
UNIVERSAL BOREL ACTIONS OF COUNTABLE GROUPS

SIMON THOMAS

Abstract. If the countable group G has a nonabelian free subgroup, then

there exists a standard Borel G-space such that the corresponding orbit equiv-

alence relation is countable universal. In this paper, we will consider the

question of whether the converse also holds.

1. Introduction

A Borel equivalence relation E on a standard Borel space X is said to be count-

able if every E-class is countable. For example, if G is a countable group and X

is a standard Borel G-space, then the corresponding G-orbit equivalence relation

EXG is a countable Borel equivalence relation. Conversely, by a remarkable result of

Feldman-Moore [5], if E is an arbitrary countable Borel equivalence relation on the

standard Borel space X, then there exists a countable group G and a Borel action

of G on X such that E = EXG .

Definition 1.1. A countable group G is said to be action universal if there exists

a standard Borel G-space X such that EXG is universal.

Recall that a countable Borel equivalence relation E is said to be universal if

F ≤B E for every countable Borel equivalence relation F . (In this case, we will

often say that E is countable universal .) For example, by Dougherty-Jackson-

Kechris [4], if the countable group G has a nonabelian free subgroup, then G is

action universal. More precisely, for each countable group G and standard Borel

space X, let E(G,X) be the orbit equivalence relation arising from the shift action

of G on the standard Borel space XG. Note that this notation includes the cases
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when X is a finite or a countably infinite standard Borel space. For example,

E(G, 2) is the orbit equivalence relation arising from the shift action of G on 2G.

Theorem 1.2 (Dougherty-Jackson-Kechris [4]). If the countable group G has a

nonabelian free subgroup, then E(G, 2) is universal and hence G is action universal.

No other examples of action universal groups are currently known. On the other

hand, the following result is an immediate consequence of the results in Jackson-

Kechris-Louveau [8, Section 2].

Theorem 1.3 (Jackson-Kechris-Louveau [8]). If G is a countable amenable group,

then G is not action universal.

This raises the possibility of yet another “dynamic” version of the so-called von

Neumann Conjecture that a countable group G is non-amenable if and only if G

contains a copy of the free group F2 on two generators. (The original von Neumann

conjecture, which is actually due to Day, was disproved by Ol’shanskii [14] in 1980.

For other possible “dynamic” versions, see Jackson-Kechris-Louveau [8, 6.1(D)] and

Kechris-Miller [10, Problem 28.14]. We should also mention the remarkable recent

result of Gaboriau-Lyons [6] which states that if G is a countable non-amenable

group, then there is a free standard Borel G-space X with a G-invariant ergodic

probability measure µ such that there exists a free ergodic Borel action of F2 on

(X,µ) with EXF2
⊆ EXG .)

Question 1.4. Is it true that if G is a countable group, then the following state-

ments are equivalent:

(i) G is action universal.

(ii) G contains a nonabelian free subgroup.

A positive answer to Question 1.4 seems extremely unlikely; and in Section 5, we

will present some evidence which suggests that free Burnside groups of sufficiently

large odd exponent are counterexamples.

Conjecture 1.5. If n is a sufficiently large odd integer, then the free 2-generator

Burnside group B(2, n) of exponent n is action universal.
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Of course, it is also natural to ask whether every countable non-amenable group

is action universal. However, in Section 4, we will prove that this is not true. (As

we will explain in Section 4, Theorem 1.6 is a consequence of Theorem 4.7.)

Theorem 1.6. There exists a countable non-amenable group which is not action

universal.

In the final section of this paper, we will switch our attention from universal

actions to G-universal actions. Here if G is a countable group and X is a standard

Borel G-space, then EXG is said to be G-universal if EZG ≤B EXG for every stan-

dard Borel G-space Z. In [4], Dougherty-Jackson-Kechris proved that if G is any

countable group, then E(G, 2N) is G-universal; and in [8], Jackson-Kechris-Louveau

proved that if G is any countable group, then E(G,N) is G-universal. However,

there are currently no countable groups G for which it is known that E(G, 2) is not

G-universal.

By Theorem 1.2, if G has a nonabelian free subgroup, then E(G, 2) is universal

and hence E(G, 2) is G-universal. On the other hand, suppose that G is amenable

and that X is a standard Borel G-space. By Connes-Feldman-Weiss [3], if µ is

any Borel probability measure on X, then there exists a G-invariant Borel subset

X0 ⊆ X with µ(X0) = 1 such that the restriction EXG � X0 = EXG ∩ (X0 × X0 )

is hyperfinite and it follows that EXG � X0 ≤B E(G, 2). While these considerations

do not rule out the existence of an amenable group G such that E(G, 2) is not

G-universal, they suggest that it would be more effective to focus our attention

on non-amenable groups with no nonabelian free subgroups. In Section 6, we will

prove the following result.

Theorem 1.7. If G is a simple quasi-finite sofic Kazhdan group, then

E(G, 2) <B E(G, 3) <B · · · <B E(G,n) <B · · · <B E(G,N).

It is currently not known whether there are any groups satisfying the hypotheses

of Theorem 1.7. However, if every hyperbolic group is residually finite, then such

groups exist. (For more on the question of the residual finiteness of hyperbolic

groups, see Kapovich-Wise [9].)

This paper is organized as follows. In Section 2, we will recall some basic notions

from the theory of countable Borel equivalence relations; and we will state an easily
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applicable consequence of Popa’s Cocycle Superrigidity Theorem which does not

explicitly mention Borel cocycles. In Section 3, we will introduce the notion of

a weakly action universal group; and we will prove that if G is weakly action

universal, then the conjugacy relation ≈G of G on the space of its subgroups is

not essentially free. In Section 4, we will consider the question of which countable

Borel equivalence relations can be realized up to Borel bireducibility as ≈G for

some countable group G; and we will prove that there exists an uncountable family

{Gα | α < 2ℵ0 } of groups such that the conjugacy relations ≈Gα
are pairwise

incomparable with respect to Borel reducuibility. In Section 5, we will prove that if

n is a sufficiently large odd integer and G = B(2, n) is the free 2-generator Burnside

group of exponent n, then E(G, 2) is not essentially free. Finally, in Section 6, we

will switch our attention from universal actions to G-universal actions; and we will

use the remarkable recent work of Bowen [2] on the ergodic theory of sofic groups

to prove Theorem 1.7.

2. Preliminaries

In this section, we will recall some basic notions from the theory of countable

Borel equivalence relations; and we will state an easily applicable consequence of

Popa’s Cocycle Superrigidity Theorem which does not explicitly mention Borel

cocycles.

2.1. Countable Borel equivalence relations. A detailed development of the

general theory of countable Borel equivalence relations can be found in Jackson-

Kechris-Louveau [8]. Here we will only remind the reader of a few basic notions.

Suppose that E, F be countable Borel equivalence relations on the standard

Borel spaces X, Y respectively. Then a Borel map ϕ : X → Y is said to be a

homomorphism from E to F if for all x, y ∈ X,

x E y =⇒ ϕ(x) F ϕ(y).

If ϕ satisfies the stronger property that for all x, y ∈ X,

x E y ⇐⇒ ϕ(x) F ϕ(y),

then ϕ is said to be a Borel reduction and we write E ≤B F . If both E ≤B F and

F ≤B E, then we write E ∼B F and say that E, F are Borel bireducible. We write
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E <B F if both E ≤B F and E �B F . Finally, if there exists a countable-to-one

Borel homomorphism ϕ : X → Y from E to F , then we say that E is weakly

Borel reducible to F and write E ≤wB F . In this case, ϕ is said to be a weak Borel

reduction from E to F . As expected, a countable Borel equivalence relation E

is weakly universal if F ≤wB E for every countable Borel equivalence relation F .

(It is currently not known whether there exists a weakly universal countable Borel

equivalence relation which is not universal. For a discussion of this interesting open

problem, see Thomas [27].)

Suppose that G is a countable group and that X is a standard Borel G-space;

i.e. that there exists a Borel action (g, x) 7→ g · x of G on X. Then G is said to

act freely on X if g · x 6= x for all 1 6= g ∈ G and x ∈ X. In this case, we say

that X is a free standard Borel G-space. If E is a countable Borel equivalence on

the standard Borel space X, then E is said to be free if there exists a countable

group G with a free Borel action on X such that EXG = E. The countable Borel

equivalence relation E is said to be essentially free if there exists a free countable

Borel equivalence relation F such that E ∼B F .

2.2. Popa Superrigidity. The proofs of most of the results in this paper make

essential use of Popa’s Cocycle Superrigidity Theorem [22]. In this subsection, in

order to make the paper intelligible to readers who are unfamiliar with the notions

and techniques of superrigidity theory, we will state an easily applicable consequence

of Popa’s Theorem which does not explicitly mention Borel cocycles. First we need

to give two preliminary definitions.

Definition 2.1. Suppose that E, F are countable Borel equivalence relations on

the standard Borel spaces X, Y and that µ is a Borel probability measure on X.

Then the Borel homomorphism ϕ : X → Y from E to F is said to be µ-trivial if

there exists a Borel subset Z ⊆ X with µ(Z) = 1 such that ϕ maps Z into a single

F -class. Otherwise, ϕ is said to be µ-nontrivial .

Definition 2.2. If G, H are groups, then the group homomorphism π : G→ H is

a virtual embedding if the kernel kerπ is finite.

Throughout this paper, µm will denote the usual product probability measure

on mG. The following result is an easy consequence of Popa’s Cocycle Superrigidity
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Theorem [22]. (For example, see Thomas [26, Section 5].) Here we will only mention

that the hypothesis that H is a free standard Borel H-space is necessary in order

to be able to define a cocycle to which Popa’s Theorem can be applied.

Theorem 2.3. Let Γ be a countably infinite Kazhdan group and let G be a countable

group such that Γ E G. Suppose that H is any countable group and that Z is a free

standard Borel H-space. If ϕ : mG → Z is a µm-nontrivial Borel homomorphism

from E(G,m) to EZH , then there exists

(i) a virtual embedding π : G→ H,

(ii) a G-invariant Borel subset Y ⊆ mG with µm(Y ) = 1, and

(iii) a Borel map b : mG → H

such that the “adjusted homomorphism” ϕ′(y) = b(y)ϕ(y) satisfies

ϕ′(g · y) = π(g) · ϕ′(y)

for all g ∈ G and y ∈ Y .

3. Weakly action universal groups

In this section, we will introduce the notion of a weakly action universal group;

and we will prove that if G is weakly action universal, then the conjugacy relation

of G on the space of its subgroups is necessarily complicated. (As we will see, the

appropriate level of generality for our study turns out to be the class of weakly action

universal groups rather than the more obvious class of action universal groups.)

Recall that a countable Borel equivalence relation E is weakly universal if for every

countable Borel equivalence relation F , there exists a weak Borel reduction (i.e. a

countable-to-one Borel homomorphism) from F to E.

Definition 3.1. A countable group G is said to be weakly action universal if there

exists a standard Borel G-space X such that EXG is weakly universal.

The following basic result will play a key role in the remainder of this paper. (It

should be pointed out that Theorem 3.2 is an easy consequence of Popa’s Cocycle

Superrigidity Theorem [22].)

Theorem 3.2 (Thomas [26]). Suppose that G is a countable group and that X is a

standard Borel G-space. If EXG is weakly universal, then EXG is not essentially free.
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Thus if EXG is weakly universal, then there necessarily exist many x ∈ X such

that the point stabilizer Gx = { g ∈ G | g · x = x } is nontrivial. Furthermore,

recall that if g ·x = y, then Gy = g Gx g
−1. This suggests that we should study the

complexity of the conjugacy relation of G on the space of its subgroups.

Definition 3.3. If G is a countable group, then Sg(G) denotes the standard Borel

space of the subgroups of G and ≈G denotes the conjugacy relation on Sg(G), which

is defined by

K ≈G L ⇐⇒ (∃g ∈ G ) L = g K g−1.

If Martin’s Conjecture on Turing degree invariant Borel maps is true, then we

have the following characterization of the class of weakly action universal groups.

However, it should be pointed out that Martin’s Conjecture has been an open

problem for over 30 years.

Theorem 3.4. Assuming Martin’s Conjecture, if G is a countable group, then the

following are equivalent:

(i) G is weakly action universal.

(ii) ≈G is weakly universal.

Before we can state Martin’s Conjecture, we must first recall some basic no-

tions from recursion theory. We will follow the usual convention of identifying the

powerset P(N) of the natural numbers with the Cantor space 2N, by identifying

each subset A ∈ P(N) with its characteristic function χA ∈ 2N. If A, B ∈ 2N,

then B is Turing reducible to A, written B ≤T A, if there exists an oracle Turing

machine which computes χB when its oracle tape contains χA. Here an oracle Tur-

ing machine is a Turing machine with a second “read only” tape, called the oracle

tape, upon which we can write the characteristic function of any set A ∈ 2N, which

is called the oracle. (For more details, see Rogers [23].) The Turing equivalence

relation ≡T on 2N is defined by

A ≡T B ⇐⇒ A ≤T B and B ≤T A.

Finally for each A ∈ 2N, the corresponding cone is C = {B ∈ 2N | A ≤T B }. (When

studying the Turing equivalence relation, the set of cones plays an analogous role

to that played by the full-measure subsets in ergodic theory.)
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By Martin’s Conjecture, we mean the following special case of a more general

conjecture (also known as the 5th Victoria Delfino Problem) which was formulated

by Martin in Kechris-Moschovakis [11].

Martin’s Conjecture. If ϕ : 2N → 2N is a Borel homomorphism from ≡T to ≡T ,

then exactly one of the following conditions holds:

(a) There exists a cone C ⊆ 2N such that ϕ maps C into a single ≡T -class.

(b) There exists a cone C ⊆ 2N such that x ≤T ϕ(x) for all x ∈ C.

Proof of Theorem 3.4. It is clear that (ii) implies (i). Conversely, suppose that X

is a standard Borel G-space such that EXG is weakly universal and suppose that ≈G
is not weakly universal. Consider the Borel map ϕ : X → Sg(G) defined by

ϕ(x) = Gx = {g ∈ G | g · x = x}.

Then ϕ is a Borel homomorphism from EXG to ≈G. Let ψ : 2N → X be a weak

Borel reduction from ≡T to EXG and let θ = ϕ ◦ψ. Assuming Martin’s Conjecture,

by Thomas [27, Theorem 1.4], since θ is a Borel homomorphism from ≡T to ≈G
and ≈G is not weakly universal, there exists a cone C ⊆ 2N such that θ maps C

into a single ≈G-class. (Here it should be emphasized that the currently known

“proof” of Thomas [27, Theorem 1.4] makes essential use of Martin’s Conjecture.)

Hence, after slightly adjusting ψ if necessary, we can suppose that there exists a

fixed subgroup K 6 G such that Gψ(A) = K for all A ∈ C. For later use, note that

≡T � C is weakly universal. (For example, see Thomas [27, Observation 2.3].)

Let X0 = {x ∈ X | Gx = K }. If x, y ∈ X0 and x EXG y, then there exists an

element g ∈ G such that g · x = y. Since

gKg−1 = gGxg
−1 = Gy = K,

it follows that g ∈ NG(K). Furthermore, if g′ ∈ NG(K) also satisfies g′ · x = y,

then g′K = gK. Thus EXG � X0 can be realized as the orbit equivalence relation of

the corresponding free Borel action of ∆ = NG(K)/K on X0. Applying Theorem

3.2, it follows that EXG � X0 is not weakly universal. But this is a contradiction,

since ≡T � C ≤wB EXG � X0 and ≡T � C is weakly universal. �
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Unfortunately, as we mentioned earlier, it is currently not known whether Mar-

tin’s Conjecture is true. In the remainder of this section, we will prove the following

weak version of Theorem 3.4.

Theorem 3.5. If ≈G is essentially free, then G is not weakly action universal.

Question 3.6. Does the converse of Theorem 3.5 hold?

The proof of Theorem 3.5 makes use of Popa Superrigidity, together with the

following result.

Theorem 3.7 (Andretta-Camerlo-Hjorth [1]). If the countable group G has a free

nonabelian subgroup, then ≈G is countable universal.

Proof of Theorem 3.5. Suppose that G is a weakly action universal group such that

≈G is essentially free. Then there exists a countable group H and a free standard

Borel H-space Z such that ≈G ∼B EZH . Let ϕ : Sg(G) → Z be a Borel reduction

from ≈G to EZH . For later use, let L be a finitely generated group with no non-

trivial finite normal subgroups such that L does not embed into H. (To see that

such a group L exists, recall that there exist uncountably many finitely generated

groups up to isomorphism and that H has only countably many finitely generated

subgroups. Hence there exists a finitely generated group L0 which does not embed

into H and we can let L be the free product Z ∗L0.) Let Γ = SL3(Z)×L and note

that Γ also has no nontrivial finite normal subgroups.

Next let X be a standard Borel G-space such that EXG is weakly universal and

let ψ : 2Γ → X be a weak Borel reduction from E(Γ, 2) to EXG . Let σ : X → Sg(G)

be the Borel homomorphism defined by σ(x) = Gx and let θ : 2Γ → Z be the Borel

homomorphism from E(Γ, 2) to EZH defined by θ = ϕ◦σ◦ψ. Applying Theorem 2.3,

since Γ does not embed into H, there exists a Borel subset Y ⊆ 2Γ with µ2(Y ) = 1

such that θ maps Y into a single EZH -class; and this implies that σ ◦ ψ maps Y

into a single conjugacy class of subgroups of G. Hence, after slightly adjusting ψ

if necessary, we can suppose that there exists a fixed subgroup K 6 G such that

Gψ(y) = K for all y ∈ Y . Let X0 = {x ∈ X | Gx = K}. Then EXG � X0 can be

realized as the orbit equivalence relation of the corresponding free Borel action of

the quotient group ∆ = NG(K)/K. Clearly the weak Borel reduction ψ � Y from
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E(Γ, 2) � Y to EXG � X0 can be extended to a µ2-nontrivial Borel homomorphism

from E(Γ, 2) to EXG � X0. Hence, by Theorem 2.3, there exists an embedding

π : Γ → ∆. In particular, since SL3(Z) 6 Γ, it follows that ∆ = NG(K)/K has a

nonabelian free subgroup; and this implies that that G also has a nonabelian free

subgroup. Applying Theorem 3.7, it follows that ≈G is countable universal and

hence ≈G is not essentially free, which is a contradiction. �

4. The conjugacy relation on the space of subgroups

In this section, we will consider the question of which countable Borel equivalence

relations can be realized up to Borel bireducibility as ≈G for some countable group

G. As we mentioned earlier, Andretta-Camerlo-Hjorth [1] have shown that if G has

a free nonabelian subgroup, then ≈G is countable universal. On the other hand,

by Jackson-Kechris-Louveau [8, Proposition 2.13], if G is amenable, then ≈G is

Fréchet amenable. (For the definition of Fréchet amenability, see Jackson-Kechris-

Louveau [8, Section 2.4]. It is currently not known whether every Fréchet amenable

countable Borel equivalence relation is hyperfinite.) The main result of this section

provides many examples of groups G such that ≈G is neither Fréchet amenable nor

countable universal. However, we should point out that the following fundamental

question remains open.

Question 4.1. Suppose that E is any countable Borel equivalence relation. Does

there necessarily exist a countable group G such that ≈G ∼B E?

We will begin with some basic observations concerning the relative complexity

of the conjugacy relations ≈G, ≈H for various pairs G, H of groups.

Lemma 4.2. If G, H are countable groups and there exists a surjective homomor-

phism π : G→ H, then ≈H ≤B ≈G.

Proof. Let ϕ : Sg(H) → Sg(G) be the map defined by ϕ(K) = π−1(K). Then ϕ is

a Borel reduction from ≈H to ≈G. �

Next recall that a subgroup H of a group G is said to be malnormal if whenever

g ∈ GrH, then gHg−1 ∩H = 1.

Lemma 4.3. If H is a malnormal subgroup of G, then ≈H ≤B ≈G.
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Proof. The inclusion map Sg(H) ↪→ Sg(G) is a Borel reduction from ≈H to ≈G. �

Question 4.4. Does there exist a pair of countable groups H 6 G such that

≈H �B ≈G?

Remark 4.5. By Theorem 3.7, if H 6 G is such a pair, then G has no nonabelian

free subgroups.

Finally if H, C are any groups, then C wr H denotes the (restricted) wreath

product of H and C, which is defined as follows. For each function f : H → C, the

support σ(f) is defined to be

σ(f) = {x ∈ H | f(x) 6= 1};

and the corresponding base group is defined to be

B = {f : H → C | σ(f) is finite },

equipped with pointwise multiplication; i.e., if f , g ∈ B, then

(fg)(x) = f(x)g(x)

for all x ∈ H. There is a natural action of H on B defined by

(a · f)(x) = f(a−1x)

for all f ∈ B and a, x ∈ H; and C wr H is the corresponding semidirect product

B oH. For each x ∈ H, let

Cx = { f ∈ B | f(y) = 1 for all x 6= y ∈ H }.

Then B =
⊕

x∈H Cx; and aCxa−1 = Cax for all a, x ∈ H.

Lemma 4.6. If H, C are countable groups and G = C wrH is the corresponding

(restricted) wreath product, then E(H, 2) ≤B ≈G.

Proof. Let B =
⊕

x∈H Cx be the base group of G = C wrH; and for each subset

A ⊆ H, let KA be the subgroup of B defined by KA =
⊕

a∈A Ca. Suppose that

g = hb ∈ G is any element, where h ∈ H and b ∈ B. Since KA E B, we have that

gKAg
−1 = hbKAb

−1h−1 = hKAh
−1 = KhA.

It follows that the map A 7→ KA is a Borel reduction from E(H, 2) to ≈G. �
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The remainder of this section will be devoted to the proof of the following result.

Theorem 4.7. There exists an uncountable family {Gα | α < 2ℵ0 } of countable

groups such that for all α < β < 2ℵ0 ,

(i) ≈Gα
is essentially free;

(ii) ≈Gα is not Fréchet amenable; and

(ii) ≈Gα and ≈Gβ
are incomparable with respect to Borel reducibility.

Remark 4.8. Note that each Gα satisfies the requirements of Theorem 1.6. To see

this, first notice that since ≈Gα
is not Fréchet amenable, it follows that G is not

amenable. (Here we are applying Jackson-Kechris-Louveau [8, Proposition 2.13].)

Secondly, by Theorem 3.5, since ≈Gα is essentially free, it follows that Gα is not

weakly action universal.

Each Gα will have the form C2 wr Γα, where C2 is the cyclic group of order 2

and Γα is a suitably chosen simple quasi-finite group. Here an infinite group Γ is

said to be quasi-finite if every proper subgroup of Γ is finite. It is easily shown that

every abelian quasi-finite group is isomorphic to a quasi-cyclic group Cp∞ for some

prime p. (See Ol’shanskii [15, Theorem 7.5].) However, it was a long outstanding

problem whether there existed a nonabelian quasi-finite group. This problem was

finally solved by Ol’shanskii in his celebrated papers [12, 13]. A clear account of this

work can be found in Ol’shanskii [15]. The following result will play an essential

role in the proofs of both Theorem 4.7 and Theorem 1.7.

Proposition 4.9 (Thomas [26]). Suppose that Γ is a simple quasi-finite group and

that X is a standard Borel Γ-space. If Z = {x ∈ X | Γx = 1} is the free part of the

action, then EXΓ ∼B EXΓ � Z.

The following result is implicitly contained in Ol’shanskii [17]. (For more details,

see Ozawa [19].)

Theorem 4.10 (Ol’shanskii [17]). If H is a noncyclic torsion-free hyperbolic group,

then H has a family {Γα = H/Nα | α < 2ℵ0 } of uncountably many pairwise

nonisomorphic simple quasi-finite quotient groups.

Remark 4.11. Suppose that H is a noncyclic torsion-free hyperbolic Kazhdan

group. (For example, we can let H be a co-compact lattice in Sp(n, 1) for some
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n ≥ 2. See de la Harpe-Valette [7].) Then each Γα = H/Nα is also a Kazhdan

group and hence is non-amenable. Applying Proposition 4.9 and Theorem 3.2, it

follows that Γα is not weakly action universal. Thus each Γα also satisfies the

requirements of Theorem 1.6. Of course, since Γα is quasi-finite, it follows that

Sg(Γα) is countable and hence ≈Γα is smooth.

Proof of Theorem 4.7. Let H be a noncyclic torsion-free hyperbolic Kazhdan group

and let {Γα = H/Nα | α < 2ℵ0 } be a family of uncountably many pairwise

nonisomorphic simple quasi-finite quotient groups. For each α < 2ℵ0 , let Gα =

C2 wr Γα, where C2 is the cyclic group of order 2.

To see that each ≈Gα
is not Fréchet amenable, first notice that each Γα is an

infinite Kazhdan group and thus is non-amenable. Hence, by Jackson-Kechris-

Louveau [8, Proposition 2.14], E(Γα, 2) is not Fréchet amenable. By Lemma 4.6,

E(Γα, 2) ≤B≈Gα and this implies that ≈Gα is not Fréchet amenable.

Next we will show that each ≈Gα
is essentially free. Fix some α < 2ℵ0 . In order

to simplify notation, let G = Gα and Γ = Γα. Let π : G → Γ be the canonical

surjective homomorphism. Then Sg(G) = X t Y t Z, where

• X = {H 6 G | π[H] = Γ};

• Y = {H 6 G | π[H] is a nontrivial finite subgroup of Γ}; and

• Z = {H 6 G | π[H] = 1}.

We will successively analyze the Borel complexity of ≈G restricted to each of the

above Borel subsets of Sg(G). From now on, let B =
⊕

x∈Γ Cx be the base group

of G = C2 wr Γ, so that G = B o Γ.

Claim 4.12. ≈G� X is smooth.

Proof of Claim 4.12. Suppose that H ∈ X and let g = γb ∈ G be any element,

where γ ∈ Γ and b ∈ B. Since π[H] = Γ, there exists an element c ∈ B such that

h = γc ∈ H. It follows that

g(H ∩B)g−1 = γ(H ∩B)γ−1 = h(H ∩B)h−1 = H ∩B.

Thus H ∩B E G. Also notice that since H/H ∩B ∼= Γ, it follows that H is finitely

generated over H ∩ B. Hence there exist only countably many H ′ ∈ X such that
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H ′ ∩B = H ∩B. It follows that if ≡ is the equivalence relation defined on X by

H ≡ H ′ ⇐⇒ H ∩B = H ′ ∩B,

then ≡ is a smooth countable Borel equivalence relation. Since ≈G� X ⊆ ≡, it

follows that ≈G� X is also smooth. (For example, see Thomas [28, Lemma 2.1].) �

Claim 4.13. ≈G� Y is smooth.

Proof of Claim 4.13. Let F be a set of representatives of the countably many con-

jugacy classes of nontrivial finite subgroups of Γ; and for each F ∈ F , let

YF = {H ∈ Y | π[H] = F}.

Then clearly ≈G� Y is Borel bireducible with ≈G�
⊔
F∈F YF . Hence it is enough

to prove that each ≈G� YF is smooth. Fix some F ∈ F and suppose that H ∈ YF .

Since H/H ∩ B ∼= F is finite, it follows that there exist only countably many

H ′ ∈ YF such that H ′ ∩ B = H ∩ B. Hence if ∼ is the equivalence relation on YF

defined by

H ∼ H ′ ⇐⇒ (∃γ ∈ NΓ(F ) ) γ(H ∩B)γ−1 = H ′ ∩B,

then ∼ is a countable Borel equivalence relation. Since Γ is a simple quasi-finite

group, it follows that NΓ(F ) is a finite subgroup of Γ and hence ∼ is smooth. Thus

it is enough to show that ≈G� YF ⊆ ∼. To see this, let H, H ′ ∈ YF and suppose

that gHg−1 = H ′. Let g = γb, where γ ∈ Γ and b ∈ B. Then clearly γ ∈ NΓ(F )

and since

H ′ ∩B = g(H ∩B)g−1 = γ(H ∩B)γ−1,

it follows that H ∼ H ′. �

Using Claim 4.12 and Claim 4.13, it follows that ≈G is Borel bireducible with

≈G� Z and thus it only remains to analyze the Borel complexity of ≈G� Z. Suppose

that H ∈ Z. Let g = γb ∈ G be any element, where γ ∈ Γ and b ∈ B. Since

H 6 B, it follows that gHg−1 = γHγ−1. Thus ≈G� Z is the orbit equivalence

relation induced by the conjugacy action of the simple quasi-finite Γ; and applying

Proposition 4.9, it follows that ≈G� Z is essentially free. This completes the proof

that ≈Gα
is essentially free.
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Finally we will prove that if α 6= β, then ≈Gα and ≈Gβ
are incomparable with

respect to Borel reducibility. Suppose that ≈Gα
≤B ≈Gβ

. By Lemma 4.6, we

have that E(Γα, 2) ≤B ≈Gα
and hence E(Γα, 2) ≤B ≈Gβ

. Furthermore, combining

Proposition 4.9 with the argument in the previous paragraph, it follows that there

exists a free standard Borel Γβ-space Z ′ such that EZ
′

Γβ
∼B ≈Gβ

. Let ϕ : 2Γα → Z ′

be a Borel reduction from E(Γα, 2) to EZ
′

Γβ
. Applying Theorem 2.3, there exists

an embedding θ : Γα → Γβ ; and since Γβ is quasi-finite, it follows that θ is an

isomorphism, which is a contradiction. This completes the proof of Theorem 4.7.

�

5. Free Burnside Groups

In this section, we will present some evidence which supports the conjecture that

free Burnside groups of sufficiently large odd exponent are action universal. The

following result implies that this conjecture is equivalent to the statement that if n

is a sufficiently large odd integer, then there exists an action universal group H of

exponent n.

Proposition 5.1. Let n be a sufficiently large odd integer and let 2 ≤ m ≤ ω. If

G = B(m,n) is the free m-generator Burnside group of exponent n and H is any

countable group of exponent n, then:

(i) ≈H ≤B ≈G ; and

(ii) if X is any standard Borel space, then E(H,X) ≤B E(G,X).

Proof. If K = B(ω, n) is the free Burnside group of exponent n on countably many

generators, then there exists a surjective homomorphism ϕ : K → H. Hence, by

Lemma 4.2, it follows that ≈H ≤B ≈K . By Ol’shanskii-Sapir [18, Lemma 4.11] and

Sonkin [24, Section 4], there exists a malnormal subgroup L of G such that L ∼= K;

and hence, applying Lemma 4.3, it follows that ≈K ≤B ≈G. Thus ≈H ≤B ≈G.

Similarly, applying Dougherty-Jackson-Kechris [4, Section 1], it follows that if X is

any standard Borel space, then E(H,X) ≤B E(G,X). �

Most of this section will be devoted to the proof of the following result.



16 SIMON THOMAS

Theorem 5.2. Let n be a sufficiently large odd integer and let 2 ≤ m ≤ ω. If

G = B(m,n) is the free m-generator Burnside group of exponent n, then E(G, 2)

is not essentially free.

Before beginning the proof of Theorem 5.2, we first derive the following easy

consequence.

Corollary 5.3. Suppose that n is a sufficiently large odd composite integer and that

2 ≤ m ≤ ω. If G = B(m,n) is the free m-generator Burnside group of exponent n,

then ≈G is not essentially free.

Proof. By Proposition 5.1, it is enough to prove that if n is a sufficiently large odd

composite number and G = B(3, n) is the free 3-generator Burnside group of expo-

nent n, then ≈G is not essentially free. Let p be a prime factor of n, chosen so that

n0 = n/p is still sufficiently large. Let W = CpwrB(2, n0). Then W is a 3-generator

group of exponent n and hence there exists a surjective homomorphism G→W . It

follows that ≈W ≤B ≈G. Also, by Lemma 4.6, we have that E(B(2, n0), 2) ≤ ≈W .

Hence Theorem 5.2 implies that ≈G is not essentially free. �

Of course, Corollary 5.3 should also be true if n is a sufficiently large prime. The

following result will be used in the proof of Theorem 5.2.

Theorem 5.4 (Ol’shanskii [16]). If H is a noncyclic torsion-free hyperbolic group,

then there there exists a natural number nH such that the group H/Hn is infinite

for every odd n ≥ nH .

We will also make use of the following result of Ol’shanskii [15, Theorem 28.7].

(The groups given by Theorem 4.10 have infinite exponent and hence cannot be

used in the proof of Theorem 5.2.)

Theorem 5.5 (Ol’shanskii [15]). For every sufficiently large odd integer n, there

exists a family {Gα | α < 2ℵ0} of pairwise nonisomorphic infinite simple groups

such that for each α < 2ℵ0 ,

(a) Gα is a group of exponent n; and

(b) every nontrivial proper subgroup of Gα is cyclic of order dividing n.
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Remark 5.6. While Ol’shanskii does not state explicitly that each Gα is simple,

this follows easily from the fact that the centralizer of each nontrivial element of Gα

is cyclic. (See Ol’shanskii [15, Theorem 26.5].) For suppose that N is a nontrivial

proper normal subgroup of Gα. Then N is clearly finite; and by considering the

action of Gα on N via conjugation, it follows that N must be contained in the

center of Gα, which is a contradiction.

Proof of Theorem 5.2. LetH be a noncyclic torsion-free hyperbolic Kazhdan group.

By Theorem 5.4, we can suppose that the group K = H/Hn is infinite. Thus K

is an infinite Kazhdan group of exponent n. Let {Gα | α < 2ℵ0} be the family

of pairwise nonisomorphic simple groups of exponent n given by Theorem 5.5. Of

course, it is clear that each Gα is a 2-generator group.

Let K be a d-generator group. By Ol’shanskii [15, Theorem 39.1], B(2, n) con-

tains a subgroup which is isomorphic to the free Burnside group B(d+2, n) on d+2

generators. Hence, by Dougherty-Jackson-Kechris [4, Proposition 1.5], we have that

E(B(d+2, n), 2) ≤B E(B(2, n), 2) and so it is enough to show that E(B(d+2, n), 2)

is not essentially free. To see this, first notice that for each α < 2ℵ0 , the group

Lα = K × Gα is a homomorphic image of B(d + 2, n); and hence, by Dougherty-

Jackson-Kechris [4, Proposition 1.4], we have that E(Lα, 2) ≤B E(B(d + 2, n), 2).

Now suppose that E(B(d+2, n), 2) ∼B EX∆ , where ∆ is a countable group and X is

a free standard Borel ∆-space. Then for each α < 2ℵ0 , there exists a Borel reduc-

tion ϕα : 2Lα → X from E(Lα, 2) to EX∆ ; and hence, by Theorem 2.3, there exists

a virtual embedding πα : Lα → ∆. Since Gα is an infinite simple group and kerπα

is finite, it follows that πα � Gα is an embedding. Since ∆ has only countably many

2-generator subgroups, it follows that there exist α 6= β such that πα[Gα] = πβ [Gβ ],

which contradicts the fact that Gα and Gβ are nonisomorphic. �

6. G-universal actions

In this final section, we will switch our attention from universal actions to

G-universal actions. Recall that Jackson-Kechris-Louveau [8, Theorem 5.4] have

shown that if G is any countable group, then E(G,N) is G-universal. On the other

hand, there are currently no countable groups G for which it is known that E(G, 2)
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is not G-universal. We will initially focus on the free parts of the various shift

actions.

Definition 6.1. For each countable group G and standard Borel space X, the free

part of XG is

(X)G = { p ∈ XG | g · p 6= p for all 1 6= g ∈ G };

and F (G,X) = E(G,X) � (X)G is the corresponding orbit equivalence relation.

By Jackson-Kechris-Louveau [8, Section 5.1], if G is any countable group and

Z is a free standard Borel G-space, then EZG ≤B F (G,N). On the other hand, by

Jackson-Kechris-Louveau [8, Theorem 3.17], letting F2 denote the free group on two

generators, we have that F (F2, 2) ∼B F (F2,N). The following is the main result of

this section.

Theorem 6.2. If G is an co-hopfian sofic Kazhdan group with no nontrivial finite

normal subgroups, then

F (G, 2) <B F (G, 3) <B · · · <B F (G,n) <B · · · <B F (G,N).

Here a group G is said to be co-hopfian if every embedding π : G → G is an

automorphism. A clear account of the basic theory of sofic groups can be found in

Pestov [22]. It is an important open problem whether every group is sofic. For our

purposes, it is enough to mention the following points:

• Every residually finite group is sofic; and, in particular, it follows that

finitely generated linear groups are sofic. The results of Ol’shanskii [17]

imply that if every hyperbolic group is residually finite, then there exist

groups satisfying the hypotheses of Theorem 1.7.

• It is currently not known whether there exists an infinite finitely generated

simple sofic group.

Corollary 6.3. If G = SL3(Z), then

F (G, 2) <B F (G, 3) <B · · · <B F (G,n) <B · · · <B F (G,N).

Proof of Corollary 6.3. It is well-known that SL3(Z) is a Kazhdan group with no

nontrivial finite normal subgroups; and by the preceeding remarks, SL3(Z) is sofic.

Finally, by Steinberg [25, Theorem 6], SL3(Z) is also co-hopfian. �
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Next we note that Theorem 1.7 is an easy consequence of Theorem 6.2.

Proof of Theorem 1.7. If G is a simple quasi-finite sofic Kazhdan group, then G

clearly satisfies the hypotheses of Theorem 6.2; and by Proposition 4.9, we have

that E(G,X) ∼B F (G,X) for every standard Borel space X. �

The following notion will play a key role in the proof of Theorem 6.2.

Definition 6.4. Let G be a countable group and let Z be a standard Borel G-

space. If I is a countable set, then an I-generator is a partition Z =
⊔
i∈I Ai into

Borel subsets such that {g · Ai | i ∈ I, g ∈ G} separates points. (Equivalently,

{g ·Ai | i ∈ I, g ∈ G} generates the σ-algebra of Borel subsets of Z.)

Example 6.5. Consider the shift action of the countable group G on the standard

Borel space Z = (m)G; and for each i ∈ m, let

Bi = {x ∈ (m)G | x(1) = i}.

Then β = (B0, B1, · · · , Bm−1) is an m-generator

Recall that if G is a countable group and m ≥ 2, then µm denotes the usual

product probability measure on mG. It is easily checked that µm( (m)G ) = 1.

Lemma 6.6. If G is a co-hopfian Kazhdan group with no nontrivial finite normal

subgroups and F (G,m) ≤B F (G,n), then there exists a G-invariant Borel subset

Z ⊆ (m)G with µm(Z) = 1 such that Z admits an n-generator.

Proof. Suppose that ϕ : (m)G → (n)G is a Borel reduction from F (G,m) to

F (G,n). Clearly ϕ can be extended to a µm-nontrivial Borel homomorphism from

E(G,m) to F (G,n). Hence, by Theorem 2.3, after slightly adjusting ϕ if neces-

sary, we can suppose that there exists a G-invariant Borel subset Z ⊆ (m)G with

µm(Z) = 1 and an embedding π : G→ G such that

ϕ(g · z) = π(g) · ϕ(z)

for all g ∈ G and z ∈ Z. Since G is co-hopfian, it follows that π is an automorphism

of G. Let β = (B0, B1, · · · , Bn−1) be the n-generator of (n)G given by Example

6.5; and for each 0 ≤ i ≤ n − 1, let Ai = ϕ−1(Bi) ∩ Z. Then we claim that α =

(A0, A1, · · · , An−1) is an n-generator of Z. To see this, suppose that y, z ∈ Z are
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distinct points. Clearly if y, z lie in different G-orbits, then ϕ(y) 6= ϕ(z). Otherwise,

there exists 1 6= g ∈ G such that z = g · y and so ϕ(z) = π(g) · ϕ(y) 6= ϕ(y). Thus

ϕ(y) 6= ϕ(z) and hence there exists 0 ≤ i ≤ n− 1 and an element g ∈ G such that

ϕ(y) ∈ g · Bi and ϕ(z) /∈ g · Bi. Let h = π−1(g). Then y ∈ h · Ai and z /∈ h · Ai.

Thus {h ·Ai | 0 ≤ i ≤ n− 1, h ∈ G} separates points. �

Consequently, in order to prove Theorem 6.2, it is enough to rule out the existence

of n-generators for full-measure subsets of (m)G for n < m.

Definition 6.7. Suppose that Z is a standard Borel space with Borel probability

measure µ and I is a countable set. If Z =
⊔
i∈I Ai is a partition into Borel subsets,

then the entropy of α = (Ai | i ∈ I) is defined to be

H(α) = −
∑
i∈I

µ(Ai) log(µ(Ai)).

Remark 6.8. If Ai is a null set, then we define µ(Ai) log(µ(Ai)) = 0.

Example 6.9. Suppose that Z = (m)G and that β = (B0, B1, · · · , Bm−1) is the

m-generator given in Example 6.5. Then

H(β) = −(
1
m

log
(

1
m

)
+ · · ·+ 1

m
log

(
1
m

)
) = log(m).

The following result is well-known. (For example, see Petersen [21, Section 5.1].)

Lemma 6.10. Suppose that Z is a standard Borel space with Borel probability

measure µ. If α = (A0, A1, · · · , An−1) is any partition of Z into Borel subsets,

then H(α) ≤ log(n).

Finally we will make use of the following result, which is implicitly contained in

Bowen [2]. Since Bowen does not state this result explicitly, we will briefly explain

how to deduce Theorem 6.11 from the results in [2].

Theorem 6.11 (Bowen [2]). Let 2 ≤ m ∈ N. Suppose that G is a countable sofic

group and that Z ⊆ (m)G is a G-invariant Borel subset with µm(Z) = 1. If I is

a countable set and α = (Ai | i ∈ I) is a finite entropy I-generator of Z, then

H(α) ≥ log(m).

Sketch Proof. Let G be a countable sofic group and let Σ be a sofic approximation

of G. Suppose that Z is a standard Borel G-space with G-invariant probability
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measure µ. Then for each finite entropy generator α = (Ai | i ∈ I), Bowen defines

a corresponding invariant h(Σ, α) ∈ R ∪ {−∞} with the property that if β is any

other finite entropy generator, then h(Σ, β) = h(Σ, α). (For the fact that h(Σ, α)

does not depend on the choice of α, see Bowen [2, Theorem 2.1].) Furthermore,

by Bowen [2, Proposition 5.3], we have that h(Σ, α) ≤ H(α). (To see this, let

β = {X } be the trivial partition in the statement of Proposition 5.3.)

Now consider the special case when Z ⊆ (m)G is a G-invariant Borel subset with

µm(Z) = 1 and α = (Ai | i ∈ I) is a finite entropy I-generator of Z. Then, by

Bowen [2, Theorem 8.1], we have that h(Σ, α) = log(m) and so H(α) ≥ log(m).

(The actual statement of Theorem 8.1 refers to (mG, µm ), but of course null sets

can safely be ignored in this setting.) �

Proof of Theorem 6.2. If the result fails, then there exist integers 2 ≤ n < m

such that F (G,m) ≤B F (G,n). Hence, by Lemma 6.6, there exists a G-invariant

Borel subset Z ⊆ (m)G with µm(Z) = 1 such that Z admits an n-generator α =

(A0, A1, · · · , An−1). Applying Lemma 6.10 and Theorem 6.11, we have that

log(m) ≤ H(α) ≤ log(n),

which is a contradiction. �
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