Question 1. Recall that the set $M_{2 \times 2}(\mathbb{R})$ of 2×2 real matrices, equipped with matrix addition and scalar multiplication

$$
\begin{pmatrix}
a & b \\
c & d \\
\end{pmatrix} + \begin{pmatrix}
a' & b' \\
c' & d' \\
\end{pmatrix} = \begin{pmatrix}
a + a' & b + b' \\
c + c' & d + d' \\
\end{pmatrix}
$$

and

$$
\begin{pmatrix}
a & b \\
\end{pmatrix} = \begin{pmatrix}
ra & rb \\
rc & rd \\
\end{pmatrix},
$$

is a vector space of dimension 4.

(i) Determine whether the set $S = \{ A \in M_{2 \times 2}(\mathbb{R}) \mid A^t = A \}$ of symmetric 2×2 real matrices is a subspace of $M_{2 \times 2}(\mathbb{R})$; and if so, compute its dimension.

(ii) Determine whether the set $S = \{ A \in M_{2 \times 2}(\mathbb{R}) \mid \det(A) = 0 \}$ of non-invertible 2×2 real matrices is a subspace of $M_{2 \times 2}(\mathbb{R})$; and if so, compute its dimension.

(iii) State the Cayley-Hamilton Theorem.

(iv) Prove that if $n \geq 2$, then there does not exist an $n \times n$ real matrix $A \in M_{n \times n}(\mathbb{R})$ such that $\{ A^\ell \mid 1 \leq \ell \leq n^2 \}$ is a basis of $M_{n \times n}(\mathbb{R})$.

Question 2.

(i) Compute the inverse of the following matrix:

$$
A = \begin{pmatrix}
1 & 2 & 1 \\
2 & 5 & 4 \\
1 & 1 & 0 \\
\end{pmatrix} \in M_{3 \times 3}(\mathbb{R})
$$

(ii) Solve the following system of linear equations:

$$
x_1 + 2x_2 + x_3 = 2
$$

$$
2x_1 + 5x_2 + 4x_3 = 4
$$

$$
x_1 + x_2 = 1
$$
Question 3. Let $A \in \mathbb{M}_{3 \times 3}(\mathbb{R})$ be the matrix
\[
A = \begin{pmatrix}
1 & 3 & 3 \\
0 & 1 & 0 \\
0 & 3 & 4
\end{pmatrix}
\]
(i) Find a diagonal matrix D and an invertible matrix Q such that
$D = Q^{-1}AQ$.
(ii) Find a matrix $B \in \mathbb{M}_{3 \times 3}(\mathbb{R})$ such that $B^2 = A$. (Hint: it is easy
to find a matrix $C \in \mathbb{M}_{3 \times 3}(\mathbb{R})$ such that $C^2 = D$.)

Question 4. Let $A \in \mathbb{M}_{3 \times 3}(\mathbb{C})$ be the matrix
\[
A = \begin{pmatrix}
0 & 1 & 1 \\
2 & 1 & -1 \\
-6 & -5 & -3
\end{pmatrix}
\]
Then A has the characteristic polynomial
\[
f(t) = -(t - 2)(t + 2)^2.
\]
Find a Jordan canonical form J of A and an invertible matrix Q such that
$Q^{-1}AQ = J$.
Question 5. Recall that if \(A, B \in M_{n \times n}(F) \), then \(A \) and \(B \) are *similar* if there exists an invertible matrix \(Q \in M_{n \times n}(F) \) such that \(Q^{-1}AQ = B \).

(i) Let \(A, B \in M_{3 \times 3}(\mathbb{C}) \) be the matrices

\[
A = \begin{pmatrix}
1 & 3 & 3 \\
-3 & -5 & -3 \\
3 & 3 & 1
\end{pmatrix} \quad B = \begin{pmatrix}
2 & 4 & 3 \\
-4 & -6 & -3 \\
3 & 3 & 1
\end{pmatrix}
\]

Then \(A \) and \(B \) both have the characteristic polynomial

\[
f(t) = -(t - 1)(t + 2)^2.
\]

Determine whether \(A \) and \(B \) are similar.

(ii) Suppose that \(A_1, A_2, A_3 \in M_{3 \times 3}(\mathbb{C}) \) and that all three matrices have the characteristic polynomial

\[
f(t) = -(t - 1)(t + 2)^2.
\]

Prove that there exist \(i \neq j \) such that \(A_i \) is similar to \(A_j \).

Question 6. Let \(A \) be an \(n \times n \) matrix over a field \(F \).

(i) Give the definition of an eigenvector and eigenvalue of \(A \).

(ii) Prove that if \(\lambda \) is an eigenvalue of \(A \), then \(\lambda \) is a root of the characteristic polynomial \(f(t) = \det(A - tI) \).

Let \(a, b, c \in F \) be scalars and let

\[
B = \begin{pmatrix}
a & b & c \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}
\]

(iii) Prove that if \(\lambda \) is an eigenvalue of \(B \), then

\[
\mathbf{v} = \begin{pmatrix}
\lambda^2 \\
\lambda \\
1
\end{pmatrix}
\]

is an eigenvector corresponding to \(\lambda \).