350 FIRST MIDTERM SPRING 2020

Question 1.

(i) Let $V = \{ (a_1, a_2) \mid a_1, a_2 \in \mathbb{R} \}$. For $(a_1, a_2), (b_1, b_2) \in V$ and $c \in \mathbb{R}$, define $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2b_2)$

and

$$c(a_1, a_2) = (ca_1, ca_2).$$

Determine whether V is a vector space over \mathbb{R} with these operations. Justify your answer.

(ii) Determine whether $W=\{\,(a,b,c)\in\mathbb{R}^3\mid ab+c^2=0\,\}$ is a subspace of $\mathbb{R}^3.$ Justify your answer.

Question 2.

- (i) Suppose that V, W are vector spaces over a field F and that $T: V \to W$ is a linear transformation. Give the definitions of N(T) and R(T).
- (ii) State the Dimension Theorem.
- (iii) Let $T: \mathbb{R}^4 \to \mathbb{R}^2$ be the linear transformation defined by

$$T(a_1, a_2, a_3, a_4) = (a_1 + a_2 - 3a_3, a_3 - 2a_4).$$

Find bases for R(T) and N(T).

Question 3.

Let $\beta = \{e_1, e_2, e_3\}$ be the standard ordered basis of \mathbb{R}^3 and let $T : \mathbb{R}^3 \to \mathbb{R}^3$ be the linear transformation such that

- $T(e_1) = 2e_1$;
- $T(e_2) = -e_1 e_2 2e_3$;
- $T(e_3) = e_1 + 4e_2 + 5e_3$.

Compute $[T]_{\gamma}$, where γ is the ordered basis $\{e_1 + 2e_2 + e_3, e_1, e_2 + e_3\}$ of \mathbb{R}^3 .

1

Question 4.

- (i) Let V, W be vector spaces over a field F and let $T: V \to W$ be a linear transformation. Let $\{w_1, \cdots, w_k\} \subseteq W$ be a set of k linearly independent vectors. Prove that if the vectors $\{v_1, \cdots, v_k\} \subseteq V$ satisfy $T(v_i) = w_i$ for $1 \le i \le k$, then $\{v_1, \cdots, v_k\}$ is linearly independent.
- (ii) Let V,W be finite-dimensional vector spaces over a field F and let $T:V\to W$ be a linear transformation. Prove that if $\dim(V)<\dim(W)$, then T is not onto.