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Abstract. Suppose that ν is an ergodic IRS of a countable group G such

that [NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG. In this paper, we consider

the question of whether ν can be realized as the stabilizer distribution of an

ergodic action G ↷ (X,µ ) on a standard Borel probability space such that

the stabilizer map x 7→ Gx is n-to-one.

1. Introduction

Let G be a countable discrete group and let SubG be the compact space of

subgroups H ⩽ G. Then a Borel probability measure ν on SubG which is invariant

under the conjugation action of G on SubG is called an invariant random subgroup

or IRS. For example, suppose that G acts via measure-preserving maps on the

standard Borel probability space (X,µ ) and let f : X → SubG be theG-equivariant

stabilizer map defined by

x 7→ Gx = { g ∈ G | g · x = x }.

Then the corresponding stabilizer distribution ν = f∗µ is an IRS of G. In fact, by

a result of Abert-Glasner-Virag [1], every IRS of G can be realized as the stabilizer

distribution of a suitably chosen measure-preserving action. Moreover, as pointed

out by Creutz-Peterson [3], using the Ergodic Decomposition Theorem, it follows

that if ν is an ergodic IRS of G, then ν is the stabilizer distribution of an ergodic

action G ↷ (X,µ ).

If ν is an IRS of a countable group G, then the construction of Abert-Glasner-

Virag [1] realizes ν as the stabilizer distribution of a measure-preserving action

G ↷ (X,µ ) such that the set {x ∈ X | Gx = H } is uncountable for ν-a.e.

H ∈ SubG. There are many examples of IRSs where this cannot be avoided.
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Notation 1.1. Throughout this paper, if G ↷ X is a Borel action of a countable

group G on a standard Borel space X, then the corresponding orbit equivalence

relation will be denoted by EX
G .

Theorem 1.2. Suppose that ν is an ergodic IRS of a countable group G and that

[NG(H) : H ] = ∞ for ν-a.e. H ∈ SubG. If ν is the stabilizer distribution of a

measure-preserving action G ↷ (X,µ ) on a Borel probability space, then the set

{x ∈ X | Gx = H } is uncountable for ν-a.e. H ∈ SubG.

Proof. If not, it follows that the set {x ∈ X | Gx = H } is countable for ν-a.e.

H ∈ SubG. Consider the Borel equivalence relation E on X defined by

x E y ⇐⇒ Gx = Gy.

Then for µ-a.e. x ∈ X, the corresponding E-class [x ]E is countable. Hence, after

restricting to a Borel subset X0 ⊆ X with µ(X0) = 1 if necessary, we can suppose

that [x ]E is countable for every x ∈ X. Thus E is a smooth countable Borel equiv-

alence relation on X. Since E′ = E ∩ EX
G ⊆ E, it follows that E′ is also smooth.

(This is a straightforward consequence of the Feldman-Moore Theorem [5]. For ex-

ample, see Thomas [8, Lemma 2.1].) Also, since Gx = Gg·x whenever g ∈ NG(Gx),

it follows that every E′-class is infinite. But then, by Dougherty-Jackson-Kechris [4,

Proposition 2.5], since EX
G contains the smooth aperiodic Borel equivalence relation

E′, it follows that EX
G is compressible; and hence, by Dougherty-Jackson-Kechris

[4, Theorem 3.5], there does not exist a G-invariant Borel probability measure on

X, which is a contradiction. □

On the other hand, suppose that ν is an ergodic IRS of a countable group G such

that [NG(H) : H ] < ∞ for ν-a.e. H ∈ SubG. Then there exists an integer n ≥ 1

such that [NG(H) : H ] = n for ν-a.e. H ∈ SubG. If n = 1, then ν is the stabilizer

distribution of the ergodic action G ↷ ( SubG, ν ) and the corresponding stabilizer

map H 7→ NG(H) is ν-a.e. injective. Now suppose that n > 1 and that ν is the

stabilizer distribution of the measure-preserving action G ↷ (X,µ ). If x ∈ X and

g ∈ NG(Gx), then Gx = Gg·x. It follows that for µ-a.e. x ∈ X, the stabilizer map

f : X → SubG is n-to-one on the orbit G · x. Consequently, the stabilizer map f is
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µ-a.e. n-to-one if and only if the map

G · x 7→ { gGxg
−1 | g ∈ G }

is µ-a.e. injective. Furthermore, in this case, by restricting to a suitable G-invariant

Borel subset X0 ⊆ X with µ(X0) = 1, we obtain a measure-preserving action

G ↷ (X0, µ ) with stabilizer distribution ν such that the corresponding stabilizer

map is n-to-one.

Question 1.3. Suppose that ν is an ergodic IRS of a countable group G and that

[NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG. Is ν the stabilizer distribution of

an ergodic action G ↷ (X,µ ) on a standard Borel probability space such that the

stabilizer map x 7→ Gx is n-to-one?

If we add a suitable extra hypothesis concerning the ergodic IRS ν, then we

obtain a positive answer to Question 1.3.

Definition 1.4. If G ↷ Z is a Borel action of a countable group G on a standard

Borel space Z, then a Borel map c : EZ
G → G is a cocycle if whenever x EZ

G y and

y EZ
G z, then:

• c(x, y) · x = y; and

• c(x, z) = c(y, z)c(x, y).

The Borel action G ↷ Z is said to have the cocycle property if there exists a Borel

cocycle c : EZ
G → G.

Remark 1.5. For later use, note that if c : EZ
G → G is a cocycle and x ∈ Z, then

by taking x = y = z, we obtain that c(x, x) = 1. It follows that if x EZ
G y, then

c(y, x) = c(x, y)−1.

Definition 1.6. A measure-preserving action G ↷ (Z, µ ) on a standard Borel

probability space is said to have the µ-cocycle property if there exists a G-invariant

Borel subset Z0 ⊆ Z with µ(Z0) = 1 such that G ↷ Z0 has the cocycle property.

Example 1.7. Let Fn be the free group on n generators, where 2 ≤ n ≤ ℵ0, and

let µ be the usual uniform product probability measure on 2Fn . By Hjorth-Kechris

[6, Corollary 10.7], the shift action Fn ↷ 2Fn does not have the cocycle property.
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However, since Fn acts freely outside a µ-null subset, it follows that the shift action

Fn ↷ ( 2Fn , µ ) has the µ-cocycle property.

Remark 1.8. If G is an amenable group, then every measure-preserving action

G ↷ (Z, µ ) on a standard Borel probability space has the µ-cocycle property.

To see this, recall that by Connes-Feldman-Weiss [2], there exists a G-invariant

Borel subset Z0 ⊆ Z with µ(Z0) = 1 such that EZ0

G is hyperfinite; and hence, by

Hjorth-Kechris [6, Theorem 8.1], the action G ↷ Z0 has the cocycle property.

The following result will be proved in Section 2.

Theorem 1.9. Suppose that ν is an ergodic IRS of a countable group G and that:

(i) [NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG;

(ii) G ↷ (SubG, ν ) has the ν-cocycle property.

Then ν is the stabilizer distribution of an ergodic action G ↷ (X,µ ) on a standard

Borel probability space such that the stabilizer map x 7→ Gx is n-to-one.

Corollary 1.10. If ν is an ergodic IRS of a countable amenable group G such that

[NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG, then ν is the stabilizer distribution of

an ergodic action G ↷ (X,µ ) on a standard Borel probability space such that the

stabilizer map x 7→ Gx is n-to-one.

The next result confirms that, as expected, there exist examples of ergodic IRSs

which fail to satisfy hypothesis (1.9)(ii).

Theorem 1.11. There exists a countable group G with an ergodic IRS ν such that

G ↷ (SubG, ν ) does not have the ν-cocycle property.

Remark 1.12. We will prove a strengthening of Theorem 1.11 in Section 3.

2. The proof of Theorem 1.9

Clearly we can suppose that n > 1. By assumption, there exists a G-invariant

Borel subset Z ⊆ SubG with ν(Z) = 1 such that the conjugation action G ↷ Z

has the cocycle property. Thus there exists a Borel map c : EZ
G → G such that

whenever H1, H2, H3 ∈ Z are conjugate subgroups of G, then:

• c(H1, H2)H1c(H1, H2)
−1 = H2; and



REALIZING INVARIANT RANDOM SUBGROUPS AS STABILIZER DISTRIBUTIONS 5

• c(H1, H3) = c(H2, H3)c(H1, H2).

After slightly shrinking Z if necessary, we can also suppose that [NG(H) : H ] = n

for every H ∈ Z.

Let X = { aH | H ∈ Z, a ∈ NG(H) } and let µ be the Borel probability measure

on X defined by

µ(B) =

∫
Z

|B ∩ { aH | a ∈ NG(H) }|
n

dν(H).

For each g ∈ G and aH ∈ X, define

g · aH = c(H, gHg−1)aHg−1.

Let b ∈ NG(H) be such that g = c(H, gHg−1)b. Since b−1a ∈ NG(H) and

g · aH = gb−1ag−1(gHg−1),

it follows that g · aH is a coset of gHg−1 in NG(gHg−1) and thus g · aH ∈ X. Also

if g, h ∈ G and aH ∈ X, then

g · (h · aH) = c(hHh−1, ghHh−1g−1)c(H,hHh−1)aHh−1g−1

= c(H, ghHh−1g−1)aH(gh)−1

= gh · aH.

Thus the maps aH 7→ g · aH define an action of G on X, which is easily seen

to be µ-preserving. Furthermore, for each aH ∈ X, the corresponding G-orbit is

G · aH = { b gHg−1 | g ∈ G, b ∈ NG(gHg−1) }; and it follows that the action

G ↷ (X,µ ) is ergodic. Finally suppose that g ∈ G and aH ∈ X are such that

g ·aH = aH. Then clearly g ∈ NG(H) and thus aH = c(H,H)aHg−1 = ag−1H. It

follows that g ∈ H and henceH is the stabilizer of aH under the actionG ↷ (X,µ ).

Thus the stabilizer map aH
f7→ GaH is n-to-one. Also if T ⊆ SubG is a Borel

subset, then (f∗µ)(T ) = µ( { aH | H ∈ T ∩Z, a ∈ NG(H) } ) = ν(T ) and so ν is the

stabilizer distribution of G ↷ (X,µ ). This completes the proof of Theorem 1.9.

3. The weak cocycle property

Suppose that ν is an ergodic IRS of a countable group G with the property that

[NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG. Then, in the statement of Theorem
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1.9, we can weaken the hypothesis that G ↷ ( SubG, ν ) has the ν-cocycle property,

as follows.

Definition 3.1. An IRS ν of a countable group G is said to have the weak cocycle

property if there exists a G-invariant Borel subset Z ⊆ SubG with ν(Z) = 1 and

a Borel map c : EZ
G → G such that whenever H1, H2, H3 ∈ Z are conjugate

subgroups of G, then:

• c(H1, H2)H1c(H1, H2)
−1 = H2; and

• c(H1, H3)
−1c(H2, H3)c(H1, H2) ∈ H1.

In this case, we say that c is a weak cocycle.

Theorem 3.2. If ν is an ergodic IRS of a countable group G with the property

that [NG(H) : H ] = n < ∞ for ν-a.e. H ∈ SubG, then the following conditions are

equivalent:

(i) ν has the weak cocycle property.

(ii) ν is the stabilizer distribution of an ergodic action G ↷ (X,µ ) on a stan-

dard Borel probability space such that the stabilizer map x 7→ Gx is n-to-one.

Proof. It is easily checked that the construction in Theorem 1.9 goes through under

the hypothesis that ν has the weak cocycle property. Conversely, suppose that the

ergodic IRS ν is the stabilizer distribution of an ergodic action G ↷ (X,µ ) on a

standard Borel probability space such that the stabilizer map x
f7→ Gx is n-to-one.

Then we can suppose that [NG(Gx) : Gx ] = n for all x ∈ X; and, as we explained

in Section 1, it follows that the map

G · x 7→ { gGxg
−1 | g ∈ G }

is injective. Let Z = {Gx | x ∈ X }. Then ν(Z) = 1; and for all H ∈ Z, the n-set

f−1(H) = {x ∈ X | Gx = H } lies in a single G-orbit. Let ≺ be a Borel linear

ordering of X and let φ : Z → X be the Borel map defined by

φ(H) = the ≺-least x ∈ f−1(H).

Finally let c : EZ
G → G be any Borel map such that if H1, H2 ∈ Z are conjugate

subgroups, then

c(H1, H2) · φ(H1) = φ(H2).
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Clearly if H1, H2 ∈ Z are conjugate subgroups, then

c(H1, H2)H1c(H1, H2)
−1 = H2.

Also if H1, H2, H3 ∈ Z are conjugate subgroups of G, then

c(H2, H3)c(H1, H2) · φ(H1) = φ(H3) = c(H1, H3) · φ(H1)

and so

c(H1, H3)
−1c(H2, H3)c(H1, H2) ∈ Gφ(H1) = H1.

Thus c : EZ
G → G is a weak cocyle. □

The remainder of this section is devoted to the proof of the following strength-

ening of Theorem 1.11.

Theorem 3.3. There exist a countable group G with an ergodic IRS ν which does

not have the weak cocycle property.

The proof of Theorem 3.3 makes use of Popa’s Cocycle Superrigidity Theorem

[7], which involves a slightly different formulation of the notion of a Borel cocycle.

Definition 3.4. If G ↷ (X,µ ) is a measure-preserving action of a countable group

on a standard Borel probability space and H is a countable group, then a Borel

function α : G×X → H is called a cocycle if for all g, h ∈ G,

α(hg, x) = α(h, g · x)α(g, x) for µ-a.e. x ∈ X.

Proof of Theorem 1.11. Most of our effort will go into showing that there exists an

ergodic probability measure µ on 2F2 such that the shift action F2 ↷ ( 2F2 , µ ) does

not have the µ-cocycle property. (Of course, Example 1.7 shows that µ is not the

usual uniform product probability measure.) First recall that Γ = SL(3,Z) is a

2-generator Kazhdan group. (For example, Zimmer [9, Chapter 7].) Let π : F2 → Γ

be a surjective homomorphism, let m be the uniform product probability measure

on 2Γ and let F2 ↷ ( 2Γ,m ) be the ergodic action defined by g · x = π(g) · x.

Claim 3.5. F2 ↷ ( 2Γ,m ) does not have the m-cocycle property.

Proof of Claim 3.5. Suppose that Z ⊆ 2Γ is an F2-invariant Borel subset with

m(Z) = 1 and that c : EZ
F2

→ F2 is a Borel cocycle. Then we can define a Borel
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cocycle α : Γ × Z → F2 by α(γ, z) = c(z, γ · z). By Popa’s Cocycle Superrigidity

Theorem [7], after deleting an m-null subset of Z if necessary, there exists a Borel

map b : Z → F2 and a homomorphism φ : Γ → F2 such that for all γ ∈ Γ and

z ∈ Z,

φ(γ) = b(γ · z)α(γ, z)b(z)−1.

Since Γ does not embed into F2, it follows that N = kerφ ̸= 1; and this implies

that [ Γ : N ] < ∞. (For example, Zimmer [9, Chapter 8].) In particular, N is an

infinite subgroup of Γ. Since the action Γ ↷ ( 2Γ,m ) is strongly mixing, it follows

that N acts ergodically on ( 2Γ,m ). Note that if γ ∈ N and z ∈ Z, then

c(z, γ · z) = α(γ, z) = b(γ · z)−1b(z);

and hence

b(γ · z) · (γ · z) = b(z)c(z, γ · z)−1 · (γ · z)

= b(z)c(γ · z, z) · (γ · z)

= b(z) · z.

But then, since the action N ↷ ( 2Γ,m ) is ergodic, it follows that the Borel map

z 7→ b(z) · z is m-a.e. constant, which is a contradiction. □

Hence, letting j : 2Γ → 2F2 be the Borel injection defined by j(x)(g) = x(π(g))

and µ = j∗m, it follows that the shift action F2 ↷ ( 2F2 , µ ) does not have the

µ-cocycle property. Next let B =
⊕

h∈F2
Ch, where each Ch is a cyclic group of

order 2. Then the wreath product G = C2 wr F2 is defined to be the semidirect

product B ⋊ F2, where gChg
−1 = Cgh for each g, h ∈ F2. Let θ : 2F2 → SubG be

the injective F2-equivariant map defined by

x 7→ Bx =
⊕

{Ch | h ∈ F2, x(h) = 1 }

and let ν = θ∗µ be the corresponding F2-invariant ergodic probability measure on

SubG. Since B acts trivially on θ(2F2), it follows that ν is G-invariant and thus ν

is an ergodic IRS of G. We claim that ν does not have the weak cocycle property.

To see this, suppose that Z ⊆ SubG is a G-invariant Borel subset with ν(Z) = 1

and that the Borel map c : EZ
G → G is a weak cocycle. Then we can suppose that

Z ⊆ θ(2F2). Let Y ⊆ 2Γ be the F2-invariant Borel subset with m(Y ) = 1 such that
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Z = (θ ◦ j)(Y ). Let c̄ : EY
F2

→ F2 be the Borel map such that if y1 EY
F2

y2 and

Hi = (θ ◦ j)(yi) for i = 1, 2, then

c(H1, H2) = b(H1, H2) c̄(y1, y2),

where b(H1, H2) ∈ B. Since B acts trivially on Z, it follows that c̄(y1, y2) · y1 = y2.

Also if y2 E
Y
F2

y3 and H3 = (θ ◦ j)(y3), then

c(H1, H3)
−1c(H2, H3)c(H1, H2) ∈ H1 ⩽ B;

and it follows that

c̄(y1, y3)
−1c̄(y2, y3)c̄(y1, y2) = 1.

But this means that c̄ : EY
F2

→ F2 is a cocycle, which contradicts Claim 3.5. This

completes the proof of Theorem 3.3. □
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