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1. Introduction

In [24], confirming a conjecture of Hjorth-Kechris [16], Thomas-Velickovic

proved that the isomorphism relation on the space Gfg of finitely generated

groups is a universal countable Borel equivalence relation. (Here Gfg denotes

the Polish space of finitely generated groups introduced by Grigorchuk [12];

i.e. the elements of Gfg are the isomorphism types of marked groups (G, c ),

where G is a finitely generated group and c is a finite sequence of genera-

tors.) This result suggests the project of analyzing the Borel complexity of

the isomorphism relation for various restricted classes of finitely generated

groups; and the main result in this paper can be regarded as the first step

in this analysis for both the class of infinite finitely generated simple groups

and the class of infinite finitely generated amenable groups.

Theorem 1.1. The isomorphism relation on the space of infinite finitely

generated simple amenable groups is not smooth.

The proof of Theorem 1.1 makes use of some recent work of Giordano-

Putnam-Skau [11], Bezuglyi-Medynets [1], Matui [20] and Juschenko-
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Monod [18] on the topological full groups of minimal subshifts. More pre-

cisely, if X ⊆ nZ is a minimal subshift and TF (X) is the topological full

group, then the commutator subgroup TF (X)′ is an infinite finitely gen-

erated simple amenable group. Furthermore, if Y ⊆ nZ is another minimal

subshift, then TF (X)′ ∼= TF (Y )′ if and only if X and Y are flip conju-

gate. (A fuller discussion, including the relevant definitions, will be pre-

sented in Section 3.) Hence, in order to prove Theorem 1.1, it is enough to

show that the flip conjugacy relation for minimal subshifts X ⊆ nZ is not

smooth. In Section 4, we will prove the stronger result that the flip conju-

gacy relation for Toeplitz subshifts is not smooth. In [3], Clemens showed

that the topological conjugacy relation for arbitrary subshifts X ⊆ nZ is a

universal countable Borel equivalence relation. Unfortunately the subshifts

constructed by Clemens are very far from minimal; and it is currently not

known whether or not the topological conjugacy relation for minimal sub-

shifts is strictly more complex than the Vitali equivalence relation E0. How-

ever, it still seems reasonable to conjecture that the following strengthening

of Theorem 1.1 should be true.

Conjecture 1.2. The isomorphism relation on the space of infinite finitely

generated simple amenable groups is countable universal.

It should be pointed out that it is currently not known whether or not

the isomorphism relation on the space Gam of infinite finitely generated

amenable groups or on the space Gsim of infinite finitely generated sim-

ple groups is countable universal. Of course, it is also natural to consider

the complexity of the isomorphism relation on the space Gkaz of finitely

generated Kazhdan groups.

Conjecture 1.3. The isomorphism relation on Gkaz is not smooth.

Here it is worthwhile pointing out that a result of Ol’shanskii [21] implies

that if G is any countable group, then there exists a finitely generated

Kazhdan group K such that G embeds into K. More precisely, let H be

an infinite hyperbolic Kazhdan group. (Such a group is necessarily finitely

presented and hence finitely generated. For example, see Bridson-Haefliger

[2, Proposition III.Γ.2.2].) Then, by Ol’shanskii [21], if G is any countable

group, then G embeds into a quotient H/N of H; and, since the class of

Kazhdan groups is closed under the taking of quotients, it follows that H/N

is a finitely generated Kazhdan group. This suggests that the isomorphism

relation on Gkaz is also a universal countable Borel equivalence relation.
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In Section 5, we will present an application of Theorem 1.1 to the theory

of just-infinite groups. Here an infinite group Γ is said to be just-infinite if

every nontrivial normal subgroup of Γ has finite index. In [13], Grigorchuk

observed that if G is an infinite finitely generated group, then G has a

just-infinite homomorphic image. To see this, consider the poset

P = {N E G | [G : N ] =∞},

partially ordered by inclusion. If {Ni | i ∈ I } is a chain in P, then

N =
⋃
i∈I Ni ∈ P, since otherwise [G : N ] < ∞ and so N is finitely

generated, which is a contradiction. Hence, by Zorn’s Lemma, there exists

a maximal element N ∈ P and clearly G/N is just-infinite. Of course, if G

is an explicitly given infinite finitely generated group, then it is not neces-

sary to use Zorn’s Lemma in order to construct a just-infinite homomorphic

image. More precisely, as we will explain in Section 2, there exists a Borel

map θ : Gfg → Gfg such that if (G, c ) ∈ Gfg is infinite, then θ(G, c) is a

just-infinite homomorphic image of G. However, as our notation suggests,

the definition of the just-infinite group θ(G, c) depends essentially upon the

finite sequence of generators c and it is natural to ask whether there exists

such a Borel map θ with the property that the isomorphism type of the

just-infinite group ϕ(G, c) only depends upon the isomorphism type of G.

In Section 5, we will use Theorem 1.1 to show that no such map exists.

Theorem 1.4. There does not exist a Borel map θ : Gfg → Gfg such that

for all infinite (G, c ), (H, d ) ∈ Gfg,

(i) θ(G, c) is a just-infinite homomorphic image of G; and

(ii) if G ∼= H, then θ(G, c) ∼= θ(H, d).

The remainder of this paper is organized as follows. In Section 2, we will

recall some basic notions and results from the theory of countable Borel

equivalence relations, including the definition of the space Gfg of (marked)

finitely generated groups. In Section 3, we will discuss some recent results

concerning the structure of topological full groups of minimal subshifts;

and in Section 4, we will prove that the flip conjugacy relation for Toeplitz

subshifts is not smooth and hence also that the isomorphism relation on the

space of infinite finitely generated simple amenable groups is not smooth.

Finally, in Section 5, we will present the proof of Theorem 1.4.

2. Countable Borel equivalence relations

In this section, we will recall some basic notions and results from the the-

ory of countable Borel equivalence relations, including the definition of the



November 27, 2012 14:20 WSPC - Proceedings Trim Size: 9in x 6in Thomas

4

space Gfg of (marked) finitely generated groups.

Suppose that (X,B ) is a measurable space; i.e. that B is a σ-algebra

of subsets of the set X. Then (X,B ) is said to be a standard Borel space

if there exists a Polish topology T on X such that B is the σ-algebra of

Borel subsets of (X, T ). If X, Y are standard Borel spaces, then a map

f : X → Y is Borel if f−1(Z) is a Borel subset of X for each Borel subset

Z ⊆ Y . Equivalently, f : X → Y is Borel if graph(f) is a Borel subset of

X × Y .

Let X be a standard Borel space. Then a Borel equivalence relation on

X is an equivalence relation E ⊆ X2 which is a Borel subset of X2. If

E, F are Borel equivalence relations on the standard Borel spaces X, Y

respectively, then a Borel map f : X → Y is said to be a homomorphism

from E to F if for all x, y ∈ X,

x E y =⇒ f(x) F f(y).

If f satisfies the stronger property that for all x, y ∈ X,

x E y ⇐⇒ f(x) F f(y),

then f is said to be a Borel reduction and we write E ≤B F . If both E ≤B F

and F ≤B E, then E and F are said to be Borel bireducible and we write

E ∼B F . Finally we write E <B F if both E ≤B F and F �B E.

In this paper, we will only be concerned with countable Borel equivalence

relations; i.e. Borel equivalence relations E such that every E-equivalence

class is countable. A detailed development of the general theory of countable

Borel equivalence relations can be found in Jackson-Kechris-Louveau [17].

Here we will only recall some of the most basic results of the theory.

With respect to Borel reducibility, the least complex countable Borel

equivalence relations are those which are smooth; i.e. those countable Borel

equivalence relations E on a standard Borel space X such that E is Borel

reducible to the identity relation IdY on some (equivalently every) uncount-

able standard Borel space Y . Next in complexity come those countable

Borel equivalence relations E which are Borel bireducible with the Vitali

equivalence relation E0, which is defined on the space 2N of infinite binary

sequences by

x E0 y ⇐⇒ x(n) = y(n) for all but finitely many n.

More precisely, by Harrington-Kechris-Louveau [15], if E is any (not nec-

essarily countable) Borel equivalence relation, then E is nonsmooth if and

only if E0 ≤B E. It turns out that there is also a most complex count-

able Borel equivalence relation E∞, which is universal in the sense that



November 27, 2012 14:20 WSPC - Proceedings Trim Size: 9in x 6in Thomas

5

F ≤B E∞ for every countable Borel equivalence relation F . (Clearly this

universality property uniquely determines E∞ up to Borel bireducibility.)

Furthermore, E∞ is strictly more complex than E0. The universal count-

able Borel relation E∞ has a number of natural realizations in many areas

of mathematics, including algebra, topology and recursion theory. In par-

ticular, by Thomas-Velickovic [24], the isomorphism relation ∼= on the space

Gfg of finitely generated groups is a universal countable Borel equivalence

relation.

Most of our effort in this paper will be devoted to proving that various

countable Borel equivalence relations are nonsmooth. Here we will make

use of the following two observations.

Proposition 2.1. If E ⊆ F are countable Borel equivalence relations on

the standard Borel space X and E is nonsmooth, then F is also nonsmooth.

Proof. This is an easy consequence of the Feldman-Moore Theorem [8].

(For example, see Thomas [22, Lemma 2.1].)

If E, E′ are countable Borel equivalence relations on the standard Borel

spaces Z, Z ′, then E is said to be weakly Borel reducible to E′ if there exists

a countable-to-one Borel homomorphism f : X → X ′ from E to E′. In this

case, we write E ≤wB E′.

Proposition 2.2. If E is a countable Borel equivalence relation on the

standard Borel space X and E0 ≤wB E, then E is nonsmooth.

Proof. By Thomas [23, Theorem 4.4], if E0 ≤wB E, then there exists a

countable Borel equivalence relation E′ ⊆ E such that E0 ≤B E′. Hence

the result follows from Proposition 2.1.

In the remainder of this section, we will present a brief discussion of

the Polish space Gfg of (marked) finitely generated groups, which is defined

as follows. A marked group (G, s̄) consists of a finitely generated group

with a distinguished sequence s̄ = (s1, · · · , sm) of generators. (Here the

sequence s̄ is allowed to contain repetitions and we also allow the possibil-

ity that the sequence contains the identity element.) Two marked groups

(G, (s1, · · · , sm)) and (H, (t1, · · · , tn)) are said to be isomorphic if m = n

and the map si 7→ ti extends to a group isomorphism between G and H.

Definition 2.3. For each m ≥ 2, let Gm be the set of isomorphism types

of marked groups (G, (s1, · · · , sm)) with m distinguished generators.



November 27, 2012 14:20 WSPC - Proceedings Trim Size: 9in x 6in Thomas

6

Let Fm be the free group on the generators {x1, · · · , xm}. Then for each

marked group (G, (s1, · · · , sm)), we can define an associated epimorphism

θG,s̄ : Fm → G by θG,s̄(xi) = si. It is easily checked that two marked

groups (G, (s1, · · · , sm)) and (H, (t1, · · · , tm)) are isomorphic if and only if

ker θG,s̄ = ker θH,t̄. Thus we can naturally identify Gm with the set Nm of

normal subgroups of Fm. Note that Nm is a closed subset of the compact

space 2Fm of all subsets of Fm and so Nm is also a compact space. Hence,

via the above identification, we can regard Gm as a compact space.

For each m ≥ 2, there is a natural embedding of Nm into Nm+1 defined

by

N 7→ the normal closure of N ∪ {xm+1} in Fm+1.

Thus we can identify Nm with the clopen subset {N ∈ Nm+1 | xm+1 ∈ N }
of Nm+1 and form the locally compact Polish space Nfg =

⋃
Nm. Note

that Nfg can be identified with the space of normal subgroups N of the

free group F∞ on countably many generators such that N contains all but

finitely many elements of the basis B = {xi | i ∈ N+}. Similarly, we can

form the locally compact Polish space Gfg =
⋃
Gm of finitely generated

groups via the corresponding natural embedding

(G, (s1, · · · , sm)) 7→ (G, (s1, · · · , sm, 1))

From now on, we will identify Gm and Nm with the corresponding clopen

subsets of Gfg andNfg. If Γ ∈ Gfg, then we will write Γ = (G, (s1, · · · , sm)),

where m is the least integer such that Γ ∈ Gm. Following the usual con-

vention, we will completely identify the Polish spaces Gfg and Nfg; and we

will work with whichever space is most convenient in any given context.

For example, to see that there exists a Borel map θ : Gfg → Gfg such

that if (G, c ) ∈ Gfg is infinite, then θ(G, c) is a just-infinite homomorphic

image of G, it is convenient to work with Nfg as follows. Suppose that

(G, c ) ∈ Gfg is infinite and that N ∈ Nfg is the corresponding normal

subgroup of F∞. Then, working with a fixed enumeration {wk | k ∈ N } of

F∞, we can define an increasing sequence of normal subgroups Nk ∈ Nfg
by:

• N0 = N .

• Nk+1 is the normal closure Mk of Nk∪{wk } in F∞ if [F∞ : Mk ] =∞.

Otherwise, Nk+1 = Nk.

Finally let Nω =
⋃
k∈NNk. Then F∞/Nω is a just-infinite homomorphic

image of G and the map N 7→ Nω is Borel.
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In the remaining sections of this paper, the symbol ∼= will always de-

note the usual isomorphism relation on the space Gfg of finitely generated

groups; i.e. two marked groups are ∼=-equivalent if their underlying groups

(obtained by forgetting about the distinguished sequences of generators)

are isomorphic. Finally, we should mention that we will occasionally slightly

abuse notation and denote the elements of Gfg by G, H, etc. instead of the

more accurate (G, c ), (H, d ), etc.

3. Topological full groups of minimal subshifts

In this section, we will discuss some recent results concerning the structure

of topological full groups of Cantor minimal systems. Let (X,T ) be a

Cantor dynamical system; i.e. X is a Cantor set and T : X → X is a

homeomorphism. Then (X,T ) is said to be a Cantor minimal system if X

has no nonempty proper closed T -invariant subsets. It is well-known that a

Cantor dynamical system (X,T ) is minimal if and only if X is the closure

of the orbit of an almost periodic point x ∈ X; and, in this case, every

point x ∈ X is almost periodic.

Definition 3.1. If (X,T ) is a Cantor dynamical system, then the point

x ∈ X is almost periodic if for every open neighborhood U of x, the set

R = { ` ∈ Z | T `(x) ∈ U }

of return times has bounded gaps; i.e. there exists a fixed d ≥ 1 such that

for all z ∈ Z,

R ∩ { z, z + 1, · · · , z + d } 6= ∅

Since Cantor minimal systems are infinite, it follows that they do not

contain any genuinely periodic points; i.e. points with finite orbits.

Definition 3.2. If (X,T ) is a Cantor minimal system, then the topological

full group [[T ]] is the group of all homeomorphisms π : X → X such

that there exists a partition X = C1 t · · · t Cm into clopen subsets and

`1, · · · , `m ∈ Z such that π � Ci = T `i � Ci for each 1 ≤ i ≤ m.

The Cantor minimal systems (X,T ) and (Y, S ) are said to be topo-

logically conjugate if there exists a homeomorphism π : X → Y such

that π ◦ T = S ◦ π. If (X,T ) is topologically conjugate to either (Y, S )

or (Y, S−1 ), then (X,T ) and (Y, S ) are said to be flip conjugate. The

following theorem combines the work of Giordano-Putnam-Skau [11] and

Bezuglyi-Medynets [1].
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Theorem 3.3. If (X,T ), (Y, S ) are Cantor minimal systems, then the

following are equivalent.

(i) (X,T ), (Y, S ) are flip conjugate.

(ii) The topological full groups [[T ]], [[S ]] are isomorphic as abstract

groups.

(iii) The commutator subgroups [[T ]]′, [[S ]]′ are isomorphic as abstract

groups.

If n ≥ 2, then the shift transformation σ on the Cantor space nZ is

defined by σ(x)k = xk+1. An infinite subset X ⊆ nZ is said to be a subshift

if X is a closed σ-invariant subset. The subshift X is minimal if the cor-

responding Cantor dynamical system (X,σ ) is minimal. In this case, we

also say that (X,σ ) is a minimal subshift. The following theorem is due to

Matui [20].

Theorem 3.4. Let (X,T ) be a Cantor minimal system.

(a) The commutator subgroup [[T ]]′ is an infinite simple group.

(b) The commutator subgroup [[T ]]′ is finitely generated if and only if

(X,T ) is topologically conjugate to a minimal subshift over a finite

alphabet.

The following result, which confirms a conjecture of Grigorchuk-

Medynets [14], was recently proved by Juschenko-Monod [18].

Theorem 3.5. The topological full group of any Cantor minimal system

is amenable.

The following result is now an immediate consequence of Theorem 3.4

and Theorem 3.5.

Corollary 3.6. If the Cantor minimal system (X,T ) is topologically con-

jugate to a minimal subshift over a finite alphabet, then the commutator

subgroup [[T ]]′ is an infinite finitely generated simple amenable group.

Throughout this paper, the collectionMn of minimal subshifts X ⊆ nZ
will be regarded as a subspace of the standard Borel space K(nZ) of closed

subspaces of nZ. (This corresponds to identifying each minimal subshift X

with the corresponding pruned tree TX ⊆
⋃
k∈N n

[−k,k ] such that X is the

set [TX ] of infinite branches through TX .) Recall that a subshift X ⊆ nZ

is minimal if and only if some (equivalently every) point x ∈ X is almost

periodic. It follows easily that Mn is a Borel subset of K(nZ) and hence
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thatMn is a standard Borel space. We will make use of the following result

in Section 4.

Proposition 3.7. The topological conjugacy relation Etc and the flip con-

jugacy relation Efp are both countable Borel equivalence relations on Mn.

Proof. By Clemens [3, Lemma 9], Etc is a countable Borel equivalence

relation on Mn; and, of course, this implies that Efp is also a countable

Borel equivalence relation.

From now on, if (X,σ ) is a minimal subshift, then we will write TF (X)

for the corresponding topological full group.

Theorem 3.8. For each n ≥ 2, there exists a Borel map X 7→ GX from

Mn to Gfg such that GX ∼= TF (X)′.

Let X ∈ Mn be a minimal subshift. In order to define the (marked)

group GX ∈ Gfg, we first need to explicitly describe a finite generating set

for TF (X)′. The following set of generators was originally extracted from

Matui [20, Section 5] by Grigorchuk and Medynets in an early version of

their paper [14].

Definition 3.9. Suppose that A ⊆ X is a clopen subset such that the

sets A, σ(A) and σ2(A) are pairwise disjoint. Then the homeomorphism

γA ∈ TF (X) is defined by

γA(x) =


σ(x) if x ∈ A ∪ σ(A);

σ−2(x) if x ∈ σ2(A);

x otherwise.

By Matui [20, Section 5], each such homeomorphism γA is an element

of TF (X)′; and, furthermore, TF (X)′ is generated by a suitably chosen

finite subset of these homeomorphisms. In more detail, for each m ≥ 1, let

Bm(X) be the set of all m-blocks that occur in sequences x ∈ X; i.e. the

words of the form

x � [k, k +m− 1] = xk xk+1 · · ·xk+m−1

for some x ∈ X and k ∈ Z. And for each w ∈ Bm(X) and k ∈ Z, let

Sk(w) = {x ∈ X | x � [k, k +m− 1] = w }.
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Then there exists an integer m0 ≥ 1 such that for each w ∈ Bm0
(X), k ∈ Z

and 1 ≤ i ≤ 4,

σi(Sk(w) ) ∩ Sk(w) = Sk−i(w) ∩ Sk(w) = ∅.

(If not, then an easy compactness argument yields an element x ∈ X such

that σi(x) = x for some 1 ≤ i ≤ 4, which contradicts the fact that minimal

subshifts contain no periodic points.) Finally, as pointed out by Grigorchuk

and Medynets, the proof of Matui [20, Theorem 5.4] shows that the follow-

ing result holds.

Proposition 3.10. If (X,σ ) is a minimal subshift, then TF (X)′ is gen-

erated by Dm0 = { γS0(w) | w ∈ Bm0+3(X) }.

We are now ready to present the proof of Theorem 3.8. Suppose that

X ∈ Mn is a minimal subshift. Then, in a Borel manner, we can choose

an integer m0 ≥ 1 such that Dm0
= { γS0(w) | w ∈ Bm0+3(X) } generates

T (X)′, together with an ordering ϕ1, · · · , ϕt of the elements of Dm0
. Also,

again in a Borel manner, we can choose an element pX ∈ X. (For example,

see Kechris [19, Theorem 12.13].) Let X 7→ NX ∈ Nt ⊆ Nfg be the Borel

map defined by

w(x1, · · · , xt) ∈ NX ⇐⇒ w(ϕ1, · · · , ϕt)(σn(pX) ) = σn(pX) for all n ∈ Z.

Since {σn(pX) | n ∈ Z } is dense in X and each ϕi is a homeomorphism, it

follows that Ft/NX ∼= TF (X)′. This completes the proof of Theorem 3.8.

4. Toeplitz subshifts

Combining Theorem 3.3, Corollary 3.6 and Theorem 3.8, we see that in

order to prove that the isomorphism relation on the space of infinite finitely

generated simple amenable groups is not smooth, it is enough to show

that the flip conjugacy relation Efc on the space Mn of minimal subshifts

X ⊆ nZ is not smooth. In [10, Section 9.3], Gao-Jackson-Seward proved that

for each n ≥ 2, the topological conjugacy relation Etc onMn is not smooth.

Applying Proposition 2.1, since Etc, Efc are countable Borel equivalence

relations and Etc ⊆ Efc , it follows that the flip conjugacy relation Efc
on Mn is also not smooth.

Since Gao-Jackson-Seward [10] work in the more general setting of min-

imal free G-subflows, where G is an arbitrary countably infinite group,

their proofs are necessarily technically complex. (In fact, the existence of

a single free G-flow for an arbitrary countably infinite group G has only

recently been established by Gao-Jackson-Seward [9].) In this section, we
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will present an elementary proof that the topological conjugacy relation Etc
on the space Mn of minimal subshifts X ⊆ nZ is not smooth.

Definition 4.1. An element x ∈ nZ is said to be a Toeplitz sequence if for

all a ∈ Z, there exists b ∈ N+ such that x(a+ kb) = x(a) for all k ∈ Z.

Clearly if x ∈ nZ is a Toeplitz sequence, then x is almost periodic.

Hence, if x is a nonperiodic Toeplitz sequence, then the closure X of its

orbit is a minimal subshift of nZ; and, in this case, X is said to be a Toeplitz

flow . By Downarowicz [6, Theorem 5.1], if X is a Toeplitz flow, then the set

of all Toeplitz sequences z ∈ X is a dense Gδ subset of X. It follows that

the set Tn ⊆ Mn of Toeplitz flows is a Borel subset of Mn and hence is

a standard Borel space. (For example, see Kechris [19, Section 16.A].) The

remainder of this section is devoted to the proof of the following result.

Theorem 4.2. The topological conjugacy relation Etc on the space Tn of

Toeplitz flows is not smooth.

Of course, applying Proposition 2.1, this immediately implies the fol-

lowing result.

Corollary 4.3. The flip conjugacy relation Efc on the space Tn of Toeplitz

flows is not smooth.

Clearly it is enough to prove Theorem 4.2 in the special case when n = 2.

For each z ∈ 2N, let z̃ ∈ 2Z be the corresponding Toeplitz sequence defined

as follows.

• For each m ≥ 1, let Bm = [ 0, 2m− 1 ] and suppose inductively that we

have defined the value z̃(`) for all integers ` ∈ Bm r { am, bm }, where

0 ≤ am < bm ≤ 2m − 1. Let cm = am if m is odd and cm = bm if m is

even. Then we define

z̃(cm + k 2m) = z(m− 1) for all k ∈ Z.

For example, at the beginning of stage 3 of the construction, z̃ � B3 is

given by

z(0) ∗ z(0) z(1) z(0) ∗ z(0) z(1)

where the ∗ indicates that the value has not yet been defined. We then

define z̃(1 + 8k) = z(2) for all k ∈ Z and hence obtain that for all k ∈ Z,

z̃ � [ 8k, 8(k + 1) ) = z(0) z(2) z(0) z(1) z(0) ∗ z(0) z(1)
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Notice that if z ∈ 2N is an eventually constant sequence, then z̃ is a

periodic sequence and so the corresponding orbit {σm(z̃) | m ∈ Z } is a

finite closed subset of 2N. From now on, let Ec(2N) be the set of eventually

constant sequences z ∈ 2N and let Nec(2N) = 2N r Ec(2N).

Definition 4.4. Suppose that x ∈ nZ is a Toeplitz sequence.

(i) For each a ∈ Z, the corresponding minimal period perx(a) is the least

integer b ≥ 1 such that x(a+ kb) = x(a) for all k ∈ Z.

(ii) The set of essential periods of x is defined to be { perx(a) | a ∈ Z }.

Lemma 4.5. If z ∈ Nec(2N), then { 2m | m ∈ N+ } is the set of essential

periods of z̃.

Proof. With the above notation, it is enough to show that each cm ∈ Bm
has minimal period 2m. This is clear when m = 1. So suppose that m > 1.

Then at the beginning of stage m of the construction, z̃ � Bm has the form

ā ∗ b̄ ā ∗ b̄, where ā ∗ b̄ has length 2m−1; and at the end of stage m, we know

that z̃ has the form

· · · ā ∗ b̄ ā z(m− 1) b̄ ā ∗ b̄ ā z(m− 1) b̄ ā ∗ b̄ ā z(m− 1) b̄ · · ·

Clearly 2m is a period of cm. Also, since z is not eventually constant, we

must eventually replace some ∗ by a value z(`) 6= z(m− 1) and so 2m−1 is

not a period of cm. Thus cm has minimal period 2m.

Definition 4.6. For each z ∈ Nec(2N), and m ∈ N+, let Wm(z̃) be the set

of subsequences of z̃ of the form z̃ � [ k 2m, (k + 1)2m ) for some k ∈ Z.

Lemma 4.7. If z ∈ Nec(2N), then |Wm(z̃)| = 2 for all m ∈ N+.

Proof. If at the end of stage m of the construction, z̃ � Bm has the form

c̄ ∗ d̄, then Wm(z̃) = { c̄ 0 d̄ , c̄ 1 d̄ }.

For each element z ∈ Nec(2N), let Xz ∈ T2 be the closure of the orbit

{σn(z̃) | n ∈ Z } in 2Z. Then it is clear that the map z 7→ Xz from Nec(2N)

to T2 is Borel.

Proposition 4.8. If y, z ∈ Nec(2N) and yE0 z, then the Toeplitz flows Xy

and Xz are topologically conjugate.

We will make use of the following result, which is a special case of

Downarowicz-Kwiatkowski-Lacroix [7, Theorem 1].
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Lemma 4.9. If y, z ∈ Nec(2N), then the following statements are equiva-

lent:

(i) There exists a topological conjugacy π : Xy → Xz such that π(ỹ) = z̃.

(ii) For some m ∈ N+, there exists a bijection Π : Wm(ỹ) → Wm(z̃) such

that

z̃ � [ k 2m, (k + 1)2m ) = Π( ỹ � [ k 2m, (k + 1)2m ) )

for all k ∈ Z.

Proof of Proposition 4.8. Suppose that y(m) = z(m) for all m ≥ m0;

and suppose that at the end of stage m0 of the constructions of ỹ, z̃, we have

that ỹ � Bm0
= ā ∗ b̄ and z̃ � Bm0

= c̄ ∗ d̄. Then Wm0
(ỹ) = { ā 0 b̄, ā 1 b̄ }

and Wm0
(z̃) = { c̄ 0 d̄, c̄ 1 d̄ }. Furthermore, for any k ∈ Z, the unique ∗ in

the interval [ k 2m0 , (k + 1)2m0 ) is replaced at the same stage m > m0 in

the constructions of ỹ and z̃ with the value of y(m− 1) = z(m− 1). Hence

the map Π : Wm0(ỹ) → Wm0(z̃), defined by Π(ā ε b̄) = c̄ ε d̄ for ε = 0, 1,

satisfies statement (ii) of Lemma 4.9.

From now on, let B = { 2m+1− 1 | m ∈ N+ } and let Z be the standard

Borel subspace of Nec(2N) defined by

Z = { z ∈ Nec(2N) | z(n) = 0 for all n ∈ NrB }.

Clearly E0 � Z is Borel bireducible with E0.

Proposition 4.10. The Borel map θ : Z → T2 defined by z 7→ Xz is

injective.

Combining Propositions 4.8 and 4.10, we see that the map z 7→ Xz is a

weak Borel reduction from E0 � Z to the topological conjugacy relation Etc
on T2. Hence, applying Proposition 2.2, it follows that Etc is not smooth.

This completes the proof of Theorem 4.2.

Proof of Proposition 4.10. Suppose that y 6= z ∈ Z. Then we can

assume that y(n) = 0 and z(n) = 1, where n is the least integer such that

y(n) 6= z(n). Let n = 2m+1 − 1 and let s = 2m. Suppose that at the end of

stage s of the constructions of ỹ, z̃, we have that

ỹ � Bs = ā ∗ b̄ = z̃ � Bs.

Then Ws(ỹ) = Ws(z̃) = { ā 0 b̄ , ā 1 b̄ } and ỹ, z̃ are concatenations of the

2s-blocks ā 0 b̄ and ā 1 b̄. Let t = 2m+1 = 2s and consider z̃ � Bt. Since
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z(t − 1) = z(n) = 1, it follows that the concatenation of 2s-blocks in

z̃ contains a subsequence of period 2t/|Bs| = 2s in which ā 1 b̄ occurs.

Similarly, since z(s) = 0, the concatenation of 2s-blocks in z̃ contains a

subsequence of period 2 in which ā 0 b̄ occurs. Thus each occurrence of

ā 1 b̄ in the expression of z̃ as a concatenation of 2s-blocks is preceded and

followed by occurrences of ā 0 b̄. We claim that the sequence

ā 0 b̄ ā 0 b̄ · · · ā 0 b̄︸ ︷︷ ︸
2s+1times

(4.10)

cannot occur as a subsequence of z̃. For suppose that the sequence (4.10)

occurs as the subsequence ū = zk · · · zk+(2s+1)2s−1 of z̃. Then ū must con-

tain 2s consecutive 2s-blocks in the expression of z̃ as a concatenation of

2s-blocks, one of which must be ā 1 b̄. However, the sequence (4.10) clearly

repeats with period 2s and so we must obtain two consecutive occurrences

of the 2s-block ā 1 b̄, which is impossible. On the other hand, since y(`) = 0

for all s ≤ ` ≤ 4s− 2 = 2m+2 − 2, it follows easily that the sequence (4.10)

occurs as a sub-block of ỹ. Clearly this means that Xy 6= Xz.

5. The proof of Theorem 1.4

In this final section, we will present the proof of Theorem 1.4. Our argument

involves the following variant of the Vitali equivalence relation E0.

Definition 5.1. For each x ∈ 2N, let x̄ ∈ 2N be the element defined by

x̄(n) = 1− x(n) for all n ∈ N.

Then E∗0 is the countable Borel equivalence relation on 2N defined by

x E∗0 y ⇐⇒ x E0 y or x E0 ȳ.

Thus each E∗0 -class consists of exactly two E0-classes. The proof of The-

orem 1.4 makes use of the fact that there does not exist a Borel selection

of an E0-class within each E∗0 -class.a For the sake of completeness, we have

included a proof of this standard result.

Proposition 5.2. There does not exist a Borel homomorphism θ : 2N → 2N

from E∗0 to E0 such that θ(x) E∗0 x for all x ∈ 2N.

aI first learned of this “standard measure-theoretic fact” from Coskey-Schneider [4].
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Proof. Suppose that θ : 2N → 2N is such a Borel homomorphism. Let µ be

the usual product probability measure on 2N and let

X = {x ∈ 2N | x E0 y for some y ∈ ran θ }.

Then X is a Borel tail event; and hence, by Kolmogorov’s Zero-One Law,

we have that µ(X) = 0, 1. However, since the map x 7→ x̄ is measure

preserving, it follows that µ(2N rX) = µ(X), which is impossible.

We are now ready to present the proof of Theorem 1.4. Suppose that

there exists a Borel map ϕ : Gfg → Gfg such that for all infinite G, H ∈ Gfg,

(i) ϕ(G) is a just-infinite homomorphic image of G; and

(ii) if G ∼= H, then ϕ(G) ∼= ϕ(H).

Applying Theorem 1.1 and Harrington-Kechris-Louveau [15], there exists

a Borel reduction z 7→ Sz from E0 to the isomorphism relation ∼= on the

space of infinite finitely generated simple amenable groups. (The fact that

Sz is amenable will play no role in the proof of Theorem 1.4.) Consider the

Borel map ψ : 2N → Gfg defined by z 7→ Gz = Sz×Sz̄. Since Sz and Sz̄ are

nonabelian simple groups, the only nontrivial proper normal subgroups of

Gz are Sz and Sz̄; and it follows that:

(iii) ψ is a Borel reduction from E∗0 to ∼=.

(iv) Each ϕ(Gz) is isomorphic to either Sz or Sz̄.

Thus the Borel map θ : 2N → 2N defined by

θ(z) = y ⇐⇒ y ∈ { z, z̄ } and ϕ(Gz) ∼= Sy

is a homomorphism from E∗0 to E0 such that θ(x)E∗0 x for all x ∈ 2N, which

contradicts Proposition 5.2.
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