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Abstract. Suppose that n ≥ 2 and that S, T are sets of primes. Then the

classification problem for the S-local torsion-free abelian groups of rank n is

Borel reducible to the classification problem for the T -local torsion-free abelian

groups of rank n if and only if S ⊆ T .

1. Introduction

This paper is a contribution to the project of determining the complexity of

the classification problem for the torsion-free abelian groups of finite rank. Recall

that, up to isomorphism, the torsion-free abelian groups of rank n are exactly the

additive subgroups of the n-dimensional vector space Qn which contain n linearly

independent elements. Thus the classification problem for the torsion-free abelian

groups of rank n can be naturally identified with the corresponding problem for

R(Qn) = {A 6 Qn | A contains n linearly independent elements}.

In 1937, Baer [4] solved the classification problem for the torsion-free abelian groups

of rank 1. However, despite the efforts of such mathematicians as Kurosh [19] and

Malcev [21], a satisfactory classification has not been found for the torsion-free

abelian groups of finite rank n ≥ 2. Thus it was natural to ask whether the

classification problem was genuinely more difficult for the groups of rank n ≥ 2. A

major breakthough occurred in 1998, when Hjorth [13] proved that the classification

problem for the rank 2 groups is strictly harder than that for the rank 1 groups. A

few years later, making essential use of the work of Adams-Kechris [1], Thomas [29]

proved that the complexity of the classification problem increases strictly with the

rank n. More recently, a number of papers have been written on the classification
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problem for the p-local torsion-free abelian groups of finite rank, including Thomas

[31], Hjorth-Thomas [15] and Coskey [7, 8]. (Recall that an abelian group A is said

to be p-local if A is q-divisible for every prime q 6= p.)

In this paper, we will consider the complexity of the classification problems for

the S-local torsion-free abelian groups of a fixed rank n ≥ 2, where S is an arbitrary

set of primes. Here an abelian group A is said to be S-local if A is p-divisible for

all primes p /∈ S. For example, a torsion-free abelian group A is ∅-local if and only

if A is divisible; while, on the other hand, every abelian group is P-local, where P is

the set of all primes. If S ⊆ T , then the class of S-local torsion-free abelian groups

of rank n is included in the class of T -local torsion-free groups of rank n and so

the classification problem for the S-local groups is trivially reducible to that for the

T -local groups. The main result of this paper states that this is the only case in

which a Borel reduction exists.

Theorem 1.1. Let n ≥ 2. If S, T ⊆ P are sets of primes, then the classification

problem for the S-local torsion-free abelian groups of rank n is Borel reducible to

that for the T -local groups of rank n if and only if S ⊆ T .

Since the proof for the case when n = 2 is technically much more involved and

does not introduce any new ideas, we will present a complete proof for the case

when n ≥ 3 in the main body of this paper and we will sketch the proof for the case

when n = 2 in an appendix. The currently known proof for the case when n = 2 is

essentially an amalgam of Thomas [32] and Hjorth-Thomas [15], together with the

techniques in the main body of this paper. In particular, since the proof relies on

Zimmer’s supperigidity theorem [33, Chapter 10] for products of real and p-adic Lie

groups, it requires a familiarity with the associated machinery of induced spaces,

finite ergodic extensions, etc. On the other hand, the proof for the case when n ≥ 3

proceeds via a much more direct argument which makes use of the recent Ioana

superrigidity theorem [16] for profinite actions of Kazhdan groups; and this has

enabled us to write the main body of the paper so as to be intelligible to readers

who are unfamiliar with the notions and techniques of superrigidity theory.1

1It is currently not known whether Ioana’s theorem also holds for the more general class of

groups with Property (τ). If so, then working with PSL2(Z[1/p]) instead of PSL2(Z), the case

when n = 2 can also be handled using the methods in the main body of this paper.
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This paper is organized as follows. In Section 2, we will recall some basic no-

tions and results concerning the theory of Borel equivalence relations and ergodic

theory. In Section 3, following Kurosh [19] and Malcev [21], we will relate the

classification problem for the torsion-free abelian groups of rank n to the natural

actions of GLn(Q) on the standard Borel spaces Sp(Qn
p ) of vector subspaces of Qn

p ;

and we will state a result which captures an important aspect of the fundamental

incompatibility between the actions of GLn(Q) on Qn
p and Qn

q for distinct primes

p 6= q. In Section 4, we will discuss the superrigidity results which will be used in

the proof of Theorem 1.1 for the case when n ≥ 3. In Section 5, we will prove an

ergodicity result which will allow us to focus our attention on classes of torsion-free

abelian groups A with a fixed automorphism group Aut(A) = D 6 Z(GLn(Q)).

As an application of this result, we will present an alternative proof of the result

that the complexity of the classification problem for the torsion-free abelian groups

of rank n ≥ 2 increases strictly with n. In Section 6, we will present the proof of

Theorem 1.1 for the case when n ≥ 3. Finally, in Appendix A, we will sketch the

proofs of two superrigidity theorems from Section 4; and in Appendix B, we will

sketch the proof of Theorem 1.1 for the case when n = 2.

Acknowledgements. I would like to thank David Arnold and Alexander Kechris

for helpful discussions concerning the material in this paper.

2. Preliminaries

In this section, we will recall some basic notions and results concerning the theory

of Borel equivalence relations and ergodic theory.

2.1. Borel equivalence relations. Suppose that (X, T ) is a Polish space; i.e.,

a separable completely metrizable topological space. Then the associated standard

Borel space is (X,B ), where B is the σ-algebra of Borel subsets of (X, T ). As

usual, we will write X instead of (X,B ). If X, Y are standard Borel spaces, then

the map f : X → Y is said to be Borel if graph(f) is a Borel subset of X × Y .

Equivalently, f : X → Y is Borel if f−1(Z) is a Borel subset of X for each Borel

subset Z ⊆ Y . The notion of a Borel map is intended to capture the intuitive idea

of an explicit map.
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An equivalence relation E on the standard Borel space X is said to be Borel if

E ⊆ X2 is a Borel subset of X2. The Borel equivalence relation E is said to be

countable if every E-equivalence class is countable. If E, F are Borel equivalence

relations on the standard Borel spaces X, Y , then a Borel map f : X → Y is said

to be a homomorphism from E to F if for all x, y ∈ X,

x E y =⇒ f(x) F f(y).

If f satisfies the stronger property that for all x, y ∈ X,

x E y ⇐⇒ f(x) F f(y),

then f is said to be a Borel reduction and we write E ≤B F . If both E ≤B F

and F ≤B E, then we write E ∼B F and we say that E, F are Borel bireducible.

Finally, if both E ≤B F and F �B E, then we write E <B F .

Most of the Borel equivalence relations that we will consider in this paper arise

from group actions as follows. Let G be a countable group. Then a standard Borel

G-space is a standard Borel space X equipped with a Borel action (g, x) 7→ g ·x of G

on X. The corresponding G-orbit equivalence relation on X, which we will denote

by EX
G , is a countable Borel equivalence relation. Conversely, by a classical result

of Feldman-Moore [10], if E is an arbitrary countable Borel equivalence relation on

the standard Borel space X, then there exists a countable group G and a Borel

action of G on X such that E = EX
G .

Notice that R(Qn) is a Borel subset of the Polish space P(Qn) of all subsets

of Qn and hence R(Qn) can be regarded as a standard Borel space. (Here we

are identifying P(Qn) with the Polish space 2Qn

of all functions h : Qn → {0, 1}

equipped with the product topology.) Furthermore, the natural action of GLn(Q)

on the vector space Qn induces a corresponding Borel action on R(Qn); and it is

easily checked that if A, B ∈ R(Qn), then A ∼= B if and only if there exists an

element ϕ ∈ GLn(Q) such that ϕ(A) = B.

Definition 2.1. For each S ⊆ P, the standard Borel space of S-local torsion-free

abelian groups of rank n is defined to be

RS(Qn) = {A ∈ R(Qn) | A is S-local }.
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Throughout this paper, the isomorphism relations on R(Qn) and RS(Qn) will

be denoted by ∼=n and ∼=S
n . If S = { p }, then we will write Rp(Qn) and ∼=p

n instead

of R{p}(Qn) and ∼={p}n .

A detailed development of the general theory of countable Borel equivalence

relations can be found in Jackson-Kechris-Louveau [17]. Here we will just recall

some of the basic theory of hyperfinite Borel equivalence relations. The countable

Borel equivalence relation E on the standard Borel space X is said to be hyperfinite

if there exists an increasing sequence

F0 ⊆ F1 ⊆ · · · ⊆ Fn ⊆ · · ·

of finite Borel equivalence relations on X such that E =
⋃

n∈N Fn. (Here an equiv-

alence relation F is said to be finite if every F -equivalence classes is finite.) For

example, the Vitali equivalence relation, defined on 2N by

x E0 y ⇐⇒ x(n) = y(n) for all but finitely many n,

is hyperfinite. By Dougherty-Jackson-Kechris [9], a countable Borel equivalence

relation E is hyperfinite if and only if E ≤B E0. It is interesting to note that

Baer’s classification of the torsion-free abelian groups of rank 1 shows that ∼=1 is

Borel bireducible with E0.

2.2. Ergodic theory. Suppose that Γ is a countable group and that X is a stan-

dard Borel Γ-space. If µ is a Γ-invariant probability measure on X, then the action

of Γ on (X,µ) is said to be ergodic if for every Γ-invariant Borel subset A ⊆ X,

either µ(A) = 0 or µ(A) = 1. The following characterization of ergodicity is well-

known.

Theorem 2.2. If µ is a Γ-invariant probability measure on the standard Borel

Γ-space X, then the following statements are equivalent.

(i) The action of Γ on (X,µ) is ergodic.

(ii) If Y is a standard Borel space and f : X → Y is a Γ-invariant Borel

function, then there is a Γ-invariant Borel subset M ⊆ X with µ(M) = 1

such that f � M is a constant function.

Suppose that Γ is a countable group and that X is a standard Borel Γ-space

with an invariant ergodic probability measure µ. Let Λ 6 Γ be a subgroup such
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that [Γ : Λ] <∞. Then a Λ-invariant Borel subset Z ⊆ X is said to be an ergodic

component for the action of Λ on X if

• µ(Z) > 0 ; and

• Λ acts ergodically on (Z, µZ), where µZ is the probability measure defined

on Z by µZ(A) = µ(A)/µ(Z).

It is easily checked that there exists a partition Z1 t · · · t Zd of X into finitely

many ergodic components and that the collection of ergodic components is uniquely

determined up to µ-null sets.

The following strengthening of the notion of ergodicity will play an important

role in this paper. Suppose that Γ is a countable group and that X is a standard

Borel Γ-space with an invariant probability measure µ. Let F be a Borel equivalence

relation on the standard Borel space Y . Then (EX
Γ , µ) is said to be F -ergodic if for

every Borel homomorphism f : X → Y from EX
Γ to F , there exists an Γ-invariant

Borel subset M ⊆ X with µ(M) = 1 such that f maps M into a single F -class. In

this case, for simplicity, we will usually say that EX
Γ is F -ergodic. (For example,

the action of Γ on (X,µ) is ergodic if and only if EX
Γ is ∆(Y )-ergodic for every

standard Borel space Y , where ∆(Y ) is the identity relation on Y .) The proof of

Theorem 1.1 for the case when n ≥ 3 makes use of the following strong ergodicity

theorem, which is an immediate consequence of the results of Schmidt [27] and

Jones-Schmidt [18]. (For more details, see Appendix A of Hjorth-Kechris [14].)

Theorem 2.3. If Γ is a countable Kazhdan group and X is a standard Borel Γ-

space with invariant ergodic probability measure µ, then EX
Γ is E0-ergodic.

It is not not necessary to be familiar with the definition of a Kazhdan group in

order to understand this paper. Instead, it will be enough to know that if n ≥ 3

and Γ is either PSLn(Z) or PSLn(Z[1/q]) for some prime q, then every subgroup

∆ 6 Γ of finite index is a Kazhdan group. Here Z[1/q] is the subring of Q consisting

of the rational numbers of the form z/q` for some z ∈ Z and ` ≥ 0. (A clear account

of the basic theory of Kazhdan groups can be found in Lubotsky [20].)
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3. Groups acting on p-adic spaces and the Kurosh-Malcev p-adic

completion technique

The proof of Theorem 1.1 is based upon a fundamental incompatibility between

the actions of GLn(Q) on Qn
p and Qn

q for distinct primes p 6= q. In this section, we

will first state a result which captures an important aspect of this incompatibility;

and then, following Kurosh [19] and Malcev [21], we will relate the classification

problem for the torsion-free abelian groups of rank n to the natural actions of

GLn(Q) on the standard Borel spaces Sp(Qn
p ) of vector subspaces of Qn

p . (The

results in this section first appeared in the unpublished preprint [31] and have

recently played a role in the papers of Coskey [7, 8].)

Fix some prime p and let e1, . . . , en be the standard basis of the n-dimensional

vector space Qn
p over the field of p-adic numbers. Then, by identifying Qn with⊕n

i=1 Q ei, we can regard Qn as an additive subgroup of Qn
p . With this identifica-

tion, the natural action of GLn(Q) on Qn extends to an action on Qn
p and so we

can also regard GLn(Q) as a subgroup of GLn(Qp).

For each integer 1 ≤ k < n, let V (k)(n,Qp) be the standard Borel space con-

sisting of the k-dimensional vector subspaces of Qn
p . Then it is easily shown that

the compact group SLn(Zp) acts transitively on V (k)(n,Qp). (For example, see

Thomas [30, Lemma 6.1].) Hence we can identify V (k)(n,Qp) with the coset space

SLn(Zp)/L, where L is a suitably chosen closed subgroup of SLn(Zp). For the

remainder of this paper, µp will denote the corresponding Haar probability mea-

sure on V (k)(n,Qp). Since SLn(Z) is a dense subgroup of SLn(Zp), it follows

that SLn(Z) acts ergodically on (V (k)(n,Qp), µp ). Since Z(GLn(Q)) acts trivially

on V (k)(n,Qp), the above discussion also applies to the actions of PGLn(Q) and

PSLn(Z) on V (k)(n,Qp). We will usually write PG(n−1,Qp) instead of V (1)(n,Qp)

for the standard Borel space of 1-dimensional vector subspaces of Qn
p .

Theorem 3.1 (Thomas [31], Coskey [8]). Let n ≥ 3. Suppose that p 6= q are

distinct primes and that 1 ≤ k < n. Let E1 be the orbit equivalence relation arising

from the action of PSLn(Z) on PG(n− 1,Qp) and let E2 be the orbit equivalence

relation arising from the action of PGLn(Q) on V (k)(n,Qq). Then E1 is E2-ergodic

with respect to µp.
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Remark 3.2. Theorem 3.1 was originally proved in Thomas [31] via a technically

complex argument which involved the Margulis [22] and Zimmer [33] superrigidity

theorems, together with Ratner’s measure classification theorem [24]. A much

simpler proof was recently discovered by Coskey [8] using the Ioana superrigidity

theorem [16], together with some ideas of Furman [12]. (Coskey [8] also generalized

Theorem 3.1 to deal with the actions of PSLm(Z) on PG(m−1,Qp) and PGLn(Q)

on V (k)(n,Qq) for arbitrary m, n ≥ 3.)

In the remainder of this section, following Kurosh [19] and Malcev [21], we will

relate the classification problem for the torsion-free abelian groups of rank n to the

natural actions of GLn(Q) on the standard Borel spaces Sp(Qn
p ) of vector subspaces

of Qn
p .

Definition 3.3. If p ∈ P and A ∈ R(Qn), then the p-adic completion of A is

defined to be Âp = Zp ⊗A.

We will regard each Âp as an additive subgroup of Qn
p in the usual way; i.e. Âp

is the subgroup consisting of all finite sums

γ1a1 + γ2a2 + · · ·+ γtat,

where γi ∈ Zp and ai ∈ A for 1 ≤ i ≤ t. By Fuchs [11, Lemma 93.3], there exist

integers 0 ≤ k, ` ≤ n with k + ` = n and elements vi, wj ∈ Âp such that

Âp =
k⊕

i=1

Qpvi ⊕
⊕̀
j=1

Zpwj .

Definition 3.4. For each p ∈ P and A ∈ R(Qn), let V A
p =

⊕k
i=1 Qpvi.

Suppose that A ∈ R(Qn) and that dimV A
p = k. If A ∼= B, then there exists

π ∈ GLn(Q) such that π(A) = B. Regarding GLn(Q) as a subgroup of GLn(Qp),

it follows that π(Âp) = B̂p and hence π(V A
p ) = V B

p . Thus the GLn(Q)-orbit of the

subspace V A
p ∈ V (k)(n,Qq) is an isomorphism invariant of A. (In fact, this is one of

the much maligned Kurosh-Malcev invariants.) If A ∈ Rp(Qn) is a p-local group,

then this invariant comes close to determining A up to isomorphism. In order

to explain this more precisely, it is necessary to introduce the quasi-equality and

quasi-isomorphism relations on R(Qn). (These notions will also play an important

role in Section 5.)
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Definition 3.5. Suppose that A, B ∈ R(Qn).

(i) A and B are quasi-equal , written A ≈ B, if A ∩B has finite index in both

A and B.

(ii) A and B are quasi-isomorphic, written A ∼ B, if there exists π ∈ GLn(Q)

such that π(A) ≈ B.

Equivalently, A and B are quasi-isomorphic if and only if there exist subgroups

A0 6 A, B0 6 B with [A : A0 ], [B : B0 ] < ∞ such that A0
∼= B0. The following

result was proved in Thomas [29, Section 4].

Proposition 3.6. If A, B ∈ Rp(Qn), then

(a) A ≈ B if and only if VA = VB;

(b) A ∼ B if and only if there exists π ∈ GLn(Q) such that π(VA) = VB.

The following result will play an important role in the proof of Theorem 1.1.

Theorem 3.7. There exists a Borel map ϕ : PG(n − 1,Qp) → Rp(Qn) such that

for all x, y ∈ PG(n− 1,Qp),

PGLn(Q) · x = PGLn(Q) · y ⇐⇒ ϕ(x) ∼= ϕ(y).

The proof of Theorem 3.7 makes use of the following observation.

Lemma 3.8. If A, B ∈ Rp(Qn) and dimV A
p = dimV B

p = n−1, then the following

are equivalent:

(i) A ∼= B.

(ii) There exists π ∈ GLn(Q) such that π(V A
p ) = V B

p .

Proof. We have already noted that (i) implies (ii). On the other hand, if there

exists π ∈ GLn(Q) such that π(V A
p ) = V B

p , then A and B are quasi-isomorphic.

By Exercises 32.5 and 93.1 of Fuchs [11], if C ∈ Rp(Qn), then

dimQp V
C
p = n− dimFp C/pC.

In particular, dimFp
A/pA = 1 and it follows that |A/qA| ≤ q for every prime q.

Hence, by Fuchs [11, Proposition 92.1], if C is any torsion-free abelian group which

is quasi-isomorphic to A, then A ∼= C. In particular, A ∼= B. �
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Proof of Theorem 3.7. First we will define an analogous Borel map

σ : V (n−1)(n,Qp) → Rp(Qn).

Let e1, . . . , en be the standard basis of Qn
p . For each W ∈ V (n−1)(n,Qp), let

σ(W ) = (W ⊕ ZpeiW
) ∩Qn,

where 1 ≤ iW ≤ n is the least integer such that eiW
/∈W . Arguing as in the proof

of Fuchs [11, Theorem 93.5], we easily obtain that σ(W ) ∈ Rp(Qn) and that

Zp ⊗ σ(W ) = W ⊕ ZpeiW

In other words, V σ(W )
p = W . Hence, by Lemma 3.8, if W , W ′ ∈ V (n−1)(n,Qp),

then σ(W ) ∼= σ(W ′) if and only there exists π ∈ GLn(Q) such that π(W ) = W ′.

Finally, in order to obtain (for purely aesthetic reasons) a corresponding map

from V (1)(n,Qp), let V ∗ be the dual space of linear functionals f : Qn
p → Qp.

Then we can define a natural GLn(Q)-equivariant bijection from V (1)(n,Qp) to the

standard Borel space of (n− 1)-dimensional subspaces of V ∗ by

U 7→ U⊥ = { f ∈ V ∗ | f(u) = 0 for all u ∈ U }.

The result follows easily. �

4. Some superrigidity results

In this section, after a brief discussion of the notion of a Borel cocycle, we

will state a cocycle superrigidity result that, in conjunction with various “non-

embeddability results”, will play an essential role in the proof of Theorem 1.1 for

the case when n ≥ 3. Then the remainder of the section will be devoted to an

account of the relevant non-embeddability results.

We will begin by discussing the notion of a Borel cocycle. Until further notice,

we will fix a countable group G, together with a standard Borel G-space X with

an invariant probability measure µ.

Definition 4.1. If H is a countable group, then a Borel function α : G×X → H

is called a cocycle if for all g, h ∈ G and x ∈ X,

α(hg, x) = α(h, g · x)α(g, x).
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Cocycles typically arise in the following manner. Suppose that Y is a standard

Borel H-space and that H acts freely on Y ; i.e., that h · y 6= y for all y ∈ Y and

1 6= h ∈ H. If f : X → Y is a Borel homomorphism from EX
G to EY

H , then we can

define a corresponding Borel cocycle α : G×X → H by

α(g, x) = the unique element h ∈ H such that h · f(x) = f(g · x).

Suppose now that b : X → H is a Borel map and that f ′ : X → Y is defined by

f ′(x) = b(x) · f(x). Then f ′ is also a Borel homomorphism from EX
G to EY

H and

the corresponding cocycle β : G×X → H satisfies

β(g, x) = b(g · x)α(g, x)b(x)−1

for all g ∈ G and x ∈ X. This observation motivates the following definition.

Definition 4.2. If H is a countable group, then the cocycles α, β : G ×X → H

are equivalent if there exist a Borel function b : X → H and a G-invariant Borel

subset X0 ⊆ X with µ(X0) = 1 such that

β(g, x) = b(g · x)α(g, x)b(x)−1

for all g ∈ G and x ∈ X0.

Cocycle superrigidity theorems state that with suitable hypotheses on G, X and

H, every Borel cocycle α : G × X → H is equivalent to a group homomorphism

ϕ : G→ H. In this case, if α is the cocycle corresponding to a Borel homomorphism

f : X → Y from EX
G to EY

H and f ′ : X → Y is the “adjusted homomorphism”

corresponding to ϕ, then

ϕ(g) · f ′(x) = f ′(g · x)

for all g ∈ G and x ∈ X0; i.e., the pair (ϕ, f ′ � X0 ) is a permutation group

homomorphism from (G,X0 ) to (H,Y ).

The following result, which is an immediate consequence of the Ioana cocycle

superrigidity theorem [16], will be used repeatedly in the proof of Theorem 1.1 for

the case when n ≥ 3. (For the sake of completeness, we have sketched the proof of

Theorem 4.3 in Appendix A.)



12 SIMON THOMAS

Theorem 4.3. Let n ≥ 3. Suppose that X = PG(n − 1,Qp) and that Γ is either

PSLn(Z) or PSLn(Z[1/q]) for some prime q 6= p. If H is any countable group and

α : Γ×X → H

is a Borel cocycle, then there exists a subgroup ∆ 6 Γ with [ Γ : ∆ ] < ∞ and an

ergodic component X0 ⊆ X for the action of ∆ on X such that α � ( ∆ × X0 ) is

equivalent to either:

(a) an embedding ϕ : ∆ → H; or else

(b) the trivial homomorphism ϕ : ∆ → H which takes constant value 1.

In each of our applications of Theorem 4.3, we will be proving the incompatibility

of EX
Γ with an equivalence relation induced by a free action of some countable group

H. Consequently, in order to ensure that condition 4.3(b) holds, we will need a

suitable non-embeddability result. The following result will enable us to rule out

the possibility of an embedding ϕ : ∆ → H when H is “too small”. Throughout

this paper, Q̄ denotes the algebraic closure of the field Q of rational numbers.

Theorem 4.4. Let n ≥ 2 and let Γ = PSLn(Z). Suppose that ∆ ≤ Γ with

[ Γ : ∆ ] < ∞ and that G is an algebraic Q̄-group such that dimG < n2 − 1. Then

there does not exist an embedding ϕ : ∆ → G(Q̄).

When n = 2, Theorem 4.4 follows from the fact that if G is an algebraic group

with dimG < 3, then G is solvable-by-finite, together with the fact that PSL2(Z)

contains a free nonabelian subgroup. When n ≥ 3, Theorem 4.4 is an immediate

consequence of the Margulis superrigidity theorems [22]. (Once again, we have

sketched the proof of Theorem 4.4 in Appendix A.)

The next two results verify that the hypotheses of Theorem 4.4 hold in two

settings that will occur in the proofs of Theorem 1.1 and Theorem 5.2.

Proposition 4.5. Let S be a Q-subalgebra of Matn(Q) and let S∗ be the group of

units of S. If the normalizer N = NGLn(Q)(S) is a proper subgroup of GLn(Q), then

there exists an algebraic Q-group G with dimG < n2 − 1 such that N/S∗ 6 G(Q).

Proof. Arguing as in the proof of Thomas [29, Lemma 3.7], we see that there exist

algebraic Q-groups L, K 6 GLn such that L = N(Q) and K(Q) = S∗. By Borel
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[6, Theorem 6.8], G = L/K is an algebraic Q-group and

N/S∗ = L(Q)/K(Q) 6 G(Q).

If N is a proper subgroup of GLn(Q), then L is a proper algebraic Q-subgroup of

GLn and so dimL < n2. Since Z(GLn(Q)) 6 S∗, it follows that dimK ≥ 1 and

hence dimG < n2 − 1. �

Proposition 4.6. Let W be a k-dimensional subspace of Qn
q , where 1 ≤ k < n,

and let H be the setwise stabilizer of W in GLn(Q). Then there exists an algebraic

Q̄-group G with dimG < n2 − 1 such that H/Z(GLn(Q)) 6 G(Q̄).

Proof. Clearly the result holds if H = Z(GLn(Q)) and hence we can suppose that

H 6= Z(GLn(Q)). We will consider the corresponding action of GLn(Q) on the

exterior power V =
∧k(Qn

q ). Let e1, . . . , en be the standard basis of Qn
q . Let

d =
(
n
k

)
and let B = {bj | 1 ≤ j ≤ d} be the corresponding “standard basis” of V ;

i.e. B consists of the vectors ei1 ∧ · · · ∧ eik
, where i1 < · · · < ik. Finally, let Qd ∩V

be the collection of vectors v ∈ V of the form

v = a1b1 + · · ·+ adbd,

where each aj ∈ Q ∩ Qq. A subspace U 6 V is said to be a Q-subspace if there

exists a (possibly empty) collection of vectors u1, . . . ,ut ∈ Qd ∩ V such that U =

〈u1, . . . ,ut 〉. Clearly if U , U ′ 6 V are Q-subspaces, then U ∩ U ′ is also a Q-

subspace. In particular, for each 1-dimensional subspace 〈v〉 of V , there exists a

unique minimal Q-subspace U such that 〈v〉 6 U .

For each k-dimensional subspace S = 〈s1, . . . , sk〉 of Qn
q , let S̃ = 〈s1 ∧ · · · ∧ sk〉

be the corresponding 1-dimensional subspace of V . Let E be the unique minimal

Q-subspace such that W̃ 6 E.

Claim 4.7. E is a proper H-invariant Q-subspace of V .

Proof of Claim 4.7. First note that if h ∈ H, then W̃ = h(W̃ ) 6 h(E) and so

W̃ 6 E ∩ h(E). Hence, by the minimality of E, we must have that h(E) = E. To

see that E is a proper subspace of V , let h ∈ H r Z(GLn(Q)). Since h(W̃ ) = W̃ ,

it follows that W̃ is included in an eigenspace U for the induced action of h on V .

Clearly U is a proper Q-subspace of V and hence the same is true of E. �
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Clearly it is enough to show that the Q-subspace E 6 V is not GLn(Q)-invariant.

To see this, recall that SLn(Zp) acts transitively on V (k)(n,Qq) and hence SLn(Zp)

acts transitively on the subset {S̃ | S ∈ V (k)(n,Qq)} ⊆ V . In particular, for

each basis vector bj ∈ B, there exists g ∈ SLn(Zp) such that g(W̃ ) = 〈bj 〉.

Since W̃ 6 E and E is a proper subspace of V , it follows that E is not SLn(Zp)-

invariant. Because SLn(Z) is a dense subgroup of SLn(Zp), it follows that E is

also not SLn(Z)-invariant. This completes the proof of Proposition 4.6. �

Our final non-embeddability result reflects the incompatibility of the actions of

GLn(Q) on Qn
p and Qn

q for distinct primes p 6= q. For each prime q, let

Z(q) = Zq ∩Q = {a/b ∈ Q | b is relatively prime to q}.

Of course, if p 6= q are distinct primes, then Z[1/q] ⊆ Z(p) and Z[1/q] * Z(q).

Theorem 4.8. Suppose that n ≥ 2. Let q be a prime and let Γ = PSLn(Z[1/q]).

Suppose that ∆ ≤ Γ with [ Γ : ∆ ] < ∞ and that D 6 Z(GLn(Z(q))). Then there

does not exist an embedding ϕ : ∆ → GLn(Z(q))/D.

Proof. Suppose that ϕ : ∆ → GLn(Z(q))/D is an embedding. Let

π : GLn(Z(q))/D → PGLn(Z(q)) = GLn(Z(q))/Z(GLn(Z(q)))

be the canonical surjective homomorphism and let ψ = π ◦ ϕ. Then we claim that

ψ is also an embedding. To see this, recall that by Margulis [22, Chapter VIII],

if N is a nontrivial normal subgroup of ∆, then [ ∆ : N ] < ∞. In particular,

if kerψ 6= 1, then [∆ : kerψ ] < ∞. But since ϕ embeds kerψ into the abelian

group Z(GLn(Z(q)))/D, this means that ∆ is abelian-by-finite and hence Γ is also

abelian-by-finite, which is a contradiction. Similarly, after passing to a subgroup of

finite index if necessary, we can suppose that ψ(∆) 6 PSLn(Z(q)).

For each t ≥ 1, let Kt = ker θt denote the congruence subgroup of PSLn(Z(q))

arising from the canonical surjective homomorphism

θt : PSLn(Z(q)) → PSLn(Z(q)/q
tZ(q)) ∼= PSLn(Z/qtZ).

Then PSLn(Z(q))/K1
∼= PSLn(Fq), where Fq is the finite field with q elements, and

K1/Kt is a finite q-group for each t ≥ 1. After passing to a subgroup of finite index

if necessary, we can suppose that ψ(∆) 6 K1. For each t ≥ 1, let Nt = ker(θt ◦ ψ).
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Then ∆/Nt embeds into K1/Kt and so ∆/Nt is a finite q-group. For later use, note

that since ψ is injective and
⋂
Kt = 1, it follows that

⋂
Nt = 1.

In order to simplify the notation, for the remainder of this proof, we will assume

that n is odd so that Γ = SLn(Z[1/q]). Since [ Γ : ∆ ] < ∞, it follows that each

[ Γ : Nt ] <∞ and hence there is a normal subgroup Mt of Γ such that Mt 6 Nt. By

Bass-Lazard-Serre [5] and Mennicke [23], Γ has the congruence subgroup property.

(By Serre [28], Γ also has the congruence subgroup property when n = 2.) Hence,

for each t ≥ 1, we can suppose that there exists an integer mt ≥ 1 with (mt, q) = 1

such that Γ/Mt
∼= SLn(Z/mtZ). Fix an integer t ≥ 1 such that mt is much larger

than [ Γ : ∆ ] and let mt = p`1
1 · · · p`r

r be the corresponding prime factorization.

Then

Γ/Mt
∼= SLn(Z/p`1

1 Z)× · · · × SLn(Z/p`r
r Z).

Let τ : Γ/Mt → SLn(Fp1) × · · · × SLn(Fpr
) be the surjective homomorphism

corresponding to the canonical map

SLn(Z/p`1
1 Z)× · · · × SLn(Z/p`r

r Z) → SLn(Fp1)× · · · × SLn(Fpr
).

Then ker τ = P1 × · · · × Pr, where each Pi is a finite pi-group. Let K E Γ be the

normal subgroup such that K/Mt = ker τ . Then

(K ∩∆)Nt/Nt
∼= (K ∩∆)/(K ∩Nt)

is a homomorphic image of

(K ∩∆)/Mt 6 K/Mt = ker τ.

Since ∆/Nt is a q-group and (q, pi) = 1 for 1 ≤ i ≤ r, it follows that K ∩∆ 6 Nt.

Thus ∆/Nt is a homomorphic image of ∆/(K ∩ ∆). Notice that ∆/(K ∩ ∆) is

isomorphic to a subgroup of

Γ/K ∼= SLn(Fp1)× · · · × SLn(Fpr
)

of index at most [ Γ : ∆ ] and that there are only finitely many primes p such that

SLn(Fp) has a proper subgroup of index at most [ Γ : ∆ ]. Thus, after re-indexing

the primes {p1, · · · , pr} if necessary, we can suppose that

∆/(K ∩∆) ∼= SLn(Fp1)× · · · × SLn(Fps
)×B
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for some s ≤ r, where B is a group of bounded order. Since n ≥ 3, it follows that

for each 1 ≤ i ≤ s, the nontrivial homomorphic images of SLn(Fpi
) have the form

SLn(Fpi
)/Li for some central subgroup Li. (This is also true when n = 2 and

pi > 3.) Since ∆/Nt is a q-group, it follows that ∆/Nt is a homomorphic image of

B. But this means that ∆/Nt has bounded order, which contradicts the fact that⋂
Nt = 1. �

5. Fixing The Automorphism Group

Let G, H be countable groups with Borel actions on the standard Borel spacesX,

Y and let µ be a G-invariant probability measure on X. Suppose that f : X → Y

is a Borel homomorphism from EX
G to EH

Y . In order to be able to apply a cocycle

superrigidity result in this setting, we must first be able to define a corresponding

cocycle and this is not always possible. Of course, as we have noted in Section 4,

it is easy to define a corresponding cocycle if H acts freely on Y . More generally,

suppose that there is a fixed subgroup K 6 H such that K = {h ∈ H | h(y) = y }

for all y ∈ Y . Then the quotient group NH(K)/K acts freely on Y and so we

can define a corresponding cocycle taking values in NH(K)/K. In this section, we

will prove a result which will allow to reduce our analysis to this situation in the

proof of Theorem 1.1 when n ≥ 3. (Of course, the action of GLn(Q) on R(Qn) is

not free. In fact, if A ∈ R(Qn), then the stabilizer of A in GLn(Q) is precisely the

automorphism group Aut(A) and this always contains the nontrivial automorphism

a 7→ −a.)

Definition 5.1. Suppose that G is a countable group and that X is a standard

Borel G-space with an invariant probability measure µ. If E is a countable Borel

equivalence relation on the standard Borel space Y and f : X → Y is a Borel

homomorphism from EX
G to E, then f is said to be µ-trivial if there exists a Borel

subset Z ⊆ X with µ(Z) = 1 such that f maps Z into a single E-class.

Theorem 5.2. Suppose that n ≥ 3. Let X = PG(n−1,Qp) and let Γ = PSLn(Z).

If f : X → R(Qn) is a µp-nontrivial Borel homomorphism from EX
Γ to ∼=n, then

there exists a Borel subset X0 ⊆ X with µp(X0) = 1 and a fixed central subgroup

D 6 Z(GLn(Q)) such that Aut(f(x)) = D for all x ∈ X0.
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Before we begin the proof of Theorem 5.2, we will first present an alternative

proof of the result that the complexity of the classification problem for the torsion-

free abelian groups of rank n ≥ 2 increases strictly with n.

Corollary 5.3 (Thomas [29]). If 2 ≤ m < n, then ∼=m<B
∼=n.

Proof. Let t = n−m. Then we can define a Borel reduction g : R(Qm) → R(Qn)

from ∼=m to ∼=n by g(A) = A ⊕ Qt. Suppose that ∼=n≤B
∼=m. Then, applying

Theorem 3.7, it follows that there exists a Borel map h : PG(n− 1,Qp) → R(Qm)

such that for all x, y ∈ PG(n− 1,Qp),

PGLn(Q) · x = PGLn(Q) · y ⇐⇒ h(x) ∼= h(y).

Let X = PG(n − 1,Qp) and Γ = PSLn(Z). Then f = g ◦ h : X → R(Qn) is a

countable-to-one Borel homomorphism from EX
Γ to∼=n. In particular, it follows that

f is µp-nontrivial. Hence, by Theorem 5.2, there exists a Borel subset X0 ⊆ X with

µp(X0) = 1 and a fixed central subgroup D 6 Z(GLn(Q)) such that Aut(f(x)) = D

for all x ∈ X0. But this is impossible, since if x ∈ X, then f(x) = A⊕Qt for some

A ∈ R(Qm) and so Aut(f(x)) is not a central subgroup of GLn(Q). �

In the proof of Theorem 5.2, we will consider the action of GLn(Q) on the set

of quasi-equality classes of elements of R(Qn). For each group A ∈ R(Qn), let [A]

be the corresponding ≈-class which contains A. In order to describe the setwise

stabiliser in GLn(Q) of a ≈-class [A] , it is necessary to introduce the notions of

a quasi-endomorphism and a quasi-automorphism. If A ∈ R(Qn), then a linear

transformation ϕ ∈ Matn(Q) is said to be a quasi-endomorphism of A if there

exists an integer m > 0 such that mϕ ∈ End(A). It is easily checked that the

collection QE(A) of quasi-endomorphisms of A is a Q-subalgebra of Matn(Q) and

that if A ≈ B, then QE(A) = QE(B). A linear transformation ϕ ∈ Matn(Q) is

said to be a quasi-automorphism of A if ϕ is a unit of the Q-algebra QE(A). The

group of quasi-automorphisms of A is denoted by QAut(A).

Lemma 5.4 (Thomas [29]). If A ∈ R(Qn), then QAut(A) is the setwise stabilizer

of [A] in GLn(Q).

The following result, which is due to Reid [26, Theorem 5.5], will play a crucial

role in the proof of Theorem 5.2. (In order to obtain the precise statement of
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Lemma 5.5, it is necessary to combine Reid [26, Theorem 5.5] with the proof of

Reid [26, Corollary 5.8].) For the sake of completeness, we have included a proof

of Lemma 5.5.

Lemma 5.5. Suppose that A ∈ R(Qn) is a torsion-free abelian group of rank n.

If QE(A) = Matn(Q), then there exists a rank 1 torsion-free abelian group C such

that

A ∼= C ⊕ · · · ⊕ C︸ ︷︷ ︸
n copies

.

Proof. Let M = Matn(Q) and let e1, . . . , en be the standard basis of Qn. For each

1 ≤ i ≤ n, let pi ∈ M be the idempotent element corresponding to the projection

Qn → Qei. By Reid [25, Theorem 3.5], the decomposition

M = Mp1 ⊕Mp2 ⊕ · · · ⊕Mpn

of M = QE(A) into a direct sum of left ideals induces a corresponding quasi-

decomposition

A ≈ p1(A)⊕ p2(A)⊕ · · · ⊕ pn(A)

of A into a direct sum of rank 1 torsion-free abelian groups. Furthermore, by Reid

[25, Theorem 3.4], since the left ideals Mpi are pairwise isomorphic as M -modules,

it follows that the abelian groups pi(A) are pairwise quasi-isomorphic. Hence, by

Arnold [2, Lemma 3.1.1], since each pi(A) has rank 1, it follows that the abelian

groups pi(A) are pairwise isomorphic. Thus there exists a rank 1 torsion-free abelian

group C such that

A ∼ C ⊕ · · · ⊕ C︸ ︷︷ ︸
n copies

.

Finally, by Arnold [2, Corollary 3.2.7], this implies that

A ∼= C ⊕ · · · ⊕ C︸ ︷︷ ︸
n copies

.

�

We are now ready to present the proof of Theorem 5.2. Let f : X → R(Qn)

be a µp-nontrivial Borel homomorphism from EX
Γ to ∼=n. For each x ∈ X, let

Ax = f(x) ∈ R(Qn). First notice that there are only countably possibilities for the

Q-algebra QE(Ax). Hence there exists a Borel subset X1 ⊆ X with µp(X1) > 0 and
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a fixed Q-subalgebra S of Matn(Q) such that QE(Ax) = S for all x ∈ X1. Since

Γ acts ergodically on (X,µp), it follows that µp(Γ · X1) = 1. In order to simplify

notation, we will assume that Γ ·X1 = X. After slightly adjusting f if necessary,

we can suppose that QE(Ax) = S for all x ∈ X. In particular, for each x ∈ X, we

have that QAut(Ax) = S∗, the group of units of S. Now suppose that x, y ∈ X

and that γ · x = y for some γ ∈ Γ. Then Ax
∼= Ay and so there exists ϕ ∈ GLn(Q)

such that ϕ(Ax) = Ay. Since

QE(Ax) = S = QE(Ay),

it follows that ϕ ∈ N = NGLn(Q)(S).

Lemma 5.6. N = GLn(Q).

Proof. Suppose that N is a proper subgroup of GLn(Q) and consider the induced

action of N on the corresponding set {[Ax] | x ∈ X} of ≈-classes. By Lemma

5.4, for each x ∈ X, the setwise stabilizer of [Ax] in N is QAut(Ax) = S∗. Let

H = N/S∗ and for each ϕ ∈ N , let ϕ = ϕS∗. Then we can define a Borel cocycle

α : Γ×X → H by

α(γ, x) = the unique element ϕ ∈ H such that ϕ([Ax]) = [Aγ·x].

By Theorem 4.3, there exists a subgroup ∆ 6 Γ with [ Γ : ∆ ] <∞ and an ergodic

component X0 ⊆ X for the action of ∆ on X such that α � ( ∆×X0 ) is equivalent

to either:

(a) an embedding ϕ : ∆ → H; or else

(b) the trivial homomorphism ϕ : ∆ → H which takes constant value 1.

Applying Proposition 4.5 and Theorem 4.4, it follows that there does not exist an

embedding ϕ : ∆ → H. Thus, after deleting a null subset of X0 if necessary, we

can suppose that there exists a Borel map b : X0 → N such that

b(γ · x)α(γ, x)b(x)−1 ∈ S∗

for all x ∈ X0 and γ ∈ ∆. Hence if f ′ : X0 → R(Qn) is the Borel map defined

by f ′(x) = b(x)f(x), then [ f ′(x) ] = [ f ′(γ · x) ] for all x ∈ X0 and γ ∈ ∆. In

other words, f ′ is a Borel homomorphism from EX0
∆ to the quasi-equality relation

≈n on R(Qn). By Theorem 2.3, since ∆ is a Kazhdan group, it follows that EX0
∆
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is E0-ergodic. By Thomas [29, Theorem 3.8], the quasi-equality relation ≈n is

hyperfinite and hence we can suppose that f ′ maps X0 into a single quasi-equality

class. It follows that f maps X0 into a single quasi-isomorphism class. By Thomas

[29, Lemma 3.2], each quasi-isomorphism class consists of only countably many

isomorphism classes. Hence there exists a Borel subset X1 ⊆ X0 with µp(X1) > 0

such that f maps X1 to a fixed group A ∈ R(Qn). Finally, using the ergodicity

of the action of Γ on (X,µp), it follows that Γ ·X1 is a µp-measure 1 subset of X

which is mapped by f into a single ∼=n-class, which is a contradiction. �

Since GLn(Q) normalizes S, it follows that GLn(Q) also normalizes S∗. Hence,

since Z(GLn(Q)) 6 S∗, one of the following two cases must occur:

(I) SLn(Q) 6 S∗.

(II) S∗ = Z(GLn(Q)).

(For example, see Artin [3, Theorem 4.9].) First suppose that SLn(Q) 6 S∗. Since

SLn(Q) is a generating set for the Q-algebra Matn(Q), it follows that S = Matn(Q).

Hence, by Lemma 5.5, for each x ∈ X, there exists a torsion-free abelian group Cx

of rank 1 such that

Ax
∼= Cx ⊕ · · · ⊕ Cx︸ ︷︷ ︸

n copies

and so ∼=n� f(X) is a hyperfinite equivalence relation. But, using the E0-ergodicity

of the action of Γ on (X,µp), this implies that there exist a µp-measure 1 subset of

X which is mapped by f into a single ∼=n-class, which is a contradiction.

Hence we must have that S∗ = Z(GLn(Q)). Note that for each x ∈ X,

Aut(Ax) 6 QAut(Ax) = S∗

and soDx = Aut(Ax) 6 Z(GLn(Q)). Furthermore, since each automorphism group

Dx is central in GLn(Q), it follows that the map x 7→ Dx is Γ-invariant. Hence,

by the ergodicity of the action of Γ on (X,µp), there exists a Borel subset X0 ⊆ X

with µp(X0) = 1 and a fixed subgroup D 6 Z(GLn(Q)) such that Dx = D for all

x ∈ X0. This completes the proof of Theorem 5.2.

6. The proof of Theorem 1.1 for n ≥ 3

In this section, we will present the proof of Theorem 1.1 for the case when n ≥ 3.

Suppose that S, T ⊆ P. If S ⊆ T , then RS(Qn) ⊆ RT (Qn) and it is clear that
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(∼=S
n) ≤B (∼=T

n ). From now on, suppose that S * T and that (∼=S
n) ≤B (∼=T

n ). Fix

some prime p ∈ S r T and let X = PG(n − 1,Qp). Applying Theorem 3.7, since

(∼=p
n) ≤B (∼=S

n) ≤B (∼=T
n ), there exists a Borel reduction

f : X → RT (Qn)

from the orbit equivalence relation corresponding to the action of PGLn(Q) on

PG(n − 1,Qp) to ∼=T
n . For each x ∈ X, let Ax = f(x) ∈ RT (Qn). Until further

notice, we will work with the action of the subgroup PSLn(Z) 6 PGLn(Q) on X.

Since PSLn(Z) acts ergodically on (X,µp), there exists a PSLn(Z)-invariant Borel

subset X0 ⊆ X with µp(X0) = 1 such that:

(a) for each prime q ∈ P, there exists a fixed integer 0 ≤ dq ≤ n such that

dimQq V
Ax
q = dq for all x ∈ X0.

Furthermore, by Theorem 5.2, after slightly shrinking X0 if necessary, we can also

suppose that:

(b) there exists a fixed subgroup D 6 Z(GLn(Q)) such that Aut(Ax) = D for

all x ∈ X0.

Note that if q /∈ T , then Ax is q-divisible and hence dimQq
V Ax

q = n. In particular,

it follows that dp = n.

Lemma 6.1. For each q ∈ P, either dq = 0 or dq = n.

Proof. Suppose that there exists a prime q ∈ P such that 1 ≤ dq = k < n. Then

q 6= p and we can define a Borel homomorphism

g : X0 → V (k)(n,Qq)

x 7→ V Ax
q

from EX0
PSLn(Z) to the orbit equivalence relation arising from the action of PGLn(Q)

on V (k)(n,Qq). Applying Theorem 3.1, it follows that there exists a PSLn(Z)-

invariant Borel subset X1 ⊆ X0 with µp(X1) = 1 such that g maps X1 into a

single PGLn(Q)-orbit. After slightly adjusting f if necessary, we can suppose that

there exists a fixed subspace W ∈ V (k)(n,Qq) such that g(x) = W for all x ∈ X1.

Suppose that x, y ∈ X1 and that γ · x = y for some γ ∈ PSLn(Z). Then Ax
∼= Ay



22 SIMON THOMAS

and so there exists π ∈ GLn(Q) such that π(Ax) = Ay. Clearly

π(W ) = π(V Ax
q ) = V Ay

q = W

and so π is an element of the setwise stabilizer G{W} ofW in GLn(Q). Furthermore,

if D 6 Z(GLn(Q)) is the fixed group such that Aut(Ax) = D for all x ∈ X0,

then D 6 G{W}. Hence, letting H = G{W}/D, we can define a Borel cocycle

α : PSLn(Z)×X1 → H by

α(γ, x) = the unique element π ∈ H such that π(Ax) = Aγ·x.

By Theorem 4.3, there exists a subgroup ∆ 6 PSLn(Z) with [PSLn(Z) : ∆ ] <∞

and an ergodic component Z ⊆ X1 for the action of ∆ on X1 such that α � ( ∆×Z )

is equivalent to either:

(a) an embedding ϕ : ∆ → H; or else

(b) the trivial homomorphism ϕ : ∆ → H which takes constant value 1.

We claim that there does not exist an embedding ϕ : ∆ → H. To see this, suppose

that ϕ : ∆ → H is an embedding and let π : H → GW /Z(GLn(Q)) be the

canonical surjective homomorphism. Applying Proposition 4.6 and Theorem 4.4,

it follows that ψ = π ◦ ϕ : ∆ → GW /Z(GLn(Q)) is not an embedding. Hence, by

Margulis [22, Chapter VIII], it follows that [∆ : kerψ ] < ∞. But since ϕ embeds

kerψ into the abelian group Z(GLn(Q))/D, this means that ∆ is abelian-by-finite

and hence PSLn(Z) is also abelian-by-finite, which is a contradiction. Thus, after

deleting a null subset of Z if necessary, we can suppose that there exists a Borel

map b : Z → G{W} such that

b(γ · x)α(γ, x)b(x)−1 ∈ D

for all x ∈ Z and γ ∈ ∆. Hence if f ′ : Z → R(Qn) is the Borel map defined

by f ′(x) = b(x)f(x), then f ′(x) = f ′(γ · x) for all x ∈ Z and γ ∈ ∆. Using the

ergodicity of ∆ on Z, we can suppose that f ′ maps Z to a fixed group A ∈ R(Qn).

But then f maps Z to the isomorphism class containing A, which contradicts the

fact that f is countable-to-one. �

Since dq = n if and only if the group Ax is q-divisible, it follows that there exists

at least one prime q such that dq = 0. We will fix such a prime q for the remainder

of this section. Of course, since dp = n, it follows that p 6= q. Let e1, . . . , en be
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the standard basis of Qn
q . Recall that Qn

q contains only countably many lattices

and that GLn(Q) acts transitively on the set of these lattices. (Here a lattice is

a Zq-submodule of the form Zqv1 ⊕ · · · ⊕ Zqvn for some basis v1, . . . ,vn of Qn
q .)

Hence, after slightly adjusting f if necessary, we can suppose that:

(c) (Âx)q = Zqe1 ⊕ · · · ⊕ Zqen for all x ∈ X0.

From now on, we will let Γ = PSLn(Z[1/q]) and we will work with the action of Γ

on X. After replacing X0 with
⋂

γ∈Γ γ[X0] if necessary, we can suppose that X0 is

PSLn(Z[1/q])-invariant. Suppose that x, y ∈ X0 and that γ ·x = y for some γ ∈ Γ.

Then there exists π ∈ GLn(Q) such that π(Ax) = Ay. Clearly

π(Zqe1 ⊕ · · · ⊕ Zqen) = π((Âx)q) = (Ây)q = Zqe1 ⊕ · · · ⊕ Zqen

and so

π ∈ GLn(Q) ∩GLn(Zq) = GLn(Z(q)).

Furthermore, if D is the fixed group such that Aut(Ax) = D for all x ∈ X0, then

D 6 Z(GLn(Z(q))). Hence we can define a Borel cocycle α : Γ×X0 → GLn(Z(q))/D

by

α(γ, x) = the unique element π ∈ GLn(Z(q))/D such that π(Ax) = Aγ·x.

By Theorem 4.3, there exists a subgroup ∆ 6 Γ with [ Γ : ∆ ] <∞ and an ergodic

component Z ⊆ X0 for the action of ∆ on X0 such that α � ( ∆× Z ) is equivalent

to either:

(a) an embedding ϕ : ∆ → GLn(Z(q))/D; or else

(b) the trivial homomorphism ϕ : ∆ → GLn(Z(q))/D which takes constant

value 1.

By Theorem 4.8, there does not exist an embedding ϕ : ∆ → GLn(Z(q))/D. But

then, arguing as in the proof of Lemma 6.1, it follows that f maps a co-null subset

of Z into a single ∼=-class, which once again contradicts the fact that f is countable-

to-one. This completes the proof of Theorem 1.1 for the case when n ≥ 3.

Appendix A. The proofs of Theorem 4.3 and Theorem 4.4

In this appendix, we will sketch the proofs of Theorem 4.3 and Theorem 4.4.

Throughout we will assume that the reader is familiar with the basic ideas of

superrigidity theory and our presentation will be terser than in the main body of
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the paper. It should be stressed that Theorem 4.3 and Theorem 4.4 are immediate

consequences of the work of Ioana [16] and Margulis [22].

Sketch Proof of Theorem 4.3. Suppose that G is a countable group and that

X is a standard Borel G-space with invariant probability measure µ. Then the

action of G on (X,µ ) is said to be profinite if there exists a directed system of

finite G-spaces Xn with invariant probability measures µn such that

(X,µ ) = lim
←

(Xn, µn ).

For example, if X = PG(n− 1,Qp) and Γ is either PSLn(Z) or PSLn(Z[1/q]) for

some prime q 6= p, then the ergodic action of Γ on (X,µp ) is profinite. Furthermore,

arguing as in Thomas [30, Lemma 6.2], it follows that if

X∗ = {x ∈ X | γ · x 6= x for all 1 6= γ ∈ Γ}.

then µp(X∗) = 1 and so the action of Γ on X is also essentially free. Since Γ

is a Kazhdan group, it follows that all of the hypotheses of the Ioana cocycle

superrigidity theorem [16] are satisfied. Hence if H is any countable group and

α : Γ×X → H

is a Borel cocycle, then there exists a subgroup ∆ 6 Γ with [ Γ : ∆ ] < ∞ and

an ergodic component X0 ⊆ X for the action of ∆ on X such that the cocycle

α � (∆ ×X0 ) is equivalent to a group homomorphism ϕ : ∆ → H. Suppose that

ϕ is not injective and let N = kerϕ. Applying Margulis [22, Chapter VIII], since

N is a nontrivial normal subgroup of ∆, it follows that [∆ : N ] <∞. Hence, after

passing to a subgroup ∆′ 6 ∆ of finite index and an ergodic component X ′0 for

the action of ∆′ on X0, we can suppose that N = ∆ and thus α � ( ∆ × X0 ) is

equivalent to the trivial homomorphism ϕ : ∆ → H which takes constant value 1.

This completes the proof of Theorem 4.3.

Sketch Proof of Theorem 4.4. Let n ≥ 2 and let Γ = PSLn(Z). Suppose

that ∆ ≤ Γ with [ Γ : ∆ ] < ∞ and that G is an algebraic Q̄-group such that

dimG < n2 − 1. We have already pointed out that if n = 2, then Theorem 4.4

follows from the fact that if G is an algebraic group with dimG < 3, then G is

solvable-by-finite, together with the fact that PSL2(Z) contains a free nonabelian

subgroup. Hence we can suppose that n ≥ 3. With these hypotheses, we will
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show that if ϕ : ∆ → G(Q̄) is a homomorphism, then ϕ(∆) is finite. First, by

Margulis [22, Theorem IX.5.8], it follows that the Zariski closure of ϕ(∆) is a semi-

simple Q̄-group. Hence, using the fact that every proper normal subgroup of ∆

has finite index, it is enough to consider the special case when G(Q̄) is a simple

algebraic Q̄-group. Since ∆ is finitely generated, there exists an algebraic number

field F and a finite set S of valuations of F such that G is an algebraic F -group

and ϕ(∆) 6 G(F (S)), where F (S) is the ring of S-integral elements of F . (For

example, see Margulis [22, Chapter I].) Clearly we can suppose that S contains the

set R∞ of archimedean valuations of F . For each ν ∈ S, let Fν be the completion

of F relative to ν. By Margulis [22, Section I.3.2], if G(F (S)) is identified with its

image under the diagonal embedding into GS =
∏

ν∈S G(Fν), then G(F (S)) is a

discrete subgroup of GS . For each ν ∈ S, let πν : GS → G(Fν) be the canonical

projection and consider the homomorphism ϕν = πν ◦ ϕ : ∆ → G(Fν). Applying

Margulis [22, Theorem IX.6.16], since dimG < n2 − 1, it follows that ϕν(∆) is

contained in a compact subgroup Kν of G(Fν). Hence ϕ(∆) is contained in the

compact subgroup
∏

ν∈S Kν of GS . Since ϕ(∆) is also contained in the discrete

subgroup G(F (S)), it follows that ϕ(∆) is a finite group. This completes the proof

of Theorem 4.4.

Appendix B. The proof of Theorem 1.1 for n = 2

In this appendix, we will sketch the proof of Theorem 1.1 for the case when

n = 2. Once again, we will assume that the reader is familiar with the basic ideas

of superrigidity theory.

Suppose that S, T are sets of primes such that S * T and that (∼=S
2 ) ≤B (∼=T

2 ).

Fix some prime p ∈ SrT . Let X = PG(1,Qp) and let Ep be the orbit equivalence

relation induced by the action of PGL2(Q) on X. Then, applying Theorem 3.7,

there exists a Borel reduction

f : X → RT (Q2)

from Ep to ∼=T
2 . For each x ∈ X, let Ax = f(x) ∈ RT (Q2). Since PSL2(Z)

acts ergodically on (X,µp), there exists a Borel subset X0 ⊆ X with µp(X0) = 1

such that for each prime q ∈ P, there exists a fixed integer 0 ≤ dq ≤ 2 such that

dimQq
V Ax

q = dq for all x ∈ X0. To simplify notation, we will assume that X0 = X.
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Note that if q /∈ T , then Ax is q-divisible and hence dimQq V
Ax
q = 2. In particular,

it follows that dp = 2.

Lemma B.1. For each q ∈ P, either dq = 0 or dq = 2.

Proof. Suppose that there exists a prime q ∈ P such that dq = 1. Then q 6= p and

we can define a Borel homomorphism

g : X → PG(1,Qq)

x 7→ V Ax
q

from Ep to the orbit equivalence relation Eq induced by the action of PGL2(Q)

on PG(1,Qq). By Hjorth-Thomas [15, Remark 5.4], there exists a Borel subset

X0 ⊆ X with µp(X0) = 1 such that g maps X0 to a single Eq-class; and after

adjusting f , we can suppose that there is a fixed 1-dimensional subspace W 6 Q2
q

such that V Ax
q = W for all x ∈ X0. Let G{W} be the setwise stabilizer of W in

GL2(Q). Then if x, y ∈ X0 and xEpy, there exists π ∈ G{W} such that π(Ax) = Ay.

Furthermore, Proposition 4.6 implies thatG{W}/Z(GL2(Q)) is soluble-by-finite and

it follows that G{W} is an amenable group.

Let Λ = PSL2(Z[1/q]). Then we can suppose that X0 is Λ-invariant; and, by

Thomas [32, Theorem 6.1], the orbit equivalence relation EΛ induced by the action

of Λ on X0 is E0-ergodic. It follows that if F is the orbit equivalence relation

induced by the action of the amenable group G{W} on RT (Q2), then EΛ is also F -

ergodic. (For example, see Thomas [32, Lemma 4.6].) However, regarding f � X0 as

a Borel homomorphism from EΛ to F , this implies that there exists a Borel subset

X1 ⊆ X0 with µp(X1) = 1 such that f maps X1 to a single ∼=T
2 -class, which is a

contradiction. �

Lemma B.2. There exists a Borel subset X0 ⊆ X with µp(X0) = 1 and a fixed

central subgroup D 6 Z(GL2(Q)) such that Aut(Ax) = D for all x ∈ X0.

Proof. Exploiting the E0-ergodicity of EΛ as above, where Λ = PSL2(Z[1/q]) for

some prime q 6= p, the proof of Theorem 5.2 adapts to this setting with only minor

changes. The main point is that Proposition 4.5 implies that if S is a Q-subalgebra

of Mat2(Q) such that the normalizer N = NGL2(Q)(S) is a proper subgroup of

GLn(Q), then N is an amenable group. This allows us to work directly with the
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action of N on {Ax | x ∈ X }, instead of working with the action of N/S∗ on the

corresponding set { [Ax] | x ∈ X } of ≈-classes. �

Once again, to simplify notation, we will assume that X0 = X. From now on,

we will fix a prime q 6= p such that dq = 0. As in the proof of Theorem 1.1 for the

case when n ≥ 3, we can suppose that

(Âx)q = Zqe1 ⊕ Zqe2

for all x ∈ X, where e1, e2 is the standard basis of Q2
q. For the remainder of

the proof, we will work with the action of Γ = SL2(Z[1/q]) on X. (The switch

from Λ = PSL2(Z[1/q]) to Γ = SL2(Z[1/q]) has been made in order to adapt the

arguments of Thomas [32] and Hjorth-Thomas [15] to this setting.) First notice

that if x, y ∈ X and γ · x = y for some γ ∈ Γ, then there exists

σ ∈ GL2(Q) ∩GL2(Zq) = GL2(Z(q))

such that σ(Ax) = Ay. Furthermore, if D is the fixed group such that Aut(Ax) = D

for all x ∈ X, then D 6 Z(GL2(Z(q))). Hence we can define a Borel cocycle

α : Γ×X → GL2(Z(q))/D by

α(γ, x) = the unique element ψ ∈ GL2(Z(q))/D such that ψ(Ax) = Aγ·x.

Remark B.3. If the Ioana superrigidity theorem holds for the more general class

of groups with Property (τ), then we can conclude the proof at this point via an

appeal to Theorem 4.8. Unfortunately it is currently not known whether this is the

case and so we must continue for a few more pages.

Let θ : GL2(Z(q))/D → PGL2(Z(q)) be the canonical surjective homomorphism

and let ᾱ : Γ×X → PGL2(Z(q)) be the Borel cocycle defined by ᾱ = θ ◦ α.

Remark B.4. Let Y = {A ∈ RT (Q2) | Âq = Zqe1 ⊕ Zqe2 } and let Z =

Z(GL2(Z(q)))/D. Then there is a natural action of PGL2(Z(q)) on the set Ȳ of

Z-orbits on Y . Furthermore, if we define f̄ : X → Ȳ by f̄(x) = Z · f(x), then

ᾱ(γ, x) · f̄(x) = f̄(γ · x)

for all γ ∈ Γ and x ∈ X. Of course, Ȳ is usually not a standard Borel space.

However, this will cause no problems since Ȳ does not play an essential role in this
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proof and has only been introduced in order to help the reader to visualize some of

the later arguments.

Arguing as in Hjorth-Thomas [15, Section 5], there is a finite ergodic extension

( X̃, µ̃p ) of (X,µp ) such that the lift α̃ : Γ × X̃ → PGL2(Z(q)) of ᾱ is equivalent

to a cocycle α̃′ taking values in a finitely generated subgroup of PSL2(Z(q)). Thus

there exists a finite subset T = { p1, · · · , pt } ⊆ P r { q } such that α̃′ takes values

in ΛT = PSL2(Z[1/p1, · · · pt]).

Lemma B.5. α̃′ is not equivalent to a cocycle taking values in an amenable sub-

group of ΛT .

Proof. Otherwise, α̃ is equivalent to a cocycle taking values in an amenable sub-

group A of PGL2(Z(q)). Clearly the action of PGL2(Z(q)) on the (countable)

standard Borel space of finite subsets of the coset space PGL2(Z(q))/A is tame.

Hence, arguing as in the proof of Adams-Kechris [1, Proposition 2.6], it follows

that ᾱ is also equivalent to a cocycle taking values in an amenable subgroup of

PGL2(Z(q)); and this implies that α is equivalent to a cocycle taking values in

an amenable subgroup of GL2(Z(q))/D. However, using the E0-ergodicity of the

action of Γ on (X,µp ), this easily leads to a contradiction. �

In order to simplify notation, we will assume that α̃′ = α̃. For later use, let

f̃ : X̃ → Ȳ be the corresponding map such that

α̃(γ, z) · f̃(z) = f̃(γ · z)

for all γ ∈ Γ and z ∈ X̃. From now on, let G = SL2(R) × SL2(Qq) and let

H = PSL2(R)×HT , where

HT = PSL2(Qp1)× · · · × PSL2(Qpt
).

Then if we identify Γ and ΛT with their images under the diagonal embeddings

into G and H respectively, then Γ and ΛT are irreducible lattices in G and H. Let

X̂ = X̃ × G/Γ be the induced G-space and let µ̂ = µ̃p × ν, where ν is the Haar

probability measure on G/Γ. The following two technical results, which are proved

in Hjorth-Thomas [15, Section 5], will enable us to apply the arguments of Thomas

[32, Section 8] in our setting.
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Lemma B.6. (X̂, µ̂) is an irreducible G-space.

Lemma B.7. Γ acts E0-ergodically on ( X̃, µ̃p ).

We will also make use of the following result, which is a special case of Hjorth-

Thomas [15, Lemma 4.8].

Lemma B.8. Suppose that ∆ is a lattice in PSL2(R) and that ω is the Haar

probability measure on PSL2(R)/∆. Let Λ be a lattice in PSL2(R) and let Λ+ be

a countable group such that Λ 6 Λ+ 6 PSL2(R). Then (PSL2(R)/∆,Λ+, ω ) is

not a quotient of ( X̃,Γ, µ̃p )

Let i : ΛT → H be the inclusion map and consider the cocycle

i ◦ α̃ : Γ× X̃ → H = PSL2(R)×HT .

Let σ : G = SL2(R) × SL2(Qq) → SL2(R) be the projection map onto the first

factor. Then, by the arguments of Thomas [32, Section 8], there exists:

(i) an R-rational surjective homomorphism ψ : SL2(R) → PSL2(R); and

(ii) a compact subgroup K 6 HT of countable index

such that i ◦ α̃ is equivalent to a cocycle

β : Γ× X̃ → H = PSL2(R)×HT

β(γ, z) = (ϕ(γ), βT (γ, z) ),

where ϕ = ψ ◦ σ and βT : Γ × X̃ → HT is a cocycle taking values in the compact

subgroup K. From now on, let U ⊆ H be a Borel transversal for H/ΛT chosen

so that HT ⊆ U and identify U with H/ΛT by identifying each u ∈ U with uΛT .

Then the action of H on H/ΛT induces a corresponding Borel action of H on U ,

defined by

h · u = the unique element in U ∩ huΛT .

Let ρ : H × U → ΛT be the associated cocycle defined by

ρ(h, u) = the unique λ ∈ ΛT such that (h · u)λ = hu

= (h · u)−1hu
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Then we can define an induced action of H on Ŷ = Ȳ × U = Ȳ × (H/ΛT ) by

h · ( y, u ) = ( ρ(h, u) · y, h · u ).

Let j : Ȳ → Ŷ be the ΛT -equivariant embedding defined by j(y) = (y, 1) and let

f̂ = j ◦ f̃ : X̃ → Ŷ . Then for all γ ∈ Γ and z ∈ X̃,

(i ◦ α̃)(γ, z) · f̂(z) = f̂(γ · z).

Let b : X̃ → H be a Borel map such that for all γ ∈ Γ,

β(γ, z) = b(γ · z) (i ◦ α̃)(γ, z) b(z)−1 for µ̃p-a.e. z ∈ X̃;

and define ĝ : X̃ → Ŷ by ĝ(z) = b(z) · f̂(z). Then for all γ ∈ Γ,

β(γ, z) · ĝ(z) = ĝ(γ · z) for µ̃p-a.e. z ∈ X̃;

Since K is a compact group, it follows that the set K\H/ΛT of K-orbits on H/ΛT

is a standard Borel space. Furthermore, since the actions of K and PSL2(R) on

H/ΛT commute, it follows that PSL2(R) acts on K\H/ΛT . Let η : Ŷ → K\H/ΛT

be the map defined by η(y, uΛT ) = KuΛT . Then it is easily checked that η is a Borel

map. (In fact, by examining the above construction, it is straightforward to define

η directly without mentioning the “nonstandard” space Ȳ .) Let ω = (η ◦ ĝ)∗µ̃p.

Then ω is a ϕ(Γ)-invariant ergodic probability measure on K\H/ΛT . Since K has

countable index in HT , it follows that PSL2(R) has only countably many orbits

on K\H/ΛT . Hence, since ϕ(Γ) acts ergodically on K\H/ΛT , it follows that ω is

supported on a single PSL2(R)-orbit Ω on K\H/ΛT . A straightforward calculation

shows that the stabilizer in PSL2(R) of each element of K\H/ΛT is countable.

Hence we can identify Ω with PSL2(R)/∆, where ∆ is a suitably chosen discrete

subgroup of PSL2(R). Let C = {h ∈ PSL2(R) | ω is h-invariant }. Then C is a

(topologically) closed subgroup of PSL2(R) such that ϕ(Γ) 6 C. Let Γ0 = SL2(Z).

Since Γ0 is a lattice in SL2(R), it follows that ϕ(Γ0) is a lattice in PSL2(R). Also,

since [ Γ : Γ0 ] = ∞, it follows that [ϕ(Γ) : ϕ(Γ0) ] = ∞ and hence the topological

closure of ϕ(Γ) is PSL2(R). Thus ω is a PSL2(R)-invariant probability measure

on PSL2(R)/∆, which means that ∆ is a lattice in PSL2(R) and ω is the Haar

probability measure. But since (PSL2(R)/∆, ϕ(Γ), ω ) is a quotient of ( X̃,Γ, µ̃p )

and ϕ(Γ) contains the lattice ϕ(Γ0) of PSL2(R), this contradicts Lemma B.8. This

completes the proof of Theorem 1.1 for the case when n = 2.



S-LOCAL TORSION-FREE ABELIAN GROUPS OF FINITE RANK 31

References

[1] S. R. Adams and A. S. Kechris, Linear algebraic groups and countable Borel equivalence

relations, J. Amer. Math. Soc. 13 (2000), 909–943.

[2] D. M. Arnold, Abelian Groups and Representations of Finite Partially Ordered Sets, CMS

Books in Mathematics, Springer-Verlag, 2000.

[3] E. Artin, Geometric Algebra, Interscience Publishers, New York, 1957.

[4] R. Baer, Abelian groups without elements of finite order , Duke Math. Journal 3 (1937),

68–122.

[5] H. Bass, M. Lazard and J.-P. Serre, Sous-groupes d’indice fini dans SL(n, Z), Bull. Amer.

Math. Soc. 70 (1964), 385–392.

[6] A. Borel, Linear Algebraic Groups: Second Enlarged Edition, Graduate Texts in Mathe-

matics 126, Springer-Verlag, 1991.

[7] S. Coskey, The classification of torsion-free abelian groups of finite rank up to isomorphism

and up to quasi-isomorphism, to appear in Trans. Amer. Math. Soc.

[8] S. Coskey, Borel reductions of profinite actions of SLn(Z), to appear in Ann. Pure Appl.

Logic.

[9] R. Dougherty, S. Jackson and A. S. Kechris, The structure of hyperfinite Borel equivalence

relations, Trans. Amer. Math. Soc. 341 (1994), 193–225.

[10] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology and von Neumann

algebras, I , Trans. Amer. Math. Soc. 234 (1977), 289–324.

[11] L. Fuchs, Infinite Abelian Groups, Pure and Applied Mathematics Vol. 36, Academic Press,

1970.

[12] A. Furman, Outer automorphism groups of some ergodic equivalence relations, Comment.

Math. Helv. 80 (2005), 157–196.

[13] G. Hjorth, Around nonclassifiability for countable torsion-free abelian groups, in Abelian

groups and modules (Dublin, 1998), Trends Math., Birkhäuser, Basel, 1999, 269–292.
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