350 PRACTICE FIRST MIDTERM QUESTIONS

Question 1.

- (i) State the definition of a linearly dependent subset S of a vector space V.
- (ii) State the definition of a basis of a vector space V.
- (iii) Suppose that V, W are vector spaces over a field F and that $T: V \to W$ is a linear transformation. Give the definitions of N(T) and R(T).
- (iv) State the Dimension Theorem.

Question 2.

Let $V = \{ (a_1, a_2) \mid a_1, a_2 \in \mathbb{R} \}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in \mathbb{R}$, define

$$(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$$

and

$$c(a_1, a_2) = (ca_1, a_2).$$

Is V a vector space over \mathbb{R} with these operations?

Question 3.

Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that:

- T(1,0,0) = (2,3,4);
- T(0,1,0) = (3,4,5);
- T(0,0,1) = (4,5,6).

Find bases for R(T) and N(T).

Question 4.

Let $P_3(\mathbb{R})$ be the vector space of polynomials of degree at most 3 over the real numbers \mathbb{R} and let $T: P_3(\mathbb{R}) \to P_3(\mathbb{R})$ be the linear transformation defined by T(f(x)) = f'(x).

- (i) Compute the matrix $[T]_{\beta}$ with respect to the ordered basis $\beta = \{1, x, x^2, x^3\}$.
- (ii) Compute rank(T) and nullity(T).

Question 5.

Suppose that V, W are vector spaces over a field F and that $T: V \to W$ is a one-to-one linear transformation. Show that if $\{v_1, \dots, v_n\}$ is a linearly independent subset of V, then $\{T(v_1), \dots, T(v_n)\}$ is a linearly independent subset of W.