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Abstract. We study the Borel complexity of the quasi-isometry and virtual

isomorphism problems for the class of finitely generated groups.

1. Introduction

Gromov’s geometric group theory seeks to classify finitely generated groups in

terms of the “large scale geometry” of their Cayley graphs. In this paper, we

shall discuss this program from the perspective of the theory of Borel equivalence

relations and point out some intriguing connections with the recent work of Louveau

and Rosendal [22, 24] on the class of Kσ equivalence relations. In particular, we

shall consider the complexity of possible complete invariants for the quasi-isometry

relation on the space of finitely generated groups and we shall present a number

of results which strongly suggest that the quasi-isometry relation is considerably

more complex than the isomorphism relation.

The basic idea of geometric group theory is to regard finitely generated groups as

metric spaces via their word metrics. Of course, if G is a typical finitely generated

group, then G does not have a “canonical” finite generating set; and if S, S′ ⊆ G

are different finite generating sets with associated word metrics dS , dS′ , then the

metric spaces (G, dS), (G, dS′) are usually not isometric. However, (G, dS) and

(G, dS′) always have the same large scale geometry, in the sense that the identity

map is a quasi-isometry between them. In particular, the following definition does

not depend on the choice of the finite generating sets S, T for the groups G, H.

Definition 1.1. Let G, H be finitely generated groups with word metrics dS , dT

respectively. Then G, H are said to be quasi-isometric, written G ≈QI H, iff there

exist
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• constants λ ≥ 1 and C ≥ 0, and

• a map ϕ : G→ H

such that for all x, y ∈ G,

1
λ
dS(x, y)− C ≤ dT (ϕ(x), ϕ(y)) ≤ λdS(x, y) + C;

and for all z ∈ H,

dT (z, ϕ[G]) ≤ C.

In this case, ϕ is said to be a (λ,C)-quasi-isometry.

By Grigorchuk [8] and Bowditch [2], there are 2ℵ0 finitely generated groups up to

quasi-isometry. (In the case of Grigorchuk [8], the result is not stated explicitly as

the quasi-isometry relation for finitely generated groups had not yet been introduced

at the time when the paper was written.) It is interesting to note that both proofs

involve the use of growth rates as quasi-isometry invariants; namely, the growth

rates of balls [8] and “taut loops” [2] in Cayley graphs. In Section 4, we shall show

that a suitably chosen growth rate is a complete invariant for the quasi-isometry

relation for finitely generated groups.

A clear account of the basic properties of the quasi-isometry relation for finitely

generated groups can be found in de la Harpe [10], including a proof of the following

result.

Definition 1.2. Two finitely generated groups G1, G2 are said to be virtually

isomorphic or commensurable up to finite kernels, written G1 ≈V I G2, iff there

exist subgroups Ni 6 Hi 6 Gi for i = 1, 2 satisfying the following conditions:

(a) [G1 : H1], [G2 : H2] <∞.

(b) N1, N2 are finite normal subgroups of H1, H2 respectively.

(c) H1/N1
∼= H2/N2.

Theorem 1.3. If G1, G2 are virtually isomorphic finitely generated groups, then

G1, G2 are quasi-isometric.

It is well-known that the converse does not hold and it is natural to conjecture

that the quasi-isometry relation is strictly more complex than the virtual isomor-

phism relation. Before we can give a precise formulation of this conjecture, it is
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first necessary to recall some of the basic notions of the theory of Borel equivalence

relations.

If X is a Polish space, then a Borel equivalence relation on X is an equivalence

relation E ⊆ X2 which is a Borel subset of X2. For example, if G is the Polish space

of (marked) finitely generated groups, then the isomorphism, virtual isomorphism

and quasi-isometry relations are all Borel equivalence relations on G. (We shall

recall the definition of G in Section 2 and prove that these relations are Borel in

Sections 3 and 6.) If E, F are Borel equivalence relations on the Polish spaces X,

Y respectively, then we say that E is Borel reducible to F and write E ≤B F if

there exists a Borel map f : X → Y such that x E y iff f(x) F f(y). We say that

E and F are Borel bireducible and write E ∼B F if both E ≤B F and F ≤B E.

Finally we write E <B F if both E ≤B F and F �B E. The notion of a Borel

reduction from E to F is intended to capture the idea of an explicit reduction from

the E-classification problem to the F -classification problem. Hence the following

result can be interpreted as saying that the virtual isomorphism relation on G is

strictly more complex than the isomorphism relation.

Notation 1.4. From now on, ∼=, ≈V I and ≈QI will denote the isomorphism, vir-

tual isomorphism and quasi-isometry relations on the space G of finitely generated

groups.

Theorem 1.5 (Thomas [27]). ∼= <B ≈V I .

Our earlier conjecture can now be formulated as follows.

Conjecture 1.6. ≈V I <B ≈QI .

In the remainder of this section, we shall discuss some of the evidence in support

of Conjecture 1.6. We shall begin by describing the precise Borel complexity of the

isomorphism relation ∼= on G. Recall that an equivalence relation E on a Polish

space X is said to be countable iff every E-class is countable. By Dougherty-

Jackson-Kechris [4], there exists a universal countable Borel equivalence relation

E∞; i.e. a countable Borel equivalence relation E∞ such that F ≤B E∞ for every

countable Borel equivalence relation F . (Clearly this universality property uniquely

determines E∞ up to Borel bireducibility.) E∞ has a number of natural realisations
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in many areas of mathematics, including algebra, topology and recursion theory.

(See Jackson-Kechris-Louveau [16].) Following the usual practice, in this paper, we

shall take E∞ to be the orbit equivalence relation arising from the shift action of

free group on two generators F2 on 2F2 .

Theorem 1.7 (Thomas-Velickovic [30]). The isomorphism relation ∼= on G is a

universal countable Borel equivalence relation.

Of course, it is well-known that the virtual isomorphism relation ≈V I is not

a countable Borel equivalence relation. For example, by Erschler [5], there exist

uncountably many nonisomorphic groups which are virtually isomorphic to the

wreath product Z wr Z. In fact, combining Theorems 1.5 and 1.7, we see that ≈V I

is not essentially countable; i.e. there does not exist a countable Borel equivalence

relation E such that ≈V I ≤B E. Thus if we wish to understand the precise Borel

complexity of the virtual isomorphism relation ≈V I (and also conjecturally of the

quasi-isometry relation ≈QI), then we must work within a strictly larger class of

Borel equivalence relations than the relatively well-understood class of countable

Borel equivalence relations.

Definition 1.8. The equivalence relation E on the Polish space X is said to be

Kσ iff E is the union of countably many compact subsets of X ×X.

For example, in Sections 3 and 6, we shall show that the isomorphism, virtual

isomorphism and quasi-isometry relations are all Kσ equivalence relations on G. By

Kechris [19] and Louveau-Rosendal [22], there also exists a universalKσ equivalence

relation. In fact, Rosendal [24] has recently shown that the relation of Lipschitz

equivalence between compact metric spaces is a universal Kσ equivalence relation.

Of course, this suggests the following conjecture.

Conjecture 1.9. The quasi-isometry relation ≈QI on the space G of finitely gen-

erated groups is a universal Kσ equivalence relation.

In Section 4, making essential use of the results of Rosendal [24], we shall prove

the following weak version of Conjecture 1.9. (The notion of a quasi-isometry makes

sense for arbitrary metric spaces, including connected graphs equipped with their

path metrics.)
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Theorem 1.10. The quasi-isometry relation on the space of connected 4-regular

graphs is a universal Kσ equivalence relation.

Of course, since the virtual isomorphism relation ≈V I is also a Kσ equivalence

relation, Conjecture 1.6 implies that ≈V I is not a universal Kσ equivalence relation;

and most of our effort in this paper will go into proving that this is indeed the case.

Theorem 1.11. The virtual isomorphism relation ≈V I on the space G of finitely

generated groups is not a universal Kσ equivalence relation.

Combining Theorems 1.10 and 1.11, we obtain the following weak version of

Conjecture 1.6.

Theorem 1.12. The virtual isomorphism relation ≈V I on the space G of finitely

generated groups is strictly less complex (with respect to Borel reducibility) than the

quasi-isometry relation on the space of connected 4-regular graphs.

An interesting feature of Theorem 1.11 is the key role which is played in its proof

by Hjorth’s notion of turbulence [11]. More specifically, we shall need the result

of Kanovei-Reeken [17] that if G is a Polish group and X is a turbulent Polish

G-space, then EX
G �B E+

1 .

Finally it should be pointed out that very little is known concerning the Borel

complexity of the quasi-isometry relation ≈QI on the space G of finitely gener-

ated groups. In fact, the following result sums up the current state of knowledge

regarding this problem.

Theorem 1.13 (Thomas [28, 29]). The quasi-isometry relation on the space G of

finitely generated groups is not smooth.

Here the Borel equivalence relation E on the Polish space X is said to be smooth

iff there exists exists a Borel function f : X → Y into a Polish space Y such that

xEy iff f(x) = f(y). By Silver [26], if E is a smooth Borel equivalence relation and

F is a Borel equivalence relation with uncountably many F -classes, then E ≤B F .

Thus the smooth relations are the least complex Borel equivalence relations with

respect to Borel reducibility.

The remaining sections of this paper are organised as follows. In Section 2, we

shall review some of the basic features of the space G of (marked) finitely generated
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groups. In Section 3, we shall show that the isomorphism and quasi-isometry

relations are Kσ equivalence relations on the space G; and we shall also discuss two

other important Kσ equivalence relations which will play a key role in the later

sections of this paper. In Section 4, we shall show that the growth rate equivalence

relation and the quasi-isometry relation for connected 4-regular graphs are both

complete Kσ equivalence relations. In Sections 5 and 6, we shall study the Borel

complexity of the virtual isomorphism relation ≈V I on G. In particular, we shall

prove that ≈V I is a non-universal Kσ equivalence relation.

Acknowledgements: This paper would not have been possible without the in-

valuable assistance of Greg Hjorth. I would also like to thank Alexander Kechris,

Christian Rosendal and Boban Velickovic for very helpful discussions concerning

the material in this paper.

2. The space of finitely generated groups

In this section, we shall review some of the basic features of the space G of

(marked) finitely generated groups, which was first introduced by Grigorchuk [8].

(For a fuller treatment, see Champetier [3] or Grigorchuk [9].)

A marked group (G, s̄) consists of a finitely generated group with a distinguished

sequence s̄ = (s1, · · · , sm) of generators. (Here the sequence s̄ is allowed to contain

repetitions and we also allow the possibility that the sequence contains the identity

element.) Two marked groups (G, (s1, · · · , sm)) and (H, (t1, · · · , tn)) are said to be

isomorphic iff m = n and the map si 7→ ti extends to a group isomorphism between

G and H.

Definition 2.1. For each m ≥ 2, let Gm be the set of isomorphism types of marked

groups (G, (s1, · · · , sm)) with m distinguished generators.

Let Fm be the free group on the generators {x1, · · · , xm}. Then for each marked

group (G, (s1, · · · , sm)), we can define an associated epimorphism θG,s̄ : Fm → G

by θG,s̄(xi) = si. It is easily checked that two marked groups (G, (s1, · · · , sm))

and (H, (t1, · · · , tm)) are isomorphic iff ker θG,s̄ = ker θH,t̄. Thus we can naturally

identify Gm with the set Nm of normal subgroups of Fm. Note that Nm is a closed

subset of the compact space P(Fm) of all subsets of Fm and so Nm is a compact

space. Hence, via the above identification, we can regard Gm as a compact space.
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The topologies on Nm and Gm can be described more explicitly as follows. For

each marked group (G, s̄) and integer ` ≥ 1, let B`(G, s̄) be the closed ball of radius

` around the identity element in the (labelled directed) Cayley graph Cay(G, s̄).

Then, letting x̄ = (x1, · · · , xm), the basic open neighborhoods in Nm of a normal

subgroup N are given by

UN,` = {M ∈ Nm |M ∩B`(Fm, x̄) = N ∩B`(Fm, x̄) }, ` ≥ 1.

If (G, s̄) ∈ Gm corresponds to the normal subgroupN ∈ Nm, then the set of relations

N ∩B2`+1(Fm, x̄) contains the same information as the closed ball B`(G, s̄) in the

Cayley graph of (G, s̄). It follows that the basic open neighborhoods in Gm of a

marked group (G, s̄) are given by

V(G,s̄),` = { (H, t̄) ∈ Gm | B`(H, t̄) ∼= B`(G, s̄) }, ` ≥ 1.

Finally, for each m ≥ 2, there is a natural embedding of Nm into Nm+1 defined

by

N 7→ the normal closure of N ∪ {xm+1} in Fm+1.

This enables us to regard Nm as a clopen subset of Nm+1 and to form the locally

compact Polish space N =
⋃
Nm. Note that N can be identified with the space of

normal subgroups N of the free group F∞ on countably many generators such that

N contains all but finitely many elements of the basis X = {xi | i ∈ N+}. Similarly,

we can form the locally compact Polish space G =
⋃
Gm of finitely generated groups

via the corresponding natural embedding

(G, (s1, · · · , sm)) 7→ (G, (s1, · · · , sm, 1))

Remark 2.2. In the literature, the Polish spaces N and G are usually completely

identified. However, in this paper, it will be convenient to distinguish between these

two spaces. (Some of our arguments are better expressed in the setting of marked

groups, while others are better expressed in terms of the corresponding normal

subgroups of the free group F∞.)

Remark 2.3. In the remaining sections of this paper, the symbol ∼= will always

denote the usual isomorphism relation on the space G of finitely generated groups;

i.e. two marked groups are ∼=-equivalent iff their underlying groups (obtained by

forgetting about the distinguished sequences of generators) are isomorphic. It is
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well-known that ∼= is a countable Borel equivalence relation on G. For example, to

see that every ∼=-class is countable, simply note that there are only countably ways

to convert a finitely generated group G into a marked group (G, s̄).

3. Kσ equivalence relations

In the first half of this section, we shall show that the isomorphism and quasi-

isometry relations are Kσ equivalence relations on the space G of finitely generated

groups. (The proof that the virtual isomorphism relation is also a Kσ equivalence

relation will be given in Section 6.) In the second half, we shall discuss two other

important Kσ equivalence relations which will play a key role in the later sections

of this paper.

Theorem 3.1. The isomorphism relation ∼= on the space G of finitely generated

groups is a Kσ equivalence relation.

Proof. Instead of working directly with G, it will be more convenient to work with

the space N of normal subgroups N of the free group F∞ on countably many

generators such that N contains all but finitely many elements of the basis X =

{xi | i ∈ N+}. Let Autf (F∞) be the subgroup of Aut(F∞) generated by the

elementary Nielsen transformations

{αi | i ∈ N+ } ∪ {βij | i 6= j ∈ N+ },

where αi is the automorphism sending xi to x−1
i and leaving X r {xi} fixed; and

βij is the automorphism sending xi to xixj and leaving X r {xi} fixed. Then the

natural action of Autf (F∞) on F∞ induces a corresponding action as a group of

homeomorphisms on the space N . Furthermore, if N , M ∈ N , then F∞/N ∼=

F∞/M iff there exists ϕ ∈ Autf (F∞) such that ϕ[N ] = M . (For example, see

Champetier [3].) Hence it is enough to show that graph(ϕ) is a Kσ subset of

N ×N for every ϕ ∈ Autf (F∞). If ϕ ∈ Autf (F∞), then there exists m0 such that

ϕ[Nm] = Nm for all m ≥ m0. Since ϕ � Nm induces a homeomorphism of the

compact space Nm, it follows that graph(ϕ) ∩ Nm × Nm is a compact subset of

Nm ×Nm and so the result follows. �

Theorem 3.2. The quasi-isometry ≈QI relation on the space G of finitely generated

groups is a Kσ equivalence relation.
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Proof. Clearly it is enough to show that ≈QI� Gm is a Kσ subset of Gm × Gm for

each m ≥ 2. Fix some m ≥ 2 and let λ ≥ 1, C ≥ 0 be integers. Suppose that (G, s̄),

(H, t̄) ∈ Gm are marked m-generator groups and let dS , dT be the corresponding

word metrics dS , dT on G, H. For each integer ` ≥ 1, let B`(G, s̄), B`(H, t̄) be the

closed balls of radius ` around the identity element in the Cayley graphs of G, H.

Note that there exists a (λ,C)-quasi-isometry ϕ : G → H iff there exists a

(λ,C)-quasi-isometry with ϕ(1G) = 1H . By König’s Lemma, this occurs iff for

every n ≥ 1, there exists a map

ψ : Bn(G, s̄) → Bλn+C(H, t̄)

such that the following conditions are satisfied:

(i) ψ(1G) = 1H .

(ii) For all x, y ∈ Bn(G, s̄),

1
λ
dS(x, y)− C ≤ dT (ψ(x), ψ(y)) ≤ λdS(x, y) + C.

(iii) For each natural number m ≤ (n/λ) − 2C and z ∈ Bm(H, t̄), there exists

x ∈ Bn(G, s̄) such that dT (z, ψ(x)) ≤ C.

Hence if there does not exist a (λ,C)-quasi-isometry from G to H, then this is

witnessed by balls of suitably large radii in the Cayley graphs of G, H. This means

that the relation Rλ,C , defined on the space Gm of marked m-generator groups by

GRλ,C H iff there exists a (λ,C)-quasi-isometry ϕ : G→ H,

is a closed subset of Gm × Gm; and it follows that ≈QI� Gm is a Kσ subset of

Gm × Gm. �

As we mentioned earlier, the isomorphism relation ∼= on G is a countable Borel

equivalence relation. On the other hand, although Conjectures 1.6 and 1.9 imply

that the quasi-isometry relation ≈QI is not essentially countable, it remains an

open question whether this is indeed the case.

We shall next discuss two important Kσ equivalence relations which will play a

key role in the later sections of this paper.

Example 3.3. Let E1 be the equivalence relation on (2N)N defined by

(x0, · · · , xn, · · · ) E1 (y0, · · · , yn, · · · ) iff (∃N) (∀n > N) (xn = yn).
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Then it is easily checked that E1 is a Kσ equivalence relation on (2N)N. If G is a

Polish group and (g, x) 7→ g · x is a continuous action of G on the Polish space X,

then we say that X is a Polish G-space. More generally, if (g, x) 7→ g · x is a Borel

action of G on X, then we say that X is a Borel G-space. In both cases, we denote

the associated orbit equivalence relation by EX
G . By Kechris-Louveau [21], if G is

a Polish group and X is a Borel G-space, then E1 �B EX
G . In particular, E1 is not

essentially countable. Conversely, Hjorth-Kechris [15] have conjectured that if E is

a Borel equivalence relation such that E1 �B E, then there exists a Polish group

G and a Borel G-space X such that E ≤B EX
G . (In [15], Hjorth-Kechris conjecture

that there exist G, X such that E ∼B EX
G . However, making use of Kechris [18,

Theorem 1.5], it follows easily that the equivalence relation constructed in Hjorth

[13] is a counterexample to this stronger conjecture.)

Example 3.4. Regarding {0, 1} as the cyclic group of order 2, the Cantor space 2N

is a compact group with respect to the operation of pointwise addition. Identifying

2N with the powerset P(N), the group operation in 2N corresponds to the symmetric

difference operation on P(N), defined by

A∆B = (ArB) ∪ (B rA).

The summable ideal is the subgroup I2 of P(N), defined by

I2 =

{
A ⊆ N |

∑
n∈A

1
n+ 1

<∞

}
;

and E2 is the orbit equivalence relation arising from the translation action of I2 on

P(N). It is easily checked that I2 is a Polish group with respect to the topology

generated by the complete metric

d(A,B) =
∑

n∈A∆B

1
n+ 1

and that E2 is a Kσ equivalence relation on P(N). For later use, we note that

Hjorth [11, 3.26] has shown that the action of the summable ideal I2 on P(N) is

turbulent. In particular, it follows that E2 is not essentially countable.

The following result strongly suggests the conjecture that if E is aKσ equivalence

relation which is not essentially countable, then E involves either E1 or else a

turbulent Borel equivalence relation.
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Theorem 3.5. Let E be a Kσ equivalence relation on the Polish space X. If there

exists a Polish group G and a Borel G-space Y such that EY
G is Borel and E ≤B EY

G ,

then exactly one of the following two conditions holds:

(a) There exists a countable Borel equivalence relation F such that E ∼B F .

(b) There exists a turbulent Polish G-space Z such that EZ
G ≤B E.

The proof of Theorem 3.5 makes use of the following result.

Lemma 3.6. Let E be a Kσ equivalence relation on the Polish space X. Suppose

that G is a Polish group and that Y is a Borel G-space such that EY
G is Borel and

E ≤B EY
G . Then there exists G-invariant Borel subset Y0 ⊆ Y such that E ∼B EY0

G .

Proof. Suppose that f : X → Y is a Borel reduction from E to F = EY
G . Consider

the Borel relation

R = {(y, x) ∈ Y ×X | y F f(x)}.

For each y ∈ Y , the section Ry = {x ∈ X | (y, x) ∈ R} is either an E-class or

else the empty set. In particular, each Ry is a Kσ subset of X. Hence by the

Arsenin-Kunugui Theorem [20, 35.46], the G-invariant subset

Y0 = {y ∈ Y | (∃x ∈ X) (y, x) ∈ R}

is Borel and there exists a Borel map g : Y0 → X such that (y, g(x)) ∈ R for all

y ∈ Y0. Clearly f is a Borel reduction from E to F � Y0 and g is a Borel reduction

from F � Y0 to X. �

Proof of Theorem 3.5. Applying Lemma 3.6, we can suppose that E ∼B EY
G . By

Hjorth [11], conditions (a) and (b) are mutually exclusive. Suppose that condition

(b) fails. By Hjorth [12], there exists a Borel S∞-space Z such that EZ
S∞

∼B EY
G .

Hence EZ
S∞

∼B E and this implies that the S∞-space Z is potentially Fσ. Hence

by Hjorth-Kechris [14, 3.8], there exists a countable Borel equivalence relation F

such that F ∼B EZ
S∞

. �

4. Universal Kσ equivalence relations

Recall that a Kσ equivalence relation E is said to be universal iff F ≤B E

for every Kσ equivalence relation F . The existence of universal Kσ equivalence

relations was established by Kechris [19] and Louveau-Rosendal [22]. In this section,
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we shall show that the growth rate equivalence relation and the quasi-isometry

relation for connected 4-regular graphs are both complete Kσ equivalence relations.

Both of these results are straightforward consequences of the following result of

Rosendal [24].

Definition 4.1. Let X0 =
∏

n≥1[1, n], where [1, n] = {1, · · · , n}. Then EKσ
is the

equivalence relation defined on X0 by

α EKσ
β iff (∃k) (∀n) |α(n)− β(n)| ≤ k.

Theorem 4.2 (Rosendal [24]). EKσ is a complete Kσ equivalence relation.

Definition 4.3. Two strictly increasing functions f , g : N+ → N+ are said to have

the same growth rate, written f ≡ g, iff there exists an integer t ≥ 1 such that

f(n) ≤ g(tn) and g(n) ≤ f(tn)

for all n ≥ 1.

Theorem 4.4. ≡ and EKσ
are Borel bireducible.

Proof. By identifying each strictly increasing function f : N+ → N+ with its range,

we can regard ≡ as an equivalence relation on the collection [N+]ω of infinite subsets

of N+. It is then easily seen that ≡ extends to a Kσ equivalence relation on the

whole of the Cantor space P(N+) = 2N+
and it follows that ≡ ≤B EKσ

.

In order to see that EKσ ≤B ≡, first let (nk)k≥1 be any strictly increasing

sequence of elements of N+ such that nk+1 − nk ≥ k for all k. Then for each

α ∈ X0, let Aα ⊆ {m ∈ N+ | m ≥ 2n1} be the subset such that for all k ≥ 1,

Aα ∩ [ 2nk , 2nk+1 ) = [ 2nk , 2nk+α(k) ),

and let fα : N+ → N+ be the corresponding increasing enumeration function. We

shall prove that the map α 7→ fα is a Borel reduction from EKσ
to ≡.

First suppose that α, β ∈ X0 satisfy fα ≡ fβ and let t ≥ 1 be an integer such

that

fα(m) ≤ fβ(tm) and fβ(m) ≤ fα(tm)

for all m ≥ 1. We shall show that |α(k) − β(k)| < log2(t + 1) for all k ≥ 1 and

hence that α EKσ
β. To see this, fix some k ≥ 1 and suppose that β(k) ≥ α(k);
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say, β(k) = α(k) + ck. Let r, s ∈ N+ be such that fα(r) = 2nk+α(k) − 1 and

fβ(s) = 2nk+β(k) − 1. Then r ≤ 2nk+α(k) − 1 and

s ≥ 2nk+β(k) − 2nk = 2nk+α(k)+ck − 2nk .

Notice that

fβ(s) < fα(r + 1) ≤ fβ(t(r + 1))

and so

2nk+α(k)+ck − 2nk < t 2nk+α(k),

which implies that

t >
2nk+α(k)+ck − 2nk

2nk+α(k)
> 2ck − 1.

Thus ck < log2(t+ 1), as required.

Next suppose that α, β ∈ X0 satisfy α EKσ β and let N ≥ 1 be an integer such

that |α(k)− β(k)| ≤ N for all k ≥ 1. Let t = 2N+1. We shall show that

fα(r) ≤ fβ(tr) and fβ(r) ≤ fα(tr)

for all r ≥ 1 and hence fα ≡ fβ . Fix some r ≥ 1. By symmetry, it is enough

to show that fα(r) ≤ fβ(tr). Suppose that fα(r) ∈ [ 2nk , 2nk+α(k) ); say, fα(r) =

2nk + d. Then r ≥ 2nk−1(2α(k−1) − 1) + d. Let s = 2nk−1+β(k−1) + d. Then clearly

fα(r) ≤ fβ(s). Let a = α(k − 1), b = β(k − 1) and c = d/2nk−1 . Then

s

r
≤ 2nk−1+β(k−1) + d

2nk−1(2α(k−1) − 1) + d

=
2b + c

2a − 1 + c

≤ 2b + c

2a−1 + c

≤ 2N+1 + e

1 + e
where e = c/2a−1

≤ 2N+1.

Thus fα(r) ≤ fβ(s) ≤ fβ(tr), as required. �

Remark 4.5. Combining Theorems 3.2 and 4.4, we see that ≈QI ≤B ≡. Thus,

in this technical sense, a suitably chosen growth rate is a complete invariant for

the quasi-isometry relation for finitely generated groups. Unfortunately, the above

argument does not yield an explicit “group theoretic” reduction from ≈QI to ≡.
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Similarly, although Theorems 3.1 and 4.4 imply that ∼=≤B ≡, there are no known

explicit “group theoretic” reductions from the isomorphism relation to the growth

rate equivalence relation.

The remainder of this section is devoted to the proof of the following result.

Theorem 4.6. The quasi-isometry relation on the space of connected 4-regular

graphs is a complete Kσ equivalence relation.

The proof of Theorem 4.6 will proceed in two steps. First, for each α ∈ X0, we

shall define a connected graph Γα such that the following conditions are satisfied:

• Every vertex v ∈ Γα has valency at most 4.

• If α, β ∈ X0, then α EKσ
β iff Γα, Γβ are quasi-isometric.

Then we shall extend each Γα to a 4-regular graph Γ+
α such that the inclusion map

Γα ↪→ Γ+
α is a quasi-isometry.

Definition 4.7. For each α ∈ X0, let fα : Z → N be the function defined by

fα(n) =

 22n+α(n), if n ≥ 1;

4, if n ≤ 0.

Then Γα = 〈Vα, Aα〉 be the graph with vertex set

Vα = {(n, i) | n ∈ Z, 0 ≤ i < fα(n)}

and adjacency relation Aα defined by (n, i)Aα (m, j) iff one of the following condi-

tions holds:

(i) i = j = 0 and |n−m| = 1; or

(ii) n = m and |i− j| = 1; or

(iii) n = m and {i, j} = {0, fα(n)− 1}.

In other words, Γα consists of the “spine” {(n, 0) | n ∈ Z}, together with a cycle

Cα
n = {(n, i) | 0 ≤ i < fα}

of length fα(n) attached to each vertex (n, 0).

Lemma 4.8. If α EKσ β, then Γα and Γβ are quasi-isometric.
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Proof. Since α EKσ β, there exists an integer k ≥ 1 such that

|α(n)− β(n)| ≤ k for all n ∈ N+.

Hence for each n ∈ N+, there exists an integer 1 ≤ tn ≤ 2k such that either

|Cβ
n | = tn|Cα

n | or |Cα
n | = tn|Cβ

n |. Let ϕ : Vα → Vβ be the map defined by

ϕ(n, i) =


(n, tni), if n ∈ N+ and |Cβ

n | = tn|Cα
n |;

(n, bi/tnc), if n ∈ N+ and |Cα
n | = tn|Cβ

n |;

(n, i), if n ≤ 0.

We shall show that ϕ is a quasi-isometry between Γα and Γβ . From now on, let dα,

dβ denote the path metrics on Γα, Γβ respectively.

First it is clear that dβ(z, ϕ[Vα]) < 2k for all z ∈ Vβ . It is easily checked that if

x, y ∈ Cα
n for some n ∈ Z, then

1
2k
dα(x, y)− 1 ≤ dβ(ϕ(x), ϕ(y)) ≤ 2kdα(x, y).

Finally suppose that x ∈ Cα
n and y ∈ Cα

m for some n < m ∈ Z. Then

dα(x, y) = dα(x, (n, 0)) + (m− n) + dα((m, 0), y)

and

dβ(ϕ(x), ϕ(y)) = dβ(ϕ(x), (n, 0)) + (m− n) + dβ((m, 0), ϕ(y)).

It follows easily that

1
2k
dα(x, y)− 2 ≤ dβ(ϕ(x), ϕ(y)) ≤ 2kdα(x, y).

Hence ϕ is a quasi-isometry. �

In the proof of the converse, we shall make use of the notion of a “taut loop”, as

defined by Bowditch [2]. For the purposes of this paper, it is enough to know that

each of the cycles Cα
n is a taut loop of Γα.

Definition 4.9. For each graph Γ, let H(Γ) = { |γ| : γ is a taut loop of Γ }.

For example, we have that

H(Γα) = {fα(n) | n ∈ Z} = {22n+α(n) | n ∈ N+} ∪ {4}.

Definition 4.10. Let k ≥ 1 be an integer. Then two subsets A, B ⊆ N+ are said

to be k-related iff the following two conditions are satisfied:
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(a) For all a ∈ A, there exists b ∈ B such that a/k ≤ b ≤ ka.

(b) For all b ∈ B , there exists a ∈ A such that b/k ≤ a ≤ kb.

Lemma 4.11 (Bowditch [2]). If Γ, Γ′ are connected quasi-isometric graphs, then

there exists an integer k ≥ 1 such that H(Γ), H(Γ′) are k-related.

Lemma 4.12. If Γα and Γβ are quasi-isometric, then α EKσ β.

Proof. By Lemma 4.11, since Γα and Γβ are quasi-isometric, there exists a positive

integer k such that H(Γα), H(Γβ) are k-related. Let n be any integer such that

n > min{3, log2 k}. Then there exists an integer m ≥ 1 such that

22n+α(n)

k
≤ 22m+β(m) ≤ k 22n+α(n).

Using the first inequality, together with the fact that k < 2n, we obtain that

2m +m > 2n − n.

Since n > 3, this implies that m ≥ n. Similarly, using the second inequality, we

obtain that

2m < 2n + 2n

and hence m ≤ n. Thus we have that

22n+α(n)

k
≤ 22n+β(n) ≤ k 22n+α(n);

and hence, after dividing throughout by 22n

, we obtain that

2α(n)

k
≤ 2β(n) ≤ k 2α(n).

Thus for all n > min{3, log2 k}, we have that

α(n)− log2 k ≤ β(n) ≤ α(n) + log2 k;

and this implies that α EKσ
β. �

Finally we extend each graph Γα to a connected 4-regular graph Γ+
α as follows.

First note that for all n ∈ Z,

• the vertex (n, 0) has valency 4; and

• if i 6= 0, then the vertex (n, i) has valency 2.
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For each vertex w = (n, i) with i 6= 0, let ∆w be the graph on the vertex set

Vw = {aw, bw, cw, dw, ew}, obtained from the complete graph on Vw by removing

the edge {aw, bw}. Then we obtain Γ+
α by attaching each ∆w to w via the two new

edges {w, aw} and {w, bw}. Clearly the inclusion map Γα ↪→ Γ+
α is a quasi-isometry.

This completes the proof of Theorem 4.6.

5. The quasi-equality relation

In the remaining sections of this paper, we shall study the Borel complexity

of the virtual isomorphism relation. This relation can be regarded as being con-

structed from two simpler equivalence relations; namely, the commensurability and

the quasi-equality relations.

Definition 5.1. If G, H ∈ G, then G and H are said to be (abstractly) commen-

surable, written G1 ≈C G2, iff there exist subgroups Hi 6 Gi of finite index such

that H1
∼= H2.

It is well-known that if G is a finitely generated group, then there exist only

countably many groups H up to isomorphism such that G ≈C H and it follows

that the commensurability relation ≈C is a countable Borel equivalence relation on

the space G of finitely generated groups.

Theorem 5.2 (Thomas [29]). The commensurability relation ≈C on G is a uni-

versal countable Borel equivalence relation.

In this section, we shall determine the precise Borel complexity of the quasi-

equality relation, which is defined as follows.

Definition 5.3. If G, H ∈ G, then G and H are said to be quasi-equal , written

G ' H, iff there exist finite normal subgroups N E G and M E H such that

G/N = H/M as marked groups.

In other words, if G = F∞/A and H = F∞/B, then G ' H iff there exists

a normal subgroup N such that A, B 6 N E F∞ and [N : A], [N : B] < ∞.

Clearly this is true iff [AB : A], [AB : B] < ∞. Hence we obtain the following

characterization of the corresponding equivalence relation on N , which we shall

also denote by '.
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Lemma 5.4. If A, B ∈ N , then A ' B iff [A : A ∩B], [B : A ∩B] <∞.

�

In the next section, the following result will play a key role in the proof that the

virtual isomorphism relation ≈V I is a Kσ equivalence relation.

Proposition 5.5. The quasi-equality ' relation on the space G of finitely generated

groups is a Kσ equivalence relation.

Proof. We shall show that the corresponding equivalence relation ' on N is Kσ.

Fix some m ≥ 1. For each t ≥ 1, consider the relation Rm
t defined on Nm by

ARm
t B iff [A : A ∩B] ≤ t and [B : A ∩B] ≤ t.

Note that [A : A ∩ B] > t iff there exist a1, · · · , at+1 ∈ A such that a−1
i aj /∈ B for

all 1 ≤ i < j ≤ t + 1, which is clearly an open relation. Hence Rm
t is a compact

subset of Nm ×Nm and it follows that ' is a Kσ relation on N . �

The remainder of this section will be devoted to the proof of the following result.

Theorem 5.6. ' and E1 are Borel bireducible.

One direction of Theorem 5.6 is implicitly contained in Thomas [27].

Lemma 5.7. E1 ≤B '.

Proof. For each x ∈ (2N)N, let Γx be the corresponding finitely generated group

as defined in Thomas [27, Section 3]. Then the proof of Thomas [27, Lemma 3.5]

shows that if xE1y, then Γx ' Γy. On the other hand, by Thomas [27, Lemma 3.7],

if Γx ≈V I Γy, then x E1 y. Of course, it follows that if Γx ' Γy, then x E1 y. �

The other direction is an immediate consequence of the following result, together

with the work of Kechris-Louveau [21].

Theorem 5.8. The quasi-equality relation ' is hypersmooth.

Here the Borel equivalence relation F is said to be hypersmooth iff it can be

written as F =
⋃

n Fn, where F0 ⊆ F1 ⊆ F2 ⊆ · · · is an increasing sequence

of smooth Borel equivalence relations. By Kechris-Louveau [21], there are only

two nonsmooth hypersmooth Borel equivalence relations up to Borel bireducibility;
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namely, E1 and the Vitali equivalence relation E0 on the Cantor space 2N, which

is defined by

x E0 y iff x(n) = y(n) for all but finitely many n.

Furthermore, it is well-known that E0 <B E1. Hence, combining Lemma 5.7 and

Theorem 5.8, it follows that '∼B E1.

Turning to the proof of Theorem 5.8, for each A ∈ N , let GA = F∞/A ∈ G be

the corresponding marked group. As explained above, we shall be concerned with

the collection of quotients of GA by finite normal subgroups. By Dicman’s Lemma

[31, Lemma 1.3], if g1, · · · , gt are elements of GA, each having finite order and

each having only finitely many conjugates in GA, then there exists a finite normal

subgroup N E GA such that g1, · · · gt ∈ N . Hence we can define a characteristic

subgroup ∆+(GA) of GA by

∆+(GA) = {g ∈ GA | g is contained in a finite normal subgroup of GA }.

Let A+ ∈ N be the corresponding normal subgroup of F∞ such that

F∞/A+ = GA/∆+(GA).

Then the quotients of GA by finite normal subgroups correspond to precisely those

N ∈ N such that A 6 N 6 A+ and [N : A] < ∞. Also notice that if M ∈ N is a

normal subgroup such that A 6 M 6 A+ and [M : A] <∞, then M+ = A+.

From now on, fix a linear ordering ≺ of the free group F∞ of order type ω and

let U : N → N be the Borel map defined as follows.

• If ∆+(GA) = 1, then U(A) = A.

• Otherwise, let g ∈ A+ r A be the ≺-least element and let U(A) be the

normal closure of A ∪ {g} in F∞.

We shall show that if A, B ∈ N , then

A ' B iff there exist n,m ≥ 1 such that Un(A) = Um(B).

By Dougherty-Jackson-Kechris [4, Theorem 8.1], this implies that ' is hyper-

smooth, as required.

Lemma 5.9. If A ∈ N , then A 6 U(A) 6 A+ and [U(A) : A] <∞.

Proof. This is an immediate consequence of the definition of U(A). �
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Lemma 5.10. If A ∈ N and N ∈ N is a normal subgroup such that A 6 N 6 A+

and [N : A] <∞, then there exists n ≥ 1 such that N 6 Un(A).

Proof. Recall that if M ∈ N is a normal subgroup such that A 6 M 6 A+ and

[M : A] < ∞, then M+ = A+. It follows that for each g ∈ A+, there exists an

integer ` ≥ 1 such that g ∈ U `(A). Since N is finitely generated over A, the result

follows. �

Lemma 5.11. If A, B ∈ N and there exist n, m ≥ 1 such that Un(A) = Um(B),

then A ' B.

Proof. Applying Lemma 5.9 repeatedly, it follows that if A ∈ N , then A ' Un(A)

for all n ≥ 1. The result follows. �

Lemma 5.12. If A, B ∈ N and A ' B, then there exist n, m ≥ 1 such that

Un(A) = Um(B).

Proof. Since A ' B, it follows that [AB : A], [AB : B] < ∞ and this implies that

A+ = (AB)+ = B+. If [A+ : A] < ∞, then [B+ : AB] = [A+ : AB] < ∞ and so

[B+ : B] < ∞. Hence, applying Lemma 5.10, there exist integers n, m ≥ 1 such

that

Un(A) = A+ = B+ = Um(B).

Thus we can suppose that [A+ : A] = [B+ : B] = ∞. Applying Lemma 5.10 once

more, there exist integers s, t ≥ 1 such that AB 6 Us(B) 6 U t(A). Let s0 ≥ s be

maximal such that Us0(B) 6 U t(A). Suppose inductively that ` ≥ 0 and that we

have defined integers si for 0 ≤ i ≤ ` and elements gj ∈ A+ = B+ for 0 ≤ j < `

such that the following conditions are satisfied:

(a) s0 < s1 < · · · < s`.

(b) g0 ≺ g1 ≺ · · · ≺ g`−1.

(c) si is maximal such that Usi(B) 6 U t+i(A).

(d) gj is the ≺-least element of both B+ r Usj (B) and A+ r U t+j(A).

Notice that condition (d) implies that:

• U t+j+1(A) is the normal closure of U t+j(A) ∪ {gj} in F∞; and

• Usj+1(B) is the normal closure of Usj (B) ∪ {gj} in F∞.
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Now let g` be the ≺-least element of B+ r Us`(B). By the maximality of s`, we

must have that g` /∈ U t+`(A). Since

Us`(B) 6 U t+`(A) 6 A+ = B+,

it follows that g` is also the ≺-least element of A+ r U t+`(A). In particular, it

follows that Us`+1(B) 6 U t+`+1(A) and we can let s`+1 ≥ s` + 1 be maximal such

that Us`+1(B) 6 U t+`+1(A). Thus the induction can be completed.

By Lemma 5.10, there exists an integer ` ≥ 0 such that U t(A) 6 Us`+1(B).

Since

g0, g1, · · · , g` ∈ Us`+1(B) 6 U t+`+1(A)

and U t+`+1(A) is the normal closure of U t(A) ∪ {g0, g1, · · · , g`} in F∞, it follows

that Us`+1(B) = U t+`+1(A). This completes the proof of Lemma 5.12. �

6. The virtual isomorphism relation

In this final section, we shall continue our study of the Borel complexity of the

virtual isomorphism relation ≈V . More precisely, we shall prove that

(E1 × E∞) ≤B ≈V I <B EKσ
.

(Recall that E∞ denotes the universal countable Borel equivalence relation and that

EKσ
denotes the universal Kσ equivalence relation.) We shall begin by proving the

lower bound.

Theorem 6.1. (E1 × E∞) ≤B ≈V I .

We shall make of the following two lemmas, which are straightforward conse-

quences of the earlier results of Thomas [27] and Thomas-Velickovic [30].

Lemma 6.2. There exists a prime p > 5 and a Borel map x 7→ Γx from (2N)N to

G such that the following conditions are satisfied:

(a) Each Γx is generated by two elements of order p.

(b) Each Γx has no proper subgroups of finite index.

(c) If N is a finite normal subgroup of Γx, then there exists y ∈ (2N)N such

that x E1 y and Γx/N ∼= Γy.

(d) Γx ≈V I Γy iff x E1 y.

(e) Γx
∼= Γy iff x = y.
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(f) If ψ : Γx → Γy is an embedding, then ψ is an isomorphism.

Proof. For each x ∈ (2N)N, let Γx be the corresponding finitely generated group

as defined in Thomas [27, Section 3]. Then there exists a prime p > 5 such that

each Γx is generated by two elements of order p; and conditions (b)–(e) hold by

Thomas [27, Lemmas 3.4–3.7]. Finally suppose that ψ : Γx → Γy is an embedding.

Since Z(Γy) contains no elements of order p, it follows that ψ induces a nontrivial

homomorphism

ψ′ : Γx → Γy/Z(Γy).

As every nonidentity element of Γy/Z(Γy) has order p and every nonidentity element

of Z(Γx) has a finite order which is coprime to p, it follows that Z(Γx) 6 kerψ′.

Since Γx/Z(Γx), Γy/Z(Γy) are infinite simple groups which have no proper infinite

subgroups, it follows that kerψ′ = Z(Γx) and that ψ′ induces an isomorphism

ψ′′ : Γx/Z(Γx) → Γy/Z(Γy).

Arguing as in the proof of Thomas [27, Lemma 3.4], this implies that ψ is an

isomorphism. �

Lemma 6.3. There exists a Borel reduction t 7→ Gt from E∞ to the commensura-

bility relation ≈C on G such that for each t ∈ 2F2 :

(a) Gt has no nontrivial finite normal subgroups.

(b) Gt has no elements of order q for any prime q > 5.

Proof. By Thomas-Velickovic [30], there exists a Borel reduction t 7→ Ht from E∞

to the isomorphism relation ∼= on G such that each Ht has no elements of order q

for any prime q > 5. Let S be a fixed infinite finitely generated simple group with

no elements of finite order. (For the existence of such a group, see Ol’shanskii [23].)

Consider the Borel map G → G defined by

A 7→ (Alt(5) wrA) wr S.

By Thomas [27, Theorem 2.5], if A, B ∈ G, then

A ∼= B iff (Alt(5) wrA) wr S ≈V I (Alt(5) wrB) wr S.
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Furthermore, by Thomas [27, Lemma 2.2], each (Alt(5) wrA)wrS has no nontrivial

finite normal subgroups and it follows that the same is true of each subgroup of

finite index in (Alt(5) wrA) wr S. Hence if A, B ∈ G, then

A ∼= B iff (Alt(5) wrA) wr S ≈C (Alt(5) wrB) wr S.

It follows that the map

t 7→ Gt = (Alt(5) wrHt) wr S

satisfies our requirements. �

Proof of Theorem 6.1. For each x ∈ (2N)N and t ∈ 2F2 , let Γx and Gt be the finitely

generated groups given by Lemmas 6.2 and 6.3 respectively. We shall show that

the map (2N)N × 2F2 → G, defined by

(x, t) 7→ Γx ×Gt,

is a Borel reduction from (E1 × E∞) to ≈V I . Of course, by Lemmas 6.2 and 6.3,

if (x, t) (E1 × E∞) (y, u), then Γx × Gt ≈V I Γy × Gu. Conversely, suppose that

Γx × Gt ≈V I Γy × Gu. Then there exist subgroups of finite index H 6 Γx × Gt,

K 6 Γy ×Gu and finite normal subgroups N , M of H, K such that H/N ∼= K/M .

Since [Γx : Γx ∩H] <∞ and Γx has no proper subgroups of finite index, it follows

that Γx 6 H. Similarly, Γy 6 K and it follows that there exist subgroups G0
t , G

0
u

of finite index in Gt, Gu such that H = Γx × G0
t and K = Γy × G0

u. Since Gy,

Gu have no nontrivial finite normal subgroups, the same is also true of G0
y, G0

u. It

follows that N , M are actually normal subgroups of Γx, Γy. By Lemma 6.2, there

exist x′, y′ ∈ (2N)N with x′E1x and y′E1 y such that Γx/N ∼= Γx′ and Γy/M ∼= Γy′ .

Thus the isomorphism H/N ∼= K/M induces an isomorphism

ψ : Γx′ ×G0
t → Γy′ ×G0

u.

Recall that Γx′ is generated by two elements of prime order p > 5. By Lemma 6.3,

Gu contains no elements of order p and this implies that ψ(Γx′) 6 Γy′ . Hence, by

Lemma 6.2, we have that ψ(Γx′) = Γy′ and thus x′ = y′. In particular, it follows

that x E1 y. It also follows that ψ induces an isomorphism

(Γx′ ×G0
t )/Γx′ → (Γy′ ×G0

u)/Γy′
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and so G0
t
∼= G0

u. In other words, we have that Gt ≈C Gu and hence t E∞ u. Thus

(x, t) (E1 × E∞) (y, u), as required. �

In the remainder of this section, we shall prove that ≈V I <B EKσ
. Of course,

the next theorem implies the weaker result that ≈V I ≤B EKσ .

Theorem 6.4. The virtual isomorphism ≈V I relation on the space G of finitely

generated groups is a Kσ equivalence relation.

Before we can prove Theorem 6.4, we shall first need to prove the corresponding

result for the following slightly simpler equivalence relation on G.

Definition 6.5. Two finitely generated groups G1, G2 ∈ G are said to be isomor-

phic up to finite kernels, written G1 ≈FK G2, iff there exist finite normal subgroups

Ni E Gi such that G1/N1
∼= G2/N2.

Lemma 6.6. ≈FK is a Kσ equivalence relation on G.

Proof. We shall show that the corresponding equivalence relation ≈FK on N is Kσ.

To see this, first note that if N , M ∈ N , then the following are equivalent:

• N ≈FK M .

• There exist N∗ ' N and M∗ 'M such that F∞/N∗ ∼= F∞/M∗.

• There exist N∗ ' N , M∗ 'M and ϕ ∈ Autf (F∞) such that ϕ(N∗) = M∗.

• There exists ϕ ∈ Autf (F∞) such that ϕ(N) 'M .

Since ' is a Kσ equivalence relation on N and each ϕ ∈ Autf (F∞) induces a

homeomorphism of N , it follows that ≈FK is also a Kσ equivalence relation on

N . �

Proof of Theorem 6.4. Once again, we shall show that the corresponding equiva-

lence relation ≈V I on N is Kσ. Clearly it is enough to show that each of the

restrictions ≈V I� (Nm ×Nm) is Kσ. From now on, fix some m ≥ 2. Suppose that

N , M ∈ Nm satisfy N ≈V I M . Then there exist

• N E H 6 Fm

• M E K 6 Fm

such that [Fm : H], [Fm : K] < ∞ and H/N ≈FK K/M . Suppose that H, K are

freely generated by {w1, · · · , wr}, {z1, · · · , zs} respectively. Let ϕ : Fr → H and
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ψ : Fs → K be the isomorphisms defined by ϕ(xi) = wi and ψ(xj) = zj . Let Sm be

the compact space of all subgroups of Fm. Then ϕ, ψ induce a continuous injection

θ : Nr ×Ns → Sm × Sm

(A,B) 7→ (ϕ(A), ψ(B) ).

Let R denote the restricted relation ≈FK� Nr × Ns. Then R is a Kσ subset of

Nr ×Ns and hence θ[R] is a Kσ subset of Sm × Sm. It follows that

T = θ[R] ∩ (Nm ×Nm)

is a Kσ subset of Nm × Nm such that T ⊆ ≈V I� (Nm × Nm) and (N,M) ∈ T .

Since there are only countably many possibilities for H, K, ϕ and ψ, it follows that

≈V I� (Nm ×Nm) is a Kσ equivalence relation. �

Our proof that EKσ
�B ≈V I makes use of the following upper bound on the

Borel complexity of ≈V I .

Definition 6.7 (Friedman-Stanley [7]). Suppose that E is a Borel equivalence

relation on the Polish space X. Then E+ is the Borel equivalence relation defined

on XN by

(x0, · · · , xn, · · · ) E+ (y0, · · · , yn, · · · ) iff { [xn]E | n ∈ N } = { [yn]E | n ∈ N }

Theorem 6.8. ≈V I <B E+
1 .

Theorem 6.8 is an easy consequence of the following lemma, which will be proved

at the end of this section.

Lemma 6.9. There exists a sequence (ψn)n∈N of Borel maps ψn : N → N such

that for each N ∈ N ,

{[ψn(N)]' | n ∈ N} = {[L]' | L ∈ N , L ≈V I N}.

Proof of Theorem 6.8. Let (ψn)n∈N be the sequence of Borel maps ψn : N → N

given by Lemma 6.9. Then

N ≈V I M iff {[L]' | L ∈ N , L ≈V I N} = {[L]' | L ∈ N , L ≈V I M}

iff {[ψn(N)]' | n ∈ N} = {[ψn(M)]' | n ∈ N}

iff (ψn(N))n∈N '+ (ψn(M))n∈N.
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By Theorem 5.6, there exists a Borel reduction ϕ : N → (2N)N from ' to E1. It

follows that the map

N 7→ ( (ϕ ◦ ψn)(N) )n∈N

is a Borel reduction from ≈V I to E+
1 and so ≈V I ≤B E+

1 .

Next note that ≈V I ≤B EKσ
and that Ecntble = id(2N)+ ≤B E+

1 . It is well-

known that EKσ
and Ecntble are incomparable with respect to Borel reducibility.

(For example, see Louveau-Rosendal [22].) It follows that E+
1 �B ≈V I . �

The following lemma is an immediate consequence of Kanovei-Reeken [17].

Lemma 6.10. If G is a Polish group and X is a turbulent Polish G-space, then

EX
G �B E+

1 .

It is now easy to complete the proof that EKσ �B ≈V I .

Theorem 6.11. ≈V I <B EKσ
.

Proof. We have already seen that ≈V I ≤B EKσ
. By Lemma 6.10, letting E2 be

the orbit equivalence relation arising from the turbulent action of the summable

ideal I2 on P(N), we have that E2 �B E+
1 . Since E2 is a Kσ equivalence relation

on P(N), we also have that E2 ≤B EKσ
. Since ≈V I <B E+

1 , it follows that

EKσ
�B ≈V I . �

Thus it only remains to prove Lemma 6.9. During the proof, we shall need

to work with the relation ≈C on N which corresponds to the commensurability

relation on G. This relation is not as transparent as that corresponding to the ≈FK

relation on G. For this reason, before presenting the proof of Lemma 6.9, we shall

illustrate the meaning of the ≈C relation on N by analyzing a simple example.

Example 6.12. To facilitate readability, we shall write x, y, z, t instead of x1, x2,

x3, x4. Let N , M be the normal subgroups of F2 defined by

• N = the normal closure of { [x, y], y2 } in F2;

• M = the normal closure of { [x, y], y3 } in F2.

Then F2/N ∼= Z ⊕ C2 and F2/N ∼= Z ⊕ C3, where Cn denotes the cyclic group of

order n. In particular, we have that N ≈C M . More precisely, if H, K 6 F2 are

the kernels of the canonical homomorphisms F2/N → C2 and F2/M → C3, then
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H/N ∼= Z ∼= K/M . Clearly S = { 1, y} and T = { 1, y, y2} are Schreier transversals

of H, K in F2. (For an account of Schreier’s Theorem, see [25, Proposition 16].)

Hence, by Schreier’s Theorem, we have that

• H = the subgroup of F2 freely generated by {x, y2, yxy−1 };

• K = the subgroup of F2 freely generated by {x, y3, yxy−1, y2xy−2 }.

Unfortunately, rank(H) 6= rank(K). However, this can be remedied by identifying

H, K with the appropriate subgroups of finite index in Fm for m > 2. In more

detail, if m > 2 and we identify N with its image under the embedding N2 ↪→ Nm,

then H can be identified with the kernel of the homomorphism Fm/N → C2.

Clearly S = { 1, y} remains a Schreier transversal of H in Fm; and H is now freely

generated as a subgroup of Fm by

{x, y2, yxy−1 } ∪ {x`, yx`y
−1 | 3 ≤ ` ≤ m }.

Hence, regarding H, K as subgroups of F4, F3 respectively, we have that H, K are

freely generated by

• {x, y2, yxy−1, z, yzy−1, t, yty−1 },

• {x, y3, yxy−1, y2xy−2, z, yzy−1, y2zy−2 }

respectively. Letting ϕ : H → F7 and ψ : K → F7 be the obvious isomorphisms, we

have that F7/ϕ(N) ∼= F7/ψ(M). Thus, identifying ϕ(N), ψ(M) with their images

under the embedding N7 ↪→ N , there exists an automorphism π ∈ Autf (F∞) such

that π(ϕ(N)) = ψ(M). The proof of Lemma 6.9 is based on the fact that if N ,

M ∈ N are arbitrary, then N ≈C M iff corresponding maps ϕ, ψ and π exist.

In the general case, if H, K 6 Fn are subgroups such that [Fn : H] = a and

[Fn : K] = b, then rank(H) = a(n − 1) + 1 and rank(K) = b(n − 1) + 1. Hence

there are suitable integers r, s ≥ n such that after identifying H, K with the

corresponding subgroups of Fr, Fs, we have that rank(H) = rank(K). Also note

that if we identify the above normal subgroup N ∈ N2 with its image in N , then

H corresponds to the subgroup of F∞ freely generated by

{x, y2, yxy−1 } ∪ {x`, yx`y
−1 | ` ≥ 3 }.

Proof of Lemma 6.9. Suppose that N , M ∈ N satisfy N ≈V I M . Fix some m ≥ 2

such that N , M ∈ Nm. Then there exist
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• N E H 6 Fm

• M E K 6 Fm

such that [Fm : H], [Fm : K] < ∞ and H/N ≈FK K/M . Suppose that H,

K are freely generated by W = {w1, · · · , wr}, Z = {z1, · · · , zs} respectively and

let S = {s1, · · · , sd}, T = {t1, · · · , te} be Schreier transversals of H, K in Fm.

Applying Schreier’s Theorem [25, Proposition 16], we see that H, K correspond

naturally to the subgroups H∗, K∗ of F∞ freely generated by

W ∗ = W ∪ {sixns
−1
i | 1 ≤ i ≤ d, n > m}

Z∗ = Z ∪ {tjxnt
−1
j | 1 ≤ j ≤ e, n > m}

in the sense that, identifying N , M with the their images under the injection

Nm → N , we have that H∗/N ∼= H/N and K∗/M ∼= K/M . In particular, we have

that H∗/N ≈FK K∗/M . Let ϕH,S : H∗ → F∞ be the isomorphism sending the

ordered basis

w1, w2, · · · , wr, s1xm+1s
−1
1 , s2xm+1s

−1
2 , · · · , sdxm+1s

−1
d , s1xm+2s

−1
1 , · · ·

to the ordered basis x1, x2, · · · , xn, · · · ; and define ϕK,T : K∗ → F∞ in a similar

fashion. Then F∞/ϕH,S(N) ≈FK F∞/ϕK,T (M) and hence there exists an auto-

morphism π ∈ Autf (F∞) such that π(ϕH,S(N)) ' ϕK,T (M). Let τ : H∗ → K∗

be the isomorphism defined by τ = ϕ−1
K,T ◦ π ◦ ϕH,S . Then τ induces an associated

Borel partial map

τ : N → N

A 7→ τ(A)

with dom τ = {A ∈ N | A 6 H∗ and τ(A) E F∞}. (Of course, there usually exist

A ∈ N with A 6 H∗ such that τ(A) 5 F∞ and hence τ(A) /∈ N .) Clearly the

Borel partial map τ : N → N satisfies the following conditions:

(i) τ(N) 'M .

(ii) If A ∈ dom τ , then A ≈C τ(A) and so A ≈V I τ(A).

Note that since τ is uniquely determined by

• the subgroups of finite index H, K 6 Fm,

• the bases W , Z of H, K,



THE QUASI-ISOMETRY AND VIRTUAL ISOMORPHISM PROBLEMS 29

• the Schreier transversals S, T of H, K in Fm, and

• the automorphism π ∈ Autf (F∞),

it follows that there are only countably many possibilities for τ . Finally for each

such Borel partial map τ , let ψ : N → N be the Borel map defined by

ψ(N) =

τ(N), if N ∈ dom τ ;

N, otherwise.

This completes the proof of Lemma 6.9. �
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