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ABSTRACT. Suppose that v is an ergodic IRS of a countable group G such
that [Ng(H) : H] = n < oo for v-a.e. H € Subg. In this paper, we consider
the question of whether v can be realized as the stabilizer distribution of an
ergodic action G ~ (X, ) on a standard Borel probability space such that

the stabilizer map x — G is n-to-one.

1. INTRODUCTION

Let G be a countable discrete group and let Subg be the compact space of
subgroups H < G. Then a Borel probability measure v on Subg which is invariant
under the conjugation action of G on Subg is called an invariant random subgroup
or TRS. For example, suppose that G acts via measure-preserving maps on the
standard Borel probability space ( X, ) and let f : X — Subg be the G-equivariant
stabilizer map defined by

=Gy ={geCG|g-z=2a}.

Then the corresponding stabilizer distribution v = f.u is an IRS of G. In fact, by
a result of Abert-Glasner-Virag [1], every IRS of G can be realized as the stabilizer
distribution of a suitably chosen measure-preserving action. Moreover, as pointed
out by Creutz-Peterson [3], using the Ergodic Decomposition Theorem, it follows
that if v is an ergodic IRS of G, then v is the stabilizer distribution of an ergodic
action G ~ (X, p).

If v is an IRS of a countable group G, then the construction of Abert-Glasner-
Virag [1] realizes v as the stabilizer distribution of a measure-preserving action
G ~ (X,p) such that the set {x € X | G, = H} is uncountable for v-a.e.

H € Subg. There are many examples of IRSs where this cannot be avoided.
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Notation 1.1. Throughout this paper, if G ~ X is a Borel action of a countable
group G on a standard Borel space X, then the corresponding orbit equivalence

relation will be denoted by EJ.

Theorem 1.2. Suppose that v is an ergodic IRS of a countable group G and that
[Ng(H) : H] = o for v-a.e. H € Subg. If v is the stabilizer distribution of a
measure-preserving action G ~ (X, ) on a Borel probability space, then the set

{x € X | G, = H} is uncountable for v-a.e. H € Subg.

Proof. If not, it follows that the set {z € X | G, = H} is countable for v-a.e.

H € Subg. Consider the Borel equivalence relation £ on X defined by
By = G;=0G,.

Then for p-a.e. © € X, the corresponding E-class [z ]g is countable. Hence, after
restricting to a Borel subset Xo C X with u(X) = 1 if necessary, we can suppose
that [« g is countable for every x € X. Thus F is a smooth countable Borel equiv-
alence relation on X. Since £/ = EN Eé{ C E, it follows that E’ is also smooth.
(This is a straightforward consequence of the Feldman-Moore Theorem [5]. For ex-
ample, see Thomas [8, Lemma 2.1].) Also, since G5 = G4., whenever g € Ng(G,),
it follows that every E’-class is infinite. But then, by Dougherty-Jackson-Kechris [4,
Proposition 2.5], since Eé contains the smooth aperiodic Borel equivalence relation
E’, it follows that Eg is compressible; and hence, by Dougherty-Jackson-Kechris
[4, Theorem 3.5], there does not exist a G-invariant Borel probability measure on

X, which is a contradiction. ([l

On the other hand, suppose that v is an ergodic IRS of a countable group G such
that [Ng(H) : H] < oo for v-a.e. H € Subg. Then there exists an integer n > 1
such that [ Ng(H) : H] = n for v-a.e. H € Subg. If n =1, then v is the stabilizer
distribution of the ergodic action G ~ (Subg, v ) and the corresponding stabilizer
map H — Ng(H) is v-a.e. injective. Now suppose that n > 1 and that v is the
stabilizer distribution of the measure-preserving action G ~ (X, p). If z € X and
g € Ng(Gy), then G, = G4.,.. It follows that for p-a.e. x € X, the stabilizer map

f + X — Subg is n-to-one on the orbit G - . Consequently, the stabilizer map f is
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p-a.e. n-to-one if and only if the map
G-z {gG.g7 "' |ge G}

is p-a.e. injective. Furthermore, in this case, by restricting to a suitable G-invariant
Borel subset Xo € X with u(Xp) = 1, we obtain a measure-preserving action
G ~ (Xo, i) with stabilizer distribution v such that the corresponding stabilizer

map is n-to-one.

Question 1.3. Suppose that v is an ergodic IRS of a countable group G and that
[Ng(H) : H] = n < oo for v-a.e. H € Subg. Is v the stabilizer distribution of
an ergodic action G ~ (X, i) on a standard Borel probability space such that the

stabilizer map x — G is n-to-one?

If we add a suitable extra hypothesis concerning the ergodic IRS v, then we

obtain a positive answer to Question 1.3.

Definition 1.4. If G ~ Z is a Borel action of a countable group G on a standard
Borel space Z, then a Borel map ¢ : Eg — G is a cocycle if whenever x Eg y and
Y Eg z, then:

e ¢(x,y) -z =y; and

o c(z,2) = cly, z)c(z, y).
The Borel action G ~ Z is said to have the cocycle property if there exists a Borel

cocycle ¢ : E4 — G.

Remark 1.5. For later use, note that if ¢ : Eé — (G is a cocycle and x € Z, then

by taking © = y = 2z, we obtain that c¢(z,z) = 1. It follows that if z EZ y, then

c(y, @) = c(z,y) "

Definition 1.6. A measure-preserving action G ~ (Z,p) on a standard Borel
probability space is said to have the u-cocycle property if there exists a G-invariant

Borel subset Zy C Z with pu(Zy) = 1 such that G ~ Zj has the cocycle property.

Example 1.7. Let F,, be the free group on n generators, where 2 < n < X, and
let 41 be the usual uniform product probability measure on 2F». By Hjorth-Kechris

[6, Corollary 10.7], the shift action F,, ~ 2F» does not have the cocycle property.
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However, since F,, acts freely outside a p-null subset, it follows that the shift action

F,, ~ (2¥», 1) has the pu-cocycle property.

Remark 1.8. If G is an amenable group, then every measure-preserving action
G ~ (Z,p) on a standard Borel probability space has the p-cocycle property.
To see this, recall that by Connes-Feldman-Weiss [2], there exists a G-invariant
Borel subset Zy C Z with u(Zy) = 1 such that Ego is hyperfinite; and hence, by

Hjorth-Kechris [6, Theorem 8.1], the action G ~ Zj has the cocycle property.
The following result will be proved in Section 2.

Theorem 1.9. Suppose that v is an ergodic IRS of a countable group G and that:
(i) [Ng(H): H] =n < oo for v-a.e. H € Subg;
(il) G ~ (Subg,v) has the v-cocycle property.

Then v is the stabilizer distribution of an ergodic action G ~ (X, u) on a standard

Borel probability space such that the stabilizer map x — G, is n-to-one.

Corollary 1.10. Ifv is an ergodic IRS of a countable amenable group G such that
[Ne(H): H|=n < oo forv-a.e. H € Subg, then v is the stabilizer distribution of
an ergodic action G ~ (X, ) on a standard Borel probability space such that the

stabilizer map x — G, is n-to-one.

The next result confirms that, as expected, there exist examples of ergodic IRSs

which fail to satisfy hypothesis (1.9)(ii).

Theorem 1.11. There ezists a countable group G with an ergodic IRS v such that

G ~ (Subg,v) does not have the v-cocycle property.
Remark 1.12. We will prove a strengthening of Theorem 1.11 in Section 3.

2. THE PROOF OF THEOREM 1.9

Clearly we can suppose that n > 1. By assumption, there exists a G-invariant
Borel subset Z C Subg with v(Z) = 1 such that the conjugation action G ~ Z
has the cocycle property. Thus there exists a Borel map c : Eg — G such that

whenever Hy, Ho, H3 € Z are conjugate subgroups of G, then:

° C(Hl,HQ)HlC(Hl,H2)71 = Hy; and



REALIZING INVARIANT RANDOM SUBGROUPS AS STABILIZER DISTRIBUTIONS 5
° C(Hl, Hg) = C(HQ, Hg)C(Hl, Hz)

After slightly shrinking Z if necessary, we can also suppose that [Ng(H): H] =n
for every H € Z.

Let X ={aH |H € Z,a € Ng(H) } and let  be the Borel probability measure
on X defined by

For each g € G and aH € X, define
g-aH = c¢(H,gHg HaHg™'.

Let b € Ng(H) be such that g = c(H,gHg~')b. Since b=ta € Ng(H) and
g-al = gb~lag~ (gHg™"),

it follows that g-aH is a coset of gHg™! in Ng(gHg™!) and thus g-aH € X. Also
if g, h € G and aH € X, then

g-(h-aH)=c(hHh ™, ghHh g V)e(H,hHh Y YaHh 1g~!
= c(H,ghHh™'g~")aH (gh)~"

=gh-aH.

Thus the maps aH — ¢ - aH define an action of G on X, which is easily seen
to be p-preserving. Furthermore, for each aH € X, the corresponding G-orbit is
G-aH = {bgHg ! | g € G,b € Ng(gHg™')}; and it follows that the action
G ~ (X,p) is ergodic. Finally suppose that ¢ € G and aH € X are such that
g-aH = aH. Then clearly g € Ng(H) and thus aH = ¢(H,H)aHg™ ' = ag™'H. It
follows that g € H and hence H is the stabilizer of a H under the action G ~ (X, ).
Thus the stabilizer map aH »i> Gang is n-to-one. Also if T C Subg is a Borel
subset, then (fup)(T) =pu({aH |H € TNZ,a € No(H)})=v(T) and so v is the
stabilizer distribution of G ~ (X, ). This completes the proof of Theorem 1.9.

3. THE WEAK COCYCLE PROPERTY

Suppose that v is an ergodic IRS of a countable group G with the property that
[Ng(H) : H] =n < oo for v-a.e. H € Subg. Then, in the statement of Theorem
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1.9, we can weaken the hypothesis that G ~ (Subg, v ) has the v-cocycle property,

as follows.

Definition 3.1. An IRS v of a countable group G is said to have the weak cocycle
property if there exists a G-invariant Borel subset Z C Subg with v(Z) = 1 and
a Borel map c : Eé — G such that whenever Hi, Hy, H3 € Z are conjugate
subgroups of G, then:

o ¢(Hy,Hy)Hic(Hy, Hy)™! = Hy; and

o c(Hy,H3) 'c(Hy, H3)c(Hy, Hy) € Hy.

In this case, we say that c is a weak cocycle.

Theorem 3.2. If v is an ergodic IRS of a countable group G with the property
that [Ng(H) : H] =n < oo for v-a.e. H € Subg, then the following conditions are

equivalent:

(i) v has the weak cocycle property.
(ii) v is the stabilizer distribution of an ergodic action G ~ (X, ) on a stan-

dard Borel probability space such that the stabilizer map x — G, is n-to-one.

Proof. 1t is easily checked that the construction in Theorem 1.9 goes through under
the hypothesis that v has the weak cocycle property. Conversely, suppose that the
ergodic IRS v is the stabilizer distribution of an ergodic action G ~ (X, ) on a
standard Borel probability space such that the stabilizer map = i> G, is n-to-one.
Then we can suppose that [ Ng(G,) : G ] =n for all z € X; and, as we explained

in Section 1, it follows that the map
G-z {gGg7" g G}

is injective. Let Z = {G, | x € X }. Then v(Z) = 1; and for all H € Z, the n-set
f7'(H) ={z € X | G, = H} lies in a single G-orbit. Let < be a Borel linear
ordering of X and let ¢ : Z — X be the Borel map defined by

@o(H) = the <-least x € f~'(H).

Finally let ¢ : Eé — G be any Borel map such that if Hy, Hy, € Z are conjugate

subgroups, then

c(Hy, Ha) - p(H1) = p(Hz).
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Clearly if Hy, Hy € Z are conjugate subgroups, then
C(f[l7 Hg)ch(Hl, H2)71 = HQ.
Also if Hy, Ho, H3 € Z are conjugate subgroups of GG, then
c(Hz, H3)c(Hy, Ha) - p(H1) = p(Hs) = c(Hi, Hs) - p(H1)
and so
C(Hl,Hg)ilc(Hg,H3)C(H1,H2) S GW(H1) = Hl.
Thus c: Eg — G is a weak cocyle. ([

The remainder of this section is devoted to the proof of the following strength-

ening of Theorem 1.11.

Theorem 3.3. There exist a countable group G with an ergodic IRS v which does

not have the weak cocycle property.

The proof of Theorem 3.3 makes use of Popa’s Cocycle Superrigidity Theorem

[7], which involves a slightly different formulation of the notion of a Borel cocycle.

Definition 3.4. If G ~ ( X, 1) is a measure-preserving action of a countable group
on a standard Borel probability space and H is a countable group, then a Borel

function o : G x X — H is called a cocycle if for all g, h € G,
alhg,z) = a(h,g-x)a(g,z) for prae. z € X.

Proof of Theorem 1.11. Most of our effort will go into showing that there exists an
ergodic probability measure p on 22 such that the shift action Fo ~ (22, 1) does
not have the p-cocycle property. (Of course, Example 1.7 shows that u is not the
usual uniform product probability measure.) First recall that ' = SL(3,2Z) is a
2-generator Kazhdan group. (For example, Zimmer [9, Chapter 7].) Let 7 : Fo — T'
be a surjective homomorphism, let m be the uniform product probability measure

on 2" and let Fo ~ (25, m) be the ergodic action defined by g -2 = 7(g) - z.
Claim 3.5. Fo ~ (2F,m) does not have the m-cocycle property.

Proof of Claim 3.5. Suppose that Z C 2 is an Fs-invariant Borel subset with

m(Z) = 1 and that ¢ : E]FZ2 — [y is a Borel cocycle. Then we can define a Borel
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cocycle a : ' x Z — Fs by «a(v,2) = ¢(z,7 - z). By Popa’s Cocycle Superrigidity
Theorem [7], after deleting an m-null subset of Z if necessary, there exists a Borel
map b : Z — Fs and a homomorphism ¢ : I' — Fs such that for all v € T" and
z € Z,
p(7) = by - 2)a(y, 2)b(2) "

Since I" does not embed into Fs, it follows that N = ker ¢ # 1; and this implies
that [T : N] < oco. (For example, Zimmer [9, Chapter 8|.) In particular, N is an
infinite subgroup of I'. Since the action I' ~ (20, m) is strongly mixing, it follows

that N acts ergodically on (2%, m ). Note that if v € N and z € Z, then

c(z,7-2) = a(y,2) = by 2)7'b(2);

and hence

But then, since the action N ~ (27, m) is ergodic, it follows that the Borel map

z > b(z) - z is m-a.e. constant, which is a contradiction. O

Hence, letting j : 2 — 22 be the Borel injection defined by j(x)(g) = z(r(g))
and yu = j.m, it follows that the shift action Fo ~ (22, 1) does not have the
pu-cocycle property. Next let B = @he& Ch, where each C}, is a cyclic group of
order 2. Then the wreath product G = C5 wr [y is defined to be the semidirect
product B x Fa, where gChg~t = C,, for each g, h € Fa. Let 6 : 22 — Subg be

the injective Fo-equivariant map defined by
v By = @P{Ch | h € Fa,x(h) =1}

and let v = 0, be the corresponding Fo-invariant ergodic probability measure on
Subg. Since B acts trivially on (22), it follows that v is G-invariant and thus v
is an ergodic IRS of G. We claim that v does not have the weak cocycle property.
To see this, suppose that Z C Subg is a G-invariant Borel subset with v(Z) =1
and that the Borel map ¢ : EZ — G is a weak cocycle. Then we can suppose that

Z C 0(2¥2). Let Y C 2T be the Fy-invariant Borel subset with m(Y) = 1 such that
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Z = (0oj)(Y). Letc: E]%; — 5 be the Borel map such that if y E%; yo and
H; = (0oj)(y;) for i = 1,2, then

c(Hy, Hy) = b(Hy, Ha) &(y1, y2),

where b(H;, Hy) € B. Since B acts trivially on Z, it follows that &(y1,y2) - y1 = yo.
Also if g E[}; ys3 and Hs = (6 0 j)(y3), then

c(Hy, H3) e(Ha, H3)c(Hy, Hy) € Hy < B;

and it follows that
e(y1,y3) 'e(ya, y3)e(yr, y2) = 1.

But this means that ¢ : E%; — Fy is a cocycle, which contradicts Claim 3.5. This

completes the proof of Theorem 3.3. O
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