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Abstract

We show that the axiom Strong Inverse Limit Reflection holds in L(Vλ+1) assuming
the large cardinal axiom I0. This reflection theorem both extends results of [4], [5], and
[3], and has structural implications for L(Vλ+1), as described in [3]. Furthermore, these
results together highlight an analogy between Strong Inverse Limit Reflection and the
Axiom of Determinacy insofar as both act as fundamental regularity properties.

The study of L(Vλ+1) was initiated by H. Woodin in order to prove properties of L(R)
under large cardinal assumptions. In particular he showed that L(R) satisfies the Axiom of
Determinacy (AD) if there exists a non-trivial elementary embedding j : L(Vλ+1)→ L(Vλ+1)
with crit (j) < λ (an axiom called I0). We investigate an axiom called Strong Inverse Limit
Reflection for L(Vλ+1) which is in some sense analogous to AD for L(R). Our main result is
to show that if I0 holds at λ then Strong Inverse Limit Reflection holds in L(Vλ+1).

Strong Inverse Limit Reflection is a strong form of a reflection property for inverse limits.
Axioms of this form generally assert the existence of a collection of embeddings reflecting a
certain amount of L(Vλ+1), together with a largeness assumption on the collection. There
are potentially many different types of axioms of this form which could be considered, but we
concentrate on a particular form which, by results in [3], has certain structural consequences
for L(Vλ+1), such as a version of the perfect set property. Woodin [6] introduced a structure
called a U(j)-representation which has similar structural implications for subsets of Vλ+1, and
recently the author showed that I0 implies that every subset of Vλ+1 has a U(j)-representation
(see [1]). Strong inverse limit reflection and U(j)-representations are therefore two alternative
methods for obtaining structural results for L(Vλ+1).

We highlight two applications of our results. The first is the following theorem which has
a reduced large cardinal assumption from the corresponding theorem in [3].

Theorem 1. Assume I0 holds at λ. Let Sω = {α < λ+| cof(α) = ω}. Then there are no
disjoint stationary sets S1, S2 ⊆ Sω such that S1, S2 ∈ L(Vλ+1).

The second application is more conceptual, but perhaps more important. The following
theorem is proved in [3].

Theorem 2. Let X ⊆ Vλ+1. Suppose that strong inverse limit X-reflection holds at 1. Then
X has the λ-splitting perfect set property.
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This theorem could be viewed as strong inverse limit X-reflection acting as a kind of
fundamental regularity property for subsets of Vλ+1, similar to the role of AD in the context
of L(R). The following theorem, which we will prove, further strengthens this analogy.

Theorem 3. Suppose I0 holds at λ. Then for all X ⊆ Vλ+1 such that X ∈ L(Vλ+1), strong
inverse limit X-reflection holds at 1.

This theorem further strengthens the argument that strong inverse limit X-reflection
appropriately generalizes some of the aspects of AD in the L(Vλ+1) context, as it is a property
held by all subsets of Vλ+1 in L(Vλ+1). In fact we will show that a more local version of
Theorem 3 holds giving us a very detailed view of the propagation of strong inverse limit
X-reflection in L(Vλ+1). For a more detailed discussion of AD-like axioms in L(Vλ+1) see [2].

The outline of the article is as follows. In section 1 we review and strengthen some facts
on inverse limits and define the notion of (strong) inverse limit reflection. In section 2 we
consider extensions of inverse limits, improving on results of [3]. In section 3 we prove our
main result on strong inverse limit reflection. The main technical result needed is Lemma
40 which extends the pointwise monotonicity of square roots of elementary embeddings to
inverse limits. Finally in section 4 we clear up some minor details about the definability of
saturated sets witnessing strong inverse limit reflection.

1 Inverse Limits

In this section we give a brief outline of the theory of inverse limits as developed in [3]
proving some useful additional properties as well. These structures were originally used
for reflecting large cardinal hypotheses of the form: there exists an elementary embedding
Lα(Vλ+1)→ Lα(Vλ+1). The use of inverse limits in reflecting such large cardinals is originally
due to Laver [4]. For an introduction to the theory of inverse limits see [4], [5], [3], or [2].

Suppose that 〈ji| i < ω〉 is a sequence of elementary embeddings such that the following
hold:

1. For all i < ω, ji : Vλ+1 → Vλ+1 is an elementary embedding with crit (ji) < λ 1.

2. There exists λ̄ < λ such that crit j0 < crit j1 < · · · < λ̄ and limi<ω crit ji = λ̄ =: λ̄J .

Then we can form the inverse limit

J = j0 ◦ j1 ◦ · · · : Vλ̄J → Vλ

by setting
J(a) = lim

i→ω
(j0 ◦ · · · ◦ ji)(a)

for any a ∈ Vλ̄J . Note that this limit makes sense since a is fixed by all but finitely many
of the ji. Now J : Vλ̄J → Vλ is elementary, and can be extended to a Σ0-embedding

1We will always be assuming that the critical points of our elementary embeddings are below λ, even if
we do not explicitly say so.
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J∗ : Vλ̄+1 → Vλ+1 by J(A) =
⋃
i J(A ∩ Vλ̄i) for

〈
λ̄i| i < ω

〉
any cofinal sequence in λ̄. We

refer to the pair (J, 〈ji| i < ω〉) as an inverse limit, and we will write simply

J = j0 ◦ j1 ◦ · · ·

to mean that (J, 〈ji| i < ω〉) is an inverse limit. Note that it is important that we keep
track of the sequence 〈ji| i < ω〉 since it is not unique2 for a given J , although we sometimes
suppress this in our notation; we will many times be sloppy and refer to an inverse limit as
‘J ’ or ‘(J,~j)’ instead of ‘(J, 〈ji| i < ω〉)’, especially in our notation.

Suppose J = j0 ◦ j1 ◦ · · · is an inverse limit. Then for i < ω we write Ji := ji ◦ ji+1 ◦ · · · ,
the inverse limit obtained by ‘chopping off’ the first i embeddings. For i < ω we write

J (i) := (j0 ◦ · · · ◦ ji)(J),

that is the inverse limit (J (i),
〈
j

(i)
n |n < ω

〉
) where j

(i)
n � Vλ = (j0 ◦ · · · ◦ ji)(jn � Vλ) for n < ω.

Similarly for n < ω,

J (i)
n := (j0 ◦ · · · ◦ ji)(Jn), j(i)

n := (j0 ◦ · · · ◦ ji)(jn).

Then we can rewrite J in the following useful ways3:

J = j0 ◦ j1 ◦ · · · = · · · (j0 ◦ j1)(j2) ◦ j0(j1) ◦ j0

= · · · j(1)
2 ◦ j

(0)
1 ◦ j0

and

J = j0 ◦ J1 = j0(J1) ◦ j0 = J
(0)
1 ◦ j0

= (j0 ◦ · · · ◦ ji−1)(Ji) ◦ j0 ◦ · · · ◦ ji−1 = J
(i−1)
i ◦ j0 ◦ · · · ◦ ji−1

for any i > 0. Hence we can view an inverse limit J as a direct limit.
We let E be the set of inverse limits. So

E = {(J, 〈ji| i < ω〉)| J = j0 ◦ j1 ◦ · · · : Vλ̄J+1 → Vλ+1}.

Various subcollections of E can be defined as follows for α an ordinal:

Eα = {(J,~j) ∈ E| ∀i < ω (ji extends to an elementary embedding Lα(Vλ+1)→ Lα(Vλ+1))}.

We say that α is good if every element of Lα(Vλ+1) is definable over Lα(Vλ+1) from elements
of Vλ+1. Note that the good ordinals are cofinal in Θ. These ordinals are of particular
interest, as we have the following local existence fact.

2Consider grouping the embeddings as (j0 ◦ j1) ◦ j2 ◦ · · · instead of j0 ◦ j1 ◦ j2 ◦ · · · for instance.
3Here and below we write j0(j1) for the unique extension of j0(j1 � Vλ) to an elementary embedding

Vλ+1 → Vλ+1. See [4] for a more detailed discussion of this phenomenon.
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Lemma 4 (Laver [5]). Suppose there exists an elementary embedding

j : Lα+1(Vλ+1)→ Lα+1(Vλ+1)

where α is good. Then Eα 6= ∅.

The following shows a weak result about how the inverse limits J
(n−1)
n fall into the sets

Eα.

Lemma 5. Suppose that α is good and (J,~j) ∈ Eα+1. Then for all n < ω,

(J (n−1)
n ,

〈
j

(n−1)
i | i ≥ n

〉
) ∈ Eα.

Proof. This follows immediately from the fact that for any j, k : Lα+1(Vλ+1)→ Lα+1(Vλ+1),

j(k � Lα(Vλ+1)) : Lα(Vλ+1)→ Lα(Vλ+1)

is an elementary embedding. Note that the fact that α is good allows us to conclude that
k � Lα(Vλ+1) ∈ Lα+1(Vλ+1).

A key question regarding inverse limits a they relate to reflection is to what extent J can
be extended beyond Vλ̄+1. The point is that such extensions allow the transfer of properties
of L(Vλ+1) to L(Vλ̄+1) for λ̄ < λ. The following summarizes some results in this direction.

Theorem 6. Let (J, 〈ji| i < ω〉) ∈ E be an inverse limit.

1. (Laver [4]) Suppose for all i < ω, ji : Vλ+1 → Vλ+1 is elementary. Then

J : Vλ̄+1 → Vλ+1

is elementary.

2. (Laver [5]) Suppose for all i < ω, ji extends to an elementary embedding

Lλ++ω(Vλ+1)→ Lλ++ω(Vλ+1).

Then J extends to an elementary embedding

Lλ̄+(Vλ̄+1)→ Lλ+(Vλ+1).

3. (C. [3]) Let α be below the first Σ1-gap of L(Vλ+1) and suppose there exists an ele-
mentary embedding Lα+ω+1(Vλ+1)→ Lα+ω+1(Vλ+1). Then there exists an inverse limit
(K, 〈ki| i < ω〉) such that for some ᾱ < λ, K extends to an elementary embedding

Lᾱ(Vλ̄+1)→ Lα(Vλ+1).
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Notice that in this theorem the third result is not quite as strong as the first two, in the
sense that it does not give directly that every inverse limit whose embeddings are sufficiently
strong is able to reflect to α. This distinction is at the heart of the theorems in the present
paper, as the strongest forms of reflection become more difficult to achieve for α large below
Θ. We define some notation in order to give a stronger form of the third result which more
closely mirrors the first two.

First for elementary embeddings j, k : Vλ+1 → Vλ+1 we say that k is a square root of j if
k(k � Vλ) = j � Vλ. We also write k(k) = j, slightly abusing notation as we did above.

There is a corresponding notion for inverse limits. Suppose

(J, 〈ji| i < ω〉), (K, 〈ki| i < ω〉) ∈ E .

Then we say that (K, 〈ki| i < ω〉 is a limit root of (J, 〈ji| i < ω〉) if there is n < ω such that
λ̄J = λ̄K and

∀i < n (ki = ji) and ∀i ≥ n (ki(ki) = ji).

We say (K,~k) is an n-close limit root of (J,~j) if n witnesses that (K,~k) is a limit root of

(J,~j). We also say that (K,~k) and (J,~j) agree up to n if for all i < n, ji = ki.
The next lemma is a basic fact about the existence of inverse limits, which is proved

using the following lemma about the existence of elementary embeddings.

Lemma 7 (Laver [5]4). Suppose α < β are good. If (J,~j) ∈ Eβ then for all Ā ∈ Vλ̄J+1 and

B ∈ Vλ+1 there exists a (K,~k) ∈ Eα such that K is a 0-close limit root of J , K(Ā) = J(Ā)
and B ∈ rngK.

This lemma follows from the following existence lemma for square roots.

Lemma 8 (Martin, see [5]). Suppose α < β are good and j : Lβ(Vλ+1) → Lβ(Vλ+1) is an
elementary embedding. Then for any a, b ∈ Vλ+1 there is k : Lα(Vλ+1)→ Lα(Vλ+1) such that
a ∈ rng k, j(b) = k(b) and k(k � Vλ) = j � Vλ.

The inverse limits J
(n−1)
n which we defined above behave nicely with respect to limit

roots.

Lemma 9. Suppose that (J,~j), (K,~k) ∈ E and K is a 0-close limit root of J . Then for all

n < ω, (K
(n−1)
n ,

〈
k

(n−1)
i | i ≥ n

〉
) is a 0-close limit root of (J

(n−1)
n ,

〈
j

(n−1)
i | i ≥ n

〉
).

Proof. It is enough to show the following: if k1 and k2 are square roots of j1 and j2 respectively
and j2 ∈ rng k1, then k1(k2) is a square root of j1(j2). But by Σ0-elementarity, we have that
k1(k2) is a square root of k1(j2). But k1(j2) = j1(j2) since j2 ∈ rng k1. Hence we have the
fact we wanted.

To see that the lemma follows, we see for instance that (K
(0)
1 ,
〈
k

(0)
i | i ≥ 0

〉
) is a 0-close

limit root of (J
(0)
1 ,
〈
j

(0)
i | i ≥ 0

〉
) by applying the above fact to k0, kn, j0, jn for all n ≥ 1.

4The lemma as stated appears in [3], although the proof is the same as the corresponding lemma in [5],
which says nothing about limit roots.

5



By a very similar proof we have the following fact, which shows how arbitrary limit roots
behave when passing to inverse limits J

(n−1)
n and K

(n−1)
n .

Lemma 10. Suppose that (J,~j), (K,~k) ∈ E and K is an i-close limit root of J . Then for

all n < ω, (K
(n−1)
n ,

〈
k

(n−1)
i | i ≥ n

〉
) is an f(i, n)-close limit root of (J

(n−1)
n ,

〈
j

(n−1)
i | i ≥ n

〉
),

where f is defined as follows.

f(i, n) =

{
i− n if n ≤ i

0 otherwise.

One theme in the study of inverse limits is that the behavior of an inverse limit mimics
that of its constituent embeddings. One example of this phenomenon is given by the next
two lemmas. We will see this theme in the next section as well, and it is at the heart of our
proof of strong inverse limit reflection (see Lemmas 38 and 40 for instance).

Lemma 11. Suppose that j, k : Vλ+1 → Vλ+1 are elementary and k is a square root of j. I
if A ∈ rng k, then k(A) = j(A). Also, if C ∈ Vλ+1 and j(C) ∈ rng k then k(C) = j(C).

Proof. To see the first part suppose k(B) = A, and notice (taking liberties with our notation)

k(A) = k(k(B)) = k(k)(k(B)) = j(k(B)) = j(A).

For the second part, since j ∈ rng k, we have that C ∈ rng k, and hence the result follows
from the first part of the lemma.

We can show a very similar property for inverse limits.

Lemma 12. Suppose that (K,~k), (J,~j) ∈ E and (K,~k) is a limit root of (J,~j). Let λ̄ = λ̄J .
Suppose Ā ∈ Vλ̄ and A = J(Ā). Then if A ∈ rngK, we have

K(Ā) = A = J(Ā).

Proof. Let An for n < ω be defined by induction as

A0 = (j0)−1(A) and for n ≥ 0, An+1 = (jn+1)−1(An).

Then we have (case 1)

k0 is a squareroot of j0 and A ∈ rng k0 ∩ rng j0

⇒ A0 = j−1
0 (A) ∈ rng k0 ⇒ k0(A0) = j0(A0)⇒ A0 ∈ rngK1

and (case 2)
k0 = j0 ⇒ k0(A0) = j0(A0)⇒ A0 ∈ rngK1.

Similarly, for n ≥ 0, (case 1)

kn+1 is a squareroot of jn+1 and An ∈ rng kn+1 ∩ rng jn+1

⇒ An+1 = j−1
n+1(An) ∈ rng kn+1 ⇒ kn+1(An+1) = jn+1(An+1)⇒ An+1 ∈ rngKn+2
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and (case 2)

kn+1 = jn+1 ⇒ kn+1(An+1) = jn+1(An+1)⇒ An+1 ∈ rngKn+2.

Hence we have that
K(Ā) = A = J(Ā)

as in the proof of Lemma 7 (see Lemma 2.9 of [3]).

A very similar proof shows the following lemma, whose proof we leave to the reader.

Lemma 13. Suppose that (K,~k), (J,~j) ∈ E and (K,~k) is a limit root of (J,~j). Let λ̄ = λ̄J .
Suppose a ∈ Vλ+1 and a ∈ rng (k0 ◦ k1 ◦ · · · ◦ kn) for all n < ω. Then we have for any n < ω,

(k0 ◦ k1 ◦ · · · ◦ kn)(a) = (j0 ◦ j1 ◦ · · · ◦ jn)(a).

The next lemma gives a more complete picture of the phenomenon in the previous two
lemmas on the agreement between an inverse limit and a limit root. In particular it is
informative to realize that, using the notation as in the statement below, there is an i < ω
such that critK

(i−1)
i > λ0 + 1, and hence Ā ∈ rngK

(i−1)
i for any Ā ∈ Vλ0+1. The conclusion

of this lemma must therefore be limited in its scope, since otherwise it would demand too
much agreement between J and K.

Lemma 14. Suppose that (K,~k), (J,~j) ∈ E, (K,~k) is a limit root of (J,~j) and for all i,

k0 � Vλ, . . . , ki � Vλ ∈ rng ki+1.

Let λ̄ = λ̄0 = λ̄J and
λi = (j0 ◦ · · · ◦ ji−1)(λ̄).

Suppose Ā ∈ Vλ0+1 and A = J(Ā). Then if i is such that Ā ∈ rngK
(i−1)
i , then

K
(i−1)
i ((j0 ◦ · · · ji−1)(Ā)) = A = J(Ā).

Proof. Without loss of generality we assume i = 1. Then we have that Ā ∈ rng k
(0)
1 . But

since k0 � Vλ ∈ rng k1, we have j0 � Vλ ∈ rng k
(0)
1 . Hence j0(Ā) ∈ rng k

(0)
1 . And so since k

(0)
1

is a square root of j
(0)
1 , we have that

k
(0)
1 (j0(Ā)) = j

(0)
1 (j0(Ā)) = (j0 ◦ j1)(Ā).

And since
(k

(0)
1 )−1(Ā), k

(0)
1 ∈ rng k

(0)
2

we have Ā ∈ rng k
(0)
2 . Furthermore k0 � Vλ ∈ rng k2 implies that j0 � Vλ ∈ rng k

(0)
2 , so we

have that j0(Ā) ∈ rng k
(0)
2 . And hence that

k
(0)
1 (j0(Ā)) ∈ rng k

(0)
1 (k

(0)
2 ) = k

(1)
2 .
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But this shows that

k
(1)
2 (k

(0)
1 (j0(Ā))) = j

(1)
2 (k

(0)
1 (j0(Ā))) = j

(1)
2 (j

(0)
1 (j0(Ā))) = (j0 ◦ j1 ◦ j2)(Ā)

since k
(1)
2 is a square root of j

(1)
2 .

Continuing this way we have that

(j0 ◦ · · · ◦ ji−1)(Ā) = (k
(0)
1 ◦ · · · ◦ k

(0)
i−1)(j0(Ā))

for all i > 0, which proves the lemma.

The final variation on this theme, which combines the proofs of Lemma 7 and the previous
few lemmas is the following, whose proof we leave to the reader.

Lemma 15. Suppose α is good and (J,~j) ∈ Eα+1. Then for any a ∈ Vλ+1, there is a

(K,~k) ∈ Eα satisfying the following:

1. For any s < n ≤ m, (k
(s)
n ◦ k(s)

n+1 ◦ · · · ◦ k
(s)
m )(a) = (j

(s)
n ◦ j(s)

n+1 ◦ · · · ◦ j
(s)
m )(a).

2. For any s < n ≤ m, a ∈ rng (k
(s)
n ◦ k(s)

n+1 ◦ · · · ◦ k
(s)
m ).

We now come to an important definition for inverse limits, which highlights a useful type
of collection of inverse limits. This definition arises out of the useful difference between
square roots and limit roots: that being n-close for larger and larger n allows the existence

of a sequence
〈

(J i,~ji)| i < ω
〉

of inverse limits with (J i+1,~ji+1) a limit root of (J i,~ji) for all

i < ω.

Definition 16. Suppose E ⊆ E . Then we say that E is saturated if for all (J,~j) ∈ E there

exists an i < ω such that for all A ∈ Vλ̄J+1, and B ∈ Vλ+1, there exists (K,~k) ∈ E such that

(K,~k) is an i-close limit root of (J,~j), Ki(A) = Ji(A) and B ∈ rngKi. We set i(E, (J,~j)) =
the least such i.

Note that if (K,~k) is an i-close limit root of (J,~j) and Ki(A) = Ji(A) then K(A) = J(A).
However, we cannot conclude that B ∈ rngK if B ∈ rngKi. For instance if i = 1 then we
always have that crit (J) = crit (K) /∈ rngK, while of course critK ∈ rngK1.

We now define a natural closure operation on sets of inverse limits.

Definition 17. Suppose E ⊆ E is a set of inverse limits. We say that (K,~k) is the common

part of
〈

(Kn, ~kn)|n < ω
〉

if for all i < ω there is an n < ω such that for all n′ ≥ n, ki = kn
′

i .

We define CL(E) to be the set

CL(E) = {(K,~k) ∈ E| ∃
〈

(Ki, ~ki)| i < ω
〉

((K,~k) is the common part of
〈

(Ki, ~ki)| i < ω
〉
,

∀i < ω(λ̄K = λ̄Ki and ((Ki, ~ki) ∈ E)))}.
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The set CL(E) arises naturally in the study of inverse limits as a direct result of con-
sidering sequences of inverse limits which are limit roots of one another. That is, for a

sequence
〈

(Ki, ~ki)| i < ω
〉

of inverse limits such that (Ki+1, ~ki+1) is a limit root of (Ki, ~ki)

for all i < ω, it must be the case that this sequence has a common part inverse limit (K,~k).
This follows from the fact that there cannot be an infinite sequence j0, j1, . . . where ji+1 is
a squareroot of ji for all i < ω, since their critical points must be decreasing. Considering
such sequences and their common part are important, for instance, in the proof of Theorem
25 which appears in [3]. There it is important that certain properties of the inverse limits

along the sequence are maintained in the common part (K,~k). This is in a sense what the
property strong inverse limit reflection will say below.

Lemma 18 ([3]). Suppose that α is good and (J,~j) ∈ Eα+ω. Then there exists a saturated
set E ⊆ Eα such that (J,~j) ∈ E.

See Lemma 37 below for the proof of an even stronger result. Saturated sets are in a
sense large, so the following theorem extends part 3 of Theorem 6 and is along the lines of
parts 1 and 2.

Theorem 19 (C. [3]). Let α be such that Lα(Vλ+1) ⊀Vλ+1∪{Vλ+1}
1 Lα+1(Vλ+1) and suppose

there exists an elementary embedding Lα+ω(Vλ+1) → Lα+ω(Vλ+1). Then there exists a sat-
urated set E of inverse limits, a λ̄ and an ᾱ such that for all (K, 〈ki| i < ω〉) ∈ CL(E), K
extends to an elementary embedding

Lᾱ(Vλ̄+1)→ Lα(Vλ+1).

We make the following definitions which capture the conclusions of many of the reflection
theorem above.

Definition 20. We define inverse limit reflection at α to mean the following: There exists
λ̄, ᾱ < λ and a saturated set E ⊆ E such that for all (J,~j) ∈ E, J extends to

Ĵ : Lᾱ(Vλ̄+1)→ Lα(Vλ+1)

which is elementary.
We define strong inverse limit reflection at α to mean the following: There exists λ̄, ᾱ < λ

and a saturated set E ⊆ E such that for all (J,~j) ∈ CL(E), J extends to

Ĵ : Lᾱ(Vλ̄+1)→ Lα(Vλ+1)

which is elementary.

We will also need the notion of inverse limit X-reflection where X ⊆ Vλ+1. Similarly as
before we let

E(X) = {(J, 〈ji| i < ω〉)| ∀i (ji : (Vλ+1, X)→ (Vλ+1, X)) and

J = j0 ◦ j1 ◦ · · · : (Vλ̄+1, X̄)→ (Vλ+1, X) is Σ0}.

Here we let X̄ = J−1[X]. We modify the definition of saturated to X-saturated, requiring
in addition that J−1[X] = K−1[X].
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Definition 21. Suppose X ⊆ Vλ+1. We define inverse limit X-reflection at α to mean the
following: There exists λ̄, ᾱ < λ, X̄ ⊆ Vλ̄+1 and an X-saturated set E ⊆ E(X) such that for

all (J,~j) ∈ E, J extends to Ĵ : Lᾱ(X̄, Vλ̄+1)→ Lα(X, Vλ+1) which is elementary.
We define strong inverse limit X-reflection at α to mean the following: There exists

λ̄, ᾱ < λ, X̄ ⊆ Vλ̄+1 and an X-saturated set E ⊆ E(X) such that for all (J,~j) ∈ CL(E), J

extends to Ĵ : Lᾱ(X̄, Vλ̄+1)→ Lα(X, Vλ+1) which is elementary.

The following result (whose proof we will use below) was shown in [3].

Theorem 22. Suppose that there exists an elementary embedding

j : LΘ(Vλ+1)→ LΘ(Vλ+1).

Then inverse limit reflection holds at α for all α < Θ.

We can also rephrase Theorem 19 as follows.

Theorem 23. For any α such that Lα(Vλ+1) ⊀Vλ+1∪{Vλ+1}
1 Lα+1(Vλ+1), if there exists an

elementary embedding
Lα+ω(Vλ+1)→ Lα+ω(Vλ+1)

then strong inverse limit reflection holds at α.

Our main result will be to generalize this result to any α < Θ. Hence we will obtain the
following.

Theorem 24. For any good α < ΘL(Vλ+1), if there exists an elementary embedding

Lα+ω(Vλ+1)→ Lα+ω(Vλ+1)

then strong inverse limit reflection holds at α.

Strong inverse limit reflection has stronger consequences that inverse limit reflection. For
instance the following is proved in [3].

Theorem 25. Let α < Θ be good and suppose that strong inverse limit reflection holds at
α. Then there are no disjoint sets S1, S2 ∈ Lα(Vλ+1) such that S1, S2 ⊆ λ+ and both S1 and
S2 are stationary (in V ).

Hence these two theorems immediately give Theorem 1 above.

2 Coherent extension of inverse limits

As our goal is to obtain strong inverse limit reflection, we are very much interested in the
extending the embedding J for an inverse limit (J,~j). We first want to show that (for strong
enough (J,~j)) if J extends to α for α good, then the extension is in a sense unique. We then
show that if a limit root of J extends, so does J . We will ultimately exploit this for long
sequences of limit roots. First we prove the following lemma.
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Lemma 26. Suppose that α is good, (K,~k) ∈ Eα and K extends to an elementary embedding

K̂ : Jᾱ(Vλ̄+1)→ Lα(Vλ+1).

Define Mα
K ⊆ Jα(Vλ+1) as

Mα
K = {a ∈ Jα(Vλ+1)| ∃A ∈ Vλ+1(a is definable from A

over Jα(Vλ+1) and A ∈ rngK)}.

Then
Mα

K = K̂[Jᾱ(Vλ̄+1)]

and K̂ is given by the inverse of the transitive collapse of Mα
K.

Proof. To see that Mα
K = K̂[Jᾱ(Vλ̄+1)], suppose that a ∈ K̂[Jᾱ(Vλ̄+1)]. Then since α is good,

there exists an A ∈ Vλ+1 and a formula φ such that a is definable from A and φ over Jα(Vλ+1).
So Jα(Vλ+1) satisfies that there exists an element B ∈ Vλ+1 such that a is definable by φ
from B. Hence for ā = K̂−1(a), we have that Jᾱ(Vλ̄+1) satisfies that there is B̄ ∈ Vλ̄+1 such

that ā is definable by φ from B̄. Let B̄′ witness this statement. Then by applying K̂ we
have that a is definable from K̂(B̄′) by φ over Jα(Vλ+1). On the other hand, if a is definable
from some A ∈ rngK ∩ Vλ+1 over Jα(Vλ+1) then clearly a ∈ rng K̂ by elementarity.

The fact that K̂ is the inverse of the transitive collapse of Mα
K follows immediately from

the fact that Mα
K = K̂[Jᾱ(Vλ̄+1)].

Lemma 27. Suppose α < Θ is good, that (J,~j) ∈ E and J extends to an elementary
embedding

Ĵ : Jᾱ(Vλ̄J+1)→ Jα(Vλ+1)

for some ᾱ. Then for all β ≥ α, if J extends to an elementary embedding

Ĵ∗ : Jβ̄(Vλ̄J+1)→ Jβ(Vλ+1)

with α ∈ rng Ĵ∗, then (Ĵ∗)−1(α) = ᾱ and

Ĵ∗ � Jᾱ(Vλ̄J+1) = Ĵ .

Proof. The main point is that by the previous lemma

rng Ĵ = Mα
J = rng (Ĵ∗) ∩ Jα(Vλ+1),

and hence both Ĵ and (Ĵ∗) ∩ Jα(Vλ+1) are given by the inverse of the transitive collapse of
Mα

J . So they must be the same.

We now want to show that if a limit root of J extends to some α, so does J . We need a
slightly stronger notion of extension which we now define.

11



Definition 28. Suppose α is good. We say that (J,~j) ∈ Eα extends coherently to α if for all

n < ω there are ᾱn and λ̄n such that J
(n−1)
n extends to an elementary embedding

Ĵ (n−1)
n : Lᾱn(Vλ̄n+1)→ Lα(Vλ+1)

and such that for all n < m,

Ĵ (n−1)
n = Ĵ (m−1)

m ◦ j(n−1)
n ◦ j(n−1)

n+1 ◦ · · · ◦ j
(n−1)
m−1 .

Lemma 29. Suppose that α is good and (J,~j) ∈ Eα+1. Then if J extends to an elementary
embedding Ĵ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) for some ᾱ, then (J,~j) extends coherently to α.

Proof. First we have that for all n < ω, Jn extends to an elementary embedding

Ĵn = (j0 ◦ · · · ◦ jn−1)−1 ◦ Ĵ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

This follows since α is good and

Jn = (j0 ◦ · · · ◦ jn−1)−1 ◦ J.

Now by elementarity, since (J,~j) ∈ Eα+1, we can apply j0◦· · ·◦jn−1 to the above statement

to see that J
(n−1)
n extends to an elementary embedding

Ĵ (n−1)
n : Jᾱn(Vλ̄n+1)→ Jα(Vλ+1)

where ᾱn = (j0 ◦ · · · ◦ jn−1)(ᾱ) and λ̄n = (j0 ◦ · · · ◦ jn−1)(λ̄) and

Ĵ (n−1)
n = (j0 ◦ · · · ◦ jn−1)(Ĵn).

To see the coherency condition, we compute for any ā ∈ Vλ̄+1, if for instance Ĵ1(ā) = a,
then applying j0 to this statement we have that

Ĵ = (j0 ◦ Ĵ1)(ā) = Ĵ
(0)
1 (j0(ā)).

Similarly we have that

Ĵ = (j0 ◦ j1 ◦ · · · jn−1 ◦ Ĵn)(ā) = Ĵ (n−1)
n ((j0 ◦ · · · ◦ jn−1)(ā)).

Now for n < m < ω, we can apply these facts to Jn and m to see that

Ĵn = (jn ◦ · · · ◦ jm−1)(Ĵm) ◦ jn ◦ · · · ◦ jm−1.

But then applying (j0 ◦ · · · jn−1) to this statement we have that

Ĵ (n−1)
n = Ĵ (m−1)

m ◦ j(n−1)
n ◦ · · · ◦ j(n−1)

m−1 ,

which is what we wanted.

12



We introduce the notion of extending coherently, because our arguments below will in-

volve passing to the extensions of (J (n−1),
〈
j

(n−1)
i | i ≥ n

〉
). Clearly, if (J,~j) ∈ Eα extends

coherently to α, then for all n < ω, (J
(n−1)
n ,

〈
j

(n−1)
i | i ≥ n

〉
) ∈ Eα extends coherently to α,

which helps in making such arguments. On the other hand this does not seem quite true for
instance for the assumption (J,~j) ∈ Eα+1.

We now show that if an inverse limit has a limit root which extends to an elementary
embedding, then it extends as well and in fact factors through its limit root, in some sense.

Lemma 30. Suppose α < Θ is good and that (K,~k), (J,~j) ∈ Eα and (K,~k) is a limit root of

(J,~j). Suppose that (K,~k) extends coherently to α to an elementary embedding

K̂ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1)

and that for 〈ᾱn|n < ω〉 defined by ᾱn = (k0 ◦ · · · ◦ kn−1)(ᾱ) we have for some n < ω that

crit (K
(n−1)
n ) > λ̄ and ᾱn ∈ rng (j0 ◦ · · · ◦ jn−1). Then for some β̄ ≥ ᾱ, J extends to an

elementary embedding
Ĵ : Jβ̄(Vλ̄+1)→ Jα(Vλ+1).

Proof. Since K extends coherently to α, for all n < ω, K
(n−1)
n extends to an elementary

embedding
K̂(n−1)
n : Jᾱn(Vλ̄n+1)→ Jα(Vλ+1)

where λ̄n = (k0 ◦ · · · ◦ kn−1)(λ̄).

Now let n < ω be such that crit (K
(n−1)
n ) > λ̄ and ᾱn ∈ rng (j0 ◦ · · · ◦ jn−1). Set

β̄ = (j0 ◦ · · · ◦ jn−1)−1(ᾱn).

Then by Lemma 14 we have that for all Ā ∈ Vλ̄+1,

K(n−1)
n ((j0 ◦ · · · ◦ jn−1)(Ā)) = J (n−1)

n ((j0 ◦ · · · ◦ jn−1)(Ā)) = J(Ā).

Hence we have that

K(n−1)
n ◦ j0 ◦ j1 ◦ · · · ◦ jn−1 � Vλ̄+1 = J : Vλ̄+1 → Vλ+1.

And so we have that

K̂(n−1)
n ◦ j0 ◦ j1 ◦ · · · ◦ jn−1 � Jβ̄(Vλ̄+1) : Jβ̄(Vλ̄+1)→ Jα(Vλ+1)

is the desired extension of J .

The previous lemma required that some ᾱn be in the range of the fragments of J . The
next lemma shows that we can always find such a K where this occurs if the embeddings
constituting J are elementary enough.
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Lemma 31. Suppose α < Θ is good and (J,~j) ∈ Eα+1. Suppose further that there is

a (K ′, ~k′) ∈ Eα, a limit root of (J,~j) such that for some ᾱ, K ′ extends coherently to an
elementary embedding

K̂ ′ : Jᾱ(Vλ̄K′+1)→ Jα(Vλ+1).

Then there is a (K,~k) ∈ Eα a limit root of (J,~j) such that for some n < ω we have

crit (K
(n−1)
n ) > λ̄J , K

(n−1)
n extends to an elementary embedding

K̂(n−1)
n : Jᾱ(Vλ̄n+1)→ Jα(Vλ+1)

for some ᾱ and λ̄n with ᾱ ∈ rng (j0 ◦ · · · ◦ jn−1). Furthermore (K,~k) extends coherently to α
to an elementary embedding.

Proof. Let (J,~j) ∈ Eα+1 be as in the hypothesis. Fix δ < λ such that δ > λ̄J and δ ∈ rng J

and fix n such that crit (J
(n−1)
n ) > δ.

We claim that that for some ᾱ and n < ω there is (Kn, ~kn) ∈ Eα a 0-close limit root

of J
(n−1)
n such that crit (Kn) > δ and (Kn, ~kn) extends coherently to α to an elementary

embedding
K̂n : Jᾱ(Vλ̄n+1)→ Jα(Vλ+1).

This follows since, taking (K,~k) witnessing our assumption on (J,~j), we can find n large

enough so that (Kn, ~kn) = (K
(n−1)
n ,

〈
k

(n−1)
i | i ≤ n

〉
) witnesses this claim. To see this, first

of all we have that since K maps λ̄K cofinally in λ, for δ̄ < λ̄K such that K(δ̄) ≥ δ we can
take n such that crit (kn) > δ̄. So in that case

crit (K(n−1)
n ) = crit (k(n−1)

n ) = (k0 ◦ · · · ◦ kn−1)(crit (kn)) ≥ K(δ̄) ≥ δ.

On the other hand, Lemma 10 since (K,~k) is a limit root of (J,~j), for large enough n,

(K
(n−1)
n ,

〈
k

(n−1)
i | i ≥ n

〉
) is a 0-close limit root of (J

(n−1)
n ,

〈
j

(n−1)
i | i ≥ n

〉
). So the claim

follows.
Let j∗i : Jα+1(Vλ+1)→ Jα+1 be the elementary extension of ji for i < n. Then

J (n−1)
n , δ, λ̄n ∈ rng (j∗0 ◦ · · · ◦ j∗n−1)

we have that ᾱ ∈ rng (j0 ◦ · · · ◦ jn−1), and in fact for some (Kn, ~kn) satisfying the above

claim, (Kn, ~kn) ∈ rng (j∗0 ◦ · · · ◦ j∗n−1). Now let
〈
k̄ni | i < ω

〉
be such that

(j∗0 ◦ · · · ◦ j∗n−1)(
〈
k̄ni | i < ω

〉
) = 〈kni | i < ω〉 .

Let (K∗, ~k∗) be the inverse limit

K∗ = j0 ◦ · · · ◦ jn−1 ◦ k̄n0 ◦ k̄n1 ◦ · · · .

We have (by the elementarity of j0 ◦ · · · ◦ jn−1) that (K∗, ~k∗) ∈ Eα, and that it is a limit root

of (J,~j). Hence since we have (K
∗,(n−1)
n ,

〈
k
∗,(n−1)
i | i ≥ n

〉
) = (Kn, ~kn) and hence (K∗, ~k∗)

witnesses that the lemma holds.
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Putting the previous two lemmas together, we obtain that a very large collection of
inverse limits extend to elementary embeddings.

Lemma 32. Suppose α < Θ is good and (J,~j) ∈ Eα+1. Also assume that there is a saturated
set E ⊆ Eα+1 such that (J,~j) ∈ E. Then for some ᾱ, J extends to an elementary embedding

Ĵ : Jᾱ(Vλ̄J+1)→ Jα(Vλ+1).

Proof. Let J be as in the hypothesis. Then by the proof of Theorem 22 (see [3]) there is a

sequence
〈

(Kn, ~kn)|n < ω
〉

such that the following hold:

1. K0 = J and for all n < ω, (Kn, ~kn) ∈ Eα+1,

2. for all n < ω, (Kn+1, ~kn+1) is a limit root of (Kn, ~kn),

3. there is a β̄ and an n0 such that for all n ≥ n0 K
n extends to an elementary embedding

K̂n : Jβ̄(Vλ̄J+1)→ Jα(Vλ+1).

By applying the previous three lemmas we have that there must be some ᾱn0−1 such that
Kn0−1 extends to an elementary embedding

K̂n0−1 : Jᾱn0−1(Vλ̄J+1)→ Jα(Vλ+1).

And similarly by induction we have that there are ᾱn0−1, . . . , ᾱ0 such that for all i < n0, Ki

extends to an elementary embedding

K̂i : Jᾱi(Vλ̄J+1)→ Jα(Vλ+1).

So considering i = 0 the lemma follows.

Theorem 33. Suppose α < Θ is good and (J,~j) ∈ Eα+ω. Then for some ᾱ, J extends to an
elementary embedding

Ĵ : Jᾱ(Vλ̄J+1)→ Jα(Vλ+1).

Proof. It is proved in [3] that for all (J,~j) ∈ Eα+ω, there is a saturated set E ⊆ Eα+1 such
that (J,~j) ∈ E. Hence by Lemma 32, J must extend to an elementary embedding

Ĵ : Jᾱ(Vλ̄J+1)→ Jα(Vλ+1)

for some ᾱ.
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3 Limit root extensions

Our goal in this section is to get a more detailed picture of the relationship of the extension
of J and the extensions of its limit roots. The key fact will be Lemma 40 which basically
says that the extensions of sequences of limit roots are pointwise non-increasing. From this
fact we will quickly obtain strong inverse limit reflection.

We first define an ordering on certain equivalence classes of elements of Vλ. This is a
natural ordering generated by an inverse limit (J,~j), and it turns out to be a well-ordering
if (J,~j) ∈ E1. It is really just the equivalence classes given by the direct limit system, when
viewing J as a direct rather than inverse limit. Hence, the wellfoundedness of this ordering
is simply the wellfoundedness of the corresponding linear iteration given by J .

Definition 34. Let (J,~j) ∈ E , and define the ordering ≤J on tuples (α, n) for α < λ and
n < ω as follows:

1. (α, n) ≤J (β, n) if α ≤ β.

2. (α, n) ≤J (β,m) if n ≤ m and (j
(n−1)
n ◦ · · · ◦ j(n−1)

m−1 )(α) ≤ β.

3. (α, n) ≤J (β,m) if m ≤ n and α ≤ (j
(m−1)
m ◦ · · · ◦ j(m−1)

n−1 )(β).

We put (α, n) ∼J (β,m) if (β,m) ≤J (α, n) and (α, n) ≤J (β, n). Let [α, n]J be the
equivalence class of (α, n) under the equivalence relation ∼J . Let IJ be the set of equivalence
classes [α, n]J for α < λ. Let IJ≤(γ,m) be the set of equivalence classes [α, n]J such that

(α, n) ≤J (γ,m).

As mentioned above, the equivalence classes [α, n]J can be thought of equivalently as

elements of the direct limit of the iteration · · · ◦ j(1)
2 ◦ j

(0)
1 ◦ j0. To see this, note that for any

n ≤ m we have by a simple induction that

j(n−1)
n ◦ · · · ◦ j(n−1)

m−1 = j
(m−2)
m−1 ◦ j

(m−3)
m−2 ◦ · · · ◦ j

(n)
n+1 ◦ j(n−1)

n .

To see this, consider the following computation

j0 ◦ j1 ◦ · · · ◦ jn−1 = j0(j1) ◦ j0(j2) ◦ · · · ◦ j0(jn−1) ◦ j0

= j0(j1)(j0(j2)) ◦ j0(j1)(j0(j3)) ◦ · · · ◦ j0(j1)(j0(jn−1)) ◦ j0(j1) ◦ j0

= j0(j1(j2)) ◦ j0(j1(j3)) ◦ · · · ◦ j0(j1(jn−1)) ◦ j0(j1) ◦ j0

= j
(1)
2 ◦ j

(1)
3 ◦ · · · ◦ j

(1)
n−1 ◦ j

(0)
1 ◦ j0

= · · ·
= j

(n−2)
n−1 ◦ j

(n−3)
n−2 ◦ · · · ◦ j

(0)
1 ◦ j0

Hence IJ is clearly linearly ordered by ≤J since these are equivalently the ordinals of the
direct limit.
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Lemma 35. Suppose (J,~j) ∈ E1. Then (IJ ,≤J) is a well-ordering.

Proof. Suppose that 〈[αi, ni]J | i < ω〉 are such that (αi, ni) >J (αi+1, ni+1) for all i < ω. By

Lemma 15 we can find (K,~k) ∈ E0 with the following properties:

1. For all5 i, n,m < ω, and (α, s) ∈ [αi, ni]J ,

(j(n−1)
n ◦ · · · j(n−1)

m−1 )(α) = (k(n−1)
n ◦ · · · k(n−1)

m−1 )(α).

2. For all i < ω and (α, n) ∈ [αi, ni]J we have that

α ∈ rng (k0 ◦ · · · ◦ kn−1).

It is then easy to see that (1) implies that for all i < ω,

[αi, ni]J ⊆ [αi, ni]K ,

and (2) implies that for all i < ω, there exists an α′i such that

(α′i, 0) ∈ [αi, ni]K .

But then, since we can view the equivalence classes [αi, ni]K as elements of the corresponding
direct limit system, we have that for all i < ω, (αi, ni) >K (αi+1, ni+1), and hence α′i > α′i+1,
a contradiction.

We now define an iterated version of being a limit root for inverse limits.

Definition 36. For α < ω1 we define an α-limit root sequence
〈

(Kη, ~kη)| η < α
〉

by induction

on α as follows. A 1-limit root sequence is just
〈

(K0, ~k0)
〉

such that (K0, ~k0) ∈ E . For

α = β + 1 a successor,
〈

(Kη, ~kη)| η < α
〉

is an α-limit root sequence if
〈

(Kη, ~kη)| η < β
〉

is

a β-limit root sequence and the following hold:

1. If β is a limit, then (Kβ, ~kβ) is the common part of the sequence
〈

(Kη, ~kη)| η < β
〉

.

2. If β is a successor, then (Kβ, ~kβ) is a limit root of (Kβ−1, ~kβ−1).

If α is a limit, then 〈
(Kη, ~kη)| η < α

〉
is an α-limit root sequence if for all β < α,〈

(Kη, ~kη)| η < β
〉

5This condition might be somewhat confusing because it is really overkill. The point is that when passing
from (J,~j) to (K,~k), everything we care about is preserved. It is easier to state this condition as is than to
write down the particular relationship between i, n,m, and s which we need.
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is a β-limit root sequence.
We say that (K,~k) is an α-limit root of (J,~jη) if there is an α + 1-limit root sequence〈

(Kη, ~kη)| η ≤ α
〉

such that (K0, ~k0) = (J,~j) and (Kα, ~kα) = (K,~k). So (K,~k) is a limit

root of (J,~j) iff (K,~k) is a 1-limit root of (J,~j).
Suppose γ < Θ is good and suppose that c : α → ω is a function. Then we say that〈

(Kη, ~kη)|n < α
〉

is an α-limit root sequence following c at γ if the following hold:

1. For all η < α, (Kη, ~kη) ∈ Eγ.

2. Suppose that α = β + 1 is a successor. Then (Kα, ~kα) is a c(α)-close limit root of

(Kβ, ~kβ).

We also say for embeddings j, k : Vλ+1 → Vλ+1 that k is an n-square root of j if for some
sequence j0, j1, . . . , jn of embeddings Vλ+1 → Vλ+1 we have that j0 = j, jn = k and for all
i < n, ji+1 is a square root of ji.

The next lemma shows the existence of long limit root sequences. The proof in fact also
gives Lemma 18 above.

Lemma 37. Suppose that γ < Θ is good, α < ω1, and c : α → ω is an injection. Suppose

that (K0, ~k0) ∈ Eγ+ω. Then there is
〈

(Kη, ~kη)| η < α
〉

an α-limit root sequence following c

at γ.

Proof. First, using Lemma 7, let (K1, ~k1) be a 0-close limit root of (K0, ~k0) such that for all
i < ω, k1

i extends to an embedding

Jγ+i+1(Vλ+1)→ Jγ+i+1(Vλ+1).

For α′ < α such that α′ = β + 1, having defined the sequence below α′, we choose, as in
the proof of Lemma 7, (Kα′ , ~kα

′
) to be a c(α′)-close limit root of (Kβ, ~kβ) such that for all

i ∈ [c(α′), ω), if kβi extends to an embedding

Jγ+si+1(Vλ+1)→ Jγ+si+1(Vλ+1)

then kα
′

i extends to an embedding

Jγ+si(Vλ+1)→ Jγ+si(Vλ+1).

That is we apply Lemma 8 by induction to each element of the sequence ~kβ. For α′ < α a

limit, we simply take (Kα′ , ~kα
′
) to be the common part of

〈
(Kη, ~kη)| η < α′

〉
.

Clearly this construction succeeds, as for all i < ω, the set {α′ < α| c(α′) ≤ i} has
cardinality less than or equal to i, as c is injective.

We note the following fact about square roots of elementary embeddings, which we will
extend to inverse limits.
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Lemma 38. Let α be good. Suppose that j, k : Lα+1(Vλ+1)→ Lα+1(Vλ+1) and k is a square
root of j. Then for all β < α + 1, we have that k(β) ≥ j(β).

Proof. Fix α good and j and k as in the hypothesis. We prove this by induction on β. If β
is a successor or a continuity point of j then there is nothing to prove. So assume that β is a
discontinuity point of j. Let γ = sup j”β. We have by induction that γ ≤ sup k”β. Suppose
for a contradiction that k(β) < j(β). Then j(β) is definable in Lα+1(Vλ+1) from j � Vλ and
k(β), as the least image point above k(β) of the unique extension of j � Vλ to α. But then
j(β) ∈ rng k, and since j ∈ rng k, we have that β ∈ rng k. But then k(β) = j(β), since k is
a square root of j, a contradiction.

This lemma can of course be extended by induction to j and k such that for some sequence
j0, j1, . . . , jn we have that j0 = j, jn = k and for all i < n, ji+1 is a square root of ji. In
the next lemma we will use this slight extension of Lemma 38 which holds for the individual
embeddings making up (J,~j) and (K,~k) such that (K,~k) is an α-limit root of (J,~j), for
instance.

In order to show that inverse limits have the property in Lemma 38 as well, we first show
the following technical result.

Lemma 39. Suppose α < Θ is good, δ + 1 < ω1, and
〈

(Jγ,~jγ)| γ < δ + 1
〉

is a δ + 1-limit

root sequence from E1. Then for all [β, n]J0, there is an n0 < ω such that for all γ < δ + 1
and m,m′ ≥ n0, if (β1,m), (β2,m

′) ∈ [β, n]J0 then

(β1,m) ∼Jγ (β2,m
′)

and hence if Jγ extends coherently to α + 1 to an embedding

Ĵγ : Jᾱγ+1(Vλ̄Jγ+1)→ Jα+1(Vλ+1)

then we have
Ĵγ,(m−1)
m (β1) = Ĵ

γ,(m′−1)
m′ (β2).

Proof. Fixing [β, n]J0 , we prove first that for each γ < δ there is such an n0, the least which
we call nγ. The full lemma follows by noticing that for γ a limit, nγ ≥ supγ′<γ nγ′ . The
proofs of these two facts are basically the same.

Let ji = j0
i and ki = jγi for i < ω. So K = Jγ. Then by Lemma 38 and the definition

of a limit root sequence we have for all ξ < λ and i < ω that ki(ξ) ≥ ji(ξ). Hence for all
n < ω, if (αn, n), (αn+1, n+ 1) ∈ [β, n]J and (αn, n) �K (αn+1, n+ 1) then

k(n−1)
n (αn) > αn+1 = j(n−1)

n (αn).

Hence, if there are infinitely many n < ω such that

(αn, n) �K (αn+1, n+ 1),
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then 〈[αn, n]K |n < ω〉 contains an infinite decreasing subsequence in the ≤K ordering, which
is a contradiction to the well-foundedness of ≤K .

For the limit step, basically the same proof works, since if γ is such that

jγ,(n−1)
n (αn) > j0,(n−1)

n (αn),

then for all γ′ ∈ [γ, δ], by Lemma 38

jγ
′,(n−1)
n (αn) > j0,(n−1)

n (αn).

And hence the lemma follows.

We need the following notation. Let ∼ be the equivalence relation defined as follows.
Suppose (K,~k), (K ′, ~k′) ∈ E are such that for some n and m,

(k0 ◦ · · · ◦ kn−1)(〈kn, kn+1, . . .〉) = (k′0 ◦ · · · ◦ k′m−1)(
〈
k′m, k

′
m+1, . . .

〉
).

Then we put ~k ∼ ~k′. To see that ∼ is transitive, first note that if ~k ∼ ~k′ as witnessed by
n and m, then for any s < ω, n + s and m + s also witness this. To see this consider the
computation:

(k0 ◦ · · · ◦ kn−1 ◦ kn)( 〈kn+1, kn+2, . . .〉)
= (k0 ◦ · · · ◦ kn−1)(kn)((k0 ◦ · · · ◦ kn−1)(〈kn+1, kn+2, . . .〉))
= (k′0 ◦ · · · ◦ k′m−1)(k′m)((k′0 ◦ · · · ◦ k′m−1)(〈km+1, km+2, . . .〉))
= (k′0 ◦ · · · ◦ k′m−1 ◦ k′m)(

〈
k′m+1, km+2, . . .

〉
).

The general fact then follows by induction. Transitivity of ∼ follows immediately. We let
[~k]∼ denote the equivalence class which ~k belongs to.

Lemma 40. Suppose α < Θ is good, δ < ω1, (J,~j) ∈ Eα+3, and (J,~j) extends coherently to
α + 1 to an elementary embedding

Ĵ : Jᾱ+3(Vλ̄J+1)→ Jα+3(Vλ+1)

for some ᾱ. Then if (K,~k) ∈ Eα+2 is a δ-limit root of (J,~j), and (K,~k) extends coherently
to α + 1 to an elementary embedding

K̂ : Jβ̄+1(Vλ̄J+1)→ Jα+1(Vλ+1)

for some β̄ then β̄ ≤ ᾱ and for all γ̄ ≤ β̄, K̂(γ̄) ≥ Ĵ(γ̄).

Proof. First we prove the lemma for δ = 1. This will, in essence, prove the lemma for all δ
successor (assuming the limit case is true as well).

Suppose the lemma fails, and let [ᾱ, n]J be ≤J -least such that there exists (K,~k) ∈ Eα+2

a limit root of (J,~j) with K̂
(n−1)
n (ᾱ) < Ĵ

(n−1)
n (ᾱ). Assume for ease of notation that n = 0
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and that (K,~k) ∈ Eα+2 is a 0-close limit root of (J,~j). Then we have that ᾱ is definable
over Jα+2(Vλ+1) from (J,~j) and K̂(ᾱ) as the least ordinal sent by Ĵ above K̂(ᾱ). Hence by
Lemma 13 for all n we have

(k0 ◦ · · · ◦ kn)(ᾱ) = (j0 ◦ · · · ◦ jn)(ᾱ).

So for all n we have
K̂(n−1)
n (ᾱn) < Ĵ (n−1)

n (ᾱn)

where ᾱn = (j0 ◦ · · · ◦ jn−1)(ᾱ).

Let β be least such that for some n < ω, (Kn, ~kn) ∈ Eα+2 a limit root of

(J (n−1)
n ,

〈
j

(n−1)
i | i ≥ n

〉
)

which extends coherently to α + 1,

K̂n((Ĵ (n−1)
n )−1(Ĵ(ᾱ))) = β.

Then we have that β < Ĵ(ᾱ) and β ≥ supβ̄<ᾱ Ĵ(β̄).

We claim that β ∈ rng Ĵ , which is a contradiction. To see this, we claim that β is
definable from [J ]∼ and Ĵ(ᾱ) over Jα+3(Vλ+1). And this follows since for any S ∈ [J ]∼∩Eα+2

which extends coherently to α + 1, for all large enough n, if

ᾱ′ = (Ŝ(n−1)
n )−1(Ĵ(ᾱ))

then β is the least β′ such that for some (K,~k) ∈ Eα+2 a limit root of S
(n−1)
n which extends

coherently to α + 1, K̂(ᾱ′) = β′. This follows since for all large enough n, S
(n−1)
n = J

(m−1)
m

for some m. Hence since [J ]∼ ∈ rng Ĵ , we have β ∈ rng Ĵ .
Note that we have actually also shown that β̄ ≤ ᾱ in the statement of the lemma, since

ᾱ ≤ β̄ implies that K̂(β̄) = α = Ĵ(ᾱ) ≤ K̂(ᾱ). So K̂(ᾱ) = α since it cannot be any larger.
Hence ᾱ = β̄.

Now we prove the lemma for δ a limit, assuming the lemma is true for all δ′ < δ.
Suppose the lemma fails for δ and

〈
Kδ′| δ′ < δ

〉
is a limit root sequence with K the

common part witnessing this failure. Let δ′ < δ be least such that for some (β̄,m),

(K̂δ′)(m−1)
m (β̄) > K̂(m−1)

m (β̄).

Without loss of generality, by renaming, we can assume that δ′ = 0. Let [β̄,m]K0 be ≤K0-
least such that for some (β̄0,m0) ∈ [β̄,m]K0 ,

(K̂0)(m0−1)
m0

(β̄0) > K̂(m0−1)
m0

(β̄0).

Then in fact by the previous lemma, there is an n0 ≥ m0 such that for all m′ ≥ n0 and

(β̄′,m′), (β̄n0 , n0) ∈ [β̄,m]K0 ,
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we have

(K̂0)
(m′−1)
m′ (β̄′) = (K̂0)(m0−1)

m0
(β̄0) > K̂(m0−1)

m0
(β̄0) ≥ K̂

(m′−1)
m′ (β̄′) = K̂(n0−1)

n0
(β̄n0).

The last inequality follows from the fact that (K,~k) is a δ-limit root of (K0, ~k0), which implies
that the embeddings making up K are iterated square roots of the embeddings making up
K0. Hence using the fact that

(β̄0,m0), (β̄′,m′) ∈ [β̄,m]K0

by Lemma 38 the inequality follows.
Again by renaming, we can assume without loss of generality that n0 = 0. Let (β̄0, 0) ∈

[β̄,m]K0 . Then for all n we have

(k0 ◦ · · · ◦ kn)(β̄0) = (k0
0 ◦ · · · ◦ k0

n)(β̄0).

So for all n we have
K̂(n−1)
n (β̄n) < K̂0,(n−1)

n (β̄n)

where β̄n = (k0
0 ◦ · · · ◦ k0

n−1)(β̄0).

Let β be least such that for some n < ω, (Kn, ~kn) ∈ Eα+2 is a δ-limit root of

(J (n−1)
n ,

〈
j

(n−1)
i | i ≥ n

〉
)

which extends coherently to α + 1, K̂n(ᾱ) = β. Then we have that β < Ĵ(ᾱ) and

β ≥ sup
β̄<ᾱ

Ĵ(β̄).

We claim that β ∈ rng Ĵ , which is a contradiction. To see this, we claim that β is
definable from [J ]∼ and Ĵ(ᾱ) over Jα+3(Vλ+1). And this follows since for any S ∈ [J ]∼, for
all large enough n, if

ᾱ′ = (Ŝ(n−1)
n )−1(Ĵ(ᾱ))

then β is least such that for some (K,~k) ∈ Eα+2 a δ-limit root of S
(n−1)
n , K̂(ᾱ′) = β. Hence

since [J ]∼ ∈ rng Ĵ , we have β ∈ rng Ĵ .
The fact that β̄ ≤ ᾱ follows as before.

We now can achieve our main result on saturated sets.

Theorem 41. Let α < Θ be good and (J,~j) ∈ Eα+ω. Then for some γ < ω · ω there is

(K,~k) ∈ Eα which is a γ-limit root of (J,~j) such that there is a saturated set E and ᾱ such

that (K,~k) ∈ E and for all (K ′, ~k′) ∈ CL(E), K ′ extends to an elementary embedding

K̂ ′ : Jᾱ(Vλ̄K+1)→ Jα(Vλ+1).
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Proof. Let c : ω ·ω → ω be an injection. We attempt to construct an ω ·ω-limit root sequence〈
(Kn, ~kn)|n < ω · ω

〉
following c at α+ 2 such that for all n < ω · ω we have Kn extends to

K̂n : Jᾱn(Vλ̄K+1)→ Jα(Vλ+1),

and for all i < ω, ᾱω·i > ᾱω·(i+1). Although the proof of Lemma 37 allows us to extend the
sequence following c, we cannot construct such a sequence satisfying this inequality. Hence
our attempt must fail at some point, at which point we have ᾱω·i = ᾱω·(i+1) by Lemma 40.
This fact allows us to define a saturated set as desired.

We construct the sequence as follows by induction for i < ω. Let (K0, ~k0) = (J,~j). Having

constructed
〈

(Kn, ~kn)|n ≤ ω · i
〉

, if there exists an extension
〈

(Kn, ~kn)|n ≤ ω · (i+ 1)
〉

a

limit root sequence following c � ω · (i+ 1) at α + 2 such that

ᾱω·(i+1) < lim
n→ω·(i+1)

ᾱn,

then choose any such extension. Otherwise by the proof of Lemma 37 and using Lemma 40
there is some m < ω and an extension〈

(Kn, ~kn)|n ≤ ω · i+m
〉

such that for all further extensions following c at α+ 2,
〈

(Kn, ~kn)|n ≤ ω · (i+ 1)
〉

we have

ᾱω·(i+1) = ᾱω·i+m.

In this case, set E to be the set of (K ′, ~k′) ∈ Eα such that for some limit root sequence〈
(Kn, ~kn)|n < ω · (i+ 1)

〉
following c at α + 2, (K ′, ~k′) = (Kn, ~kn) for some n > ω · i + m.

By the proof of Lemma 37, E is nonempty, and by the proof of 18, E is saturated. The main
point is that for any (K ′, ~k′) ∈ CL(E), either (K ′, ~k′) ∈ E, or (K ′, ~k′) is the common part

of a sequence
〈

(Js,~js)| s < ω
〉

such that〈
(Kn, ~kn)|n ≤ ω · i+m

〉a 〈
(Js,~js)| s < ω

〉
is a limit root sequence following c at α+ 2. This follows since c : ω · ω → ω is an injection,
so if we let t be such that k′n is a t(n)-square root of ki·ω+m

n we must have t(n)→ ω as n→ ω

since (K ′, ~k′) /∈ E. Hence in either case, by the property of i we are assuming, we have

ᾱω·i+m = ᾱK′

where ᾱK′ is such that K ′ extends to

K̂ ′ : JᾱK′ (Vλ̄K+1)→ Jα(Vλ+1).

Hence setting ᾱ = ᾱω·i+m witnesses the theorem for E.

Theorem 42. Suppose j : L(Vλ+1) → L(Vλ+1) is elementary. Then for all α < Θ good,
strong inverse limit reflection at α holds.

Proof. The theorem follows immediately from Theorem 41 and the definition of strong inverse
limit reflection.
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4 Definable saturated sets

One unfortunate aspect of the above results is that the saturated sets we defined were not
quite simply definable in way that certain saturated sets are definable for α being rather
small. For instance, when reflecting at ω or λ+, it is very easy to define saturated sets of
inverse limits which reflect these ordinals in the same way (namely because these ordinals are
simply definable). In addition, we have not quite replicated the more complicated structures
beyond saturated sets for arbitrary good α that exist at smaller ordinals. For instance the
structure of inverse limits extending to some α such that λ+ + ω ≤ α < λ+ · 2 is a more
complicated structure of inverse limits, all reflecting λ+ in the same way, but we do not quite
capture this structure at arbitrary good α with the above results.

In this section we try to replicate these structures at arbitrary good α by using the fact
that the existence of the structures themselves are simply definable. In this way, we see for
inverse limits, working at arbitrary good α is basically the same as working at small α.

Definition 43. Let κ < Θ be good and let λ̄, κ̄ < λ . For β < κ we define by induction a
set Eκ

λ̄,κ̄
(β) of inverse limits as follows.

Eκλ̄,κ̄(0) = {(J,~j) ∈ Eκ| J extends to Ĵ : Lκ̄(Vλ̄+1)→ Lκ(Vλ+1) which is elementary}.

Then for any β such that 0 < β < κ we set

Eκλ̄,κ̄(β) = {(J,~j) ∈ Eκλ̄,κ̄(0) ∩ Eκ+β| ∀γ < β (if (J,~j) ∈ Eκ+γ then

∀a ∈ Vλ̄+1 ∀b ∈ Vλ+1 ∃(K,~k) ∈ Eκλ̄,κ̄(γ)

(K(a) = J(a) ∧ b ∈ rngK ∧K is a 0-close limit root of J))}.

Definition 44. Let κ < Θ be good and let λ̄, κ̄ < λ. We define Ẽκ
λ̄,κ̄

(β) for β < Θ by
induction as follows.

Ẽκλ̄,κ̄(0) = {(J,~j) ∈ Eκ| J extends to Ĵ : Lκ̄(Vλ̄+1)→ Lκ(Vλ+1) which is elementary}.

Then for β > 0 and β < Θ we define

Ẽκλ̄,κ̄(β) = {(J,~j) ∈
⋂
γ<β

Ẽκλ̄,κ̄(γ)| ∀γ < β ∃n < ω ∀a ∈ Vλ̄+1 ∀b ∈ Vλ+1 ∃(K,~k) ∈ Eκλ̄,κ̄(γ)

(K(a) = J(a) ∧ b ∈ rngKn ∧K is an n-close limit root of J)}.

Let
Ẽκλ̄,κ̄ =

⋂
β<Θ

Ẽκλ̄,κ̄(β).

Theorem 45. Suppose κ is good and there exists an elementary embedding

j : Lκ+ω(Vλ+1)→ Lκ+ω(Vλ+1).
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Then there exists κ̄, λ̄ < λ such that Ẽκ
λ̄,κ̄
6= ∅ is saturated and for all (J,~j) ∈ Eκ

λ̄,κ̄
, J extends

to Ĵ : Lκ̄(Vλ̄+1)→ Lκ(Vλ+1) which is elementary. Furthermore Ẽκ
λ̄,κ̄

is definable over L(Vλ+1)

from κ, λ̄ and κ̄.

Proof. By Theorem 41 there is a λ̄, κ̄ and a saturated set E such that for all K ∈ CL(E),
K extends to an elementary embedding

K̂ : Jκ̄(Vλ̄+1)→ Jκ(Vλ+1).

But then clearly for all β, E ⊆ Ẽκ
λ̄,κ̄

(β). Hence Ẽκ
λ̄,κ̄
6= ∅. The rest of the properties of Ẽκ

λ̄,κ̄
6= ∅

follow easily from the definition and the fact that there is no cofinal function Vλ+1 → Θ in
L(Vλ+1)6, which implies that for some γ < Θ, Ẽκ

λ̄,κ̄
= Ẽκ

λ̄,κ̄
(γ).

Theorem 46. Suppose that there exists an elementary embedding

j : LΘ(Vλ+1)→ LΘ(Vλ+1).

Let κ be good. Then there exists κ̄, λ̄ < λ such that for all β < κ, Eκ
λ̄,κ̄

(β) 6= ∅. Furthermore

for all β < κ, Eκ
λ̄,κ̄

(β) is definable over Lκ+β+1(Vλ+1) from λ̄, κ̄ and κ.

Proof. Let δ0 be the least stable of L(Vλ+1), that is the least δ such that

Lδ(Vλ+1) ≺Vλ+1∪{Vλ+1}
1 LΘ(Vλ+1).

We show that the theorem holds for all good κ < δ, which implies that the theorem holds
for all good κ < Θ, since if there were a contradiction there would be one below δ.

Now let κ < δ0. There is some κ′ with κ < κ′ < δ0, and

Lκ′(Vλ+1) 6≺Vλ+1∪{Vλ+1}
1 Lκ′+1(Vλ+1).

Let a ∈ Vλ+1 and φ be a Σ1 formula such that κ′ + 1 is the first place where φ has a witness
with parameter a. Also suppose that κ is definable over Lκ′+1(Vλ+1) from the parameter
b ∈ Vλ+1. Then as in the proof of Theorem 3.8 of [3], if J ∈ Eκ′+κ+ω and a, b ∈ rng J , then
for λ̄ = λ̄J , J extends to an elementary embedding

Ĵ : Lκ̄′+1(Vλ̄+1)→ Lκ′+1(Vλ+1),

with κ ∈ rng Ĵ . And furthermore, if ā, b̄ ∈ Vλ̄+1 is such that J(ā, b̄) = (a, b) and κ̄ = (Ĵ)−1(κ),
then for any K ∈ Eκ′+ω, such that K(ā, b̄) = (a, b), K extends to an elementary embedding

K̂ : Lκ̄′+1(Vλ̄+1)→ Lκ′+1(Vλ+1)

6This fact follows as in the case of L(R). The argument involves constructing from such a cofinal function
τ a surjection of Vλ+1 × Vλ+1 × Vλ+1 → Θ by considering the least surjection σb : Vλ+1 → τ(a) definable
from b, where a, b ∈ Vλ+1.
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and K̂(κ̄) = κ.
Hence we claim that J ∈ Eκ

λ̄,κ̄
(κ). To see this it is enough to claim that for all K ∈ Eκ′+ω,

if β < κ, K ∈ Eκ′+ω+β, and K(ā, b̄) = (a, b), then K ∈ Eκ
λ̄,κ̄

(β). But, for all β ≤ κ, κ′+ω+ β
is a good ordinal, and hence this follows immediately from what we remarked in the last
paragraph together with the proof of Lemma 7.

Unfortunately, it is unclear at present how to show the local version of Theorem 46. That
is, reducing the hypothesis to, say, the existence of an elementary embedding

j : Lκ·2+ω(Vλ+1)→ Lκ·2+ω(Vλ+1)

and proving the result without using Σ1-reflection. Such a theorem would be more in line
with the results in this paper.
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