiplied together result in n”.

But such vague language will not do. We have to give a precise definition.

1. First of all, “prime factorization” is not an entity100, like water, or
politics. We can say things like

Water is a transparent and nearly colorless chemical substance

or

Politics is the process of achieving and exercising positions
of governance or organized control over a human community,
particularly a state.

100According to the Merriam-Webster dictionary, an entity is “something that has sep-
arate and distinct existence and objective or conceptual reality”.
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But we cannot say “prime factorization is . . .”.

2. “Prime factorization” is like “subset”, or “factor”, or “divisible”, or
“absolute value”: it is a relational concept, it has arguments:

(a) You cannot say “factor is . . .”, because “factor”, by itself, is not
something that can be or not be anything.

(b) But you can say things like “a is a factor of b”.

(c) You cannot say “divisible is . . .” (or, even worse, “divisible is
when . . .”), because “divisible”, by itself, is not something that
can be or not be anything.

(d) But you can say things like “a is divisible by b”.

(e) You cannot say “absolute value is . . .”, because “absolute value”,
by itself, is not something that can be or not be anything.

(f) But you can talk about “the absolute value of x”.

3. More precisely, “prime factorization” is a two-argument predicate:
we say things like “P is a prime factorization of n”. The arguments
are n and P. And, clearly, n must be a number.

4. And we haven’t yet answered the question what kind of a thing
shall P be?

5. A prime factorization P should be a single object, not “several things”.

6. And we have seen that it is not a good idea to think of a prime fac-
torization as a set of primes, because, for example, the factorization
of 72 given by 72 = 2× 2× 2× 3× 3 contains more information than
the set {2, 3}. It contains the fact that 2 “occurs three times”, and 3
“occurs twice”.

The conclusion of all this is that a “prime factorization” should not be a set:
it should be a finite list.

And, to make this precise, we need to say a few words about finite lists.

19.2 Finite lists

In this section we will use the sets INk. The meaning of “INk” is ex-
plained in section 18.6.1, on page 350.

Definition 35. Let n be a natural number.
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1. A finite list of length n consists of the specification, for each natural
number j in the set INn, of an object aj.

2. The aj are called the entries of the list:

(a) a1 is the first entry,

(b) a2 is the second entry,

(c) a3 is the third entry,

and so on, so that, for example, a283 is the 283rd entry.

3. The entries aj of a finite list a could be numbers of any kind (integers,
real numbers, complex numbers, integers modulo 37), or matrices, or
aets, orpoints, or lines, or planes, or functions, or lists, or planets, or
animals, or people, or books, or viruses, or mice, or atoms, or ghosts,
or unicorns, or angels, objects of any kind whatsoever, concrete or
abstract, real or imaginary.

4. Actually, the entries of a list do not all have to be objects of the same
kind (whatever “pf the same kind” means). So for or example, you
can perfectly well have a finite list a = (a1, a2, a3, a4, a5) in which a1
is the number 5, a2 is Mickey Mouse, a3 is Abraham Lincoln, a4 is the
word “cow”, and a5 is the Pacific Ocean.

Remark 22. There are finite lists and infinite lists. In this section,
we will only be talking about finite lists. But infinite lists are very
important, and we will come back to them later. �

19.2.1 How to introduce, specify, and name lists

• In principle, any symbol or string of symbols can be used as the name
of a list, so we could name a list “a”, or “q”, or “Alice”, or “list-of-
primes”.

• But in these notes we will use boldface lower-case letters for lists.

• And often, when we use a boldface letter such as a or b or p or x for a
list, we will use the same letter in italic, with a subscript, as the name
of an entry of a list.

• So, for example, if p is a list, then we may write “p1” for the first
entry of p, “p2” for the second entry, and, in general, “pj” for the j-th
entry.
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• So, if p is a list of length n, then pj will make sense for every j ∈ INn.

• We will write
a = (aj)

n
j=1 or a = (aj)k∈INn

(19.417)

to indicate that a is a finite list or length n and, for each j ∈ INn,
the j-th entry of a is called aj.

• For short lists weill write (a1), or (a1, a2), or (a1, a2, a3), or (a1, a2, a3, a4),
rather than (aj)

1
j=1, or (aj)

2
j=1, or (aj)

3
j=1, or (aj)

4
j=1.

And here are some examples of list specification:

Example 85. Suppose, for example, that we want to create a list of length
3, whose entries are the first three prime numbers, and we want to call it a.
We could write any of the following things to specify such a list:

Let a = (2, 3, 5) , (19.418)

Let a = (a1, a2, a3) , where a1 = 2, a2 = 3, a3 = 5 , (19.419)

Let a = (aj)
3
j=1 , where a1 = 2, a2 = 3, a3 = 5 , (19.420)

Let a = (aj)
3
j=1 , where aj is the j−th prime for j = 1, 2, 3 ,(19.421)

Let a = (aj)
3
j=1 , where aj is the j−th prime for j ∈ IN3 ,(19.422)

Let a = (aj)
3
j=1 , where (∀j ∈ IN3)aj is the j−th prime . (19.423)

Example 86. Suppose we want to introduce the list of the first 500 prime
numbers and give it a name. In this case, if we try to write something like
(19.418) or (19.419) or (19.420) or (19.421) the formulas would get too long.
But we can write

Let a = (aj)
500
j=1 , where aj is the j−th prime for j ∈ IN500 ,(19.424)

Let a = (aj)
500
j=1 , where (∀j ∈ IN500)aj is the j−th prime . (19.425)

Example 87. Suppose we want to introduce the list of the first 500 squares
of natural numbers and give it a name. In this case we can write one of the
following:

Let a = (aj)
500
j=1 , where aj is the j−th square for j ∈ IN500 ,(19.426)

Let a = (aj)
500
j=1 , where (∀j ∈ IN500)aj is the j−th square ,(19.427)

but, since we have the formula aj = j2 for aj , we have the additional options
of writing one of the following:

Let a = (aj)
500
j=1 , where aj = j2 for j ∈ IN500 , (19.428)

Let a = (j2)500j=1 . (19.429)
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Example 88. Suppose we want to introduce the list of all the U.S. pres-
idents from George Washington to Donald Trump, in chronological order,
that is, starting with George Washington and ending with Donald J. Trump.

We could do this by writing

Let a = (a46−j)
45
j=1 , where, for j ∈ IN45 , aj is the j−th president . �

Now suppose we don’t know how many presidents there have been from
Washington to Trump, and we don’t know that Trump is the 45-th president.
We could write:

Let a = (aj)
N
j=1 , where :

(a) N is the number of U.S. presidents from G.Washington to D.Trump

and

(b) for j ∈ INN , aj is the j−th U.S. president .

Example 89. Suppose we want to introduce the list of all the U.S. presi-
dents from George Washington to Donald Trump, in reverse chronological
order, that is, starting with George Washington and ending with Donald J.
Trump.

We could do this by writing

Let a = (aj)
45
j=1 , where, for j ∈ IN45 , aj is the N+1−j−th U.S. president .

Remark 23. Often, one writes

a = (a1, . . . , an) ,

or
a = (a1, a2, . . . , an) ,

instead of a = (aj)
n
j=1. I strongly prefer the (aj)

n
j=1 notation, but I will

accept the other one. �

Remark 24. Pay attention to the following:
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SETS VS. LISTS

1. Sets have members, not entries.

2. Finite lists have entries, not members.

3. In the set notation, we use braces, as in “the set {x ∈
IR : x > 0}”, or “the set {1, 2, 3, 4}′′.

4. In the finite list notation, we use parentheses, as in
“the list (pj)

n
j=1”, or “the list (2, 3, 5)”.

5. In a set S, an object a either is a member or is not a
member. There is no such thing as “being a member of
the set S twice”.

6. In a finite list a = (aj)
n
j=1 it is possible for an object a

to be the first entry of a (that is a = a1) and also the
second entry (that is, a = a2) and the 25th entry (that
is, a = a25).

7. So a finite list can have repeated entries, but a
set cannot have repeated members.
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and to the following:

8. If a is a finite list, then we can associate to a a set Set(a),
called the set of entries of the list a

9. The set of entries of the list a = (aj)
n
j=1 is the set Set(a

given by

Set(a) = {x : (∃j ∈ INn)x = aj} .

This set is a totally different object from the list
a.

Remark 25. Not all books and journals use the same notation. So if you
are reading a mathematics book or article you have to make sure to check
which notations are being used. For example, some books use braces for
lists, so they would write “the list {pj}nj=1”. I strongly prefer the parenthesis
notation, and in this course this is the official notation, so we write “the list
(2, 2, 3, 4)”, or “the list p = (pj)

n
j=1”, which are very different from “the set

{2, 2, 3, 4}”, or “the set {p : (∃j ∈ INn)p = pj}”. (For example: the list
(2, 2, 3, 4) has four entries, but the set {2, 2, 3, 4} has three members.) �

19.2.2 Equality of lists

We know that two sets A, B are equal if they have the same members. That
is

A = B ⇐⇒ (∀x)(x ∈ A⇐⇒ x ∈ B) .

When are two finite lists equal?
Here is the asnwer:
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Two lists
p = (pj)

n
j=1 , q = (qj)

m
j=1 ,

are equal if

1. n = m,

and

2. pj = qj for every j ∈ INn. (That is,
(∀j ∈ INn)pj = qj.)

Example 90. The lists p = (2, 2, 3) and q = (3, 2, 2) are not equal because,
for example, the first entry of the first list is not equal to the first entry of
the second list.

But, of course, the sets {2, 2, 3} and {3, 2, 2} are equal, because they are
both equal to the set {2, 3}. �

Example 91. Let P = (pj)
45
j=1 be the list of all U.S. presidents from George

Washington to Donald Trump. Then, for each j ∈ IN45, pj stands for “the
j-th president of the United States”.

Then P has 45 entries. Let S be the associated set Set(P). Then S is
the set of all U.S. presidents from George Washington to Donald Trump.
That is,

S = {x : (∃j ∈ IN45)x = pj} .
How many members does S have?

If you guessed “45”, you are wrong!
The correct answer is 44.
The reason for this is that Grover Cleveland was U.S. president from

1885 to 1889, and then again from 1893 to 1897. During his first presidency,
he was the 22nd president. Then Benjamin Harrison served as the 23rd
president, from 1889 to 1893, and after that Grover Cleveland was elected
president again, and Congress decided that he would be counted at the 24th
president, in addition to being counted as the 22nd president.

So the list P has a repeated entry: p22 is the same as p24. The set
Set(P) does not know this, because all a set knows is whether something (or
somebody) is a member or not. So the set Set(P) has only 44 members. �
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19.2.3 The sum, the product and the maximum and minimum of
a finite list of real numbers

If a is a finite list of real numbers, then we can define several numbers
associated to a, using inductive definitions:.

Specifically, we will define

1. the sum
∑

a of the entries of a,

2. the product
∏

a of the entries of a,

3. the maximum Maxa of the entries of a.

4. the minimum Mina of the entries of a.

In each of the cases, we start from a binary operation on IR, that is, an
operation that can be performed on two real numbers, and extend it to
finite lists.

The sum
∑

a will be defined starting with the addition operation, i.e.,
the operation that for two real numbers x, y produces the number x+ y.

The product
∏

a will be defined starting with the multiplication oper-
ation, i.e., the operation that for two real numbers x, y produces the number
x · y.

The maximum Maxa will be defined starting with the maximum oper-
ation, i.e., the operation that for two real numbers x, y produces the number
max(x, y) (the “maximum of a and b”) defined as follows:

max(x, y) =

{
x if x ≥ y
y if y ≥ x

. (19.430)

The minimum Mina will be defined starting with the minimum opera-
tion, i.e., the operation that for two real numbers x, y produces the number
min(x, y) (the “minimum of a and b”) defined as follows:

min(x, y) =

{
y if x ≥ y
x if y ≥ x

. (19.431)

Problem 95. The absolute value of a real number is defined as follows: if
x ∈ IR, then the absolute value of x is the number |x| given by

|x| =
{

x if x ≥ 0
−x if x ≤ 0

. (19.432)
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Prove that

(∀x ∈ IR)(∀y ∈ IR)max(x, y) =
x+ y + |x− y|

2

and

(∀x ∈ IR)(∀y ∈ IR)min(x, y) =
x+ y − |x− y|

2
.

The four operations
∑

,
∏
, Max, Min are defined as follows:

Definition 36. Let a = (aj)
n
j=1 be a finite list of real numbers.

1. The sum
∑

a, or
∑n

j=1 aj, is defined inductively as follows:

0∑

j=1

aj = 0 , (19.433)

1∑

j=1

aj = a1 , (19.434)

n+1∑

j=1

aj =
( n∑

j=1

aj

)

+ an+1 if n ∈ IN . (19.435)

2. The product
∏

a, or
∏n

j=1 aj, is defined inductively as follows:

0∏

j=1

aj = 1 , (19.436)

1∏

j=1

aj = a1 , (19.437)

n+1∏

j=1

aj =
( n∏

j=1

aj

)

× an+1 if n ∈ IN , (19.438)

(19.439)

3. The maximum Maxa, or Maxnj=1aj, is defined inductively as follows:

Max1j=1aj = a1 , (19.440)

Maxn+1
j=1 aj = max

(

Maxnj=1aj , an+1

)

if n ∈ IN .(19.441)
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4. The minimum Mina, or Minnj=1aj, is defined inductively as follows:

Min1j=1aj = a1 , (19.442)

Minn+1
j=1 aj = max

(

Minnj=1aj , an+1

)

if n ∈ IN . (19.443)

There are several facts about these operations that are fairly obvious,
and whose proofs are very easy but very boring. I would urge you to practice
by doing a few of these proofs, just to make sure that you can do them if
you are asked to. Naturally, since the operations are defined inductively, the
proofs will have to be by induction.

Before I tell you what these obvious facts are, let me define the concate-
nation of two lists: Roughly, the concatenation a#b is the list obtained by
listing the entries of a first, and then the entries of b.

Example 92.

1. Let

a = (3, 6, 1, 3, 5) ,

b = (1, 0, 1, 3, 7) .

Then
a#b = (3, 6, 1, 3, 5, 1, 0, 1, 3, 7) .

2. Let p = (pj)
16
j=1 be the list of the first 16 U.S. presidents, in chrono-

logical order. Let q = (qj)
10
j=1 be the list in chronological order of the

first 10 presidents after the 16th one, that is, the list defined by

qj = the (16 + j)−th U.S. president for j ∈ IN10 .

(So, for example, q1 =Andrew Johnson, q2 =Ulysses Grant, and so
on.)

Then p#q is the list of the first 26 U.S. presidents, in chronological
order. �

And here is the precise definition:

Definition 37. Let a = (aj)
m
j=1 and b = (bj)

n
j=1 be two finite lists. The

concatenation of a = (aj)
m
j=1 and b = (bj)

n
j=1 is the finite list a#b given by

a#b = (cj)
m+n
j=1 , where cj =

{
aj if j ∈ INm

bj−m if j ∈ IN ∧m+ 1 ≤ j ≤ m+ n
.
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And here are some of the obvious theorems I announced.

Theorem 80. If a and b are finite lists of real numbers. Then:
∑

(a#b) = (
∑

a) + (
∑

b) , (19.444)
∏

(a#b) = (
∏

a)× (
∏

b) , (19.445)

Max (a#b) = max
(

Maxa,Maxb
)

, (19.446)

Min (a#b) = min
(

Mina,Minb
)

. (19.447)

Proof. YOU PROVE THIS.

Problem 96. Prove Theorem 80. �

Theorem 81. Let a = (aj)
n
j=1, b = (bj)

n
j=1, be finite lists of real numbers

of the same length. Then,

1. If
(∀j ∈ INn)aj ≤ bj

then
∑

a ≤
∑

b

Maxa ≤ Maxb

Mina ≤ Minb .

2. If all the aj and all the bj are integers, and

(∀j ∈ INn)aj |bj
then

∏

a

∣
∣
∣
∣
∣

∏

b .

Proof. YOU PROVE THIS.

Problem 97. Prove Theorem 81. �

Theorem 82. Let a = (aj)
n
j=1 be a finite list of real numbers. Then

1. Mina ≤ aj ≤ Maxa for every j ∈ INn.

2. There exist indices j−, j+ in INn, such that Mina = aj− and Maxa =
aj+.

Proof. YOU PROVE THIS.

Problem 98. Prove Theorem 81. �
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19.3 Prime factorizations

Definition 38. A prime factorization of a natural number n is a finite list
p = (pj)

m
j=1 such that

(1) pj is a prime number for every j ∈ INm. (That is, all the entries in
the list are prime numbers.)

(2)
∏m

j=1 pj = n. �

Example 93. The list (2, 2, 3) is a prime factorization of the number 12,
because each of the three entries (2, 2, and 3) is a prime number, and the
product 2× 2× 3 is equal to 12. �

Example 94. The list (3, 2, 2) is also a prime factorization of 12, and is
different from the prime factorization (2, 2, 3) of Example 93. �

So the number 12 has at least two different prime factorizations. And yet
we want the prime factorization of a natural number to be unique!

To solve this problem we have to introduce the concept of an “ordered
prime factorization”.

Definition 39. A finite list p = (pj)
m
j=1 whose entries are real numbers is

ordered if

(ORD) pj ≤ pj+1 for every j ∈ INm−1. �

Definition 40. An ordered prime factorization of a natural number n is a
prime factorization p = (pj)

m
j=1 of n which is an ordered list. �

Example 95. The list (2, 2, 3) is an ordered prime factorization of 12, but
the list (3, 2, 2) is not. �

19.4 A correct (and nearly perfect) statement of the FTA

Here, finally, is a correct, nearly perfect101 statement of the FTA:

Theorem 83. (A nearly perfect version of the fun-
damental theorem of arithmetic.) Every natural
number n such that n ≥ 2 has a unique ordered
prime factorization.

101I say “nearly perfect” because the statement can be made even nicer and more elegant,
thus obtaining a truly “perfect” statement. We will do this later.
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19.5 The proof

We have to prove existence and uniqueness of the ordered prime factoriza-
tion.

The existence of a prime factorization of any natural number n such that
n ≥ 2 has been proved before, in Theorem 65 on page 320,

But here we need to prove the existence of an ordered prime factorization.
Intuitively, this is obvious, because we can take any prime factorization and
rearrange the entries putting them in increasing order. More precisely: Let
n ∈ IN be such that n ≥ 2. Take a prime factorization p = (pj)

m
j=1 of

n. (We know that such a factorization exists. Then Rule ∃use enables us
to pick one such factorization and call it p.) Then reorder p, by forming
a new list q = (qj)

m
j=1 that has the same entries as p, but in increasing

order. This gives us an ordered prime factorization of n, proving that such
a factorization exists. This is not a completely rigorous proof, but
the conclusion is fairly obvious, so I will omit the proof at this
point. But if you really care about this, and are not satisfied with
a nonrigorous proof102, you can find the proof in the Appendix, on
page 442.

So the existence part of the FTA has been proved.

The uniqueness proof. This is the most delicate part. We have to prove
that if we have two ordered prime factorizations p, q, of a natural number
n, it follows that p = q. In other words: we have to assume that

(♦) We have two finite lists

p = (pj)
k
j=1 , q = (qj)

ℓ
j=1 ,

such that

(1) all the pj and all the qj are prime numbers,

(2) p and q are ordered lists (that is, pj ≤ pj+1 whenever j ∈ INk−1,
and qj ≤ qj+1 whenever j ∈ INℓ−1),

(3)
∏k

j=1 pj =
∏ℓ

j=1 qj,

102If you take this issue seriously, and want to see a real proof, then I congratulate
you: you are thinking like a true mathematician! A true matematician understands that
nothing can be justified by saying “it is obvious”. If it seems obvious, then either (a) it
can be proved easily, or (b) maybe it is not so obvious; maybe it is not even true! Every
time something seems obvious to you, you should ask yourself “how can I prove it?”. And
if you do not know how to prove it, then you should not say it is obvious.
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and we want to conclude that

(♦♦) p = q.

That is, we want to prove, assuming (♦), that

k = ℓ ∧ (pj = qj for j = 1, 2, . . . , k) . (19.448)

So from now one we assume (♦).
First, let prove that p1 = q1. To prove this, we observe that, since

p1p2 · · · pk = q1q2 · · · qℓ ,

the prime number p1 divides the product q1q2 · · · qℓ. Hence, by the general-
ized Euclid lemma, p1 divides one of the factors of this product, so we may
pick j such that p1|qj . Then p1 is a factor of qj , so p1 = 1 or p1 = qj . But
p1 is prime, so103 p1 6= 1, So p1 = qj . But q1 ≤ qj , so q1 ≤ p1.

Similarly, q1 must equal one of the pj , and this pj is ≥ p1, so q1 ≥ p1.
Since q1 ≤ p1 and q1 ≥ p1, it follows that p1 = q1 .
We then have, since p1 = q1,

p1p2 · · · pk = q1q2 · · · qℓ
= p1q2 · · · qℓ ,

so p1p2 · · · pk = p1q2 · · · qℓ, from which it follows that

p2 · · · pk = q2 · · · qℓ .

So we find ourselves in the same situation we started with, except that now
we have p2, q2 in the role previously played by p1, q1. So, repeating the same
argument, we get p2 = q2 and then we can go on and repeat the argument
once more and prove that p3 = q3, and so on.

103Notice how important it is that in the definition of “prime number” (defini-
tion 4, on page 20) we included the requirement that, for p to be prime, p has
to be > 1. This is the step where that condition is used. As explained in section 2.3.1, or
page 21, if we had decided to count 1 as a prime number, then the Fundamental Theorem
of Arithmetic would not be true. What would fail is the uniqueness part. For example,
we could take k = 2, ℓ = 3, p1 = 2, p2 = 3, q1 = 1, q2 = 2, and q3 = 3, and we would
get p1p2 = q1q2q3, with p1, p2, q1, q2, q3 prime, p1 ≤ p2, and q1 ≤ q2 ≤ q3, but it is not
true that ℓ = k and p1 = q1 and p2 = q2. So it is not surprising that, since the condition
“p 6= 1” is needed for the uniqueness part of the FTA to be valid, it is precisely in the
proof of the uniqueness part of the FTA that this condition is used. And the step where
it is used is preciely here.
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However, we know that “and so on” is problematic, and the rigorous way
to do an “and so on”’ argument is with a proof by induction. So let us do
a proof by induction.

What we have done so far is show that we can prove that p1 = q1, and
then go from that to p2 = q2, then go from that to p3 = q3. So this suggests
that, for our induction, we could use the predicate P (n), where P (n) stands
for “p1 = q1 ∧ p2 = q2 ∧ · · · ∧ pn = qn”.

There is, however, a minor problem with this idea:

• P (n) only makes sense for n if p1, p2, . . . , pn and q1, q2, . . . , qn are de-
fined, that is, if n ≤ k and n ≤ ℓ.

• But to do induction we need a predicate that makes sense for every
n ∈ IN.

So we modify the previous P (n) a little bit and use instead the following
choice for P (n):

(*) We let P (n) be the predicate

if n ≤ k and n ≤ ℓ then pj = qj for j = 1, 2, . . . , n . (19.449)

That is,

P (n) stands for : (n ≤ k ∧ n ≤ ℓ) =⇒ (∀j ∈ INn)pj = qj . (19.450)

(The virtue of this precdicate is that when n > k or n > ℓ, the premise
“n ≤ k∧n ≤ ℓ)” is false, so P (n) is true. and we don’t need to worry about
the issue whether pn or qn is well defined.)

Let prove (∀n ∈ IN)P (n) by induction.

Basis step. We want to prove P (1), that is,

(1 ≤ k ∧ 1 ≤ ℓ) =⇒ p1 = q1 . (19.451)

But we have already proved that p1 = q1. So (19.451) is true, and we have

proved P (1) .

Inductive step. We want to prove that

(∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

. (19.452)

Let n ∈ IN be arbitrary. Assume P (n).
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We want to prove P (n+ 1). That is, we want to prove

(n+ 1 ≤ k ∧ n+ 1 ≤ ℓ) =⇒
(
p1 = q1 ∧ · · · ∧ pn+1 = qn+1

)
. (19.453)

To prove the implication (19.453) we assume the premise and try to
prove the conclusion.

Assume that n+ 1 ≤ k ∧ n+ 1 ≤ ℓ .

Then n < k and n < ℓ, so in particular n ≤ k ∧ n ≤ ℓ.

Since we are assuming P (n), we know that

(n ≤ k ∧ n ≤ ℓ) =⇒
(
p1 = q1 ∧ · · · ∧ pn = qn

)
. (19.454)

But we know that n ≤ k ∧ n ≤ ℓ, which is the premise of the
implication (19.454).

Then Rule =⇒use (the Modus Ponens rule) allows us to go to the
conclusion of (19.454), i.e.,

p1 = q1 ∧ · · · ∧ pn = qn . (19.455)

Since n < k and n < ℓ, the equality p1p2 · · · pk = q1q2 · · · qℓ can
be rewritten as

p1p2 · · · pnpn+1 · · · pk = q1q2 · · · qnqn+1 · · · qkqk+1 · · · qℓ ,

and, since pj = 1 for j = 1, . . . , n, this says

p1p2 · · · pnpn+1 · · · pk = p1p2 · · · pnqn+1 · · · qkqk+1 · · · qℓ ,

from which it follows that

pn+1 · · · pk = qn+1 · · · qkqk+1 · · · qℓ . (19.456)

We then repeat the same argument used earlier to prove that p1 =
q1 and conclude that pn+1 = qn+1. (The prime pn+1 divides the
product qn+1 · · · qkqk+1 · · · qℓ, so it is equal to one of the factors;
but this factor is ≥ qn+1, so pn+1 ≥ qn+1; similarly, qn+1 ≥ pn+1;
and then pn+1 = qn+1.)

Since we already know that pj = qj for j = 1, . . . , n, we have
proved that

p1 = q1 ∧ · · · ∧ pn+1 = qn+1 , (19.457)
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Since we have proved (19.457) assuming that n + 1 ≤ k ∧ n + 1 ≤ ℓ,
we have proved that

(n+ 1 ≤ k ∧ n+ 1 ≤ ℓ) =⇒
(
p1 = q1 ∧ · · · ∧ pn+1 = qn+1)

)
. (19.458)

That is, we have proved P (n+ 1).

Since we have proved P (n+1) assuming P (n), we have proved the implica-
tion P (n) =⇒ P (n+ 1).

Since we have proved P (n) =⇒ P (n+ 1) for arbitrary n ∈ IN, it follows

that (∀n ∈ IN)
(

P (n) =⇒ P (n+ 1)
)

.

This completes the inductive step. Since we have also proved P (1), we
can conclude, thanks to the PMI, that (∀n ∈ IN)P (n).

End of the uniqueness proof. Now that we have proved that P (n) is true for
every n ∈ IN, we can conclude our uniqueness proof.

Let ν = min(k, ℓ), so ν is the smallest of k and ℓ.
Then ν ∈ IN, so P (ν) is true.
But P (ν) says

if ν ≤ k and ν ≤ ℓ then pj = qj for j = 1, 2, . . . , ν . (19.459)

But ν ≤ k and ν ≤ ℓ, so we can conclude that

pj = qj for j = 1, 2, . . . , ν . (19.460)

We are now going to prove that ℓ = k. Suppose ℓ > k. Then ν = k, and the
formula p1p2 · · · pk = qqq2 · · · qℓ can be rewritten as

p1p2 · · · pk = q1q2 · · · qkqk+1qk+2 · · · qℓ
= p1p2 · · · pkqk+1qk+2 · · · qℓ .

Hence
qk+1qk+2 · · · qℓ = 1 .

but this is impossible, because the product qk+1 · · · qℓ is a product of at least
one prime104, so the product is > 1.

Hence it is not true that ℓ > k. A similar argument shows that it cannot
happen that ℓ < k. So ℓ = k .

Since ℓ = k, ν equals k as well, and then formula (19.460) tells us that

pj = qj for j = 1, 2, . . . , k .

Ths completes the proof. Q.E.D.

104There is at least one prime in this product because ℓ > k.
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19.5.1 The perfect statement of the FTA

Mathematicians like to have their theorems as simple and general as possible.
The FTA, as we have stated it, has a condition that makes it inelegant,
namely, the requirement that n ≥.

Wouldn’t it be nicer if we could just say

Theorem 84. (The fundamental theorem of arith-
metic.) Every natural number has a unique ordered
prime factorization.

?

This would clearly be more elegant, wouldn’t it? It’s much simpler than our
previous version, and it is also more general, because it applies to all natural
numbers, even to the number 1.

But, of course, just because a statement is nice, it doesn’t mean that it
is true.

Is our new statement of the FTA true? The answer is “yes”, but we have
to be careful about what this means.

Notice that the only difference between the previous statement of the
FTA and our new statement is that the new statement says that the number
1 also has a unique ordered prime factorization. And we have to ask the
obvious question: what is that factorization?

The answer is: the ordered prime factorization of 1 is the empty list. Let
me explain.

First of all, until now we said that every list has a length, and that this
length is a natural number. We now change that, and add a new list: the
empty list.

The empty list is a list of length zero, that has no entries whatsoever.
We use the symbol ∅ to denote this list105.

And we can also think of the empty list as the list (aj)
0
j=1, because there

are no values of j such that 1 ≤ j and j ≤ 0, so the list (aj)
0
j=1 has no

entries.
Then the following is true:

Proposition 3. The empty list is an ordered list of primes.

105You may worry that “∅” already stands for the empty set. You need not worry. If
one does things carefully, it turns out that the empty set and the empty list truly are the
same thing, so it is perfectly all right to use “∅” both to denote the empty set and to
denote the empty list. But it takes some work to establish this, so for the moment just
accept that the empty list is called “∅”.
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This can be rigoruously proved as follows.

Proof. First, we want to prove that ∅ is a list of primes.
Write the empty liist ∅ as (pj)

0
j=1.

We have to prove that

(∀j)(j ∈ IN0 =⇒ pj is a prime number) (19.461)

where “pj” stands for “the j-entry of the empty list”.
So let j be arbitrary. We want to prove that

j ∈ IN0 =⇒ pj is a prime number . (19.462)

But IN0 is the empty set, so IN0 has no members, and then “j ∈ IN0” is false,
no matter who j might be.

Since “j ∈ IN0” is false, the implication (19.462) is true.
So we have proved (19.462), for arbitrary j, And then we have proved

(19.461).
We can use a similar argument to prove that ∅ is an ordered list. (Sketch

of the argument: we have to prove that “if j ∈ IN0 and j+1 ∈ IN0 then pj ≤
pj+1”. And this is true because it is an implication with a false premise.)
Q.E.D.

Finally, it turns out that
∏0

j=1 pj = 1 . If you have trouble believing

this, I will give you three reasons:

Reason No.1:
∏0

j=1 pj = 1 because in these notes we defined
∏0

j=1 pj to be
equal to 1, when we gace the inductive definition of “

∏
”.

Reason No.2:
∏0

j=1 pj = 1 because mathematicians have agreed that this is

so. In other words, the statement “
∏0

j=1 pj = 1” is true by convention,
because mathematicians have agreed that the product of the empty list is
equal to one106.

Reason No.3: Mathematicians are reasonable people, so if we decided that
∏0

j=1 pj = 1 we must have had a good reason.

106This is like many other conventions. Why is Pluto not a planet? Because astronomers
have decided that it is isn’t. Why is 1 not a prime number? Because mathematicians have
decided that it isn’t. Why do we drive on the right side of the street? Because at some
point it was decided (in the U.S and many other countries, but not in all countries) that
the right side of the street is the side on which people should drive. Why are cows called
“cows” rather than, say, “zebras”, or “tables”? Because English-speaking people have
agreed that that is the name of those animals.
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Here is the reason. The inductive definition of “
∏
” tells us that

n+1∏

j=1

pj =
( n∏

j=1

pj

)

pn+1 (19.463)

if n is a natural number. This means that

n∏

j=1

pj =

∏n+1
j=1 pj

pn+1
(19.464)

for n ∈ IN. Now suppose we want to make Formula (19.464) also true for
n = 0. Then we must have

0∏

j=1

pj =

∏1
j=1 pj

p1
. (19.465)

But
1∏

j=1

pj = p1 .

So we must have
0∏

j=1

pj =
p1
p1

= 1 . (19.466)

This is not a rigorous proof. But it is an argument showing that the con-
vention that

∏0
j=1 pj = 1 is a reasonable one.

In any case, once you agree that
∏0

j=1 pj = 1 follows that our nicer
version of the FTA is true.
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20 Definitions: how you should write them and
how you should not write them

20.1 An example of a correctly written definition

Suppose you don’t know what a prime number is. And suppose you are
asked whether the numbers 1, 2, 6, 7, 10, 12, are “prime”. Then you will
probably not be able to answer the question, because you don’t know what a
“prime number” is. So you would answer with a question: what is a prime
number”, or what does it mean for a number to be prime?

To answer such a question, you need to know the definition of “prime
number”.

And here is the definition:

DEFINITION OF “PRIME NUMBER”

Let n be a natural number. We say that n is prime
if n 6= 1 and the only natural numbers that are
factors of n are 1 and n.

And here is another, equally correct, definition of “prime number”:

DEFINITION OF “PRIME NUMBER”,
VERSION II

A natural number n is prime if n 6= 1 and every
natural number that is a factor of n is either equal
to 1 or to n.

And here is a third, also completely correct, definition of “prime number”:

DEFINITION OF “PRIME NUMBER”,
VERSION III

A natural number n is prime if n 6= 1 and

(∀q ∈ IN)
(

q|n =⇒ (q = 1 ∨ q = n)
)

.
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And, finally, here is a fourth completely correct definition of “prime num-
ber”:

DEFINITION OF “PRIME NUMBER”,
VERSION IV:

An integer n is a prime number if n > 1 and

(∀q ∈ IN)
(

q|n =⇒ (q = 1 ∨ q = n)
)

.

20.2 How not to write a definition

Let us look now at some bad ways of writing the definition “prime number”.
The examples I am going to give you are representative of things students

often write in exams. You should read these examples carefully, and
then read the explanation of why these definitions are bad, so that
you will learn not to write that way.

Some of the definitions below are truly horrendous (and would get zero
points on a scale from 0 to 10), while others are not 100% wrong but are not
entirely correct either, and may get 5 points on a 0-10 scale, or maybe in
some cases even 6 or 7. But you should understand why those defini-
tions are bad, so you can learn how to write definitions correctly
and get 10 points out of 10.

Bad Definition 1. Prime number is when you cannot divide by any number
other than by the number itself. �

Bad Definition 2. A prime number is a number that cannot be divided by
any number other than 1 and itself. �

Bad Definition 3. A prime number is a natural number that cannot be
divided by any number other than 1 and itself. �

Bad Definition 4. A prime number is a natural number such that the only
factors of the number are 1 and the number itself. �

Bad Definition 5. A prime number is a natural number such that the only
factors of n are 1 and n. �

Bad Definition 6. A prime number is a natural number such that the only
natural numbers that are factors of n are 1 and n. �
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Bad Definition 7. A prime number is a natural number such that n > 1
and the only natural numbers that are factors of n are 1 and n. �

Bad Definition 8. A prime number is a natural number n such that n > 1
and the only natural numbers that are factors of n are 1 and n. �

20.2.1 Analysis of bad definitions

Let us analyze our eight “bad definitions” and explain why they are bad.
The main question that we will ask, and the question that you should

always ask, is: using this definition, can I tell correctly if an object
is what the definition says it is supposed to be? (In this case, can I
tell correctly if an object is a prime number or not?)

Notice that this question really amounts to two questions:

(I) Can I tell?, that is, does the definition tell me precisely what to do
in order to find out if the answer is “yes” or “no”?

(II) Can I tell correctly?, that is, when I do what the definition tells me
to do, do I get the right answers?

Question (I) is the precision and clarity question: does the definition
tell me cearly and precisely what I am supposed to do in order to find out
the answer?

Question (II) is the correctenss question: If I do what the definition
tells me to do, do I get the right answer?

These two questions are different. For example, if I were to define “prime
number” as follows:

Bad Definition 9. A prime number is a natural number that is divisible
by 2. �

Then this definition is completely clear and precise. It tells me that in
order to find out if a number is prime, I have to see if it is divisible by 2.
The problem with this definition is that it does not satisfy the correctness
condition: if I apply the definition, say, to the number 6, I find that 6 is
divisible by 2, so according to this definition 6 is prime, which is not true.

To assess a definition, you should always ask these two questions: is the
definition clear and precise, so that when I want to apply it I know exactly
what to do? And is it correct, in the sense that it gives me the right answers?

And, in order to answer the correctness question, you should test your
definition by applying it to several examples and seeng whether it gives the
right answer.
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The simplest and most convincing way to establish that a def-
inition is wrong is to give an example of something for which
the definition gives thw rong answer. This is what we did when we
disucssed the

You should always ask these two questions, especially about defini-
tions you have written yourself. And if what you wrote does not meet
the two requirements of (1) precision and clarity and (2) correctness, then
your definition is not acceptable and you must work on it until you get it
right.

Now let us look at the eight bad definitions in our list.

1. Bad Definition 1 says: Prime number is when you cannot divide by
any number other than by the number itself.

This is truly atrocious. Let us see why.

– First of all, when you say “prime number is”, you are suggesting
that “prime number” is a condition of the world, such as “chaos”,
or “peace”. You can say something like “peace is when people
are not fighting”, or “chaos is when there is utter confusion”.
Even these sentences are very bad English, but you can more
or less figure out what they mean. (For example, when you see
that people are fighting, you would say that “there is no peace
here”, and when people stop fighting, you would say “now there is
peace”.) Much better ways to say these things would be: “Peace
is the absence of war or other hostilities”, or “Peace is a state of
affairs in which people are not fighting”.

– But in the case of “prime number”, the “prime number is when”
construction does not make sense. Being a prime number is not
some kind of state of affairs. It is a property of a specific kind of
object, namely, numbers. So one has to use much more precise
language, and start the definition with “A prime number is”, or
“A number is prime if”.
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If a definition starts with “such and such is when...” you can be
sure it is wrong:

• “Prime number is when...” is wrong.

• “Divisible is when...” is wrong.

• “Even number is when...” is wrong.

• “Power set is when...” is wrong.

• “Subset is when...” is wrong.

• “Intersection is when...” is wrong.

A correct definition of “prime number” should start in one of the
following ways:

• “A prime number is a natural number n such that”

• “Let n be a natural number. Then n is a prime number if”

• “Let n be a natural number. We say that n is prime if”

• “A natural number n is prime if”

In other words: at the beginning of the definition you have to
introduce the object or objects that you will be talking about. In
this example, you do this by indicating that you will be talking about a
natural number, not about a real number or a cow or a fish or a river.
And you may give that natural number a name, such as n.

2. Bad Definitions 1 and 2 talk about “numbers”. We have already
quoted Bad Definition 1, and Bad definition 2 says: A pime num-
ber is a number that cannot be divided by any number other than 1
and itself.

This definition does not pass the “can I tell?” test. It tells me
that to be a prime number an object has to be a “number”.

But “number” is a vague concept, because there are lots of differ-
ent kinds of “numbers”, so when you say “number” you could mean
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“natural number” (that is, the kind of number that you are used to
calling “whole number”), “integer”, “rational number”, “real number”,
“complex number”, or lots of other kinds of numbers that exist.

Never say “number” unless it is clear what kind of
“number” you are talking about.

If I want to follow Bad Definition 2, the, when I am given a thing and
want to find out if that thing is a prime number, the first I thing I
have to do is find out if it is a “number”. But I cannot do that because
I don’t know what a “number” is. So the definition fails the “can I
tell?” test.

In a correct, intelligible definition, when you talk about a ‘number”,
you have to make it clear what you mean by “‘number”.

This can be made clear in at least three ways:

– You can just say what kind of number your number is supposed
to be. (For example, you could say “let n be a natural number”,
or “let n be an integer”, or “let n be a rational number”, or “let
n be a real number”.)

– You can make it clear at the beginning of your text that the word
“number” is always going to mean “integer”, or “real number”,
or whatever. If you do so, then you don’t need to repeat that you
mean “integer”, or “real number”, or whatever, every time you
say “number”.

– You may want to talk about different kinds of numbers simul-
taneously. And, in order to do that, you may declare, at the
beginning of your text, that, for example, “in this chapter, the
letters m,n, p, q will always stand for natural numbers, and the
letters x, y, z, u, v, w will stand for real numbers”.

3. Bad definitions 1, 2, and 3, talk about “dividing by numbers”, and tell
me that a number is prime if it cannot be divided by certain numbers.
But this is very confusing.

– Actually, any number can be divided by any number (ex-
cept zero). For example, I can divide 7 by 5, getting as a result
the number 7

5 .
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– So the issue is not whether “we can divide”, because wwe can
almost always do that, but what kind of result we get when
we divide.

– When Bad Definition 3 tells me that I should see if a number “can
be divided by numbers other that 1 and the number itself”, then
I could try to apply the definition, for example, to the number
3, and I would immediately see that 3 can be divided by lots of
numbers other than 1 and 3: I can divide 3 by 2 (and the result
is 3

2), I can divide 3 by 7 (and the result is 3
7), I can divide 3 by

29 (and the result is 3
29), and so on.

4. Bad Definitions 4 and 5 are a little bit better. Rather than talk about
“dividing”, they talk about “factors”, which is more precise. because
we have a precise definition of “factor”.

But that is not good enough. According to the definition of “factor”,
a factor of an integer a is an integer b such that there exists an integer
k for which a = bk. So, when Bad Definition 5 says that

A prime number is a natural number such that the only fac-
tors of n are 1 and n.

then this definition fails the correctness test: according to this
definition 2 is not prime, becauuse 2 as other factors in addition
to 1 and 2. Indeed, −1 and −2 are factors of 2 as well, since 2 =
(−1)× (−2) and 2 = (−2)× (−12).

5. Bad Definition 6 is much better. It says that

A prime number is a natural number such that the only nat-
ural numbers that are factors of n are 1 and n.

This is quite close, but this definition still fails the correctness
test, because it gives us wrong answers. Indeed, according to
this definition 1 is prime. But this is wrong: 1 is not prime107.

6. With Bad Definition 7 we enter, for the first time, the “partial credit”
zone. This definition is essentially correct, but it is not well written.
It says that

107Why is 1 not prime? For the same reason why Pluto is not a planet. Mathematicians
have decided not to call 1 “prime”, exactly as astronomers have decided not to call Pluto
a planet. But this decision was made for good reasons, that will be discussed later in this
course.



Math 300, Fall 2020 389

A prime number is a natural number such that n > 1 and
the only natural numbers that are factors of n are 1 and n.

The problem with this is that the defintion talks about “n” but does
not tell us who this “n” is. In a mathematical text, when you
refer to an object using a letter name, this name has to be
introduced first.

7. Bad Definition 8 does this: the symbol “n” is properly introduced
when we are told that

A prime number is a natural number n such that n > 1 and
the only natural numbers that are factors of n are 1 and n.

8. So Bad Ddefinition 8 is nearly perfect. What is missing? Only one
thing: in a definition, the word or phrase being defined must
be highlighted is some way, to indicate that we are defining
that word or phrase. And when we write by hand the way we
highlight is by underlining. So, for example, in a definition of “‘prime
number” the words “prime numebr” have to be underlined. And if
we do that we get a correct definition. A prime number is a natural
number n such that n > 1 and the only natural numbers that are factors
of n are 1 and n.

20.2.2 Always highlight the definiendum

When you write a definition, you are defining a particular word or phrase.
That word or phrase is called the definiendum. (This just means “the thing
being defined.”) The definiendum should always be highlighted.

In books, the authors do this by using Italics, or Boldface. But when we
write by hand, it is hard to do Italics or Boldface, so we use underlining.

Look, for example, at any definitions you want in our textboook. Just
open the book at random, at any page, and look at the definitions on that
page. And, for each definition, ask yourself “what is this definition the
definition of?” And, invariably, you will see that the term or phrase being
defined is in boldface. (This is not just a peculiarity of our textbook. It’s
done in every Mathematics book.) In my lecture notes, I use underlining
rather than boldface. And when you write your homework or your exams,
or when I write on the blackboard, it’s hard to do italics or boldface, so I
use underlining instead, and you should do the same.
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20.3 The general formats for definitions

In a definition, the word, symbol or phrase whose meanign we are trying to
define is called the definiendum.

20.3.1 Step 1: Find out if the definiendum is a term or a sentence,
and what its arguments are

In order to know how to write a definition of something, we first have to
figure out two things:

1. Whether the definiendum is a term or a sentence.

2. What the arguments of the definiendum are.

Recall that

• A term is a word or symbol or phrase that stands for a thing. Terms
are essentially the same things that in your English or linguistics
classes you may have called “noun phrases”.

• A sentence is a word or symbol or phrase that makes an assertion
that can be true or false. Sentences are essentially the same things as
“predicates”, or “statements”.

• Terms and sentences have values.

• The value of a term is the thing the term stands for. For example the
term “New York City” is New York City.

• The value of a sentence is its truth value. For example, the sentence
“New York City is the capital of New York State” has the truth value
“false”, because it is not true, but the sentence “Albany is the capital
of New York State” has the truth value “true”, because it is true.

• If a term or sentence contains variables, then the term or sentence only
has a value, or truth value, is the variables that occur in it have been
assigned values. For example,

– the term “x + y” contains two variables, x and y. If we assign
values to these variables, by saying something like “let x = 5,
y = 3”, then the term “x+ y” has the value 8.

– the sentence ‘x+ y = z” contains three variables, x, y, and z. If
we assign values to these variables, by saying something like “let
x = 5, y = 3, z = 4”, then the sentence “x+y = z” has the truth
value “false”, because 5 + 3 is not equal to 4.
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20.4 Step 2: Introduce the arguments

You must start your definition by introducing the arguments.
For example:

• If you want to define “prime number”. then you will see, first of all,
that the definiendum is a sentence, “something is a prime number”.
And it has one argument, because we say things such as “n is a prime
number”. What you want to explain to the readers is how to tell what
the truth value of the definiendum is for any given value or values of the
arguments. That is, you want to tell the readers under what conditions
they should call a number n “prime”, that is, when they should say
“n is prime”. So you definition must start by saying something like
“Let n be an integer”, or “let n be a natural number”, or “let n be
a real number”. (Eventually, n will turn out to be a natural number
anyhow. So you could start your definition by requiring n to be a
natural number. But you can also require n to be an integer, and let
the second part of the definition force n to be a natural number, for
example by putting the requirement that n > 1. And you could even
start by requiring n to be a real number, and then say later: “we say
that n is a a prime number if it is a natural number such that . . .”.)

• “Divisible” is a two-argument sentence, because we say things such
as “m is divisible by n”, and these things are true or false. So in
the definition of “divisible” you want to tell the readers under what
conditions they should say of two numbers m,n that “m is divisible
by n”. And you must start by introducing the two numbers m and n,
by saying something like “Let m,n be integers”.

• “Union” is a two-argument term, because we talk about “the union of
two sets A, B”, and that union is a thing, namely, a set. So in the
definition of “union” you want to tell the readers who the set A ∪ B
is, if we are given two sets A, B. So you must start by introducing the
two sets A and B, by saying something like “Let A,B be sets”.

• “Subset” is a two-argument sentence, because we say things such as “A
is a subset of B”, and this sentence is true or false. So in the definition
of “subset” you want to tell the readers under what conditions they
should say that “A ⊆ B” is true, if we are given two sets A, B. And you
must start by introducing the two sets A and B, by saying something
like “Let A,B be sets”.
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• “Power set” is a one-argument term, because we talk about “the power
set of a set A”, and that power set is a thing, namely, a set. So in
the definition of “power set” you want to tell the readers who the set
P(A) is, if we are given a set A. So you must start by introducing the
set A, by saying something like “Let A be a set”.

• “Derivative” is more complicated, because there are two different con-
cepts of derivative:

– We talk about “the derivative of a function f at a point a.” This
is a two-argument term: the derivative of f at a is a real number.
So your definition of “derivative of a function at a point” must
start by saying something like “Let f be a function and let a be
a real number”.

– We talk about “the derivative of a function f .” This is a one-
argument term: the derivative of a function f is another function,
usually called f ′. So your definition of “derivative of a function”
must start by saying something like “Let f be a function”.

• “married” is also complicated, like “derivative”. because there are two
different concepts of “married”:

– We talk about “two people begin married to each other.” This is
a two-argument sentence: if x and y are people, then “x and y are
married to each other” can be true or false. So your definition
of “x and y are married to each other” must start by saying
something like “Let x, y be two persons”.

– We talk about one person being married, and say things like “x
is married.” This is a one-argument sentence. So your definition
of “married” must start by saying something like “Let x be a
person”.

20.5 Step 3: Tell the readers how to find the value of the
definiendum

Now that you have introduced the arguments, you have to tell your readers
how they can determine the value of the definiendum for those arguments.
That value will be a thing if the definiendum is a term, and a truth value if
the definiendum is a sentence.

For example:
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• In the definition of “prime number”, after you have said, for example,
“Let n be a natural number”, you have to tell the readers how to figure
out the value of the definiendum, for n. In this case, the definiendum
is the sentence “n is prime”, so you you have to tell the readers what
has to happen that will make that sentence true. You can say, for
example: “We say that n is a prime number if n 6= 1 and (∀m ∈
IN)
(

m|n =⇒ (m = 1 ∨m = n)
)

”.

• In the definition of “divisible”. after you have said “Let m,n be inte-
gers”, you have to tell the readers how to figure out the value of the
definiendum, for m and n. In this case, the definiendum is the sen-
tence “m is divisible by n”, so you have to tell the readers what has to
happen that will make them say that the sentence is true. You can say,
for example: “We say that m is divisible by n if (∃k ∈ Z)m = nk.”.

• In the definition of “union”. after you have said “Let A,B be sets”, you
have to tell the readers how to figure out the value of the definiendum,
for A and B. In this case, the definiendum is the term “A∪B”, which
is the name of a set. So you you have to tell the readers who that set
is, by saying, for example: “the union of A and B is the set A ∪ B
given by A ∪B = {x : x ∈ A ∨ x ∈ B}.”

• In the definition of “power set”. after you have said “Let A be a
set”, you have to tell the readers how to figure out the value of the
definiendum, for the set A. In this case, the definiendum is the term
“P(A)”, which is the name of a set. So you you have to tell the readers
who that set is, by saying, for example: “the power set of A is the set
P(A) given by P(A) = {X : X ⊆ A}.”

Problem 99. Analyze critically (and, in particular, assign a grade on a
scale from108 0 to 10) to each of the following definitions109:

1. Definition of “divisible”: Divisible is when it can be divided.

2. Definition of “divisible”: A number n is divisible if it can be divided
evenly into many parts.

3. Definition of “divisible”: A number n is divisible if it can be divided
evenly into many parts.

108You are allowed to give negative grades like −300 for particularly atrocious definitions.
And, since the authors of these definitions are just figments of my imagination, not real
students, you don’t have to be politically correct and worry about the danger that you
might hurt their feelings, and should feel free to be very harsh.
109At least two of the fifteen definitions in our list deserve a huge negative grade.
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4. Definition of “divisible”: Let m,n be integers. We say that m is
divisible by n if m

n
is an integer.

5. Definition of “even integer”: An even integer is n = 2k.

6. Definition of “even integer”: An even integer is n = 2k, where k is an
integer.

7. Definition of “even integer”: An even integer is n = 2k, where k is an
integer.

8. Definition of “even integer”: An even integer is an integer such that
n = 2k, where k is an integer.

9. Definition of “even integer”: An even integer is an integer such that
n = 2k for some integer k.

10. Definition of “even integer”: An even integer is an integer n such that
n = 2k for some integer k.

11. Definition of “even integer”: An even integer is an integer n such that
(∃k ∈ Z)n = 2k.

12. Definition of “even integer”: An even integer is an integer n where
n = 2k for some integer k.

13. Definition of “prime number”: Prime is when it cannot be divided by
anything.

14. Definition of “prime number”: A prime number is a number that is
not divisible by anything.

15. Definition of “prime number”: A prime number is a natural number
n such that n has exactly two positive integer factors. �
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21 Sets

The language of sets was introduced into mathematics in the 19th century,
when the great mathematicianGeorge Cantor (1845-1918) almost single-
handedly created Set theory.

You should read the article “A history of set theory”, in
MacTutor.

Today, set theory is not only an important branch of mathematics, but
the foundational pillar on which all of mathematics rests. Most mathemati-
cians no longer ask questions that they used to ask, such as “what is a
natural numebr?”, or “what is a real number?”, or “what is a function?”,
because they think that all these objects are just special kinds of sets.

This does not mean that they have answered those questions. It just
means that they have reduced those questions to just one question: what
is a set? Once you know what a set is, then all the other questions are
answered.

As for the fundamental question “what is a set?”, I am not going to
answer it here. What I am going to do is start telling you about sets, until
you get used to working with them and talking about them. The question
about the ultimate nature of sets will remain unanswered.

21.1 What kind of thing is a set?

Sets are things that we invent in order to combine several objects and form
with them a single thing, so that we can talk about the objects as one thing,
a “collective entity”.

This “grouping” operation, of forming a single thing out of several things,
is something we perform very often, using different words, called “collective
nouns”, to create these collective objects.

Here are some examples.

1. Crowds. When you see a number of people standing together and
shouting something (say, “long live the Queen”), you create a single
thing, called “the crowd”, so that, instead of saying

the people are shouting “long live the Queen”

you can use the collective noun “crowd” and say

the crowd is shouting “long live the Queen”
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Notice that “the people” have become a single object, “the crowd”. So,
instead of using the verb in plural (“the people are shouting”) when
you talk about the people, you use the verb in singular (“the crowd is
shouting”) when we talk about the crowd.

2. Flocks of birds. When we see a number of birds flying in formation,
we create an entity called “the flock”, so that, instead of saying

I see several birds, and they are flying East,

we can use the collective noun “flock” and say

I see a flock of birds, and it is flying East.

Notice that “the birds” have become a single object, “the flock”. So,
instead of using the verb in plural (“the birds are flying”) when we
talk about the birds, we use the verb in singular (“the flock is flying”)
when we talk about the flock.

3. Orchestras. When several musicians are playing together, we in-
troduce into our discourse the collective noun “orchestra”, so that,
instead of saying

The musicians are playing

we can use the collective noun “orchestra” and say

The orchestra is playing.

Once again, “the musicians” have become a single object, “the band”.
So, instead of using the verb in plural (“the musicians are playing”)
when we talk about the musicians, we use the verb in singular (“the
orchestra is playing”) when we talk about the orchestra.

4. Juries. When several people are brought together to sit in judge-
mebnt and decide if a defendant is guilty, the people are called jurors,
and are said to be members of the jury.

And we say things like
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The jurors find the defendant guilty

or

The jury finds the defendant guilty.

Once again, when we talk about “the jurors” we use the verb in plural
(“find”) but when we talk about “the jury” itself we use the verb in
singular (“finds”) because the jury is a single object.

5. The sets IN, Z, and IR. When numbers of a certain kind are dis-
cussed together, we create entities called IN (“the set of all natural
numbers”), Z (“the set of all natural integers”), IR (“the set of all real
numbers”), so that, instead of saying

there are infinitely many natural numbers

we can use the collective noun “IN” and say

the set IN is infinite.

Similarly, instead of saying

all integers are real numbers,

we can use the collective nouns “IN” and “Z” and say

Z is a subset of IR.

And, instead of saying

the real numbers form a complete ordered field,

we can use the collective noun “IR” and say
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IR is a complete ordered field.

Notice that “the natural numbers”, “the integers”, and “the real num-
bers” have become single objecta, “IN”. “Z”. “IR”. So, instead of
using verbs in plural (“there are infinitely many natural numbers”,
“all integers are real numbers”, “the real numbers form...”), when
we talk about the numbers, we use verbs in singular (“the set IN is
infinite”, “Z is a subset of IR”, “IR is a complete ordered field”) when
we talk about the sets.

21.1.1 Sets with structure

Most of these collective entities have a structure; that is,

1. The members are not all equal and interchangeable. On the contrary,
some play special roles.

2. The pairs of members are not all equal and interchangeable. On the
contrary, some pairs of members are different from others.

3. The triples of members are not all equal and interchangeable. On the
contrary, some triples of members are different from others.

For example,

1. A flock of birds flying in formation has a special member, the leader.
And, even more importantly, each bird has neighbors, that is, a few
other birds that are right next to it, to the left or to the right or in front
or behind, and the bird communicates with its neighbors. The flock
stays in formation because each bird, knowing which way its neighbors
are moving, tries to move in the same way. “Being neighbors” is what
we have called in these notes a binary relation. If we use “xNy”
for “x is a neighbor of y”, then the “neighbor” relation N singles out
some pairs (x, y) of birds as different from other pairs.

2. A number system such as IN, or Z, or IR has

• special members (1 for IN, 0 and 1 for Z and IR),

• special sets of members (for example, for Z or for IR, the set of
all positive members of the set),

• special pairs of members of the set (for example, for IN, Z, or
IR, the pairs (x, y) such that x < y are different from the other
pairs),
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• special triples (x, y, z) of members. (For example, the triples
(x, y, z) such that z = x + y play a special role: they determine
the operation of addition, in the sense that if you know the set
S of all the triples (x, y, z) such that x+y = z then you know the
operation of addition, because, if I give you numbers x, y, then
you can compute x, y by looking in the set S until you find a
triple (x, y, z) that is in S, and then the sum x+ y is z.)

21.1.2 How sets are different from other collective entities

Usually, you cannot form collective entities by putting together any objects
you want, because the objects have to be related in some way. For example,

• You would never form a “crowd” consisting of yourself, the prime
minister of Australia, and five people living in Wyoming.

• And you would never take a bunch of wolves living in Wyoming to-
gether with some other wolves who live in Sweden and call that a
“pack”. To form a pack, the wolves have to be together, run together,
and hunt together.

Sets are different, in that they are collective entities that can be formed
to put together into a single object any objects you want. The things
you put together to form a set do not have to be related in any way. For
example,

1. You can form a set whose members are all the wolves in Wyoming.

2. You can form a set whose members are all the wolves in Wyoming
together with all the wolves in Sweden.

3. You can form a set whose members are three wolves you like who live in
Wyoming, together with the musicians of the New York Philharmonic,
your uncle Billy, the planets Earth, Mars and Jupiter, the numbers 5,
7 and 23, the numbers π and 3 +

√
5, and all the integers that are

larger than 377.

The only thing you need in order to be able to form a set S, is a “mem-
bership criterion”, i.e., a sentence C(x) that specifies the condition that an
object x has to satisfy in order to qualify as a member of the set. And any
sentence will do110.
110At least for now. Later we will se that we cannot allow absolutely any sentence,

because if you do allow that serious trouble ensues, in the form of the “Russell paradox”.
So we will have to put some limitations. But we are not there yet.
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21.1.3 Terms and sentences with variables: a review

In mathematical writing, there are two kinds of meaningful phrases111,
namely, terms and sentences.

• Terms are phrases that stand for things or people: for example, “Obama”,
“Alice”, “Ronald Reagan”, “the table”, “the case where I put my sun-
glasses yesterday”, “2 + 3”, are terms, because they stand for specific
things.112

• Sentences are phrases that make an assertion that can be true or false:
for example, “cows eat grass”, “I have no idea where I left the case
where I put my sunglasses yesterday”, “the planets move around the
Sun”, “cows like to attack lions and fight them to death”, “2+3 = 5”,
“2+3 = 6, and “every odd number is prime”) are sentences. (Actually,
“cows eat grass” is true, “the planets move around the Sun” is true,
“cows like to attack lions and fight them to death” is false, “2+3 = 5”
is true, “2+3 = 6” is false, and “every odd number is prime” is true.)

Remark 26. Terms are basically the same as “noun phrases”, that is,
phrases that can serve as the subject of an “is” sentence. So, for exam-
ple,

• In the sentence “2 + 3 is an odd number”, the subject is “2 + 2”, so
“2 + 2” is a term.

• In the sentence “the case where I put my sunglasses yesterday is on the
table”, the subject is “the case where I put my sunglasses yesterday”,
so “the case where I put my sunglasses yesterday” is a term. �

Terms and sentence can contain variables, that is, letters or expressions
that do not stand for a definite object, but represent slots where the name
of a person or object can be inserted. Then, when you actually put specific
names of persons or objects in the slots,

111A “phrase” in a particular language is, according to the dictionary, “a small group of
words standing together as a conceptual unit”. (The “small group” could be just a single
word. Most phrases are meaningless. For example, the words “Obama” and “Alice” and
the longer phrases “Ronald Reagan”, “the table”, “the case where I put my sunglasses
yesterday”, “cows eat grass”, “the planets move around the Sun”, “cows like to attack
lions and fight them to death”, “2 + 3”, “2 + 3 = 5”, “2 + 3 = 6”, “every odd number is
prime”, are all phrases.
112These things may be concrete,material objects or people, or abstract entities such as

numbers. For example, “2 + 3” stands for a number, that happens to be the number 5.
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• A term has a value, i.e., becomes the name of a specific object.

• A sentence has a truth value, i.e., becomes true or false.

But if you leave some of the the slots unfilled (i.e., if you keep some “free
variables”) then the terms do not have a definite value and the sentences
do not have a truth value. In that case, we say that he term or sentence is
meaningless, because it does not stand for a specific object or assertion.

Example 96. The term (i.e., noun phrase) “his mother” contains the pos-
sessive adjective “his”, which is a variable. If you plug in “Barack Obama”
for “his” the term becomes “Barack Obama’s mother”, which stands for
a definite person. (In mathematical language, we would talk about “x’s
mother”. And, again, when we plug in “Barack Obama” for “x” the term
becomes “Barack Obama’s mother”, which stands for a definite person.) �

Example 97. The sentence “he is a friend of mine” contains the pronoun
“he”. If you do not tell me who “he” is, then I don’t know what you are
talking about. But if you tell me who “he” is, that is, if you assign a
value to the variable “he” (by saying, for example, that “he” stands for
“Bill Clinton”) then the sentence becomes “Bill Clinton is a friend of mine”,
which has a definite truth value. (In mathematical language, we would say
“x is a friend of mine”, and then, when we plug in “Bill Clinton” for “x”,
we get when we plug in “Barack Obama” for “x” the term becomes “Barack
Obama’s mother”, which stands for a definite person.) �

Example 98. The term “x + 3y” contains the letters “x” and “y”. If you
do not tell me which numbers the letters x and y stand for, then I cannot
make sense of which object (in this case, a number) this term stands for. If,
on the other hand, you assign specific values to x and y then I can figure
out the value of the term. (For example, if you let x = 4, y = −6, then I
can tell that “x+ 3y” has the value −14, i.e., that x+ 3y = −14. �

Example 99. The sentence “x+ 3y > 6” contains the letters “x” and “y”.
If you do not tell me which numbers the letters x and y stand for, then I
cannot make sense of which assertion the sentence is making, and cannot
decide if it is true or false, If, on the other hand, you assign specific values to
x and y then I can figure out the truth value of the sentence. (for example,
if you let x = 4, y = −6, then I can tell that “x + 3y = 6” has the truth
value “false”, because x + 3y = 4 − 3 × 6 = −14, and ∼ −14 > 6. But if
x = 3 and y = 2, then x+ 3y = 9, and 9 > 6, so “x+ 3y = 6” is true.. �
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21.1.4 Forming sets

As long as you can write a sentence C(x) about a variable object x, you can
form the set

{x : C(x)}
that is, the set of all x for which C(x) is true. And you could give this set a
name. For example, suppose you want to form the set {x : C(x)} and give
it the name S. You would do that by writing

Let S = {x : C(x)}.

Let us formulate this rule for forming sets as an axiom:

The näıve axiom of set formation

Given any sentence C(x) having x as an open variable,
we can form the set whose members are all the objects
x for which C(x) is true.

A name for such a set is

{x : C(x)} .
And we read this as

The set of all x such that C(x) .

Remark 27. Why did I call the set formation axiom “näıve”? The reason
is this: in a few days, we will discover that the set formation axiom, as
we have formulated it, causes serious problems that can only be solved by
changing the statement of the axiom. Instead of a “näıve” axiom that allows
us to take any sentence C(x) whatsovever and form the ser {x : C(x)}, we
will have to adopt a “sophisticated” axiom in which nto all sentences are
permitted. �

21.1.5 The membership criterion

Suppose we use the sentence “x is a cow”, to form a set S, so

S = {x : x is a cow }
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that is, S is “the set of all x such that x is a cow”, or, in much better
English, S is the set of all cows.

Then we can decide whether or not an object a belongs to the set S
(that is, whether or not a ∈ S) by applying the following simple test

1. Find out if a is a cow or not.

2. If a is a cow, then a belongs to S.

3. If a is not a cow, then a does not belong to S.

In other words, the sentence “x is a cow” is the membership criterion,
or membership condition, for S. A particular object a belongs to the set
{x : x is a cow } if a is a cow, and doesn’t belong to the set of a is not a
cow.

For a general sentence C(x):

Suppose C(x) is a sentence having x as an
open variable, and you define a set S by
writing

Let S = {x : C(x)} .

Then

• The sentence C(x) is called
the membership criterion, or
membership condition, for the set
S.

• An object a belongs to S if C(a) is
true, and doesn’t belong to S if C(a)
is not true.

21.1.6 Forming sets of members of a given set

Suppose we want to form the set of all natural numbers n that are even, i.e.,
such that 2|n, and we want to call this set A.
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Then we can say:

Let A = {n : n ∈ IN ∧ 2|n} ,

and we can also say

Let A = {n ∈ IN : 2|n} .

The first ssentence is read as “Let A be the set of all things that are natural
numbers and are even”, whereas the second sentence is read as “Let A be
the set of all natural numbers that are even”.

And, clearly, both define the same set.

Suppose U is a set, C(x) is a sentence hav-
ing x as an open variable, and you define
a set S by writing

Let S = { x : x ∈ U ∧ C(x) } .
Then the membership criterion is the sen-
tence “x ∈ U ∧ C(x)”.
And you can also write

Let S = { x ∈ U : C(x) } .

Example 100. Suppose the membership criterion C(x) is the sentence “x
is a natural number that can be written as the sum of the squares of two
natural numbers”. Let

S = {x : C(x)} .
Clearly, C(x) is the sentence

x ∈ IN ∧ (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2 ,

so we could have written the definition of S as follows:

S = {x : x ∈ IN ∧ (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2} ,

or as
S = {x ∈ IN : (∃m ∈ IN)(∃n ∈ IN)x = m2 + n2} , (21.467)
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(We read this as “S is the set of all natural numbers x such that there exist
natural numbers m,n for which m2 + n2 = x”. And an even better reading
is “S is the set of all natural numbers that are the sum of two squares of
natural numbers”.)

Let us consider several possible values of x, and in each case let us figure
out whether this x belongs to the set S.

1. Suppose x is the Math 300 textbook. Then x is a book, not a natural
number. So x /∈ S, that is, x is not a member of S.

2. Suppose x = 5. Then x is a natural number. And x is the sum of
the squares of two natural numbers, because x = 22 + 12. Therefore
x satisfies the criterion for membership in S. So x is a member of S,
that is, x ∈ S.

3. Suppose x = −5. Then x is not a natural number. So C(x) is not
true. That is, x does not satisfy the criterion for membership in S. So
x is not a member of S.

4. Suppose x = 7. Then x is a natural number. Can x be written as the
sum of the squares of two natural numbers? The answer is “no”. How
do we know that? Well, for example, we know that a number that is
of the form k + 3, k ∈ Z, is not the sum of two squares. And 7 is of
the form k + 3, because 7 = 4 + 3. So x /∈ S. �
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21.1.7 How to read the symbol “∈”

How to read the “∈” symbol

If S is a set and a is an object, we write

a ∈ S
to indicate that a is a member of S.

And we write

a /∈ S
to indicate that a is not a member of S.
The expression “a ∈ S” is read in any of the following ways:

- a belongs to S,

- a is a member of S,

- a is in S.

The expression “a /∈ S” is read in any of the following ways:

- a does not belong to S,

- a is not a member of S,

- a is not in S.

Remark 28. Sometimes, “a ∈ S” is read as “a belonging to S”, or “a in
S”, rather than “a belongs to S”, or “a is in S.” For example, if we write

Pick an a ∈ S,

then it would be very bad to say “pick an a belongs to S”. But “pick an a
belonging to S”, “pick an a in S”, is fine. �
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Never read “∈” as “is contained in”, or ”is included in”.
The words “contained” and “included” have different
meanings, that will be discussed later.

21.2 When are two sets equal?

As we have explained, sets have members. And, even more imprtantly,
knowledge of the members of the set determines the set. Two sets
that have the same members are the same set.

Let us make this precise:

The axiom of set equality

Two sets are equal if and only if they have the same members.
In semiformal language:
If A, B are sets, then A = B if and only if

(∀x)(x ∈ A ⇐⇒ x ∈ B) .

And, in formal language,

(∀A)(∀B)
(

A = B ⇐⇒ (∀x)(x ∈ A ⇐⇒ x ∈ B)
)

.

Example 101. Let

A = {x ∈ IR : x ≥ 0} ,
B = {x ∈ IR : (∃y ∈ IR)y2 = x} .

Let us prove that A = B.
To prove that A = B, we have to prove that (∀x)(x ∈ A⇐⇒ x ∈ B).

So, let x be arbitrary. We have to prove that x ∈ A⇐⇒ x ∈ B.

To prove this, we have to prove that x ∈ A =⇒ x ∈ B and that
x ∈ B =⇒ x ∈ A.

Let us first prove that x ∈ A =⇒ x ∈ B.
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Assume that x ∈ A.

Then x ∈ IR and x ≥ 0. (Reason: “x ∈ IR ∧ x ≥ 0” is the
membership criterion for A.)

But every nonnegative real number has a square root.

So x has a square root. That is, (∃y ∈ IR)y2 = x.

So x satisfies the membership criterion for B.

Hence x ∈ B.

Therefore x ∈ A =⇒ x ∈ B.

We now prove that x ∈ B =⇒ x ∈ A.

Assume that x ∈ B.

Then x ∈ IR and (∃y ∈ IR)y2 = x. (Reason: “x ∈ IR ∧ (∃y ∈
IR)y2 = x” is the membership criterion for B.)

Pick y ∈ IR such that y2 = x.

Then y2 ≥ 0. (Reason: (∀u ∈ IR)u2 ≥ 0.)

So x ≥ 0.

So x satisfies the membership criterion for A.

Hence x ∈ A.

Therefore x ∈ B =⇒ x ∈ A.

So x ∈ A ⇐⇒ x ∈ B. Since x is arbitrary, we can conclude that (∀x)(x ∈
A⇐⇒ x ∈ B). Hence A = B. Q.E.D.

Example 102. Let

A = {x ∈ IR : x > 0} ,
B = {x ∈ IR : (∃y ∈ IR)y2 = x} .

Let us prove that A 6= B.
To prove that A 6= B, we have to prove that it is not true that (∀x)(x ∈

A⇐⇒ x ∈ B).

Suppose113 (∀x)(x ∈ A⇐⇒ x ∈ B).

Then we can specialize to x = 0, and conclude that 0 ∈ A⇐⇒ 0 ∈ B.

113A proof by contradiction , of course.
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But “0 ∈ B” means that “(∃y ∈ IR)y2 = 0, which is true, because
72 = 0.

On the other hand, “0 ∈ A” means that “0 > 0”, which is false.

Hence it is not true that 0 ∈ A⇐⇒ 0 ∈ B.

So (0 ∈ A ⇐⇒ 0 ∈ B) ∧
(

∼ (0 ∈ A ⇐⇒ 0 ∈ B)
)

, which is a

contradiction .

Hence A 6= B. Q.E.D.

Example 103. Let A = {n ∈ Z : 6|n}, and let B = {n ∈ Z : 2|n ∧ 3|n}.
Let us prove that A = B.
To prove that A = B, we have to prove that (∀x)(x ∈ A⇐⇒ x ∈ B).

So, let x be arbitrary. We have to prove that x ∈ A⇐⇒ x ∈ B.

To prove this, we have to prove that x ∈ A =⇒ x ∈ B and that
x ∈ B =⇒ x ∈ A.

Let us first prove that x ∈ A =⇒ x ∈ B.

Assume that x ∈ A.

Then x ∈ Z and 6|x.
Since 6|x, we may pick k ∈ Z such that x = 6k.

Then x = 2× (3k), and 3k ∈ Z, so 2|x.
Also, x = 3× (2k), and 2k ∈ Z, so 3|x.
Hence 2|x ∧ 3|x.
So x ∈ B.

Therefore x ∈ A =⇒ x ∈ B.

We now prove that x ∈ B =⇒ x ∈ A.

Assume that x ∈ B.

Then x ∈ Z, 2|x, and 3|x.
Since 2|x, we may pick j ∈ Z such that x = 2j.

Since 3|x, we may pick k ∈ Z such that x = 3k.

Then x = 1.x = (3−2)x = 3x−2x = 3×(2j)−2×(3k) = 6(j−k).
So 6|x.
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Hence x ∈ A.

Therefore x ∈ B =⇒ x ∈ A.

So x ∈ A ⇐⇒ x ∈ B. Since x is arbitrary, we can conclude that (∀x)(x ∈
A⇐⇒ x ∈ B). Hence A = B. Q.E.D.

Problem 100. Let

A = {x ∈ IR : x3 > x} ,
B = {x ∈ IR : −1 < x < 0 ∨ x > 1}
C = {x ∈ IR : −1 < x} .

Prove or disprove each of the following:

• A = B,

• A = C.

21.2.1 Subsets

Definition 41. Let A, B be sets. We say that A is a subset of B, and

write

A ⊆ B ,
if every member of A is a member of B.

In semiformal language, A is a subset of B if and only if

(∀x)(x ∈ A =⇒ x ∈ B) .

In completely formal language:

(∀A)(∀B)
(

A ⊆ B ⇐⇒ (∀x)(x ∈ A =⇒ x ∈ B)
)

.

�

Example 104. The following are true:

• IN ⊆ Z ,
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• Z ⊆ Q ,

• Q ⊆ IR ,

• {x ∈ IR : 0 < x < 1} ⊆ {x ∈ IR : 0 ≤ x ≤ 1}. �

Example 105.
The following are true:

• {x ∈ IR : −1 < x < 0} ⊆ {x ∈ IR : x3 > x}.

• {n ∈ IN : n is prime ∧ n 6= 2} ⊆ {n ∈ IN : 2|n− 1}.

• {n ∈ Z : 4|n} ⊆ {n ∈ Z : 2|n} ,

• {x ∈ IR : 0 < x < 1} ⊆ {x ∈ IR : 0 ≤ x ≤ 1} , �

WARNING!

“is a subset of” is a binary relation. It does not make sense to
say things like “A is a subset”. What does make sense is to say “A
is a subset of B”.
If, in an exam, I ask you to define “subset”, and you say “a set A
is a subset if ....”, then that is completely wrong and you get zero
credita

The definition of “subset” must start with the words: “Let A, B
be sets. We say that A is a subset of B if . . ..

aAnd if your definition starts with horrendous words “subset is when . . .” then
you lose 10, 000, 000 points, on a sclae from 0 to 10.
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ALWAYS UNDERLINE THE DEFINIENDUM

In a definition, the term being defined is called the definiendum.
The definiendum must always be underlined, or highlighted in some
way, in order to indicate that we are writing a definition of that
term, not just making a true statement.
For example:

• If I write “elephants are four-legged animals”, then I am mak-
ing a true statement about elephants.

• If, on the other hand, I write “elephants are four-legged an-
imals”, then I am saying that I am defining the word “ele-
phant” to mean “four-legged animal”, and this is of course
wrong, because “elephant” does not mean “four-legged ani-
mal”: there are lots of four-legged animals that are not ele-
phants.

• If I write “an even integer is an integer that is divisible by 2”,
then I am making a true statement. but I am not saying that
this is what “even integer” means.

• If I want to explain what “even integer” means, i.e., give a def-
inition of “even integer”, then I have to say “an even integer
is an integer that is divisible by 2”. By underlining “even in-
teger” I am conveying the message that this is my definition
of “even inteeger”.

• If in an exam you are asked to give a definition and you do
not underline the definiendum, you will lose points.

Question 10. In the first sentence of the previous box, why is the word
“definiendum” underlined? �

Problem 101. Prove the four statements of Example 105.
The structure of your proofs should be as follows:

We want to prove that A ⊆ B.

For that purpose, we prove that (∀x)(x ∈ A =⇒ x ∈ B).

Let x be arbitrary. We want to prove “x ∈ A =⇒ x ∈ B”.
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Assume x ∈ A.
...

x ∈ B.

So x ∈ A =⇒ x ∈ B.

Therefore (∀x)(x ∈ A =⇒ x ∈ B).

So A ⊆ B. Q.E.D.

Problem 102. Prove that the binary relation “⊆” is reflexive, antisym-
metric, and transitive. (In the definition of these properties given in the
notes, a set S is mentioned. Here you may think of S as “the set of all sets”,
which means that you can forget about S. Then, for example, the property

that “⊆” is antisymmetric means “(∀A)(∀B)
(

(A ⊆ B ∧ B ⊆ A) =⇒ A =

B
)

”.)

21.2.2 The empty set

An important example of a set is the empty set, that is, the set that has
no members at all.

The symbol for the empty set is

∅ .
One possible way to define this set is by the following formula:

∅ = {x : x 6= x} .

This means that the members of ∅ are the things x that satisfy x 6= x.
But our Equality Axiom says that (∀x)x = x. So “x = x” is true for every x.
This means that no x can be a member of ∅. So, indeed. ∅ has no members.

Let us make this precise:
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Theorem 85. The empty set has no members. That is.

(∀x)x /∈ ∅ .

Proof.

Let x be arbitrary. We want to prove that x /∈ ∅.

Assume114 that x ∈ ∅.
Then x satisfies the membership criterion for ∅, i.e.,

x 6= x .

But (∀x)x = x, by the Equality Axiom.

So x = x, by the rule for using universal sentences.

Therefore x = x ∧ x 6= x, which is a contradiction.

So x /∈ ∅.

Therefore (∀x)x /∈ ∅. Q.E.D.

21.2.3 The empty set is a subset of every set

If you have a set A and a subset B of A, and you remove some members
from B, producing a subset C of B, then it is clear that C is still a subset
of A. This ought to be true even in the extreme case when you remove all
the members of B, so that C is the empty set. In other words, the empty
set should be a subset of A, for every set A.

Let us prove a precise theorem:

Theorem 86. The empty set is a subset of every set. That is,

(∀A)∅ ⊆ A .

Proof.

Let A be an arbitrary set. We want to prove that ∅ ⊆ A.

Assume115 that ∅ is not a subset of A.

That is, assume that it is not true that every member of ∅ is in
A.

114A proof by contradiction !.
115A proof by contradiction !
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That means that some members of ∅ are not in A.

In other words, there exists an object x such that x ∈ ∅ and
x /∈ A.

Pick one such object and call it a.

Then a ∈ ∅ and a /∈ A.

So in particular a ∈ ∅.
But we know from Theorem 85 that (∀x)x /∈ ∅.
So a /∈ ∅.
Hence a ∈ ∅ ∧ a /∈ ∅.

So we have proved a contradiction.

Therefore ∅ ⊆ A.

So (∀A)∅ ⊆ A. Q.E.D.

21.2.4 Sets with one, two, three or four members

If a is any thing, we can form a set that has a as a member, and no other
members. This name of this set is

{a} ,

which we read as “singleton of a.”
The precise definition of {a} is as follows.

Definition 42. Let a be any object. Then the singleton of a is the set {a}
given by

{a} = {x : x = a} .

In other words: to be a member of the set {a} you have to be a. If
you are a then you are a member, and if you are not a then you are not a
member.

We can do a similar thing with two objects, say a and b. We can form the
set {a, b} whose members are a, b, and nothing else. The set {a, b} is the
unordered pair of a and b.
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Definition 43. Let a, b be any two objects. Then the unordered pair of a
and b is the set {a, b} given by

{a, b} = {x : x = a ∨ x = b} .

Remark 29. Warning: The set {a, b} is not necessarily a set with two
members. That depends on who a and b are. For example; if a happens to
be equal to b, then {a, b} has only one member. �

Naturally, we can do the same thing with three, four, or any number of
objects. For example:

Definition 44. Let a, b, c be any three objects. Then the unordered triple
of a, b and c is the set {a, b, c} given by

{a, b, c} = {x : x = a ∨ x = b ∨ x = c} .

Definition 45. Let a, b, c, d be any four objects.
Then the unordered quadruple of a, b, c and d is the set {a, b, c, d} given

by
{a, b, c, d} = {x : x = a ∨ x = b ∨ x = c ∨ x = d} .

And, in principle, you could go on like this and define sets with five
members, sets with 6 members, and so on.

But as soon as the number of members gets large, this way of construct-
ing sets becomes very complicated, so it is better to do it differently.

Example 106. Suppose you want to define a set whose members are the
first five presidents of the U.S., and call this set A. That’s easy to do. We
say:

Let A = {George Washington,John Adams,Thomas Jefferson,James Madi-
son,James Monroe}.

Now suppose you want to define a set whose members are the first 30 U.S.
presidents, and call this set B. That is going to be much more complicated
right? And what if you do not know the names of all those presidents?

Hhere is how you can do it. You can say:
Let

B =
{

x : (∃j ∈ IN)(j ≤ 30 ∧ x = pj)
}

,

where, for each j ∈ IN, pj is the j-th president of the U.S.
This works perfectly! Indeed, let us see what has to be true of an object

x for x to qualify as a member of A. If you are given an object x, and you
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have to decide whether x ∈ B or not, you have to find out if there exists a
natural number j such that j ≤ 30 and x is the j-th U.S. president. And
that’s exactly what we want! �

Problem 103. How many members does the set B of Example 106 have?
If you think that the answer is 30, think again! Go to a history book (or

to a history Web site) and read about Grover Cleveland, who was both the
22nd and the 24th president of the United States. �

Problem 104. Let A = {1, 2, 3, 4}. Write a list of all the subsets of A.
(HINT: There are 16 of them.) �

Problem 105. Write a definition, in the style of Example 106, of the set X
whose members are the first 325 prime numbers p such that p−3 is divisible
by 4. �

21.3 Operations on sets

There are several operations that enable us to construct new sets from given
sets.

21.3.1 The power set of a set

Definition 46. Let A be a set. The power set of A is
the set P(A) given by

P(A) = {X : X ⊆ A} .

In other words, P(A) (read as “the power set of A”) is the set whose
members are all the subsets of A.

The membership criterion for the power set P(A) is the sentence
“X ⊆ A”. That is, for an object X to quality as a member of P(A), it has
to be shown that X is a subset of A.

Example 107. If A = {1, 2, 3} then

P(A) =
{

∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}
}

. (21.468)

Notice that A is a finite set with 3 members, and P(A) has turned out to
be a finite set with 8 members. This is not a coincidence. We will
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prove later that: if A is a finite set and A has n members, then
the power set P(A) is a finite set with 2n members. �

Problem 106. Let A = {1, 2, 3, 4}. Write a formula similar to (21.468)
listing all the members of P(A).

Problem 107. Let A = { ∅, {∅} }. Write a formula similar to (21.468)

listing all the members of P
(

P(A)
)

.

21.3.2 The union of two sets

Definition 47. Let A, B be sets. The union of A and
B is the set A ∪ B given by

A ∪ B = {x : x ∈ A ∨ x ∈ B} .

In other words, A∪B (read as “A union B”) is the set whose members
are all the members of A as well as all the members of B.

The membership criterion for A∪B is “x ∈ A∨ x ∈ B.” That is, for
an object x to quality as a member of A ∪ B, it has to be shown that x is
in A or that x is in B.

Example 108.

• If A = {1, 2, 3} and B = {2, 3, 4} then A ∪B = {1, 2, 3, 4}.

• IfA = {a, b, c} andB = {d, e, f, g, h, i, j} thenA∪B = {a, b, c, d, e, f, g, h, i, j}.
Notice that

1. A is a finite set with 3 members,

2. B is a finite set with 7 members,

3. A and B have no memebrs in common (that is, using the termi-
nology of the next section, A ∩B = ∅),

4. and A∪B has turned out to be a finite set with 10 members. This
is not a coincidence. We will prove later that: if A, B
are finite sets, A has m members, B has n members, and
A∩B = ∅, then the union A∪B is a finite set with m+ n
members.



Math 300, Fall 2020 419

5. If A = {n ∈ Z : n > 0} and B = {n ∈ Z : n < 0} then
A ∪B = {n ∈ Z : n 6= 0}.

6. IN ∪ {0} is the set of all nonnegative integers, i.e., the set {n ∈
Z : n ≥ 0}.

7. If A = {x ∈ IR : 0 < x < 1} and B = {x ∈ IR : 1 ≤ x < 2} then
A ∪B = {x ∈ IR : 0 < x < 2}.

8. If A = {x ∈ IR : 0 < x < 1} and B = {x ∈ IR : 1 < x < 2} then
A ∪B = {x ∈ IR : 0 < x < 2 ∧ x 6= 1}. �

A ∪B :

B

A

(The shaded region is A ∪B)
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21.3.3 The intersection of two sets

Definition 48. Let A, B be sets. The intersection of
A and B is the set A ∩ B given by

A ∩ B = {x : x ∈ A ∧ x ∈ B} .

In other words, A ∩B (read as “A intersection B”) is the set whose
members are all the things that belong both to A and to B.

The membership criterion for A∩B is “x ∈ A∧ x ∈ B.” That is, for
an object x to quality as a member of A ∩ B, it has to be shown that x is
in A and that x is in B.

Example 109.

• If A = {1, 2, 3} and B = {2, 3, 4} then A ∩B = {2, 3}.

• If A = {n ∈ Z : n > 0} and B = {n ∈ Z : n < 0} then A ∩B = ∅.

• If A = {x ∈ IR : 0 < x < 2} and B = {x ∈ IR : 1 < x < 3} then
A ∩B = {x ∈ IR : 1 < x < 2}.



Math 300, Fall 2020 421

A ∩B :

A

B

(The shaded region is A ∩B)

21.3.4 The difference of two sets

Definition 49. Let A, B be sets. The difference of A
and B is the set A− B given by

A− B = {x : x ∈ A ∧ x /∈ B} .

In other words, A−B (read as “A minus B”) is the set whose mem-
bers are all the things that belong to A but do not belong to B.

The membership criterion for A−B is “x ∈ A∧x /∈ B.” That is, for
an object x to quality as a member of A − B, it has to be shown that x is
in A and that x is not in B.
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Example 110.

• If A = {1, 2, 3} and B = {2, 3, 4} then A−B = {1}.

• If A = Z and B = IN then A−B = {n ∈ Z : n ≥ 0}.

• If A = {x ∈ IR : 0 < x < 2} and B = {x ∈ IR : 1 < x < 3} then
A−B = {x ∈ IR : 0 < x ≤ 1}.

A− B :

B

A

(The shaded region is A−B)

21.3.5 Complements

As you may have noticed, the operations of union and intersection are cloely
related to the logical connectives ∨ and ∧:

A ∪B is the set of those x such that x ∈ A ∨ x ∈ B
A ∩B is the set of those x such that x ∈ A ∧ x ∈ B
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Given this, which is rhe set operation that corresponds to the negation
symbol ∼? Since ∼ is a unary connective (i.e., it can be applied to one
sentence S to produce the sentence ∼ S. the corresponding operation, let
us call it #, should be a unary operation defined as follows:

#A is the set of those x such that ∼ x ∈ A.
In other words, #A should be the set of all the things that are not

members of A. This set #A could be called the “complement” of A, and
would be defined by #A = {x : x /∈ A}.

Now, the set #A would be truly huge. For example, if A = {1, 2, 3, 4},
then #A would consist of all the things other than the numbers 1, 2, 3, 4. So
the members of #A would be the natural numbers other than 1, 2, 34 (that
is, 5, 6, 7 and so on), as well as the integers that are not hantural numbers,
all the real numbers other than 1, 2, 3, 4, plus all the other things that are
not the numbers 1, 2, 3, 4, that is, all the cows, sheep, giraffes, people, rocks,
tables, planets, stars, cells, viruses, molecules, atoms, electorns, protons,
quarks, black holes, books, teeth, jackets, socks, cars, planes, forks, knives,
and on and on and on.

Usually, when we are doing mathematics, we are studying a specific “uni-
verse” of mathematical objects. For example, when we do number theory
we study the natural numbers or the integers, when we do Calculus we work
with the real nunbers, and when we do Multivariable Calculus we work with
IR2, the set of pairs of real numbers )(i.e., the “xy plane”) or IR3 (the set of
triples (x, y, z) of real numbers, i.e., “3-dimensional space”). If, for example,
our “world” is IR, then when we have a set A of real numbers, i.e., a subset
A of IR, we would be interested in the set of real numbers that are not in
A. And this set is the difference IR−A. Se we give the following definition:

Definition 50. Suppose U is a set that we regard as the “universe”, in the
sense that we are only interested in sets that are subsets of U . Then the
complement of a set A such that A ⊆ U is the set Ac given by

Ac = U −A , (21.469)

that is,
Ac = {x : x ∈ U ∧ x /∈ A} . (21.470)

Remark 30. Strictly speaking, it is inappropriate to define a set as we did
in Definition 50 and call it “Ac”. This set depends very much on who U is,
so the right thing to do would be to call it the complement of A relative
to A, and give it a name such as Ac,U , which shows that the set depends on
U .
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But, as long as we are working with a fixed “universe”, and it is clear
who U is, it is O.K. to use a notation such as Ac. �

Ac :

A

A

U

c

(The shaded region is Ac)

21.3.6 The symmetric difference of two sets

Definition 51. Let A, B be sets. The symmetric
difference of A and B is the set A∆B given by

A∆B = {x : (x ∈ A ∧ x /∈ B) ∨ (x /∈ A ∧ x ∈ B)} .

In other words, A∆B (read as “the symmatric difference of A and
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B”) is the set whose members are all the things that belong to A
but do not belong to B, or belong to B but do not belomng to A.

That is, A∆B is the set of all things that belong to one of the
sets A, B but do not belong to both.

The membership criterion for the symmetric difference A∆B is the
sentence “(x ∈ A ∧ x /∈ B) ∨ (x /∈ A ∧ x ∈ B)”. That is, for an object x to
quality as a member of A−B, it has to be shown that x is in A and that x
is not in B, or that x is in B but not in A.

A∆B :

A

B

(The shaded region is A∆B)

Example 111.

• If A = {1, 2, 3} and B = {2, 3, 4} then A∆B = {1, 4}.

• If A = {x ∈ IR : |x| > 4} and B = {x ∈ IR : |x| < 10 then A∆B =
{x ∈ IR : |x| ≥ 10 ∨ |x| ≤ 4}.
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21.4 Orderd pairs and Cartesian products

21.4.1 Ordered pairs

If a, b are any two objects, we would like to have a set, called “the ordered
pair of a and b”, such that wknowing this set would tell us who a is and
who b is, so we would be able to say things such as “the first coordinate of
(a, b) is a” and “the second coordinate of (a, b) is b”.

For example, suppose we are doing plane geometry, using the standard
procedure of drawing and “x axis” and a “y axis”, and then representing
each point P of the plane by a pair (a, b) of numbers, called the “coordinate
pair” of P . Each point P then has, attached to it, a coordinate pair (a, b)
of real numbers: the number a is the x coordinate (or “abscissa”) and the
number b is the y coordinate (or “ordinate”) of P .

We would like the pair (a, b) to be a set, constructed somehow from a
and b. And then the natural question is: which set is the pair (a, b)?

The most näıve idea is to let the pair (a, b) be the unordered pair {a, b},
that is, the set whose members are a and b.

But this will not do. If we take (a, b) to be {a, b}, then it cannot happen,
for example, that the x-coordinate of (1, 2) is 1, and the x-coordinate of (2, 1)
is 2, because, if (1, 2) = {1, 2} and (2, 1) = {2, 1}, then (1, 2) = (2, 1), so, if

(*) the x-coordinate of (2, 1) is 2,

then it would also be true that
(**) the x-coordinate of (1, 2) is 2,

(because (1, 2) = (2, 1)), but on the other hand
(***) the x-coordinate of (1, 2) is 1,

so we would get 1 = 2, which is definitely not true.

The only solution is to define the ordered pair to be something other than
the unordered pair {a, b}. And then the question is, what set shall (a, b)
be?

There are many ways to answer this question, and it really makes no differ-
ence which one we use. So we shall choose one, but you must be warned that
the specific way we make this choce is not important. What is important is
that the following fact is true:

Theorem 87. Let a, b, c, d be any objects. Then, if the pairs (a, b) and (c, d)
are equal, that is, if (a, b) = (c, d), it follows that c = a and d = b.

This is exactly the property that we need. For example, the pairs (2, 1) and
(1, 2) are not equal. (Proof: Suppose (2, 1) = (1, 2). Then Theorem 87
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(with a = 2, b = 1, c = 1, and d = 2, would imply that 2 = 1. But 2 6= 1.
So 2 = 1 ∧ 2 6= 1, which is a contradiction. So (2, 1) 6= (1, 2).)

Now we show how to define (a, b) in such a way that Theorem 87 is true.

Definition 52. Let a, b be any two objects. Then the ordered pair of a and
b is the set (a, b) given by

(a, b) = { {a} , {a, b} } . (21.471)

Proof of Theorem 87. Suppose that (a, b) = (c, d).
Let p = (a, b), so p is also equal to (c, d) because we are assuming that
(a, b) = (c, d).
Since p = { {a}, {a, b} }, the set p has either two members (if b 6= a) or
one member (if a = b, in which case {a, b} = {a}, so { {a}, {a, b} } =
{ {a}, {a} } = { {a} }).
But in either case, a is the only object that belongs to all the members of p.
And, since p is also equal to (c, d), it follows that c is the only object that
belongs to all the members of p.

So c = a .

Next, let us prove that d = b.
We consider separately the two possible cases: b = a and b 6= a.

Assume that b = a.

Then p has only one member, because, as explained before, {a, b} =
{a}, so p = { {a}, {a, b} } = { {a} }.

But then (c, d) also has only one member, because (c, d) = p. And this
implies that d = c.

So d = c and b = a, and we already know that c = a.

Hence d = b .

Now assume that b 6= a.

Then the sets {a} and {a, b} are different, because b ∈ {a, b} but
b /∈ {a}.

So p has two different members.

And b is the only object that belongs to one of the members of p but
does not belong to both.
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And, similarly, d is the only object that belongs to one of the members
of p but does nto belong to both.

So d = b .

We have proved that d = b in both cases, when b = a and when b 6= a.

So d = b .

So we have proved that c = a ∧ d = b . Q.E.D.

21.4.2 The Cartesian product of two sets

Definition 53. Let A, B be sets. The Cartesian product of
A and B is the set A× B given by

A× B =
{

u : (∃a)(∃b)(a ∈ A ∧ b ∈ B ∧ u = (a, b))
}

.

In other words, A×B (read as “A times B”) is the set of all objects u such
that u is an ordered pair (a, b), with a ∈ A and b ∈ B.

Or, more succintly and elegantly, A × B is the set of all ordered
pairs (a, b) for which a ∈ A and b ∈ B.

Example 112.

• Let A == {1, 2, 3} and B = {2, 3, 4, 5}. Then

A×B =
{

(1, 2), (1, 3), (1, 4), (1, 5), (2, 2), (2, 3), (2, 4), (2, 5),

(3, 2), (3, 3), (3, 4), (3, 5)
}

.

Notice that A is a finite set with 3 members, B is a finite set with 4
members, and A× B is a finite set with 12 members. This is not a
coincidence. We will prove later that: if A, B are finite sets,
A has m members, and B has n members, then A × B is a
finite set and A×B has mn members.

• Let A = IR, B = IR. Then A × B is IR × IR, that is, the set of all
ordered pairs (x, y) such that x and y are real numbers. This is the
“x-y plane” of plane Euclidean geometry. The members of
IR× IR are the “points” of plane geometry.
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• Let

A = {x ∈ IR : 0 < x < 1} ,
B = {x ∈ IR : 1 < x < 3} .

Then A is the open interval (0, 1) (not to be confused with the
ordered pair (0, 1)!) and B is the open interval (1, 3) (not to be
confused with the ordered pair (1, 3)!). In this case, A × B, that
is, (0, 1)× (1, 3), is the set of all pairs (x, y) of real numbers such that
0 < xx < 1 and 1 < y < 3. In other words, (0, 1) × (1, 3) is the
rectangle R characterized by the inequalities

0 < x < 1 and 1 < y < 3 .

21.5 Important facts about the set operations

So far, we have defined:

• One very special set (the empty set),

• One binary predicate (i.e., relation), about sets, namely, the predicate
“is a subset of”.

• Five binary operations on sets (union, intersection, difference, sym-
metric difference, and Cartesian product),

• One unary operation on sets (the power set).

By combining these nine things we can produce an enormous number of
possible facts, some of which might be true, while others are not true. It
would be pointless for me to give you a complete list and prove them all,
because there are so many of them, and they are all so easy to prove (if
true) or to disprove (if false).

And it would be pointless for you to memorize them all, because the list
is so long. On the other hand, if you understand what yoiu are doing, you
ought to be able, in each case, to figure out if the statement is true or false,
and how to prove it (if it is true) or disprove it (if it is false).

So what I suggest is this: read carefully the list of facts, and pick
a few of them and prove them or disprove them. Keep in mind
that any of these facts could show up as a question in the exams.

And here is the list:

1. If A is a set, then ∅ ⊆ A. (True)
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2. If A is a set, then ∅ ∈ A. (False)

3. If A is a set, then A ∪ ∅ = A. (True)
NOTE: If you think that ∅ is like the number 0, and the operation “∪”
is like addition, then this statement is analogous to the statement that
x+ 0 = x for every real number x.

4. If A is a set, then A ∪ ∅ = ∅. (False)

5. If A is a set, then A ∩ ∅ = A. (False)

6. If A is a set, then A ∩ ∅ = ∅. (True)
NOTE: If you think that ∅ is like the number 0, and the operation “∩”
is like multiplication, then this statement is analogous to the statement
that x.0 = 0 for every real number x.

7. If A is a set, then A ⊆ A. (True)

8. If A, B are sets, then A = B if and only if A ⊆ B ∧B ⊆ A. (True)
NOTE: This gives an another way to prove that two sets are equal: to
prove that A = B, you prove that A ⊆ B and that B ⊆ A.

9. If A is a set, then A ∪A = A. (True)

10. If A is a set, then A ∩A = A. (True)

11. If A,B are sets, then A ⊆ A ∪B. (True)

12. If A,B are sets, then A ⊆ A ∩B. (False)

13. If A,B are sets, then A ∪B ⊆ A. (False)

14. If A,B are sets, then A ∩B ⊆ A. (True)

15. If A is a set, then A ⊆ A. (True)
NOTE: This aays that the binary relation “⊆” is reflexive.

16. If A,B are sets, A ⊆ B, and B ⊆ A, then A = B. (True)
NOTE: This aays that the binary relation “⊆” is antisymmetric.

17. If A,B,C are sets, A ⊆ B, and B ⊆ C, then A ⊆ C. (True)
NOTE: This aays that the binary relation “⊆” is transitive.

18. If A,B,C are sets, A ⊆ B, B ⊆ C, and C ⊆ A, then A = B = C.
(True)
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19. If A,B are sets, then A ⊆ B if and only if A ∪B = B. (True)

20. If A,B are sets, then A ⊆ B if and only if A ∪B = A. (False)

21. If A,B are sets, then A ⊆ B if and only if A ∩B = A. (True)

22. If A,B are sets, then A ⊆ B if and only if A ∩B = B. (False)

23. If A,B are sets, then A ∪B = B ∪A. (True)
NOTE: This is the commutative law of the union operation.

24. If A,B are sets, then A ∩B = B ∩A. (True)
NOTE: This is the commutative law of the intersection opera-
tion.

25. If A,B,C are sets, then A ∪ (B ∪ C) = (A ∪B) ∪ C. (True)
NOTE: This is the associative law of the union operation.

26. If A,B,C are sets, then A ∩ (B ∩ C) = (A ∩B) ∩ C. (True)
NOTE: This is the associative law of the intersection operation.

27. If A,B,C are sets, and A ⊆ B, then A ∪ C ⊆ B ∪ C. (True)

28. If A,B,C are sets, and A ⊆ B, then A ∩ C ⊆ B ∩ C. (True)

29. If A,B,C are sets, then (A ∪B) ∩ C = A ∪ (B ∩ C). (False)

30. If A,B,C are sets, then A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C).(True)
NOTE: This is the distributive law of union with respect to in-
tersection.

31. If A,B,C are sets, then A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C).(True)
NOTE: This is the distributive law of intersection with respect
to union.

IMPORTANT NOTE: We have seen that union and intersection are
in some ways like addition and multiplication: they obey commutative
and associative laws. and also A∩∅ = ∅ (which is analogous to x·0 = 0)
and A ∪ ∅ = A (which is analgous to x + 0 = x). But the analogy
should not be pushed too far:

• there is a distributive law of union with respect to intersection
(i.e., A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)),

• and there is also a distributive law of intersection with respect to
union (i.e., A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)),
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• but this is totally unlike what happens for addition and multipli-
cation, because

• there is a distributive law of multiplication with respect to addition
(i.e., x · (y + z) = x · y + x · z)

• but there is no distributive law of addition with respect to multi-
plication (i.e., it is not true that x+(y ·z) = (x+y) ·(x+z) since,
for example, if we take x = 1, y = 2, z = 3, then x+ (y · z) = 7
and (x+ y) · (x+ z) = 12).

32. If A,B are sets, then (A−B) ∪B = A. (False)

33. If A,B are sets, then (A−B) ∪B ⊆ A. (False)

34. If A,B are sets, then A ⊆ (A−B) ∪B. (True)

35. If A,B,C are sets, then A ∪ (B − C) = (A ∪B)− (A ∪ C). (False)

36. If A,B,C are sets, then A ∩ (B − C) = (A ∩B)− (A ∩ C). (False)

When we fix a “universe” U , then the complement of a subset A of
U is defined to be the set U −A. The complement of A is denoted
by “Ac”.

37. If A,U are sets, and A ⊆ U , then (Ac)c = A. (True)

38. If A,U are sets, and A ⊆ U , then A ∪Ac = U . (True)

39. If A,U are sets, and A ⊆ U , then A ∩Ac == ∅. (True)

40. If A,B,U are sets, A ⊆ U , and B ⊆ U , then

(A ∪B)c = Ac ∩Bc . (21.472)

(This is true.)

41. If A,B,U are sets, A ⊆ U , and B ⊆ U , then

(A ∩B)c = Ac ∪Bc . (21.473)

(This is true.)

NOTE: Equations (21.472) and (21.473) are the famous De Mor-
gan laws. They say that
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• the complement of the union of two sets is the intersec-
tion of the complements of the sets,

and

• the complement of the intersection of two sets is the
union of the complements of the sets.

I strongly recommend that you read the article on “De Morgab laws”
in Wikipedia.

42. If A, B, U are sets, A ⊆ U , and B ⊆ U , then A−B = A∩Bc. (True)

43. If A,B are sets, then A−B = B −A. (False)

44. If A,B,C are sets, then A− (B − C) = (A−B)− C. (False)

45. If A,B are sets, then A∆B = (A ∪B)− (A ∩B). (True)

46. If A,B are sets, then A∆B = B∆A. (True)

47. If A,B,C are sets, then A∆(B∆C) = (A∆B)∆C. (True)

48. If A,B are sets, then A×B = B ×A. (False)

49. If A,B,C,D are sets, then

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D) .

(This is true.)

50. If A,B,C,D are sets, then

(A×B) ∪ (C ×D) = (A ∪ C)× (B ∪D) .

(This is false.)

51. If A is a set, then A ∈ P(A). (True)

52. If A is a set, then A ⊆ P(A). (False)

53. If A is a set, then ∅ ∈ P(A). (True)

54. If A is a set, then ∅ ⊆ P(A). (True)

55. If A,B are sets, then A ⊆ B if and only if P(A) ⊆ P(B). (True)
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56. If A,B are sets, then A = B if and only if P(A) = P(B). (True)

57. If A,B are sets, then P(A×B) = P(A)× P(B). (False)

58. If A is a set, then ∅ ×A = ∅ and A× ∅ = ∅. (True)

59. If A,B are sets, and A×B = B ×A, then A = B. (False)

60. If A,B are nonempty sets, and A×B = B ×A, then A = B. (True)

21.6 Some examples of proofs about sets

Let me give you the proofs of some of the results in the long list of the
previous section.

21.6.1 Proof of one of the distributive laws

Theorem 88. If A, B, C are sets, then

A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C) . (21.474)

Proof. To prove that the sets A∪ (B ∩C) and (A∪B)∩ (A∪C) are equal,
we prove that they have the same members, that is, we prove that

(∀x)
(

x ∈ A ∪ (B ∩ C) ⇐⇒ x ∈ (A ∪B) ∩ (A ∪ C)
)

. (21.475)

Sentence (21.475) is a universal sentence, of the form (∀x)P (x). So, in order
to prove it, we let x be an arbitrary object and prove P (x).

Let x be arbitrary.

We want to prove

x ∈ A ∪ (B ∩ C) ⇐⇒ x ∈ (A ∪B) ∩ (A ∪ C) . (21.476)

(1) The sentence “x ∈ A∪ (B ∩C)” is equivalent to “x ∈ A∨ x ∈ B ∩C”.
(Reason: if X,Y are sets, then the criterion for membership in X ∪ Y
is “x ∈ X ∨ x ∈ Y ”.)

(2) And “x ∈ B∩C” is equivalent to “x ∈ B∧x ∈ C”. (Reason: ifX,Y are
sets, then the criterion for membership in X ∩Y is “x ∈ X ∧ x ∈ Y ”.)

(3) Hence “x ∈ A ∪ (B ∩ C)” is equivalent to “x ∈ A ∨ (x ∈ B ∧ x ∈ C)”.
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(4) Also, “x ∈ (A∪B)∩(A∪C)” is equivalent to “x ∈ A∪B∧x ∈ A∪C”.

And

– “x ∈ A ∪B” is equivalent to “x ∈ A ∨ x ∈ B”.

– “x ∈ A ∪ C” is equivalent to “x ∈ A ∨ x ∈ C”.

(5) So “x ∈ (A ∪ B) ∩ (A ∪ C)” is equivalent to “(x ∈ A ∨ x ∈ B) ∧ (x ∈
A ∨ x ∈ C)”.

It follows from (3) and (6) that “x ∈ A ∪ (B ∩ C) ⇐⇒ x ∈ (A ∪ B) ∩
(A ∪ C)”, the sentence that we have to prove, is equivalent to

x ∈ A ∨ (x ∈ B ∧ x ∈ C) ⇐⇒
(

(x ∈ A ∨ x ∈ B) ∧ (x ∈ A ∨ x ∈ C)
)

.

(21.477)

The sentence (21.477) is of the form

P ∨ (Q ∧R) ⇐⇒
(

P ∨Q) ∧ (P ∨R)
)

, (21.478)

where P stands for “x ∈ A”, Q stands for “x ∈ B”, and R stands for
“x ∈ C”.

We now prove that (21.478) is true.

Sentence (21.478) is a biconditional, of the form L ⇐⇒ M. And a
biconditional L ⇐⇒ M is true if and only if L and M have the same
truth value, i.e., are both true or both false. So we are going to prove
that M is true if L is true and M is false if L is false.

Suppose that P ∨ (Q ∧R) is true.
Then either P is true or Q ∧R is true.

Suppose P is true.

Then both P ∨Q and P ∨R are true.

So (P ∨Q) ∧ (P ∨R) is true.
Now suppose that Q ∧R is true.

Then both Q and R are true.

So P ∨Q and P ∨R are true.

And then (P ∨Q) ∧ (P ∨R) is true.
So (P∨Q)∧(P∨R) is true in both cases, and then (P∨Q)∧(P∨R)
is true.
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This proves that (P ∨Q) ∧ (P ∨R) is true if P ∨ (Q ∧R) is true.

Now suppose that P ∨ (Q ∧R) is false.
Then both P and Q ∧R are false.

Since Q ∧R is false, either Q is false or R is false.

Suppose Q is false.

Since P is false, P ∨ Q is false, because both P and Q are
false.

Hence the conjunction (P ∨Q) ∧ (P ∨R) is false.
Now suppose R is false.

Since P is false, P ∨ R is false, because both P and R are
false.

Hence the conjunction (P ∨Q) ∧ (P ∨R) is false.
So (P∨Q)∧(P∨R) is false in both cases, and then (P∨Q)∧(P∨R)
is false.

This proves that (P ∨Q) ∧ (P ∨R) is false if P ∨ (Q ∧R) is false.

So we have proved that (21.477) is true, and this completes our proof,
Q.E.D.

Problem 108. Prove the other distributive law: If A, B, C are sets, then

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C) . (21.479)

21.6.2 Proofs of the De Morgan laws

As we explained before, the De Morgan laws are the following two state-
ments.

Theorem 89. Let U be a set, and let A, B be subsets of U . Then

(A ∪B)c = Ac ∩Bc ,

and

Theorem 90. Let U be a set, and let A, B be subsets of U . Then

(A ∪B)c = Ac ∩Bc ,

(A ∩B)c = Ac ∩Bc .
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I will give you a proof from first principles116 of the first theorem, and
then I will give you a short proof of the other using the first one, and ask
you to give a proof from first principles of the second theorem.
Proof. We want to prove that

DeMorgan(∀x ∈ U)
(

x ∈ (A ∪B)c ⇐⇒ x ∈ Ac ∩Bc
)

. (21.480)

The sentence we want to prove is a universal sentence, of the form (∀x)P (x).
So in order to prove it we let x be an arbitrary object and prove P (x).

Let x be an arbitrary member of U .

We want to prove that

x ∈ (A ∪B)c ⇐⇒ x ∈ Ac ∩Bc . (21.481)

But, for x ∈ U , “x ∈ (A ∪ B)c is equivalent to “x /∈ A ∪ B”, i.e., to
“∼ x ∈ A ∪B”.

And “x ∈ A ∪B” is equiva;ent to “x ∈ A ∨ x ∈ B”.

So “x /∈ A ∪B” is equivalent to “∼ (x ∈ A ∨ x ∈ B)”.

Therefore “x ∈ (A ∪B)c” is equivalent to “∼ (x ∈ A ∨ x ∈ B)”.

On the other hand, “x ∈ Ac ∩Bc” is equiva;ent to “x ∈ Ac ∧ x ∈ Bc”.

And the sentences “x ∈ Ac”, “x ∈ Bc” are equivalent to “∼ x ∈ A”
and “∼ x ∈ B”.

So “x ∈ Ac ∩Bc” is equivalent to “(∼ x ∈ A) ∧ (∼ x ∈ B)”.

Hence (21.481) is equivalent to
(

∼ (x ∈ A ∨ x ∈ B)
)

⇐⇒
(

(∼ x ∈ A) ∧ (∼ x ∈ B)
)

. (21.482)

If we use P to stand for “x ∈ A”, and Q to stand for “x ∈ B”, then
(21.482) is the sentence

(

∼ (P ∨Q)
)

⇐⇒
(

(∼ P ) ∧ (∼ Q)
)

. (21.483)

116A bfproof from first principles is a proof in which you do not use any intermediate
results proved before. For example, after we proved that 2 + 2 = 4 from first principles
we proved that 2× 2 = 4 using the result that 2 + 2 = 4. That was not a proof from first
principles. In a proof from first principles, you would just have used the basic facts and
the definitions, and no theorem proved before.
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The biconditional sentence (21.483) is of the form L ⇐⇒ M. And a
biconditional L ⇐⇒ M is true if and only if L and M have the same
truth value, i.e., are both true or both false. So we are going to prove
that M is true if L is true and M is false if L is false.

Proof that if ∼ (P ∨Q) is true then (∼ P ) ∧ (∼ Q) is true.

Suppose that ∼ (P ∨Q) is true .

Then P ∨Q is false.

So both P and Q are false.

Hence ∼ P and ∼ Q are true.

So the conjunction (∼ P ) ∧ (∼ Q) is true .

Proof that if ∼ (P ∨Q) is false then (∼ P ) ∧ (∼ Q) is false.

Suppose that ∼ (P ∨Q) is false .

Then P ∨Q is true.

So either P is true or Q is true.

Suppose that P is true.

Then ∼ P is false.

So the conjunction (∼ P ) ∧ (∼ Q) is false.

Now suppose that Q is true.

Then ∼ Q is false.

So the conjunction (∼ P ) ∧ (∼ Q) is false.

We have shown that (∼ P ) ∧ (∼ Q) is false in both cases, when
P is true and when Q is true.

Hence (∼ P ) ∧ (∼ Q) is false .

So we have proved (21.481) for an arbitrary member x of U , and we
can go to

(∀x ∈ U)
(

x ∈ (A ∪B)c ⇐⇒ x ∈ Ac ∩Bc
)

. (21.484)

And (21.484) says that the sets (A∪B)c and (A∩B)c have rhe same members,
so the sets are equal, that ism

(A ∪B)c = Ac ∩Bc . (21.485)

This is exactly what we wanted to prove. Q.E.D.
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Now let us give a simple proof of Theorem 90 using Theorem 89.
Proof. We want to prove that (A ∩B)c = Ac ∪Bc.

Theorem 89 says that, if X, Y are any subsets of U , then

(X ∪ Y )c = Xc ∩ Y c . (21.486)

Apply this with X = Ac and B = Y c. We get

(Ac ∪Bc)c = (Ac)c ∩ (Bc)c . (21.487)

But (Ac)c = A, and (Bc)c = B. So

(Ac ∪Bc)c = A ∩B . (21.488)

Now take the complement of both sides. We get
(

(Ac ∪Bc)c
)c

= (A ∩B)c . (21.489)

But (Xc)c = X for every subset X of U . Therefore
(

(Ac ∪Bc)c
)c

= Ac ∪Bc (21.490)

Combining (21.489) and (21.490), we get

Ac ∪Bcc = (A ∩B)c , (21.491)

which is the formula we were trying to prove. Q.E.D.

Problem 109. Write a proof from first principles of Theorem 90. I strongly
recommend that you use the same style as in the proof of Theorem
89. The proof of Theorem 89 is really very simple, and almost me-
chanical. It looks long because it was written on purpose to show
you a proof written in a very precise, very detailed way, displaying
the use of the rules of logic. Usually one does not write p;roofs
like that, but I would like you to do it at least once, to show that
you can do it. �

21.6.3 A proof involving the symmetric difference

Let us prove Fact 45 from our list. Recall that the symmetric difference
of two sets A, B is the set A∆B given by

A∆B = (A−B) ∪ (B −A) .

In the proof, we are going to use the following facts, that are valid for
arbitrary subsets X,Y, Z of a set U :
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• X − Y = X ∩ Y c,

• X ∪Xc = U and X ∩Xc = ∅,

• X ∩ U = X and X ∩ ∅ = ∅.

• X ∪ U = U and X ∪ ∅ = X.

• The commutative laws

X ∪ Y = Y ∪X ,

X ∩ Y = Y ∩X ,

• The associative laws

X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z ,
X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z ,

• The distributive laws

X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z) ,
X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z) ,

• The De Morgan laws

Xc ∪ Y c = (X ∩ Y )c ,

Xc ∩ Y c = (X ∪ Y )c .

Theorem 91. If A,B are sets, then A∆B = (A ∪B)− (A ∩B).

Proof. Choose as universe any set U such that A ⊆ U and B ⊆ U . (For
example, we could choose U to be A ∪B.)
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Then

A∆B = (A−B) ∪ (B −A) (21.492)

= (A ∩Bc) ∪ (B ∩Ac) (21.493)

=
(

(A ∩Bc) ∪B
)

∩
(

(A ∩Bc) ∪Ac
)

(21.494)

=
(

B ∪ (A ∩Bc)
)

∩
(

Ac ∪ (A ∩Bc)
)

(21.495)

=
(

(B ∪A) ∩ (B ∪Bc)
)

∩
(

(Ac ∪A) ∩ (Ac ∪Bc)
)

(21.496)

=
(

(B ∪A) ∩ U
)

∩
(

U ∩ (Ac ∪Bc)
)

(21.497)

= (B ∪A) ∩ (Ac ∪Bc) (21.498)

= (A ∪B) ∩ (Ac ∪Bc) (21.499)

= (A ∪B) ∩ (A ∩B)c . (21.500)

So A∆B = (A ∪B)− (A ∩B). Q.E.D.

Problem 110. Write the justifications of each of the nine steps (21.492),
(21.493), (21.494), (21.495), (21.496), (21.497), (21.498), (21.499), (21.500)
of the proof of Theorem 91. �

Problem 111. Prove or disprove each of the following distributive laws

1. The distributive law of intersection with respect to symmetric differ-
ence. If A, B, C are sets, then

A ∩ (B∆C) = (A ∩B)∆(A ∩ C) . (21.501)

2. The distributive law of union with respect to symmetric difference. If
A, B, C are sets, then

A ∪ (B∆C) = (A ∪B)∆(A ∪ C) . (21.502)
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Appendix: a lemma on rearranging lists of numbers

First of all, let us introduce the notion of “equivalent lists”.

Definition 54. Let p = (pj)
n
j=1 and q = (qj)

m
j=1 be finite lists. We say that

p and q are equivalent (or that p is a rearrangement of q, or that q is a
rearrangement of p) if

1. m = n,

2. the sets

Set(p) = {x : (∃j ∈ INm)pj = x} ,
Set(q) = {x : (∃j ∈ INm)qj = x} ,

are equal,

3. every member of Set(p) (i.e., of Set(q)) occurs the same number of
times as an entry of p as it does as an entry of q. �

We will write
p ≡ q

to indicate that p is a rearrangement of q.

(II) Lemma 2. Let p = (pj)
n
j=1 be a finite list of real numbers. Then there

exists a list q = (qj)
n
j=1 such that

1. q ≡ p,

2. q is ordered,

3.
∑n

j=1 pj =
∑n

j=1 qj,

4.
∏n

j=1 pj =
∏n

j=1 qj.

Proof. We do a proof by induction.

Let P (n) be the statement

For every list p = (pj)
n
j=1 of length n consisting of real numbers

there exists an ordered list q = (qj)
n
j=1 that is equivalent to p and

satisfies
∑n

j=1 pj =
∑n

j=1 qj and
∏n

j=1 pj =
∏n

j=1 qj .

We prove that (∀n ∈ IN)P (n) by induction on n.
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The base case. P (1) is obviously true, because if p = (pj)
1
j=1 is a list

having just one entry, then of course p is ordered, so we can take q to be p,
and then q is an ordered list and is equivalent to p.

The inductive step. We want to prove (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

Let n ∈ IN be arbitrary.

Assume that P (n) is true.

We want to prove P (n+ 1).

Statement P (n+ 1) says

(∀p)
(

p = (pj)
n+1
j=1 is a list of real numbers =⇒

(∃q)
(

q = (qj)
n+1
j=1 is a list of length n+ 1 ∧ q is ordered ∧

q ≡ p ∧
n+1∑

j=1

pj =
n+1∑

j=1

qj ∧
n+1∏

j=1

pj =
n+1∏

j=1

qj

)
)

.

To prove P (n + 1) we must take an arbitrary p, assume that p
is a list of real numbers of lenght n + 1, and prove that there
exists an ordered list q that is equivalent to p and satisfies the
conditions on the sum and the product.

Let p be an arbitrary list of real numbers of length n+ 1.

Let p = (pj)
n+1
j=1 .

Let j∗ be an index belonging to INn+1 such that pj∗ has the
maximum possible value of all the pj . (That is, precisely

117,
j∗ ∈ INn+1 and pj∗ = Maxp.)

Let p′ be the list of length n obtained from p by removing
the j∗-th entry. (Precisely, let p′ = (p′j)

n
j=1 be the list defined

by p′j = pj for j < j∗, and p
′
j = pj+1 for j∗ ≤ j ≤ n.)

Then p′ is a list of primes of length n.

Since we are assuming that P (n) holds, there exists an or-
dered list q′ = (q′j)

n
j=1 such that q′ ≡ p′,

∑n
j=1 q

′
j =

∑n
j=1 p

′
j ,

and
∏n

j=1 q
′
j =

∏n
j=1 p

′
j .

117The existence of such a j∗ is a consequence of Theorem 82. This theorem says that
every finite list of real numbers has a lagest entry, which is completely obvious, but can
also be proved rigorously if anyone so desires.
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Let p′′ be the list of length n+1 obtained from p′ by adding
pj∗ as the n + 1-th entry. (Precisely, p′′ = (p′′j )

n+1
j=1 , where

p′′j = p′j for j ∈ IN, and p′′n+1 = pj∗ .)

Let q′′ be the list of length n+1 obtained from q′ by adding
pj∗ as the n + 1-th entry. (Precisely, q′′ = (q′′j )

n+1
j=1 , where

q′′j = q′j for j ∈ IN, and q′′n+1 = pj∗ .)

Since q′ ≡ p′ and the lists q′′, p′′ are obtained from q′ and
p′ by adding the same entry pj∗ at the end, it is clear that
q′′ ≡ p′′.

Since p′′ is obtained from p by interchanging two entries (by
moving pj∗ from the j∗-th position to the n+ 1-th position),
it is clear that p′′ ≡ p.

So q′′ ≡ p.

Furthermore, q′′ is ordered. (Reason: q′ is ordered, so the
first n entries of q′′ satisfy q′′1 ≤ q′′2 ≤ · · · ≤ q′′n. In addition,
for some j ∈ INn+1, q

′′
n = pj ≤ pj∗ = q′′n+1.)

Finally,

n+1∑

j=1

q′′j = (

n∑

j=1

q′′j ) + q′′n+1 = (

n∑

j=1

q′j) + pj∗ = (

n∑

j=1

p′j) + pj∗

= (

j∗−1
∑

j=1

p′j +
n∑

j=j∗

p′j) + pj∗ = (

j∗−1
∑

j=1

pj +
n∑

j=j∗

pj+1) + pj∗

= (

j∗−1
∑

j=1

pj +
n+1∑

j=j∗+1

pj) + pj∗

= (

j∗−1
∑

j=1

pj) + pj∗ + (
n+1∑

j=j∗+1

pj)

=

n+1∑

j=1

pj ,

so
n+1∑

j=1

q′′j =
n+1∑

j=1

pj .

∗ A similar argument shows that

n+1∏

j=1

q′′j =
n+1∏

j=1

pj .
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So, if we take q to be q′′, we have shown that q satisfies all
the conditions that appear in statement P (n+ 1).

This completes the proof of P (n+ 1), assuming P (n).

Hence P (n) =⇒ P (n+ 1).

• So (∀n ∈ IN)(P (n) =⇒ P (n+ 1)).

This completes the inductive step, and the proof of our lemma. Q.E.D.

22 Relations and functions

22.1 The definition of “relation”

Definition 55. A relation is a set of ordered pairs. �

That is:

• a relation is a set R such that every member of R is an ordered pair,

• equivalently, a relation is a set R such that

(∀x ∈ R)(∃u)(∃v)x = (u, v) . (22.503)

You should picture a relation as set of arrows: for each u and each v,
you draw an arrow from u to v to indicate that the pair (u, v) belongs to R.

Another way to think of a relation R is as some kind of device that
takes in “inputs” and produces “outputs”. The pairs belonging to R are the
input-output pairs produced by R.

For example, for the the relation

R = { (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (3, 1), (3, 5), (4, 5) } , (22.504)

• the input 1 will produce the outputs 2, 3, and 4,

• the input 2 will produce the outputs 1 and 2,

• the input 3 will produce the outputs 1 and 5,

• the input 4 will produce the output 5.
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22.1.1 The domain and range of a relation

Definition 56. If R is a relation, an input of R is an object x such that
(x, y) ∈ R for some y. �

(That is, x is an input of R if (∃y)(x, y) ∈ R.)

Definition 57. If R is a relation, an output of R is an object y such that
(x, y) ∈ R for some x. �

(That is, y is an output of R if (∃x)(x, y) ∈ R.)

Definition 58. If R is a relation and x is an input for R, an output of R
for the input x is an object y such that (x, y) ∈ R.

(That is, y is an output of R for x if (x, y) ∈ R.) �

Definition 59. If R is a relation, the domain of R is the set of all inputs
of R. We use Dom(R) to denote the domain of R. Therefore

Dom(R) = {x : (∃y)(x, y) ∈ R} . (22.505)

Definition 60. If R is a relation, the range of R is the set of all outputs
of R. We use Ran(R) to denote the range of R. Therefore

Ran(R) = {y : (∃x)(x, y) ∈ R} . (22.506)

22.2 Functions

22.2.1 The unique output property

Definition 61. If R is a relation, and x is an input of R (i.e., x ∈
Dom(R)), we say that x has the unique output property if there is only one
output of R for x.

That is, x has the unique output property if

(∀y)(∀z)
( (

(x, y) ∈ R ∧ (x, z) ∈ R
)
=⇒ y = z .

)

(22.507)

Example 113. For the relation R given by (22.504), the input 4 has the
unique output property. The inputs 1, 2 and 3 do not. �
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22.2.2 The definition of “function”

Definition 62. A function is a relation f such that every input of f has
the unique output property. �

That is, a set f is a function if

(i) f is a set of ordered pairs.

(ii) for all x, y, z, if (x, y) ∈ f and (x, z) ∈ f then y = z.

In purely formal language, f is a function if

(I) (∀u ∈ f)(∃x)(∃y)u = (x, y),

(II) (∀x)(∀y)(∀z)
((

(x, y) ∈ f ∧ (x, z) ∈ f
)
=⇒ y = z

)

.

22.2.3 The definition of “value” of a function at a member of its
domain

Definition 63. If f is a function and x ∈ Dom(f) (that is, x is an input
of f), then the value of f at x is the object f(x) such that f(x) is the unique
output of f for x. (Recall that the definition of function tells us that every
input of f has the unique output property, so the output for x is indeed
unique.) �

22.2.4 When are two functions equal?

The following theorem is the analogue for functions of the theorem on equal-
ity of sets: two sets are the same set if they have the same members. Here,
the result says: two functions are the same function if they have the same
domain and, for each member x of this domain, have the same values at x.

Theorem 92. Let f, g be functions. Then f = g if and only if Dom(f) =
Dom(g) and f(x) = g(x) for every x ∈ Dom(f).

Proof. It is clear that of f = g then Dom(f) = Dom(g) and f(x) = g(x)
for every x ∈ Dom(f).

Now assume that Dom(f) = Dom(g) and f(x) = g(x) for every x ∈
Dom(f).

We want to prove that f = g. Since f and g are sets, it suffices to prove
that f ⊆ g and g ⊆ f . Both proofs are the same, so I will do only one of
them.
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Let us prove that f ⊆ g. Let u be an arbitrary member of f . Since f is
a set of ordered pairs, u is an ordered pair, so we may pick x, y such that
u = (x, y). Since (x, y) ∈ f , x is an input of f , so x ∈ Dom(f), and y is an
output of f for x, so y = f(x). Since Dom(f) = Dom(g), and x ∈ Dom(f),
we see that x ∈ Dom(g). Since g(x) = f(x), it follows that (x, y) ∈ g. So
u ∈ g

So we have proved that every u ∈ f is in g. Hence f ⊆ g. Q.E.D.

22.2.5 The definition of “function from a set to a set”

Definition 64. If f , A, B are sets, we say that f is a function from A to B,
and write

f : A→ B ,

if

1. f is a function,

2. A is the domain of f ,

3. The range of f is a subset of B. �

In other words, “f : A→ B” means “f is a function, A is the domain of
f , and f(x) ∈ B for every x ∈ A”.

22.2.6 Composition of functions

Definition 65. If A, B, C are sets, f : A → B and g : B → C, the
composite function of f and g is the function g ◦ f : A→ C given by

g ◦ f(x) = g
(
f(x)

)
for every x ∈ A .

The following theorem says that the operation of composition of func-
tions satisfies the associative law in the sense that when both h ◦ (g ◦ f) and
(h ◦ g) ◦ f are defined, they are equal

Theorem 93. Let A, B, C, D be sets, and assume that f : A → B,
g : B → C, and h : C → D. Then

h ◦ (g ◦ f) = (h ◦ g) ◦ f . (22.508)

Proof. YOU DO IT.

Problem 112. Prove Theorem 93. �



Math 300, Fall 2020 449

22.2.7 The definition of “one-to-one function”

Definition 66. A function f is one-to-one (or injective) if whenever two
inputs are different, the values of f at those inputs are different as well.

In other words: f is one-to-one if

(∀u ∈ Dom(f))(∀v ∈ Dom(f))(u 6= v =⇒ f(u) 6= f(v)) . (22.509)

Equivalently, f is one-to-one if

(∀u ∈ Dom(f))(∀v ∈ Dom(f))
(
f(u) = f(v) =⇒ u = v

)
. (22.510)

22.2.8 The composite of two one-to-one functions

Theorem 94. Let A, B, C be sets, and assume that f : A→ B, g : B → C,
and both f and g are one-to-one. Then g ◦ f is one-to-one.

Proof. Let h = g ◦ f . We want to prove that h is one-to-one.
For that purpose, we prove that if x1 ∈ A, x2 ∈ A, and x1 6= x2, it

follows that h(x1) 6= h(x2).
Let y1 = f(x1), y2 = f(x2), Since f is one-to-one and x1 6= x2, we can

conclude that y1 6= y2.
Then, since g is one-to-one and y1 6= y2, we can conclude that g(y1) 6=

g(y2).
But g(y1) = g(f(x1)) = h(x1) , and g(y2) = g(f(x2)) = h(x12) . So

h(x1) 6= h(x2), as desired. Q.E.D.

22.2.9 The definition of “function onto a set”

Definition 67. A function f : A→ B is onto B if B = Ran(f).
In other words, f is onto B if

(∀b ∈ B)(∃a ∈ A)f(a) = b . (22.511)

Example 114. Let f be the “squaring a real number” function.
The domain Dom(f) is IR, the set of all real numbers. And, for x ∈ IR,

the value f(x) is given by
f(x) = x2 .

Then the range Ran(f) is IR+, the set of all nonnegative real numbers.
(Reason: every nonnegative real number has a square root.)

Then both statements “f : IR → IR” and “f : IR → IR+” are true. And
f is onto IR+ but f is not onto IR. �



Math 300, Fall 2020 450

Remark 31. The previous example shows that the sentence “f is onto” is
meaningless, in the same way as the the sentence “a is divisible” is mean-
ingless.

There is no such thing as “being divisible”. What makes sense is “being
divisible by some number”. “Divisible” is a 2-argument predicate: we say
things like “a is divisible by b”, and we do not say things like “a is divisible”.
Similarly, “is onto” is a 2-argument predicate: we say things like “f is onto
B”, and we do not say things like “f is onto”. �

22.2.10 The composite of two onto functions

Theorem 95. Let A, B, C be sets, and assume that f : A→ B, g : B → C,
f is onto B and g is onto C. Then g ◦ f is onto C.

Proof. YOU DO IT.

Problem 113. Prove Theorem 95. �

22.3 The definition of “bijection”

Definition 68. A function f : A → B is a bijection from A to B if it is
one-to-one and onto B. �
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A

B

f

A bijection

We can tell that A (the set of circles) and B (the set of squares) have the same
number of members because f (the set of arrows, i.e. of ordered pairs) is a
bijection from A to B:

• the arrows send every circle to one and only one square (that is, f is a
function),

• different circles are sent to different squares (that is, f is one-to-one),

• no square is left out (that is, f is onto).

Theorem 96. The empty set is a bijection from the empty set to the empty
set.

Proof. YOU PROVE THIS.

Problem 114. Prove Theorem 96.
You have to prove several things:

1. that ∅ is a relation, i.e., a set of ordered pairs. (So you have to prove
that every member of ∅ is an ordered pair.)

2. that ∅ is in fact a function. (So you have to prove that

(∀x)(∀y)(∀z)
((

(x, y) ∈ ∅ ∧ (x, z) ∈ ∅
)
=⇒ y = z

)

,

3. that the domain of ∅ is ∅,
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4. that ∅ : ∅ → ∅,

5. that ∅ is one-to-one,

6. that ∅ is onto ∅. �

22.3.1 The exchange lemma

The following theorem is rather simple, but very important. To understand
what is says, think of of an example. Suppose you have several couples
dancing in a large ballroom: every man is dancing with one and only one
woman, every woman is danving with one and only one man. That means
that we have in front of our eyes a bijection f from M to W , if M is the
set of all the men that are dancing, and W is the set of all the women. The
bijection f : M → W is defined as follows: for m ∈ M , f(m) is the woman
with whom m is dancing.

Theorem 97 then says that, if we are interested in a particular man a
and a particular woman b, we can rearrange things so that a will be dancing
with b. And the way we do that is as follows: if a is already dancing with
b then we do not have to do anything. And if a is not dancing with b, that
means that a is dancing with some other woman b′, and b is dancing with
some other man a′. So in this case we just have the two couples (a, b′) (a′, b)
exchange partners: we remove the pairs118 (a, b′), (a′, b) from f and put,
instead, the pairs (a, b) and (a′, b′), this gives rise ot a new bijection g. And
g(a) is b, as we wanted.

Theorem 97. Suppose A, B are sets, f : A→ B, and f is a bijection from
A to B. Then for every a ∈ A and every b ∈ B there exists a bijection g
from A to B such that g(a) = b.

Proof. YOU PROVE THIS.

Problem 115. Prove Theorem 97. Make sure you write a complete, de-
tailed proof of the fact that the function g that you define is a bijection.

HINT: Read carefully the explanation before the statement of the theorem.
All you have to do is repeat the same construction of g in general, for any sets
A, B, and bijection f , without mentioning “men”, “women”, and “dancing”.
�

118Do not forget that f is a set of ordered pairs. The fact that a is dancing with b′ and
a′ is dancing with b means that b′ = f(a) and b = f(a′), and this in turn means that the
pairs (a, b′) and (a′, b) are members of f .
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22.3.2 The composite of two bijections

Theorem 98. Let A, B, C be sets, and assume that f is a bijection from
A to B and g is a bijection from B to C. Then g ◦ f is a bijection from A
to C.

Proof. Let h = g ◦ f . We want to prove that h is a bijection.
Since f and g are bijections, they are one-to-one. Hence h is one-to-one

by Theorem 94.
Since f and g are bijections, f is onto B and g is onto C. Hence h is

onto C by Theorem 95.
So h is one-to-one and onto C. Therefore h is a bijection from A to C.

Q.E.D.

22.3.3 The identity function of a set

Definition 69. If A is a set, the identity function of A, or identity map of A,
is the function 1A : A→ A such that

1A(x) = x for every x ∈ A . (22.512)

The reason !A is called the “identity function” is that it behaves, with re-
spect to the operation of function composition, very much like the number
1 behaves with respect to the operation of multiplication of numbers:

• Multiplying a number by 1 yields the same number: x ·1 = x for every
number x.

• Composing a function with 1A yields the same function, except only
for the detail that now we have to be careful about domains: f ◦ 1A
makes sense for functions f : A → B (for any B), whereas 1A ◦ f
makes sense for functions f : B → A (for any B). The precise result
is Theorem 99 below.

Theorem 99. If A, B are sets, then

f ◦ 1A = f if f : A→ B , (22.513)

1A ◦ f = f if f : B → A . (22.514)

Proof. Suppose f : A→ B. Since 1A : A→ A, it follows that f ◦ 1A : A→
B. So both f and f ◦ 1A have domain A.
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To prove that the functions f ◦ 1A and f are equal it suffices, according
to Theorem 92, to prove that they have the same domain and that they have
the same value for every x in that domain.

We already know that f ◦1A and f have the same domain, because both
have domain A. If x ∈ A, then

(f ◦ 1A)(x) = f(1A(x)) = f(x) ,

So (f ◦ 1A)(x) = f(x). This completes the proof that f ◦ 1A = f .
Now let us suppose that f : B → A. Since 1A : A → A, it follows that

1A ◦ f : B → A. So both f and 1A ◦ f have domain B.
To prove that the functions 1A ◦ f and f are equal it suffices, according

to Theorem 92, to prove that they have the same domain and that they have
the same value for every x in that domain.

We already know that 1A ◦f and f have the same domain, because both
have domain B. If x ∈ B, then

(1A ◦ f)(x) = 1A(f(x)) = f(x) ,

So (1A◦f)(x) = f(x), and this completes the proof that 1A ◦ f = f .Q.E.D.

Theorem 100. If A is a set, then 1A is a bijection from A to A.

Proof. YOU DO IT.

Problem 116. Prove Theorem 100. �

22.3.4 The inverse of a relation

If you think of a relation R as a set of arrows (or of ordered pairs, which
amounts to the same thing), then it is clear that can define another relation
R1 by just reversing the arrows of R: for every arrow of R going from a point
x to a point y, we put in R−1 an arrow going from y to x. (Or, in terms of
ordered pairs: R−1 consists of all the pairs (u, v) such that (v, u) ∈ R.)

Definition 70. If R is a relation, then the inverse of R is the relation R−1

given by
R−1 = {(u, v) : (v.u) ∈ R} . (22.515)

Now that we know what the inverse of a relation is, it is clear that various
properties of R correspond to properties of R−1.

For example, consider the following relation (i.e., set of ordered pairs, or
set of arrows) R:
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A

B

Ra

q

p

and its inverse R−1:

A

B

R
−1

a

p

q

We see that R is not a function, because there is one point a which is
the source of two different arrowd ending at two different pointsp, q. (So R
violates the unique output property: the input u gives rise to two different
outputs, p and q.)

What does this tell us about R−1? It tells us that R−1 is not one-to-one,
because there are two different squares (i.e, inputs for R−1) that are sources
of arrows going to the same point. (Reason: both p and q are sent by R−1

to the same point a.)
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This tells us that if R is a function then R−1 should be one-to-one, and
if R is one-to-one then R−1 should be a function. In particular, we have:

Theorem 101. If f is a function, then

• the relation f−1 is a function if and only if f is one-to-one,

• if f is one-to-one, then the domain of f−1 is the range of f .

Proof. YOU DO THIS.

Problem 117. Prove Theorem 101. �

22.3.5 The inverse of the inverse

Theorem 102. If R is a relation, then the inverse of the inverse of R is R.
That is,

R =
(
R−1

)−1
.

Proof. YOU DO THIS.

22.3.6 The inverse of a bijection

Theorem 103. If A, B are sets, and f is a bijection from A to B, then
f−1 is a bijection from B to A.

Proof. We use Theorem 101 repeatedly.
Since f is a bijection, f is one-to-one, so by Theorem 101, f−1 is a

function. Since the inverse of f−1 is f , and f is a function it follows from
Theorem 101 that f−1 is one-to-one.

Since f is a function from A onto B, the range of f is B, so by Theorem
101 the domain of f−1 is B.

Since f−1 is a one-to-one, Theorem 101 tells that the domain of (f−1)−1

is the range of f 1 . But (f−1)−1 = f , so the domain of F is the range of f−1.
But the domain of f is A, so the range of f−1 is A, which menas that f−1

is a function onto A.
So f−1 : B → A, f−1 is one-to-one, and f−1 is onto A. So f−1 is a

bijection from B to A. Q.E.D.
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22.3.7 Some problems

Problem 118. Prove Theorem 102.

HINT: This is trivial. The proof should be no more than one or two lines.
�

Problem 119. Prove that if f : A −→ B, then f is a bijection from A to
B if and only if the following is true:

(#) There exists a function g : B −→ A such that g◦f = 1A and f ◦g = 1B.
�

Problem 120. Prove or disprove each of the following statements. (NOTE;
two of the statetents are true; the other four are false.)

1. If A, B, C are sets, f : A→ B and g : B → C are functions, and g ◦ f
is one-to-one, then f is one-to-one.

2. If A, B, C are sets, f : A→ B and g : B → C are functions, and g ◦ f
is one-to-one, then g is one-to-one.

3. If A, B, C are sets, f : A→ B and g : B → C are functions, and g ◦ f
is onto C then f is onto B.

4. If A, B, C are sets, f : A→ B and g : B → C are functions, and g ◦ f
is onto C, then g is onto to C.

5. If A, B, C are sets, f : A→ B and g : B → C are functions, and g ◦ f
is a bijection from A to C, then g is a bijection from B to C.

6. If A, B, C are sets, f : A→ B and g : B → C are functions, and g ◦ f
is a bijection from A to C, then f is a bijection from A to B.

23 Cardinality of sets

23.1 Sets with the same cardinality

If you look at the picture of a bijection on page 451, you can see right away,
without having to count them, that the number of squares is exactly the
same as the number or circles. This is the crucial insight that leads to the
following definition:
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Definition 71. Let A, B be sets. We say that

• B has the same number of members as A,

or that

• B has the same cardinality as A,

and write
card(A) = card(B) , (23.516)

if there exists a bijection from A to B,

Some authors call two sets “equivalent” if they have the same cardinality
in the sense of our defintion. I do not like this because in mathematics there
are already too many different meanings of thw word “equivalent” and I do
not want to add one more meaning to the list.

Other authors use the word “equipotent”, and you are welcome to use
it if you wish. I just do not like it so I will not use it.

But it is true that “having the same number of members” is an equiva-
lence relation, in the sense of the following theorem:

Theorem 104. Let A, B, C be sets. Then:

1. A has the same cardinality as A;

2. if B has the same cardinality as A, then A has the same cardinality
as B;

3. if B has the same cardinality as A, and C has the same cardinality as
B, then C has the same cardinality as A,

Proof. To prove that A has the same cardinality as A, we need a bijection
from A to A. But we already know such a bijection, namely, the identity
function 1A. We proved in Theorem 100 that 1A is a bijection from A to A,
so A has the same cardinality as A .

Now assume that B has the same cardinality as A. Then there exists a
bijection f from A to B. And Theorem 103 tells us that f−1 is a bijection
from B to A, so A has the same cardinality as B .
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Finally, assume that B has the same cardinality as A and C has the
same cardinality as B. Then there exist a bijection f from A to B and a
bijection g from B to C Theorem 98 then tells us that g ◦ f is a bijection
from A to C. So C has the same cardinality as A . Q.E.D.

23.2 Finite sets

23.2.1 An important notational convention: the sets INk

In what follows we will be making lots of statements about “the natural
numbers 1, 2, . . . , k”, that is “all the natural numbers j such that j ≤ k”.
So it will be convenient to give a name to the set of all such js.

THE SETS INk (A.K.A. {1, 2, . . . , k})

The expression “INk” stands for the set of all natural numbers that are less
than or equal to k. That is,

INk = {n ∈ IN : n ≤ k} . (23.517)

Another notation often used for this set is “{1, . . . , k}”, or “{1, 2, . . . , k}”.
We will use “INk” when k is a natural number, and also when k = 0. (So INk

makes sense when k ∈ IN ∪ {0}.)
Naturally, for n = 0 the set defined by (23.517) has no members, because there
are no natural numbers k such that k ≤ 0. So IN0 = ∅.
Here are other examples:

IN1 = {1} , IN2 = {1, 2} , IN3 = {1, 2, 3} ,
IN4 = {1, 2, 3, 4} , IN5 = {1, 2, 3, 4, 5} , IN6 = {1, 2, 3, 4, 5, 6} ,

Then

j ∈ INk

is just another way of saying “j ∈ IN and j ≤ k”.

23.2.2 Finite lists

Definition 72.
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• A function whose domain is the set INn for some nonnegative integer119

is called a finite list of length n.

• If f is a finite list of length n and k ∈ INn, then f(k) is the k-th entry
of the list.

• If f : INn → A (so that every entry f(k) of the finite list f is in A),
then f is said to be a list of members of A.

• If f : INn → A and f is onto A (so that every entry f(k) of the
finite list f is in A and every member a of A occurs (in the list, in
the sense that a = f(k) for some k ∈ INn) then f is said to be a
list of all the members of A.

• If f : INn → A and f is one-to-one (so that f has “no repeated entries”,
that is, f(j) and f(k) are never equal if j 6= k) then f is said to be a
list of members of A without repetition. �

Example 115. Let A be the set of all U.S. presidents from George Wash-
ington to Donald Trump. Since Donald Trump is the 45-th president, we
can define a function f : IN45 → A by letting

f(k) = the k−th U.S. president, for l ∈ IN45 .

So, for example,

f(1) = George Washington ,

f(2) = John Adams ,

f(3) = Thomas Jefferson ,

· · ·
f(16) = Abraham Lincoln ,

· · ·
f(44) = Barack Obama ,

f(45) = Donald Trump .

Then f is a finite list of all the U.S. Presidents. (That is, f : IN45 → A and
f is onto A.)

But f is not a one-to-one function (that is, f is not a list without rep-
etitions), because Grover Cleveland is both the 22nd and the 24th U.S.
president, so f(22) = f(24). �

119“Nonnegative integer” means “natural number or zero”. So the empty ser ∅ is a finite
list of length 0, because 0 is a nonnegative integer, and IN0 = ∅.
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Theorem 105. If A is a set, n is a nonnegative integer, and f is a list of
length n of all the members of A (that is, f : INn → A and f is onto A),
then there exist a nonnegative integer m such that m ≤ n, and a list g of
length m of all the members of A such that g is without repetition (that is,
g : INm → A, g is onto A, and g is one-to-one).

Proof. YOU DO THIS.

Problem 121. Prove Theorem 105.

HINT: Eliminate the repetitions that occur in f , one at a time, until there
are none left. Read Example 116 below to see how to eliminate one repe-
tition. Then, in your proof, you have to elimeinate all the repetitions, one
at a time. This means that you will have to do a proof by induction or by
well-ordering. �

Example 116. In Example 115 we saw how to write a list f of length 45 of
all the U.S. presidents. But this list is not without repetition (that is, f is
not a one-to-one function) because f(22) = f(24).

How can we create a list gof all the U.S. presidents without repetitions?
The trick is to eliminate the repetition. Here is how:
Define g : IN44 → A by letting

g(k) =

{
f(k) if k ≤ 23
f(k + 1) if k > 23

.

(In other words: from k = 1 up to k = 23 we don’t change anything, so
g(k) is the same as f(k). But for k = 24 we start changing things: we do
not let g(24) be f(24), because of we did that we would get g(24) = g(22),
and there would be a repetition, What we do instead is skip over Grover
Cleveland, and let g(24) be f(25) (that is we let g(24) =William McKinley).
And the we go on: g(25) is f(26), g(26) is f(27), and so on.)

Then g iss a list without repetitions of all the U.S. presidents. (That is,
g is a one-to-one function from IN44 onto A. So g is a bijection from INn to
A.) �

23.2.3 Finite sets and their cardinality

Definition 73. If n is a nonnegative integer, then a set A is a
set with n members (or a set of cardinality n) if there exists a list of length
n of all the members of A without repetiotions.

Using function langauge, we can say the same thing as follows:
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if n ∈ IN ∪ {0}, then A is a set with n members (or “A is
a set of cardinality n”) if there exists a bijection from INn
to A.

And the we can define the concepts of “finite set” and “infinite set”.

Definition 74. A set A is finite if it is a set of cardinality
n for some nonnegative integer n.
Equivalently, a set A is finite if for some nonnegative in-
teger n here exists a bijection from INn to A.

Definition 75. A set A is infinite if it is not a finite set.

Example 117.

1. The empty set is a set of cardinality 0. (Proof: as shown in Theorem
96, the empty set is a bijection from IN0 to the empty set.)

2. Any singleton {a} is a set of cardinality 1. (Proof: if A = {a}, define
f : IN1 → A by letting f(1) = a. Then f is a bijection from IN1 to A.)

3. An undordered pair {a, b} is a set of cardinality 2 if and only if a 6= b.
(Proof: YOU DO IT.)

4. An undordered triple {a, b, c} is a set of cardinality 3 if and only if
a 6= b, a 6= c, and b 6= c. (Proof: YOU DO IT.)

5. If n ∈ IN ∪ {0}, then the set INn is a set of cardinality n. (Proof: the
function 1INn

is a bijection from INn to INn.)

Problem 122. Do the two proofs of parts 3 and 4 of Example 117. �
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23.2.4 Can we talk about the cardinality of a finite set? The
fundamental theorem of finite set cardinality theory

Now that we know what a finite set is, we would like to go further and
give the following definition: If A is a finite set and f is a bijection from
INn to A for some nonnegative integer n, then the number n is said to be
the number of members of A, or the cardinality of A.

But there is a problem. Suppose the following was possible, for some
finite set A:

1. m and n are nonnegative integers,

2. there exists a bijection f from INm to A,

3. there exists a bijection g from INn onto A,

4. m 6= n

(For example, there could exist bijections from IN10 to A and from IN12 to
A.)

If this happened, then we would not know which number should be called
“the cardinality of A”. We would have to talk about “cardinalities of A”,
accepting that a finite set can have several different cardinalities, in the
same way as, for example, an integer can have several factors, and several
multiples, so we do not say “6 is the factor of 30”, or “30 is the multiple of
6”; we say “6 is a factor of 30” and “30 is a multiple of 6”.

Fortunately, this problem does not occur. The cardinality of a finite set
is unique, so we can talk about “the” cardinanlty of a finite set. This is so
because of the following theorem:

Theorem 106. Assume that A is a set and m and n are nonnegative inte-
gers such that there exists a bijection f from INm to A, and there exists a
bijection g from INn to A. Then m = n.

Thanks to Theorem 106, if I know that a set A if of cardinality n, then
I can say that n is the cardinality (or the number of members) of A.

Proof of Theorem 106. The key point of the proof is the exchange lemma
that we proved earlier as Theorem 97. We will ue the exchange lemma
to prove Lemma 4, which is essentially the inductive step in the proof by
induction of Lemma 3. which easily implies our result.

Let us assume that f is a bijection from INm to A, g is a bijection from
INn to A. We want to prove that m = n.
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Since g is a bijection from INn to A, Theorem 103 tells us that g−1 is a
bijection from A to INn.

Now we have bijections

f : INm → A , g−1 : A → INn .

And then Theorem 98 tells us that the composite function h : INm → INn,
defined by h = g−1 ◦ f , is a bijection from INm → INn.

So all we need to do prove the following lemma:

Lemma 3. If m ∈ IN ∪ {0}, n ∈ IN ∪ {0}, and there exists a bijection from
INm to INn, then m = n.

To prove Lemma 3, we use the exchange lemma, i.e., Theorem 97.
Suppose there exists a bijection f from INm to INn. Then by Theorem

97, there exists a bijection k from INm to INn that has the additional property
that f(m) = n.

But then, if we remove the pair (m,n) from k, we get a bijection from
INm−1 to INn−1. So we have proved120

Lemma 4. If m ∈ IN, n ∈ IN, and there exists a bijection from INm to INn,
then there exists a bijection from INm−1 to INn−1.

Once we have Lemma 4, we can do a proof of Lemma 3 by induction or
by well-ordering.

I will give you the proof using well-ordering.
Call a nonnegative integer n “bad” if there exist a nonnegative integer

m such that m 6= n and there exists a bijection from INm to INn.
We want to prove that there are no bad nonnegative integers. In other

words, if we let B be the set of all bad nonngative integers, we want to prove
that B is empty.

We first prove that 0 is not bad.

Proof that 0 is not bad.

• Assume that 0 is bad .

• Since 0 is bad, there exist a nonnegative integer m such that m 6= 0,
and a bijection f from INm to IN0.

120Why have I suddenly switched from “m ∈ IN ∪ {0} and n ∈ IN ∪ {0}” to “m ∈ IN and
n ∈ IN”? That’s because if m = 0 or n = 0 then k is empty so the pair (m,n) is not in k

and cannot be removed from k.
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• Since m 6= 0, m ∈ Z, and m ≥ 0, it follows that m ∈ IN, sp 1 ∈ INm.

• On the other hand, since f is bijection from INm to IN0, the domain of
f is the set INm, so 1 ∈ Dom(f).

• Then f(1) ∈ IN0, so IN0 6= ∅ .

• But IN0 = ∅ .

So the assumption that 0 is bad has led us to a contradiction. Hence
0 is not bad .

We now prove that B is empty, and do it by contradiction.

• Assume that B 6= ∅ .

• Then B is a nonempty subset of Z, and B is bounded below because
every member of B is ≥ 0.

• So by the well-ordering principle, B has a smallest member b.

• Then b ∈ Z, b ≥ 0, and b is bad.

• So in particular b 6= 0, because we already know that 0 is not bad.

• Then b ∈ IN.

• Since b is bad, there exist a nonnegative integer m such that m 6= b,
and a bijection f from INm to INb,

• Since b ∈ IN, b ≥ 1, so 1 ∈ INb.

• Since f is onto INb, and 1 belongs to INb, we may pick x ∈ Dom(f)
such that f(x) = 1.

• Then Dom(f) 6= ∅, so INm 6= ∅, and then m 6= 0.

• Since m ∈ Z, m ≥ 0, and m 6= 0, it follows that m ∈ IN.

• Since f is a bijection from INm to INb, and both m and b are natural
numbers, we can applu Lemma 4 and conclude that there exists a
bijection g from INm−1 to INb−1.

• But m 6= b, so m− 1 6= b− 1.

• So b− 1 is bad .
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• But b− 1 is not bad , because we are assuming that b is the smallest
bad integer.

So the assumption that B is nonempty has led us to a contradiction.

Hence B is empty, and our proof of Lemma 3 is complete.

End of the proof of Theorem 106. As explained before, if f is a bijection
from INm to A and g is a bijection from INn to A, then g−1 ◦ f is a bijection
from INm to INn. Then Lemma 3 telts that m = n, and proof of Theorem
106 is complete. Q.E.D.

Problem 123. We have given a proof of Lemma 3 using well-ordering.
Prove Lemma 3 using induction.

You are allowed to use Lemma 4. �

23.2.5 Definition of “cardinality” of a finite set

Now that we have proved Theorem 106, we can talk about the cardinality
(or the number of members) of a finite set A.

Definition 76. Let A be a finite set. Then the nonnegative integer n such
that

(*) there exists a bijection from INn to A,

is called the cardinality of A, or the number of members of A. (The number
n exists because A is finite, and is unique thanks to Theorem 106.)

We write “card(A)” to denote the cardinality of A. �

Problem 124. Prove that:

1. If A is a finite set, B is a set, and there exisrs a bijection from B to
A, then B is finite and card(B) = card(A).

2. If A and B are finite sets, and card(A) = card(B), then there exisrs a
bijection from B to A. �

23.2.6 A trivial but important lemma

The following lemma is very obvious but, as all obvious things is this game,
needs proof. The lemma says that if you have a set with n members and
remove one member then you are left with a set with n− 1 members.
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Lemma 5. If A is a finite set, and a is a member of A, then the set A−{a}
is finite and has cardinality card(A)− 1.

Proof. Let n = card(A). Then we may pick a bijection f from INn to A.
Thanks to the exchange theorem (i.e., Theorem 97) there exists a bijection
g from INn to A such that g(n) = a.

Let h = g −
{
(n, a)

}
. (That is, h is the set of ordered pairs obtained

from g by removing the pair (n, a).)
Then h is a bijection from INn−1 to A − {a}. (This is easy to prove.

YOU SHOULD PROVE IT.)
So A− {a} is a finite set and card(A− {a}) = card(A)− 1. Q.E.D.

23.2.7 Subsets of a finite set

Definition 77. A proper subset of a set A is a subset B of A such that
B 6= A. �

Theorem 107. Let A be a finite set, and let B be a proper subset of A.
Then B is finite and card(B) < card(A).

Proof. We will use induction.
Let P (n) be the predicate

P (n) If A is a finite set with cardinality n, then every proper subset B of A
is finite and has cardinality < n.

We prove that P (n) is true for every nonnegative integer n, by induction on
n starting at n = 0.

Basis step. P (0) is true because, if A if a finite set with cardinality 0, then
A must be the empty set, so A has no proper subsets, so the statement “if
B is a proper subset of A then B is finite and cars(B) < 0” is vacuously
true.

Inductive step. Assume P (n) is true.
We want to prove P (n+ 1). That is, we want to prove that

(#) If A is a finite set with cardinality n+ 1, then every proper subset of
A is finite and has cardinality < n.

Let A be a finite set with cardinality n+1, and let B be a proper subset of
A. We want to prove that

(##) B is finite and card(B) < n+ 1.
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Since B is a proper subset of A, B 6= A, so there exists a ∈ A such that
a /∈ B. (Reason: if every member of A was in B, it would follow that
A ⊆ B. Since B ⊆ A, this would imply B = A, contradicting our assuption
that B 6= A.) Let A′ = A− {a}. Then B ⊆ A′.

By Lemma 5, A′ is a finite set with cardinality n.
The set B is either equal to A′ or a proper subset of A′.
If B = A′, then B is finite and card(B) = n, so (##) holds.
If B is a proper subset of A′ then, by the inductive hypothesis P (n), B

is finite and card(B) < n, so a fortiori (##) holds.
So (##) holds in both cases. Therefore P (n+ 1) is true.
This completes the induction, and then the proof of Theorem 107.Q.E.D.

The following is a slightly stronger version of Theorem 107, in which the
subset B is not required to be proper.

Theorem 108. Let A be a finite set, and let B be a subset of A. Then

1. B is finite,

2. card(B) ≤ card(A),

3. if B is a proper subset of A then card(B) < card(A).

Proof. Let A be a finite set with cardinailty n, and let B be a subset of A.
If B is proper, them Theorem 107 tells us that B is finite and card(B) < n.

If B is not proper, then B = A, so B is finite and card(B) = n.
So our desired conclusion holds in both cases. Q.E.D.

23.2.8 The Dirichlet pigeonhole principle

We are going to use another very important result.

Theorem 109. Assume that A, B are finite sets and f : A → B is a
one-to-one function. Then

1. card(A) ≤ card(B),

2. card(A) < card(B) if and only if f is not onto B.

Theorem 109 is known as the Dirichlet pigeonhole principle (DPHP), for the
following reason.
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Think of A as a set of pigeons, and B as a set of holes. The function f
assigns a hole f(p) to each pigeon p. The fact that f is one-to-one says that
different pigeons go to different holes, i.e., that it does no happen that two
different pigeons are assigned to the same hole. The theorem then says that

1. there are at least as many holes as there are pigeons,

2. the number of pigeons is equal to the number of holes if and only if
every hole is occupied by a pigeon.

Here is another example: suppose that in a classroom there are m stu-
dents and n seats, and each student is seated, and no seat has more than
one student in it. Then the DPHP says that there are at least as many seats
as there are students.

Proof of Theorem 109. YOU DO IT.

Problem 125. Prove Theorem 109.
HINT: Let C be the range of f , so C is a subset of B. Prove first that

f is a bijection from A to C. Then use Theorems 107 and 108. �

Here is another version of the pigeonhole principle. This time, we look at
the case when every hole is occupied by at least one pigeon. The conclusion
in this case is that

1. there are at least as many pigeons as there are holes.

2. the number of pigeons is equal to the number of holes if and only if no
hole is occupied by more than one pigeon.

Theorem 110. Assume that A, B are finite sets and f : A → B is a
function onto B. Then

1. card(A) ≥ card(B),

2. card(A) > card(B) if and only if f is not one-to-one.

Proof. YOU DO IT.

Problem 126. Prove Theorem 110.
HINT: Construct a one-to-one “hole-to-pigeon” function by picking for

each hole h a pigeon p that occupies hole h. Show that this function is
one-to-one and the use Theorem 109. �
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Theorem 111. Let A, B be finite sets. Then

1. card(A) ≤ card(B) if and only if there exists a one-to-one function
from A to B,

2. card(A) < card(B) if and only if there exists a one-to-one function
from A to B but there does not exist a one-to-one function from B to
B.

Proof. YOU DO IT.

Theorem 112. Let A, B be finite sets. Then card(A) ≤ card(B) if and
only if there exists a function from B onto A.

1. card(A) ≤ card(B) if and only if there exists a function from B onto
A,

2. card(A) < card(B) if and only if there exists a function from B onto
A but there does not exist a function from A onto B.

Proof. YOU DO IT.

Problem 127. Prove Theorems 111 and 112. �

23.2.9 Unions of finite sets

Theorem 113. Let A, B be disjoint121 finite sets. Then A ∪ B is finite,
and

card(A ∪B) = card(A) + card(B) . (23.518)

Proof. YOU DO IT.

Problem 128. Prove Theorem 113.

HINT: You an do this by induction with respect to card(A)or card(B). Or
you can do it directly, by combining a bijection f from INm to A and a
bijection g from INn to B to construct a bijection h from INm+n to A∪B.�

Theorem 114. Let A, B be finite sets. Then A ∪B is finite, and

card(A ∪B) = card(A) + card(B)− card(A ∩B) . (23.519)

Proof. YOU DO IT.

121Two sets A, B are disjoit if A ∩B = ∅.
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Problem 129. Prove Theorem 114.

HINT: Divide A∪B intro three sets C,D,E as follows: C = {x : x ∈ A∧x /∈
B}, D = {x : x ∈ B ∧ x /∈ A}, and E = A ∩ B. Tnen C,D, F are finite by
Theorem 108.

Also, C ∩ E = ∅, C ∪ E = A, D ∩ E = ∅, D ∪ E = B, A ∩ D = ∅,
A ∪D = A ∪B. �

23.2.10 Sets of subsets

Theorem 115. Let A be a finite set. Then the power set P(A) is finite,
and

card
(

P(A)
)

= 2card(A) . (23.520)

Proof. YOU DO IT.

Problem 130. Prove Theorem 115.

HINT: Do it by induction on n = card(B).
Fix a ∈ A, and let A′ = A − {a}. Then the subsets of A are of two

kinds: those that do not contain a as a member and those that do. The
subsets of the first kind are exactly the subsets of A′, so by the inductive
hypthesis there are 2n−1 such sets. If B is the set of all the subsets of the
second kind, then you should construct a bijection from B to P(A′). Then
P(A) = P(A′) ∪ B, P(A′) ∪ B = ∅, and card(B) = card

(
P(A′)

)
. �

23.2.11 Cartesian products of finite sets

Theorem 116. Let A, B be finite sets. Then A×B is finite, and

card(A×B) = card(A) · card(B) . (23.521)

Proof. YOU DO IT.

Problem 131. Prove Theorem 116.

HINT: Do it by induction on m = card(B).
Prove that if b ∈ B, and B′ = B − {b}, then

A×B = (A×B′) ∪ (A× {b}) , and (A×B′) ∩ (A× {b}) = ∅ .

and use this in your inductive argument. �
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23.3 Infinite sets

We recall the definition of “infinite set”: A set is infinite if it is not a finite
set.

Theorem 117. The set IN of all natural numbers is infinite.

Idea of the proof. If IN was finite, then it would have some cardinality
n ∈ IN ∪ {−}, and this means that we can put a pigeon for each k ∈ IN and
fit all these pigeons in n holes. But IN has at least m members, for every m.
So for every m we can fit m pigeons in n holes. So m ≥ n by the Dirichlet
pigeonhole principle. So the number n is greater than every natural number,
But such an n cannot exist.

Now let us write this down in mathematical language.

Proof. Suppose IN was finite.
Then there exist a natural number n and a bijection f from INn to IN.
The inverse function g = f−1 is then a bijection from IN to INn.
Now let m be an arbitrary natural number.
Define a function gm, with domain INm, by letting

gm(k) = g(x) for k ∈ INm .

Then gm : INm → IN and gm is one-to-one. (Proof: if k1, k2 ∈ INm and
gm(k1) = gm(k2) then g(k1) = g(k2), so k1 = k2 because g is one-to-one.

Furthermore, g : INm → INn. It the follows from the Dirichlet pigeonhole
principle (Theorem 109) that n ≥ m.

Since n was an arbitrary real number, we have proved that

(∀m ∈ IN)n ≥ m. (23.522)

So we have found a natural number n which is larger than every natural
number.

But we know that such a number cannot exist. (That is, (23.522) is
impossible. This is easily seen as follows: if (23.522) was true for some
n ∈ IN, then we could specialize to m = n+ 1 and conclude that n ≥ n+ 1.
But n < n+ 1, so we have arrived at a contradiciton.)

So the assumption that IN is finite has led us to a contradiction.Q.E.D.

Theorem 118. If A, B are sets, f is a bijection from A to B, and A is
infinite, then B is infinite.
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Proof. YOU DO THIS.

Problem 132. Prove theorem 118. �

Theorem 119. If A is a set, B is a subset of A, and B is infinite, then A
is infinite. �

Proof. YOU DO THIS.

Problem 133. Prove theorem 119. �

Theorem 120. Define a function f from IN to Z as follows:

f(n) =

{
n
2 if n ∈ IN and n is even
1−n
2 if n ∈ IN and n is odd

. (23.523)

Then f is a bijection from IN to Z.

Proof. YOU DO THIS.

Problem 134. Prove Theorem 120. �

Problem 135. Let E>0 be the set of all even natural numbers. That is,

E>0 = {n ∈ IN : 2|n} , (23.524)

and let E be the set of all even integers, so

E = {n ∈ Z : 2|n} , (23.525)

Construct bijections from IN to E>0 and from IN to E . �

NOTE: If f is a function whose domain in IN × IN, the set of all order
pairs (m,n) of natural numbers, and u is a member of the domain of f ,
we have to write f(u) for the value of f at u. But u is itself an ordered
pair (m,n), so we should write f

(
(m,n)

)
for rhe value of f at u. i.e., at

(m,n). But we are going to follow the starnard practice of omitting one pair
of parentheses and just write “f(m,n)”, instead of “f

(
(m,n)

)
”.

Theorem 121. Define a function f from IN× IN to IN as follows:

f(m,n) = 2m−1(2n− 1) for (23.526)

Then f is a bijection from from IN× IN to IN.
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Proof. YOU DO THIS.

Problem 136. Prove Theorem 121. �

Problem 137. Construct a partition of IN into infinitely many infinite
sets. (The definition of “partition” is given in a previous homework.)

HINT: Using the result of Theorem 121, this should juat require two or
three lines. �

Theorem 122. There exists a bijection from IN, the set of all naatural num-
bers, to Q, the set of all rational numbers.

Proof. This proof is done in the book. You should look it up there.

Problem 138. Prove that there exists a bijection from IN to Q×Q. �

23.3.1 Countable sets

Definition 78.

• A set A is countable if there exists a one-to-one function f : A→ IN.

• A set A is counatbly infinite if it is countable and infinite. �

It is clear that

1. IN is countable. (Proof: the function 1IN is a bijection from IN to IN,
so in particular it is a one-to-one function from IN to IN.

2. Every subset of a countable set is countable. (Proof: Let A be count-
able, and let B be a subset of A. Let f : A → IN be a one-to-one
function. Define g : B → IN by letting g(x) = f(x) for each x ∈ B.
Then g is one-to-one.)

3. Every finite set is countable.

4. IN is countably infinite. (Proof: IN is countable, and IN is infinite
because of Theorem 117.)

5. If A, B are sets and f is a bijection from A to B, then A is countably
infinite if and only if B is.

6. Z, IN × IN, and Q are countably infinite. (Reason: we have already
constructed bijections from IN to Z and from IN to IN×IN, and Theorem
122 tells us that there exists a bijection from IN to Q.)
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23.3.2 Do all infinite sets have the same cardinality?

The results of Theorems 120, 121 and problems 135 show that sets as diverse
as Z, E>0, E , and IN× IN, some of which (for example, Z and IN× IN) appear
to be much larger than IN, have in fact the same cardinality as IN.

Could it be that all infinite sets have the same cadinality as IN?
The asnwer is a resounding no!!!. Here is a result which is very easy to

prove but has momentous consequences.

Theorem 123. (Cantor) If X
is a set, then there does not ex-
ist a function from X onto the
power set P(X).

Proof. Suppose f : X → P(X) is onto P(X).
Let

S = {x ∈ X : x /∈ f(x)} .
Then S is a subset of X, so S ∈ P(X). Since f is onto P(X), we can pick
s ∈ X such that f(s) = S.

Let us prove that s ∈ S. Suppose s /∈ S. Then s /∈ f(s), so s satisfies
the membership criterion for S (“x /∈ f(x)”). Therefore s ∈ S. But we are
assuming that s /∈ S, so we have reached a contradiciton. So the assumption
that s /∈ S had led us to a contradiction, and then it follows that s ∈ S.

Now let us prove that s /∈ S. Suppose s ∈ S. Then s ∈ f(s), so s does
not satisfy the membership criterion for S (“x /∈ f(x)”). Therefore s /∈ S.
But we are assuming that s ∈ S, so we have reached a contradiciton. So
the assumption that s ∈ S had led us to a contradiction, and then it follows
that s /∈ S.

We have proved that s ∈ S ∧ s /∈ S . So we have arrived at a contradic-
tion. The contradiction resulted from assuing that there exists a function f

fromX onto P(X). Hence a function f from X onto P(X) does not exists .

Q.E.D.
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23.3.3 Consequences of Cantor’s Theorem

Theorem 123 says that if X is any set then there does not exist a function
from X onto P(X). So in particular there cannot exist a bijection from X
to P(X).

This means that the sets X and P(X) do not have the same cardinality.
Can we say that one of them is “larger” than the other one? The answer is
“yes”, P(X) definitely has a larger cardinality than X. But before we say
that, we have to know what it means: what does it mean for a set A to
have a larger cardinality than that of a set B?

In order to asnwer that question, we first look at what happens for finite
sets:

(I) First of all, if A and B are finite sets, then the cardinalities card(A)
and card(B) are nonnegative integers, and we know what it means for
a nonnegative integer to be larger than another nonnegative integer.

(II) Second, Theorem 30 tells us that, if A and B are finite sets, then

1. card(A) ≤ card(B) if and only if there exists a one-to-one function
from A to B,

2. card(A) < card(B) if and only if there exists a one-to-one function
from A to B but there does not exist a one-to-one function from
B to B.

The conditions of (II) make perfect sense for infinite sets as well, even though
we do not know what “card(A)” means. (We have only defined what it means
for two sets A, B to “have the same cardinality”. This does not say that
there is some object called “the cardinality of a set”, and that two sets have
the same cardinality if and only if that object is the same for both. For
finite sets, we were able to define such an object, and it turned out to be a
nonnegative integer. For infinite sets, this can be done too, but we have not
done it yet, so at this point we do not know what “card(A)” means. All we
know is what “card(A) = card(B)” means. And in the next section we are
going to assign a menaning to “card(A) ≤ card(B)”, “card(A) < card(B)”,
“card(A) ≥ card(B)”, and “card(A) > card(B)”, but we will still not know
what “card(A)” means.
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23.3.4 Comparing sizes of sets. The Cantor-Schroeder-Bernstein
Theorem

We follow the idea of Theorem 30. (We could also follow the second one,
and it works, but there are some complications.)

Definition 79. Suppose that Let A, B are sets.

• We say that A has cardinality smaller than or equal to that of B, or
that B has cardinality larger than or equal to that of A, and write

card(A) ≤ card(B) ,

or
card(B) ≥ card(A) ,

if there exists a one-to-one function from A to B.

• We say that A has cardinality strictly smaller than that of B, or that
B has cardinality strictly larger than that of A, or that and write

card(A) < card(B)

or
card(B) > card(A) ,

if there exists a one-to-one function from A to B, but there does not
exist a bijection from A to B. �

As an important example of the use of these definitions, we prove the
following theorem.
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Theorem 124. (Cantor) If X
is a set, then the cardinality of X
is strictly smaller than the car-
dinality of the power set P(X).
That is:

card(X) < card
(
P(X)

)
.

(23.527)

Proof. First, we show that card(X) ≤ card
(
P(X)

)
, by constructing a

one-to-one function f : X → P(X).
This is very easy: define f : X → P(X) by letting

f(x) = {x} for x ∈ X .

Then f is clearly one-to-one. (Proof: suppose x1, x2 ∈ X and f(x1) = f(x2);
then {x1} = {x2}; since x2 ∈ {x2}, it follows that x2 ∈ {x1}; but x1 is the
only member of {x1}; so x2 = x1.)

So we have constructed a one-to-one function from X to P(X).
On the other hand, Theorem 123 tells us that there does not exist a

function from X onto P(X). In particular, there does not exist a bijection
from X to P(X).

This proves that (23.527) holds. Q.E.D.

The relations “≤”, “≥”, “<”, “>”, should behave like their homonyms122

the relations “≤”, “≥”, “<”, “>”, between real numbers.

122Homonyms are words or symbols that are spelled or written identically but have
different meanings. For example, “crane”, a mechanical lifting machine, and “crane”, a
bird, are homonyms. Mathematics is full of homonyms. For example, “<” as a binary
relation between real numbers, and “<” as a binary relation between cardinalities, are
different meanings of the symbol “<”.
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So, for example, we would expect that there is a true theorem about in-
equalities among cardinals corresponding to each of the following properties
of inequalities between real numbers:

(R1) If a, b ∈ IR, then a ≤ b if and only if b ≥ a.

(R2) If a, b ∈ IR, then a < b if and only if b > a.

(R3) If a, b, c ∈ IR, a ≤ b, and b ≤ c, then a ≤ c.

(R4) If a, b ∈ IR, then a ≤ b if and only if a < b or a = b.

(R5) If a, b ∈ IR and a < b, then a 6= b.

(R6) If a, b ∈ IR, a ≤ b, and b ≤ a, then a = b.

(R7) If a, b, c ∈ IR, a ≤ b, b ≤ c, and either a < b or b < c, then a < c.

(R8) If a, b ∈ IR, then either a ≤ b or b ≤ a.

It turns out that the analogues of the nine properties listed above are
all true; some are trivially true, but others are not at all obvious
and their proofs require a lot of work.

Let us start with the obvious ones: the analogues of (R1), (R2), (R3),
(R4), (R5) for cardinalities are trivially true. We say that in the following
theorem:

Theorem 125. Let A, B, C be sets. Then

(C1) card(A) ≤ card(B) if and only if card(A) ≥ card(B).

(C2) card(A) < card(B) if and only if card(B) > card(A).

(C3) If card(A) ≤ card(B) and card(B) ≤ card(C) then card(A) ≤ card(C)

(C4) card(A) ≤ card(B) if and only if either card(A) < card(B) or card(A) =
card(B).

(C5) If card(A) < card(B) then it’s not true that card(A) = card(B).

Proof. Statement (C1) is true because Definition 79 tells us “card(A) ≤
card(B)” and “card(B) ≥ card(A)” are two ways of writing the same thing.

Similarly, statement (C2) is true because Definition 79 tells us “card(A) <
card(B)” and “card(B) > card(A)” are two ways of writing the same thing.

To prove (C3), assume that card(A) ≤ card(B) and card(B) ≤ card(C).
This means, according to Definition 79, that there exist one-to-one functions
f : A → B and g : B → C. Then the composite g ◦ f is a function from
A to C, and Theorem 94 tells us that g ◦ f is one-to-one. Hence g ◦ f is a
one-to-one function from A to C. So card(A) ≤ card(C).
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Next, we prove (C4). Wew have to prove that

card(A) ≤ card(B) ⇐⇒
(
card(A) < card(B) ∨ card(A) = card(B)

)
.

(23.528)
To prove (23.528) we prove the implications

card(A) ≤ card(B) =⇒
(
card(A) < card(B) ∨ card(A) = card(B)

)
.

(23.529)
and

(
card(A) < card(B) ∨ card(A) = card(B)

)
=⇒ card(A) ≤ card(B) .

(23.530)
Finally, we have to prove (C5). But (C5) is completely trivial: by

definition, “card(A) < card(B)” means “there is a one-to-one function
from A to B but there is no bijection from A to B”. So in particular if
card(A) < card(B) then there is no bijection from A to B, so it’s not true
that card(A) ≤ card(B). Q.E.D.

To prove the analogues of (R6), (R7), and (R8), we need deeper results from
set theory.

Let us start with (C6), the analogue for cardinalities of property (R6).
We need to prove that

(&) if card(A) ≤ card(B) and card(B) ≤ card(A) then card(A) = card(B).

Translating this into English, (&) says:

(&&) if there exist one-to-one functions f : A → B, g : B → A, then there
exists a bijection from A to B.

And we have to asnwer the question: is (&&true?.
For finite sets the answer is undoubtedly “‘yes”: if A, B have cardinalities

m, n, and there exist one-to-one functions f : A → B, g : B → A, then it
follows from the Dirichlet pigeonhole principle that m ≤ n and n ≤ m, , so
m = n, and this implies that there exists a bijection from A to B.

Actually, even more can be proved:

Theorem 126. If A, B are finite sets, and f : A → B, g : B → A are
one-to-one functions, then f is a bijection from A to B and g is a bijection
from B to A.
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Proof. The range Ran(f) of f is a subset of A, and f is a bijection from A
to Ran(f).

Assume that Ran(f) is a proper subset of B, then card(Ran(f)) <
card(B) by Theorem 107, while on the other hand card(Ran(f)) = card(A),
so card(A) < card(B), and then the Dirichlet pigeonhole principle tells us
that there cannot exist a one-to-one function from B to A. Since g is a
one-to-one function from B to A, the assumptiom that Ran(f) is a proper
subset of B has led us to a contradiction.

So Ran(f) = B, and then f is onto B. A similar argument proves that
g is onto A. Q.E.D.

For infinite sets, the analogue of Theorem 126 is not true. Here is a
sumple example. Let E be the set of all even natural numbers. Define
f : IN → E , and g : E → IN by letting

f(n) = 4n for n ∈ IN ,

g(n) = n for n ∈ E .
Then f : IN → E , and g : E → IN aare one-to-one functions but neither one
is a bijection.

And yet, even though f and g are not themselves bijecyion, a bijection
from IN to E does exist: just define h : IN → E by letting h(n) = 2n, and it
is clear that h is a bijection from IN to E .

It turns out that what happened in this example actually does happen
in general.

Theorem 127. (Cantor-
Schroeder-Bernstein) If A, B
are sets and and f : A → B,
g : B → A are one-to-one
fucntions, then there exists a
bijection from A to B.
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The proof of this theorem is given in the book, and I am not going to
do it here.

Thanks to the Cantor-Schroeder-Bernstein theorem, statement (&&)
above is true, and this implies that condition (C6), the analogue for sets
of property (R6), is true. So we get the following theorem:

Theorem 128. Let A, B be sets such that card(A) < card(B). Then
∼ card(A) = card(B), that is, B does not have the same cardinality as A.

(We do not give a proof, because we have already proved this.

We now turn to (C7), the cardinality analogue of (R7).

Theorem 129. If A, B, C are sets such that card(A) ≤ card(B), card(B) ≤
card(C), and one of the inequalities is strict (that is, either card(A) <
card(B) or card(B) < card(C)) then card(A) < card(C).

Proof. Assume that card(A) ≤ card(B) and card(B) ≤ card(C). Then we
pick one-to-one functions f : A→ B and g : B → C.

We want to prove that if one of the inequalities is strict, then card(A) <
card(C).

We already know from Theorem 125, condition (C3), that card(A) ≤
card(C), and this means that either card(A) < card(C) or card(A) =
card(C).

So, in order to prove that card(A) < card(C), we have to exclude the
possibility that card(A) = card(C).

Suppose that card(A) = card(C). Then there exist bijections h, k, from
A to C and from C to A, respectively.

So we have functions

f : A→ B , g : B → C , h : A→ C , k : C → A ,

such that f and g are one-to-one and h and k are bijections.
Since the composite of two one-to-one functions is one-to-one, the com-

posite function k ◦g : B → A is one-to-one. So we have one-to-one functions
f : A → B, k ◦ g : B → A. Then the Cantor-Schroeder-Bernstein theorem

tells us that there exists a bijection from A to B so card(A) = card(B) .

Similarly, the composite function f ◦ k : C → B is one-to-one. So we
have one-to-one functions g : B → C, f ◦ k : C → B. Then the Cantor-
Schroeder-Bernstein theorem tells us that there exists a bijection from B to

C so card(B) = card(C) .
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So we have proved that both card(A) = card(B) and card(B) = card(C).
And this contradicts the assumption either card(A) < card(B) or card(B) <
card(C).

This contradction arose from assuming that card(A) = card(C). Hence
it is not true that card(A) = card(C). Q.E.D.

Finally, we need the cardinality analogue of (R8). This is indeed true, and
we state it as a theorem:

Theorem 130. If A, B are sets, then card(A) ≤ card(B) or card(B) ≤
card(A). That is, one of the following is true:

• there exists a one-to-one function from A to B,

• there exists a one-to-one function from B to A.

The proof of this theorem requires methods that are above the level of this
course. So here we just leave the theorem without proof.

23.3.5 Infinitely many infinite cardinals

It follows from Theorem 124 that

Theorem 131. The power set
P(IN) is not countable.

So there are are least two different infinite cardinals: that of IN (and all
countably infinits sets), and that of P(IN). But then it is clear that there
are many more, in fact infinitely many more, because we can consider the
sets

IN , P(IN) , P
(
P(IN)

)
, P
(

P
(
P(IN)

))

, P
(

P
(

P
(
P(IN)

))
)

, · · · .

That is, we can define, inductively,

P0(IN) = IN ,

Pn+1(IN) = P
(

Pn(IN)
)

for n ∈ Z , n ≥ 0 ,
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and in this way we obtain an infinite sequence
(

Pn(IN)
)∞

n=1
of sets each one

of which has cardinality strictly larger than the previous obe.
But the story does not end there. We can construct an enormous set

P∞(IN), defined by

P∞(IN) =
∞⋃

n=0

Pn(IN) ,

and then stasrt again, contructiong the sets Pn

(

(
P∞(IN)

)

)

, and so on.

The result is an infinite tower of infinite towers of infinite towers ,,,, of
infinite cardinals.

24 The paradoxes of set theory: Russell’s paradox
and others

But in the story I have been telling you there are serious problems. We said
that the cardinality of the power set of a set X is strictly larger than the
cardinality of X. But what if we apply this to the set of all sets?

That is, let

X =
{

x : x is a set
}

.

Then we have seen that card
(
P(X)

)
> card(X) .

But P(X) is a set whose members are sets, so P(X) is a subset of X,

and then card
(
P(X)

)
≤ card(X) .

So we get a contradiction! And this time we have done nothing wrong!

24.0.6 The Russell paradox

Here is another way to get a contradiction in Set Theory. It is the famous
Russell paradox.

Let X be the set of all sets that are not members of themselves. That
is, we let

X = {x : x is a set ∧ x /∈ x} .

Let us prove that X ∈ X. Suppose that X /∈ X . Then is a set that is not
a member of itself. So X satisfies the membership criterion for X. Hence

X ∈ X. But we are assuming that X /∈ X. So X ∈ X ∧X /∈ X , which is
a contradiction.



Math 300, Fall 2020 485

So the assumption that X /∈ X has led us to a contradiction. Hence

X ∈ X .

Now let us prove that X /∈ X. Suppose that X ∈ X . Then is a set that
is a member of itself. So X does not satisfy the membership criterion for

X. Hence X /∈ X. But we are assuming that X ∈ X. So X ∈ X ∧X /∈ X ,
which is a contradiction.

So the assumption that X ∈ X has led us to a contradiction. Hence

X /∈ X .

So we have proved that X ∈ X ∧X /∈ X, which is a contradiction.
So

In set theory it is possible to prove
a contradiction.

And, once you have proved a contradiction, then everything csn be
proved, because:

In a theory in which it is possible to
prove a contradiction, it is possible
to prove every statement, whether
it is true or false.

This is so for a simple reason: take any statement S you want (for
example, S could be “2 + 2 = 5”, or “6 is a prime number”, or “the 45th
president of the U.S. is Hillary Clinton”, or “the Earth hs flat and rests on
top of a giant turtle”.

Let us prove S, assuming we know how to prove a contradction C.
To prove S, you do it by contradiction: start with “Assume ∼ S”. Then

insert your proof of C, ending with C. So, you see, assuming ∼ C we got a
contradiction. Therefore we have proved S. Q.E.D.
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What is wrong with this. Isn’t is wonderful that we can prove every-
thing? Shouldn’t we celebrate? No more having to study hard to learn how
to prove things!!! We have an easy method for proving everything, without
doing any work!

The trouble is,

A theory in which it is possible to
prove everything is completely use-
less.

The purpose of writing proofs is to make sure that the mathematical
statements we write are true. If we prove something, then we can be sure it
is true, because the rules of logic are designed to guarantee that everything
we prove is true.

The catch is: if we can prove everything, including statements that are
false, then the fact that we have proved something tells us nothing: it could
be true or it could be false.

Think of theorem-proving as analogous to smoke-detecting.
A näıve person might think that, since the purpose of a smoke detector

is to detect smoke, a device that rings every time there is smoke is precisely
what is desired of a good smoke detector.

However, it may happen that the device rigns every time there is smoke
because it rings all the time,whetehr there is smoke or not.

Such a “smoke detector” is useless. What you want is a device that rings
when there is smoke and does not rignt when there is no smoke. That way,
when you hear the device ring, you know that there is smoke.

Similarly, theorem-proving is useful if you can prove the statements that
are true, and you cannot prove those that are not true. If you can prove too
muc=h, if you can prove assertion that are false, then your theorem-proving
has absolutely no value.

24.0.7 The need for Axiomatic Set Theory

The trouble with the paradoxes of the last section arose from the fact that
we made indiscriminate use of the Axiom of Set Formation. The axiom
says that “if we take any one-variable predicate P (x), we can form the set
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{x : P (x)}.” Using this, we created the sets {x : x is a set} (the set of all
sets) and {x : x is a set ∧ x /∈ x} (the set of all sets that do not belong to
themselves). And these sets led us to contradictions.

The solution that mathematicians have adopted is to develop “Axiomatic
Set Theory“ (AST). In AST, axioms are stated that tell us under what
conditions is is possible to create a set. And the axioms are carefully chosen
so that the sets that caused us trouble cannot be formed.

But this should be the subject of another course.

25 Some more problems

In the following problems, if a and b are real numbers, we write “[a, b]”
to denote the closed interval {x ∈ IR : a ≤ x ≤ b}, and “(a, b)” to
denote the open interval {x ∈ IR : a < x < b}.

Problem 139. Prove that if X is a set then there does not exist a one-
to-one function f : P(X) −→ X. �

Problem 140.

1. Let f , g be the functions defined by

(i) Dom(f) = IR,

(ii) f(x) = x√
1+x2

for x ∈ IR,

(iii) Dom(g) = (−1, 1),

iv) g(y) = y√
1−y2

for y ∈ (−1, 1),

(a) Prove that f : IR −→ (−1, 1), g : (−1, 1) −→ IR, g ◦ f = IIR, and
f ◦ g = I(−1,1).

(b) Conclude from this that IR and the open interval (−1, 1) have
the same cardinality.

2. If a, b ∈ IR and a < b, let fa,b be the function with domain (−1, 1),
given by fa,b(x) = a+ 1

2(b− a)(x+1) for x ∈ (−1, 1). Prove that f is
a bijection from (−1, 1) to (a, b), and conclude from this that IR and
the interval (a, b) have the same cardinality.

Problem 141. Construct a bijection from the closed interval [0, 1] to the
open interval (0, 1). (Recall that [0, 1] is the set {x ∈ IR : 0 ≤ x ≤ 1}, and
(0, 1) is the set {x ∈ IR : 0 < x < 1}.)
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HINT: Imagine an infinite hotel123 H, in which

• the points of the open interval (−1, 1) are the numbers of the rooms of
H; each room has a number which is a member of (0, 1), and for eacm
member x of (−1, 1) there is a room no. x. (So for example there is
room no. 0.00001, room no. 0.3, room no. 1

π
, room no. 23

77 , room no.
0.9, room no. 0.99, room no. 0.999, etc. But of course there is no
room 0 or room 1, because the rooms of H correspond to the members
of the open interval (0, 1), so 0 and 1 are not possible room numbers.)

• At some time, the hotel has a set of guests, also labeled by the members
of the open interval (0, 1), and each guest occupies the room with the
same label (so guest no. 0.13 occupies room no. 0.13, guest no. 1

π

occupies room no. 1
π
, and so on).

• Suddenly, two new guests, labeled 0 and 1, arrive and ask for rooms.

• And nobody, neither the old guests nor the new ones, is willing to
share a room.

• So you have to accomodate these two new guests, while making sure
that none of the old guests is left without a room.

If we were dealing with a finite hotel, this would be impossible. If a hotel
has 100 rooms, all of which are occupied, and two new guests arrive and ask
for a room, there is no way to oblige them.

But for an infinoite hotel it can be done. The way you can do this is by
finding within (0, 1) an infinite sequence of rooms (for example, rooms 1

2 ,
1
3 ,

1
4 ,

1
5 ,

1
6 , and so on), and then move the guests in those rooms to other rooms

also in the sequence, making room for the two new guests.

123This ins known as “Hilbert’s holtel”.


