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Abstract. We will present an alternative approach to Zalesskĭi’s theorem on

diagonal embeddings of finite alternating groups.

1. Introduction

For each positive integer n, let ∆n = { 1, 2, . . . , n }. If k < m, then an embedding

τ : Alt(k) → Alt(m) is said to be diagonal if every nontrivial τ(Alt(k))-orbit on

∆m is natural. (Here an orbit Ω of τ(Alt(k)) on ∆m is said to be natural if |Ω| = k

and the action τ(Alt(k)) ↷ Ω is isomorphic to the natural action Alt(k) ↷ ∆k.)

Of course, it is clear that if τ0 : Alt(k) → Alt(m) and τ1 : Alt(m) → Alt(n) are

diagonal embeddings, then τ = τ1 ◦ τ0 is also a diagonal embedding. In [4], via

an ingenious character theoretic argument, Zalesskĭi proved that the converse also

holds.

Theorem 1.1. Suppose that 6 ≤ k < m < n and that τ0 : Alt(k) → Alt(m) and

τ1 : Alt(m) → Alt(n) are embeddings of finite alternating groups. If τ = τ1 ◦ τ0 is

a diagonal embedding, then τ0 and τ1 are both diagonal embeddings.

In this paper, we will present a more elementary approach which mostly relies

on permutation group theoretic arguments.

Remark 1.2. As we will explain later, there are slight inaccuracies in Zalesskĭi [4]

arising from the exceptional properties of Alt(6). These exceptional properties will

also cause some inconvenience in this paper. For example, see Lemma 2.3.

As in Zalesskĭi [4], our proof of Theorem 1.1 will involve the analysis of various

permutation characters. Here if G ↷ Ω is an action of a finite group G on a finite

set Ω, then the corresponding permutation character is

χ(g) = |FixΩ(g)|, g ∈ G;

and the corresponding normalized permutation character is

χ̂(g) = |FixΩ(g)|/|Ω|, g ∈ G.

A central role will be played by the permutation character χn of the natural action

Alt(n) ↷ ∆n. Recall that if n ≥ 4, then there exists an irreducible character ηn
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such that χn = 1Alt(n) + ηn. Here, if G is any finite group, then 1G denotes the

trivial character. Also recall that if χ is the permutation character of any action

G ↷ Ω, then the multiplicity of 1G in χ is equal to the number of G-orbits on Ω.

(For example, see Cameron [1, Section 2.5].))

2. Finite permutation groups

In this section, we will present some results on finite permutation groups which

will be used in the proof of Theorem 1.1. The first two results are well-known. (For

example, see Dixon-Mortimer [2, Chapter 3].)

Lemma 2.1. If H ⩽ Sym(n) is a primitive subgroup which contains a 3-cycle,

then Alt(n) ⩽ H.

Lemma 2.2. If n > 6 and H ⩽ Sym(n) is a primitive subgroup which contains a

5-cycle, then Alt(n) ⩽ H.

Proof. If n ≥ 8, then the result is a special case of Jordan’s Theorem on primitive

permutation groups. When n = 7, the result follows from the fact that the only

proper transitive subgroups of Sym(7) are the cyclic group C7 of order 7, the

Frobenius group F21 of order 21, the projective special linear group PSL(2, 7) of

order 168 and the alternating group Alt(7). □

Lemma 2.2 is false when n = 6. To see this, let

H = ⟨ ( 1 2 3 4 5 ), ( 2 5 )( 3 4 ) ⟩ ∼= D10.

Then [Alt(5) : H ] = 6 and the action Alt(5) ↷ Alt(5)/H induces a transitive

embedding τ : Alt(5) → Alt(6). Since τ(Alt(5)) contains a 5-cycle, it follows that

τ(Alt(5)) is a 2-transitive subgroup of Alt(6).

Alternatively, recall that Alt(6) has an outer automorphism π which interchanges

the conjugacy class of 3-cycles and the conjugacy class of elements of cycle type 32.

Then we can also realize τ as τ = π ◦ i, where i : Alt(5) → Alt(6) is the natural

inclusion. Note that we can also use π to define a non-natural action of Alt(6) on

∆6 via

ℓ
g7→ π(g)(ℓ), g ∈ Alt(6), ℓ ∈ ∆6.

We will refer to this as the nonstandard action of Alt(6) on ∆6.

Lemma 2.3. If 5 ≤ k < m and the embedding τ : Alt(k) → Alt(m) is not diagonal,

then either:

(i) there exists a τ(Alt(k))-orbit Φ ⊆ ∆m with |Φ| > k; or

(ii) k = 6 and there exists τ(Alt(6))-orbit Φ ⊆ ∆m with |Φ| = 6 such that

τ(Alt(6)) ↷ Φ is isomorphic to the nonstandard action of Alt(6) on ∆6.
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Proof. Let Φ ⊆ ∆m be a nontrivial non-natural orbit of τ(Alt(k)). Suppose that

|Φ| ≯ k. Then |Φ| = k. By Dixon-Mortimer [2, 5.2A], if k ̸= 6, then any action

of Alt(k) on a set of size k is natural. Hence k = 6; and Dixon-Mortimer [2, 5.2A]

implies that τ(Alt(6)) ↷ Φ is isomorphic to the nonstandard action of Alt(6) on

∆6. □

In [4], Zalesskĭi stated Theorem 1.1 with the weaker condition that k ≥ 5. How-

ever, the following examples show that it is necessary to strengthen the hypothesis

to k ≥ 6. Let τ : Alt(5) → Alt(6) be the 2-transitive embedding defined above.

Also let s ≥ 1 and t ≥ 0 be such that s+ t ≥ 2, and let τ ′s,t : Alt(6) → Alt(6s+ t)

be an embedding such that τ(Alt(6)) has s nonstandard actions and t fixed points

on ∆6s+t. Then τ and τ ′s,t are both not diagonal and yet τ ′s,t ◦ τ is a diagonal

embedding of Alt(5) into Alt(6s+ t).

Definition 2.4. If n > 6, then an embedding σ : Alt(6) → Alt(n) is almost

diagonal if σ is isomorphic to τ ′s,t for some s, t ≥ 0 with 6s+ t = n.

We can now strengthen Theorem 1.1 as follows.

Theorem 2.5. Suppose that 5 ≤ k < m < n and that τ0 : Alt(k) → Alt(m) and

τ1 : Alt(m) → Alt(n) are embeddings of finite alternating groups. If τ = τ1 ◦ τ0 is

a diagonal embedding. Then either:

(1) τ0 and τ1 are both diagonal embeddings; or

(2) k = 5, m = 6, the embedding τ0 : Alt(5) → Alt(6) is 2-transitive and the

embedding τ1 : Alt(6) → Alt(n) is almost diagonal.

The proof of Theorem 2.5 will make use of the following observation, a proof of

which can be found in Thomas-Tucker-Drob [3, Proposition 2.2].

Proposition 2.6. If H ⩽ A are finite groups and χH is the permutation character

corresponding to the action A↷ A/H, then for all g ∈ A,

χH(g)

|A/H|
=

| gA ∩H |
| gA |

.

The following consequence of Proposition 2.6 implies that when computing upper

bounds for the normalized permutation characters of actions A ↷ A/H, we can

restrict our attention to those coming from maximal subgroups H < A.

Corollary 2.7. If H ⩽ H ′ ⩽ A are finite groups and χH , χH′ are the permutation

characters corresponding to the actions A ↷ A/H and A ↷ A/H ′, then for all

g ∈ G,
χH(g)

|A/H|
≤ χH′(g)

|A/H ′|
.
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The following result, in conjuction with Proposition 2.6, will play a key role in

the proof of Theorem 2.5.

Lemma 2.8. Suppose that n > 6. Let t = ⌊n/3⌋, let s = n− 3t, and let g ∈ Alt(n)

be an element with cycle type 1s3t. If H ⩽ Alt(n) is a primitive subgroup such that

|gAlt(n) ∩H|
|gAlt(n)|

≥ 1

4
,

then H = Alt(n).

Once again, Lemma 2.8 is false when n = 6. To see this, consider the previously

defined 2-transitive embedding τ : Alt(5) → Alt(6) and let g ∈ Alt(6) be a product

of two 3-cycles. Then

|gAlt(6) ∩ τ(Alt(5))|
|gAlt(6)|

=
20

40
=

1

2
.

The proof of Lemma 2.8 will make use of the following combinatorial result.

Lemma 2.9. If { gi | 1 ≤ i ≤ 10 } are distinct elements of Alt(6) of cycle type 32,

then there exist i ̸= j such that g−1
i gj is either a 3-cycle or a 5-cycle.

Proof. Let π : Alt(6) → Alt(6) be an outer automorphism which interchanges the

conjugacy class of 3-cycles and the conjugacy class of elements of cycle type 32;

and for each 1 ≤ i ≤ 10, let g̃i = π(gi). Then S = { supp g̃i | 1 ≤ i ≤ 10 }
contains at least 5 distinct 3-subsets of { 1, 2, · · · , 6 }. If there exist i ̸= j such that

supp g̃i∩ supp g̃j = ∅, then g̃−1
i g̃j has cycle type 3

2 and so g−1
i gj is a 3-cycle. Hence

we can suppose that if S ̸= T ∈ S, then S ∩ T ̸= ∅. Since |S| ≥ 5, there exist i ̸= j

such that | supp g̃i ∩ supp g̃j | = 1. Then g̃−1
i g̃j is a 5-cycle and it follows that g−1

i gj

is also a 5-cycle. □

Proof of Lemma 2.8. With the above hypotheses, suppose that H ⩽ Alt(n) is a

primitive subgroup such that

(2.1)
|gAlt(n) ∩H|

|gAlt(n)|
≥ 1

4
,

We can express each permutation h ∈ Alt(n) of cycle type 1s3t uniquely as a

product

(a1) · · · (as)× c1 · · · ct,

where (a1), · · · , (as) lists the (possibly empty) set of 1-cycles in increasing order and

c1, · · · , ct lists the 3-cycles in increasing order with respect to min supp ci. Since

Alt(6) has 40 elements of cycle type 32, the inequality (2.1) implies that there exists

a subset Φ ⊂ ∆n of cardinality 6 and fixed (a1) · · · (as), c1 · · · ct−2 as above such

that

{ ai | 1 ≤ i ≤ s } ∪
⋃

{ supp cj | 1 ≤ j ≤ t− 2 } = ∆n ∖ Φ
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and there exist at least 10 distinct permutations h ∈ Alt(Φ) of cycle type 32 such

that

(a1) · · · (as)× c1 · · · ct−2h ∈ H.

Note that if h, h′ are two such permutations, then h−1h′ ∈ H. Applying Lemma

2.9, we see that there exist two such permutations h, h′ such that h−1h′ is either

a 3-cycle or a 5-cycle. Applying Lemmas 2.1 and 2.2, since n > 6, it follows that

H = Alt(n). □

3. The proof of Theorem 2.5

The following result, which strengthens Zalesskĭi [4, Lemma 7], will enable us to

reduce the proof of Theorem 1.1 to the analysis of finitely many possibilities.

Lemma 3.1. Suppose that 5 < k < m and that τ : Alt(k) → Alt(m) is a transitive

embedding. If 4 < d < k, then there exists a τ(Alt(d))-orbit Φ ⊆ ∆m such that

|Φ| > d.

Proof. We will argue by induction on k−d ≥ 1. First suppose that k−d = 1. For the

sake of contradiction, suppose that every nontrivial τ(Alt(d))-orbit on ∆m has size

d. First consider the case when there exists a natural τ(Alt(d))-orbit Ψ ⊆ ∆m. Let

x ∈ ∆m be the point such that τ(Alt(d))x = τ(Alt(d−1)); and letH < Alt(k) be the

subgroup such that τ(Alt(k))x = τ(H). Then Alt(k−2) = Alt(d−1) ≤ H < Alt(k).

Thus H has an orbit Ω ⊆ ∆k such that { 1, · · · , k − 2 } ⊆ Ω. Let G ⩽ Sym(Ω) be

group induced by the action of H on Ω. Then G acts primitively on Ω and contains

the 3-cycle ( 1 2 3 ). Applying Lemma 2.1, it follows that Alt(Ω) ⩽ G. Since

[ Alt(k) : H ] = |∆m| = m > k,

it follows that Ω = { 1, · · · , k − 2 }. If G = Alt(Ω), then H is the pointwise

stabilizer of { k − 1, k } in Alt(k); and if G = Sym(Ω), then H is the setwise

stabilizer of { k − 1, k } in Alt(k). Consequently, the action of τ(Alt(k)) on ∆m is

either isomorphic to the action of Alt(k) on

Φ = { ( i, j ) | 1 ≤ i ̸= j ≤ k },

or else isomorphic to the action of Alt(k) on

Φ′ = { { i, j } | 1 ≤ i ̸= j ≤ k }.

In the first case, τ(Alt(d)) = τ(Alt(k − 1)) has an orbit of size (k − 1)(k − 2) > d;

and in the second case, τ(Alt(d)) has an orbit of size (k − 1)(k − 2)/2 > d, which

is a contradiction. Thus it only remains to consider the case when d = 6 and every

nontrivial τ(Alt(6))-orbit Ψ ⊆ ∆m is isomorphic to the nonstandard action of Alt(6)

on ∆6. Fix such an orbit Φ and let x ∈ Φ be the point such that τ(Alt(6))x =

τ(π(Alt(5))), where π is an outer automorphism of Alt(6) which interchanges the
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conjugacy class of 3-cycles and the conjugacy class of elements of cycle type 32; and

let H < Alt(7) be the subgroup such that τ(Alt(7))x = τ(H). Then π(Alt(5)) ⩽ H

and so H contains a 5-cycle. Since π(Alt(5)) acts 2-transitively on ∆6, it follows

that H has an orbit Ω ⊆ ∆7 such that { 1, 2, · · · , 6 } ⊆ Ω. Suppose that H acts

transitively on ∆7. Then H acts primitively on ∆7 and contains a 5-cycle; and

so by Lemma 2.9, H = Alt(7), which is a contraction. Thus Ω = { 1, 2, · · · , 6 }
and π(Alt(5)) ⩽ H ⩽ Alt(6). Since π(Alt(5)) is a maximal proper subgroup of

Alt(6) and [Alt(7) : H ] = m > 7, it follows that H = π(Alt(5)). Thus the action

of τ(Alt(7)) on ∆m is isomorphic to Alt(7) ↷ Alt(7)/H = Alt(7)/π(Alt(5)). Let

a ∈ Alt(7)∖Alt(6). If g ∈ Alt(6), then gaH = aH if and only if g ∈ aHa−1∩Alt(6).

Since Ha−1 ∩Alt(6) ∼= D10, it follows that τ(Alt(6)) has an orbit of size 36 on ∆m,

which is a contradiction. This concludes the proof when k − d = 1.

Next suppose that k − d = s ≥ 2 and that the result holds for s − 1. Then

τ(Alt(d + 1)) has an orbit Ψ ⊆ { 1, · · · ,m } such that m′ = |Ψ| > d + 1. By

the previous paragraph, it follows that τ(Alt(d)) has an orbit Ψ′ ⊆ Ψ such that

|Ψ′| > d. □

Proof of Theorem 2.5. Suppose that 5 ≤ k < m < n and that τ0 : Alt(k) → Alt(m)

and τ1 : Alt(m) → Alt(n) are embeddings of finite alternating groups such that

τ = τ1 ◦ τ0 is a diagonal embedding. If τ1 is a diagonal embedding, then it is clear

that τ0 must also be a diagonal embedding. So suppose that τ1 is not a diagonal

embedding. By Lemma 2.3, if τ1(Alt(m)) has no orbits Φ ⊆ ∆n with |Φ| > m,

then m = 6 and there exists τ1(Alt(6))-orbit Φ ⊆ ∆n with |Φ| = 6 such that

τ(Alt(6)) ↷ Φ is isomorphic to the nonstandard action of Alt(6) on ∆6. In this

case, we must have that k = 5 and that τ0 : Alt(5) → Alt(6) is the 2-transitive

embedding. Since τ = τ1◦τ0 is diagonal, it follows that τ1 must be almost diagonal.

Thus we can suppose that there exists a τ1(Alt(m))-orbit Φ ⊆ ∆n with |Φ| > m.

To reach a contradiction, it is enough to show that there exists a nontrivial non-

natural τ(Alt(k))-orbit Ψ ⊆ Φ. Consequently, in order to simplify notation, we can

suppose that Φ = ∆n; i.e. that the embedding τ1 : Alt(m) → Alt(n) is transitive.

Next note that τ ↾ Alt(5) is also a diagonal embedding. Let Ω ⊆ ∆m be a

nontrivial τ0(Alt(5))-orbit. Then, by Lemma 3.1, there exists a τ1(Alt(Ω))-orbit

Φ ⊆ ∆n such that |Φ| > |Ω|. In order to simplify notation, we will suppose

that k = 5, that Ω = ∆m and that Φ = ∆n. Thus τ0 : Alt(5) → Alt(m) and

τ1 : Alt(m) → Alt(n) are transitive embeddings with 5 ≤ m < n such that τ = τ1◦τ0
is a diagonal embedding. If m = 5, then τ : Alt(5) → Alt(n) is a transitive

embedding with n > 5 and so τ is not diagonal. Thus we can suppose that m > 5.

Let χ be the permutation character of Alt(m) arising from the transitive action

τ1(Alt(m)) ↷ ∆n.
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Claim 3.2. There exist integers a, b ≥ 0 such that χ ↾ τ0(Alt(5)) = aη5 + b15.

Proof of Claim 3.2. Since τ = τ1 ◦ τ0 is a diagonal embedding, there exist integers

c, d ≥ 0 such that τ(Alt(5)) has c natural orbits and d trivial orbits on ∆n. It

follows that χ ↾ τ0(Alt(5)) = cχ5 + d1Alt(5) = cη5 + (c+ d)1Alt(5). □

Note that there exists a proper subgroup H of Alt(5) such that the action

τ0(Alt(5)) ↷ ∆m is isomorphic to Alt(5) ↷ Alt(5)/H. Consequently, the pos-

sibilities for m are 6,10,12,15,20,30,60. From now on, let g ∈ Alt(5) be a 3-cycle.

Then the cycle structure of τ0(g) is easily computed, using the observation that if

a ∈ Alt(5), then gaH = aH if and only if a−1ga ∈ H. Thus τ0(g) has 0 fixed points

if m = 6, 12, 15, 30, 60, and has 1 fixed point if m = 10, and has 2 fixed points if

m = 20. In other words, τ0(g) is a product of t = ⌊m/3⌋ 3-cycles and s = m − 3t

1-cycles.

We will first consider the case when m = 6. Then τ0(g) is a product of two 3-

cycles; and if h ∈ Alt(5) is not a 3-cycle, then the cycle structure of τ0(h) is obtained

from that of h by adding one more 1-cycle. Consider the following character table

of Alt(6). (Recall that Alt(6) has two conjugacy classes of 5-cycles.)

class 16 2212 32 3113 4121 5111A 5111B

1Alt(6) 1 1 1 1 1 1 1

η6 5 1 −1 2 −1 0 0

θ 5 1 2 −1 −1 0 0

ψ1 8 0 −1 −1 0 1−
√
5

2
1+

√
5

2

ψ2 8 0 −1 −1 0 1+
√
5

2
1−

√
5

2

ψ3 9 1 0 0 1 −1 −1

ψ4 10 −2 1 1 0 0 0

The character table of Alt(6)

Here θ = η6 ◦π, where π is any outer automorphism of Alt(6) which interchanges

the conjugacy class of 3-cycles and the conjugacy class of elements of cycle type 32.

Note that θ ↾ τ0(Alt(5)) = φ5 + 15.
1 Also, examining the above character table,

we see that if ψ ̸= θ is any other nontrivial irreducible representation of Alt(6),

then there do not exist integers c, d ≥ 0 such that ψ ↾ τ0(Alt(5)) = cφ5 + d15. It

follows that there must exist an integer s, t ≥ 0 such that χ = sθ + t16. Since the

embedding τ1 : Alt(6) → Alt(n) is transitive, it follows that t = 1 and hence s > 1.

But then if h ∈ Alt(6) is a 3-cycle, then χ(h) = 1− s < 0, which is impossible since

χ is a permutation character.

1In particular, θ is a counterexample to Zalesskĭi [4, Lemma 8].
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Thus we can suppose that m = 10, 12, 15, 20, 30, 60. Since χ ↾ τ0(Alt(5)) =

aη5 + b15, it follows that χ(τ0(g)) = a+ b and |Φ| = χ(1) = 4a+ b; and so

|Fix∆n(τ(g))|
|∆n|

=
a+ b

4a+ b
≥ 1

4
.

There exists a proper subgroup K of Alt(m) such that τ1(Alt(m)) ↷ ∆n is isomor-

phic to Alt(m) ↷ Alt(m)/K. Suppose that M is a maximal proper subgroup of

Alt(m) such that K ⩽M and let Ω = Alt(m)/M . Then Corollary 2.7 implies that

(3.1)
|FixΩ(τ0(g))|

|Ω|
≥ |Fix∆n

(τ(g))|
|∆n|

≥ 1

4
.

We will obtain a contradiction from (3.1) by considering the various possibilities

for the action of the maximal subgroup M on ∆m.

Case 1: Suppose that M acts intransitively on ∆m. Since M is a maximal proper

subgroup, it follows that there exists a subset S ⊆ ∆m with 1 ≤ ℓ = |S| < m/2 such

that M = Alt(m){S} is the setwise stabilizer of S in Alt(m). Thus Alt(m) ↷ Ω is

isomorphic to the action of Alt(m) on the set [∆m ]ℓ of ℓ-subsets of ∆m. If ℓ = 1,

then
1

4
≤ |FixΩ(τ0(g))|

|Ω|
=

|Fix∆m
(τ0(g))|

|∆m|
≤ 2

m

and so m ≤ 8, which is a contradiction. Also, since τ0(g) fixes at most one 2-

subset of ∆m, it follows that ℓ ̸= 2. Thus 3 ≤ ℓ < m/2. Clearly if T ∈ [ ∆m ]ℓ,

then T is fixed setwise by τ0(g) if and only if T is a union of τ0(g))-orbits. Let

F = Fix[∆m]ℓ(τ0(g)); and for each S ∈ F , let α(S) = min{ s ∈ S | τ0(g) · s ̸= s }.
Then the sets

F ∪ { (S ∖ {α(S) }) ∪ { t } | S ∈ F , t ∈ ∆m ∖ (S ∪ Fix∆m
(τ0(g)) }

are distinct. Note that if S ∈ F , then

|∆m ∖ (S ∪ Fix∆m(τ0(g))| ≥ m− (ℓ+ 2) >
m

2
− 2 ≥ 3.

It follows that

|FixΩ(τ0(g))| = |Fix[∆m]ℓ(τ0(g))| ≤
1

5
|[∆m]ℓ| = 1

5
|Ω|,

which contradicts (3.1).

Case 2: Suppose that M acts transitively but imprimitively on ∆m. Then there

exists anM -invariant partition P of ∆m into ℓ-subsets for some divisor ℓ of m with

2 ≤ ℓ ≤ m/2; and, by the maximality of M , we can suppose that M = Alt(m)P is

the stabilizer of P in Alt(m). Hence, letting Π be the set of partitions of ∆m into ℓ-

subsets, Alt(m) ↷ Ω is isomorphic to the action of Alt(m) on Π. IfQ ∈ FixΠ(τ0(g)),

then we define the integer α(Q) as follows.

(a) If Q contains a τ0(g)-invariant block B such that τ0(g) ↾ B ̸= idB , then

α(Q) is the least s ∈ ∆m such that [ s ]Q is τ0(g)-invariant and τ0(g) ·s ̸= s.
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(b) Otherwise, α(Q) is the least s ∈ ∆m such that τ0(g) · s ̸= s.

For each t ∈ ∆∖ [α(Q) ]Q, we define Q(t) ∈ Π to be the partition obtained from Q
by replacing the block [α(Q) ]Q by ([α(Q) ]Q ∖ {α(Q) })∪ { t } and the block [ t ]Q

by ([ t ]Q ∖ { t }) ∪ {α(Q) }.

Claim 3.3. Q(t) /∈ FixΠ(τ0(g)).

Proof of Claim 3.3. First suppose that Q contains a τ0(g)-invariant block B such

that τ(g) ↾ B ̸= idB . Then clearly τ0(g) · [ t ]Q(t) ̸= [ t ]Q(t). Also, since ℓ ≥ 3, it

follows that τ0(g) · [ t ]Q(t) ∩ [ t ]Q(t) ̸= ∅. Hence Q(t) /∈ FixΠ(τ0(g)).

Thus we can suppose that Q does not contain a τ0(g)-invariant block B such

that τ0(g) ↾ B ̸= idB . For each 0 ≤ i < 3, let Si = τ0(g)
i · [α(Q) ]Q. Then there

exists 0 < i < 2 such that Si ∈ Q(t). Since S0 = τ0(g)
3−i · Si /∈ Q(t), it follows

that Q(t) /∈ FixΠ(τ0(g)). □

If Q, Q′ ∈ FixΠ(τ0(g)) and Q(t) = Q′(t′), then it is easily checked that Q = Q′

and t = t′. Thus

|Π| ≥ (1 +m− ℓ)|FixΠ(τ0(g))| ≥ (1 +m/2)|FixΠ(τ0(g))|.

It follows that

|FixΩ(τ0(g))| = |FixΠ(τ0(g))| ≤
1

6
|[Π| = 1

6
|Ω|,

which contradicts (3.1).

Case 3: Finally suppose thatM acts primitively on ∆m. Applying inequality (3.1)

and Proposition 2.6, we see that

1

4
≤ |FixΩ(τ0(g))|

|Ω|
=

| τ0(g)Alt(m) ∩M |
| τ0(g)Alt(m) |

.

But then Lemma 2.8 implies that M = Alt(m), which is a contradiction. This

completes the proof of Theorem 2.5. □
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