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Abstract. If CH fails, then there exist 22ℵ0 universal sofic groups up to

isomorphism.

1. Introduction

Let U be a nonprincipal ultrafilter over ω and let GU =
∏

U Sym(n) be the
corresponding ultraproduct of the finite symmetric groups. Then Allsup-Kaye [1]
and Elek-Szabó [2] have independently shown that GU has a unique maximal proper
normal subgroup; namely,

MU =
{

(πn)U ∈ GU : limU
| supp(πn)|

n
= 0

}
,

where supp(πn) = {` ∈ n : πn(`) 6= `}. Let SU = GU/MU . Then by Elek-Szabó [2],
if Γ is a finitely generated group, the following statements are equivalent:

• Γ is a sofic group.
• Γ embeds into SU for some (equivalently every) nonprincipal ultrafilter U .

For this reason, SU is said to be a universal sofic group.1 Of course, if U 6= D are
distinct nonprincipal ultrafilters over ω, then there is no reason to expect that SU
and SD will be isomorphic. In this paper, we will consider the problem of computing
the number of universal sofic groups SU up to isomorphism. Perhaps surprisingly,
this problem turns out to be much easier to handle under the assumption that the
Continuum Hypothesis CH fails.

Theorem 1.1. If CH fails, then there exist 22ℵ0 universal sofic groups SU up to
isomorphism.

On the other hand, suppose that CH holds. Then each ultraproduct GU =∏
U Sym(n) is saturated and hence is determined up to isomorphism by its first

order theory. Thus there are at most 2ℵ0 such ultraproducts up to isomorphism and
hence also at most 2ℵ0 universal sofic groups up to isomorphism. It is easily shown
that (as expected) there are 2ℵ0 such ultraproducts up to elementary equivalence.
However, it is currently not even known whether there exist two nonisomorphic
universal sofic groups if CH holds.
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Conjecture 1.2. If CH holds, then there exist 2ℵ0 universal sofic groups SU up
to isomorphism.

Question 1.3. Are all universal sofic groups SU elementarily equivalent?

It would be very interesting to know whether the results in this paper can be
extended to the setting of hyperlinear groups.2 (At first glance, the techniques in
this paper do not seem to generalize readily from finite symmetric groups to finite
rank unitary groups.) In this context, the referee has pointed out that the results of
Ge-Hadwin [4] suggest that if CH holds, then perhaps all metric ultraproducts of
the finite rank unitary groups are isomorphic; i.e., that if CH holds, then perhaps
there exists a unique universal hyperlinear group up to isomorphism.

This paper is organized as follows. In Section 2, we will use a basic property of
expander graphs to show that certain ultraproducts

∏
D Gn of finite groups can be

realized as centralizers of finitely generated subgroups in suitably chosen universal
sofic groups. Then in Section 3, using recent results of Kassabov [5] and Ellis-
Hachtman-Schneider-Thomas [3], we will complete the proof of Theorem 1.1.

2. Centralizers and Expander Families

In this section, we will use a basic property of expander graphs to show that cer-
tain ultraproducts

∏
D Gn of finite groups can be realized as centralizers of finitely

generated subgroups in suitably chosen universal sofic groups. We will begin by
defining the notion of an expander family of finite graphs. Suppose that Γ = (V,E )
is a finite connected graph with vertex set V and edge set E. Then for each subset
A ⊆ V , the corresponding edge boundary is defined to be

∂A = { e ∈ E : |e ∩A| = 1 };

and the expansion constant of Γ is defined to be

h(Γ) = min
{
|∂A|
|A|

: A ⊂ V with 1 ≤ |A| ≤ |V |
2

}
.

From now on, we will identify each finite graph Γ = (V,E ) with its vertex set V
and we will write h(V ) instead of h(Γ). A finite graph V is said to be k-regular if
each vertex v ∈ V has degree k.

Definition 2.1. Let (Vn : n ∈ ω ) be a family of finite connected k-regular graphs
such that |Vm| < |Vn| for all m < n ∈ ω. Then (Vn : n ∈ ω ) is said to be an
expander family if there exists τ > 0 such that h(Vn) ≥ τ for all n ∈ ω.

Most of the known expander families consist of suitably chosen Cayley graphs of
finite groups. (For example, see Lubotzky [8] and Kassabov-Lubotzky-Nikolov [6].)
Here if G is a finite group and S ⊆ Gr1 is a generating set, then the corresponding
Cayley graph Cay(G,S) is the graph with vertex set G and edge set

E = {{x, y} | y = s x for some s ∈ S ∪ S−1}.

As we will see in Section 3, Theorem 1.1 is an easy consequence of the following the-
orem, together with recent results of Kassabov [5] and Ellis-Hachtman-Schneider-
Thomas [3].

2A clear account of the basic theory of hyperlinear groups can also be found in Pestov [9].
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Theorem 2.2. For each n ∈ ω, let Gn be a finite group and let Sn ⊆ Gn be a
generating set of fixed size d. If ( Cay(Gn, Sn) : n ∈ ω ) is an expander family, then
for each nonprincipal ultrafilter D over ω, there exists a nonprincipal ultrafilter U
over ω and a finitely generated subgroup Γ 6 SU such that CSU (Γ) ∼=

∏
D Gn.

The proof of Theorem 2.2 makes use of the following observation.

Proposition 2.3. Suppose that V is a finite connected k-regular graph and that
h(V ) ≥ τ . Suppose that ε > 0 and let δ = ετ/(τ + k). Then whenever Y ⊆ V
is a subgraph with |Y | ≥ (1 − δ)|V |, there exists a connected subgraph Z ⊆ Y with
|Z| ≥ (1− ε)|V |.

Proof. Let Y ⊆ V be a subgraph with |Y | ≥ (1−δ)|V | and suppose that C1, · · · , Ct

are connected components of Y with |Ci| ≤ 1
2 |V | for each 1 ≤ i ≤ t. Consider the

set

P = { (v, e) : e ∈
t⋃

i=1

∂Ci and v ∈ er Y }.

Notice that if e ∈
⋃t

i=1 ∂Ci, then |e ∩ Y | = 1. Thus

|P | =
t∑

i=1

|∂Ci| ≥ τ
t∑

i=1

|Ci|.

Clearly we also have that

|P | ≤ k |V r Y | ≤ kδ|V |.
Hence we have that

τ
t∑

i=1

|Ci| ≤ kδ|V |

and so

|V r Y |+
t∑

i=1

|Ci| ≤ δ|V |+ kδ

τ
|V | = ε|V |.

It follows that Y has a connected component Z with |Z| ≥ (1− ε)|V |. �

The proof of Theorem 1.1 also makes use of the notions of the left regular and
right regular permutation representations of a finite group G. Here the left reg-
ular permutation representation of G is the embedding λ : G → Sym(G) defined
by λ(g)(x) = g x; and the right regular permutation representation of G is the
embedding ρ : G→ Sym(G) defined by ρ(g) = x g−1. It is well-known that

CSym(G)(λ[G ] ) = ρ[G ].

(For example, see Tsuzuku [10, Theorem 3.2.10].)

Proof of Theorem 2.2. To simplify notation, suppose that d = 2 and let Sn =
{ an, bn }. Let U be the nonprincipal ultrafilter over ω such that for each X ⊆ ω,

{ |Gn| : n ∈ X } ∈ U ⇐⇒ X ∈ D.
Then we can define a natural isomorphism

σ :
∏

D
Sym(|Gn|) →

∏
U

Sym(n)

( θn )D 7→ (ψn )U
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by setting

ψn =

{
θm if n = |Gm|;
1 otherwise.

Clearly there also exists a natural isomorphism ι :
∏

D Sym(Gn) →
∏

D Sym(|Gn|).
Let π :

∏
D Sym(Gn) → SU be the surjective homomorphism obtained by compos-

ing the following maps:∏
D

Sym(Gn) ι−→
∏

D
Sym(|Gn|)

σ−→
∏

U
Sym(n) →

(∏
U

Sym(n)
)
/MU = SU .

For each n ∈ ω, let λn : Gn → Sym(Gn) and ρn : Gn → Sym(Gn) be the left
regular and right regular permutation representations. Let α, β ∈ SU be the
elements defined by

α = π( (λn(an))D ) and β = π( (λn(bn))D ).

Then we claim that the subgroup Γ = 〈α, β〉 of SU satisfies our requirements. Let
G =

∏
D Sym(Gn). Then clearly we have that∏

D
ρn[Gn ] 6 CG({ (λn(an))D, (λn(bn))D }).

(In fact, using Tsuzuku [10, Theorem 3.2.10], it is easily seen that the two groups
in the above inclusion are actually equal.) It is also clear that π maps

∏
D ρn[Gn ]

injectively into CSU (Γ). Thus it is enough to show that if γ ∈ CSU (Γ), then there
exists g ∈

∏
D ρn[Gn ] such that π(g) = γ. To see this, let ϕ = (ϕn)D be an element

such that π(ϕ) = γ and fix some 0 < ε < 1/3. Since ( Cay(Gn, Sn) : n ∈ ω ) is an
expander family, Proposition 2.3 implies that there exists δ > 0 such that for all
n ∈ ω, if Y ⊆ Gn is a subgraph of Cay(Gn, Sn) with |Y | ≥ (1− δ)|Gn|, then there
exists a connected subgraph Z ⊆ Y with |Z| ≥ (1 − ε)|Gn|. For each n ∈ ω, let
Yn ⊆ Gn be the set of elements y ∈ Gn such that

(2.1) sϕn(y) = ϕn(s y) for all s ∈ Sn ∪ S−1
n .

Then Aε = {n ∈ ω : |Yn| ≥ (1−δ)|Gn| } ∈ D. Fix some n ∈ Aε. Then regarding Yn

as a subgraph of the Cayley graph Cay(Gn, Sn), there exists a connected subgraph
Zn ⊆ Yn such that |Zn| ≥ (1 − ε)|Gn|. Fix some zn ∈ Zn and let ϕn(zn) = zngn.
Then applying (2.1) repeatedly, we obtain that ϕn(z) = zgn for all z ∈ Zn. Note
that if g′n ∈ Gn with g′n 6= gn, then xg′n 6= xgn for all x ∈ Gn. Hence if 0 < ε′ < 1/3
and n ∈ Aε′ ∩ Aε, then the above argument will yield precisely the same element
gn ∈ Gn. Hence, letting gn = 1 for n /∈ Aε, it follows that

π( (ρn(g−1
n ))D ) = π( (ϕn)D ) = γ,

as required. �

3. Ultraproducts of finite alternating groups

In this section, we will complete the proof of Theorem 1.1. We will make use of
the following recent result of Kassabov [5].

Theorem 3.1. For each n ≥ 5, there exists a generating subset Sn ⊆ Alt(n) with
|Sn| = 20 such that ( Cay(Alt(n), Sn) : n ≥ 5 ) is an expander family.

The following result is an immediate consequence of Theorems 2.2 and 3.1.
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Theorem 3.2. For each nonprincipal ultrafilter D over ω, there exists a non-
principal ultrafilter U over ω and a finitely generated subgroup Γ 6 SU such that
CSU (Γ) ∼=

∏
D Alt(n).

We will also make use of the following recent result of Ellis-Hachtman-Schneider-
Thomas [3].

Theorem 3.3. If CH fails, then there exist 22ℵ0 ultraproducts
∏

U Alt(n) up to
isomorphism.

Sketch Proof. By Allsup-Kaye [1], if U is a nonprincipal ultrafilter over ω, then
there is an inclusion-preserving bijection between the collection of proper normal
subgroups of

∏
U Alt(n) and the linearly ordered set

LU =
{
I ⊆

∏
U
n : I is an additive cut of

∏
U

N
}
,

where an additive cut is a nonempty initial segment of the nonstandard model of
arithmeticM =

∏
U N which is closed under addition inM. A routine modification

of the proof of Kramer-Shelah-Tent-Thomas [7, Theorem 3.3] shows that if CH fails,
then there exist 22ℵ0 such linearly ordered sets LU up to isomorphism. �

Proof of Theorem 1.1. Let {Dα : α < 22ℵ0 } be a collection of nonprincipal ultrafil-
ters over ω such that the corresponding ultraproducts

∏
Dα

Alt(n) are pairwise non-
isomorphic. Then for each α < 22ℵ0 , there exists a nonprincipal ultrafilter Uα over
ω and a finitely generated subgroup Γα 6 SUα

such that CSUα
(Γα) ∼=

∏
Dα

Alt(n).
Fix some α < 22ℵ0 . Since |SUα

| = 2ℵ0 , it follows that SUα
has only 2ℵ0 finitely

generated subgroups and hence there exist at most 2ℵ0 ordinals β < 22ℵ0 such that
SUα

∼= SUβ
. It follows that {SUα

: α < 22ℵ0 } includes a collection of 22ℵ0 pairwise
nonisomorphic groups. �
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