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Abstract

We propagate various representations for subsets of Vλ+1 in L(Vλ+1). We show that
every subset of Vλ+1 in L(Vλ+1) has a U(j)-representation and a j-Suslin representation.
We also prove that uniform versions of these representations exist for certain subsets
of Vλ+1. We discuss various consequences of our results, including implications for the
singular cardinal hypothesis and the relationship between large cardinals and strong
models of determinacy.

Representations for subsets of Vλ+1 in L(Vλ+1) under I0 were first studied by H. Woodin
in [8], where the notion of a U(j)-representation was introduced and many consequences
of their existence were shown. These representations were subsequently propagated in [4]
and [2], although the question of whether every subset of Vλ+1 had such a representation
remained open. On the other hand the notion of a j-Suslin representation was introduced in
[3]. We propagate these two types of representations by using aspects of both representations
to propel our induction. In particular we define and propagate a representation which we
call a weakly homogeneously j-Suslin representation. This representation is stronger than
both U(j) and j-Suslin representations and naturally combines their properties.

Our results seem very similar to the propagation of scales in L(R), and in particular we
define a representation called a j-closed game representation which seems analogous to closed
game representations in the case of L(R). Our main result is that the existence of a certain
type of j-closed game representation implies the existence of both U(j)-representations and
j-Suslin representations.

We will in general be working under the assumption that I0 holds at λ, and we will
assume familiarity with the basics of I0 and L(Vλ+1). For an introduction to I0, see [4].

1 j-Suslin representations

We first recall the definition of I0: we say that I0 holds at λ if there is a non-trivial elementary
embedding

j : L(Vλ+1)→ L(Vλ+1)
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such that crit (j) < λ. We call such a j an I0 embedding. Below we will always assume our
elementary embeddings are non-trivial and that their critical points are below λ. Recall that
in this context Θ = Θλ is the sup of ordinal α such that in L(Vλ+1) there is a surjection of
Vλ+1 onto α. We say that α is good if every element of Lα(Vλ+1) is definable over Lα(Vλ+1)
from elements of Vλ+1. Note that the good ordinals are cofinal in Θ.

We define tree representations for subsets of Vλ+1 which were first introduced in [3].
These tree representations seem rather similar to Suslin representations, and so their names
indicate this fact.

For this section we fix j : L(Vλ+1)→ L(Vλ+1) an elementary embedding with crit (j) < λ.
For k an elementary embedding we denote by k(n) the nth iterate of k, and we let

Fκ(k) = {a ∈ Lκ(Vλ+1)| k(a) = a}, Fωκ (k) =
⋃
n<ω

Fωκ (k(n)),

and let
Ek(κ) = {k′ : Lκ(Vλ+1)→ Lκ(Vλ+1)| ∃n,m(k′(n) = k(m))}

if k : Lκ(Vλ+1)→ Lκ(Vλ+1) is elementary and iterable. Also for a ∈ Lκ(Vλ+1) let

Ek(κ, a) = {k ∈ Ek(κ)| k(a) = a}.

Note that for κ < Θ, if j(κ) = κ then j(Fωκ (j)) = Fωκ (j).

Definition 1. For ~κ = 〈κi| i < ω〉 increasing and cofinal in λ, we let W~κ be the set of
sequences s ∈ V ω

λ such that

1. for some n < ω, |s| = n and for all i < n, s(i) ⊆ Vκi ,

2. if i ≤ m < |s| then s(i) = s(m) ∩ Vκi .

Also let W~κ
n = {s ∈ W ~κ| |s| = n}. In this context if x ∈ Vλ+1, we set

x̂ = x̂~κ = 〈x ∩ Vκn|n < ω〉 ∈ W~κ,

where we use the first notation if the sequence ~κ is understood.

Suppose that κ < Θ. Let X ⊆ Vλ+1. We say that T is a (j, κ)-Suslin representation for
X if for some sequence 〈κi| i < ω〉 increasing and cofinal in λ the following hold.

1. T is a (height ω) tree on Vλ ×Fωκ (j) such that for all (s, a) ∈ T , s ∈ W~κ
|s|.

2. For all s ∈ W~κ, Ts ∈ FωΘ(j).

3. For all x ∈ Vλ+1, x ∈ X iff Tx̂ is illfounded.

We say that X is j-Suslin if for some κ, X has a (j, κ)-Suslin representation. If T satisfies
conditions 1 and 3 then we say that T is a weak (j, κ)-Suslin representation for X.
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Remark 2. We note that weak j-Suslin representations are very easy to find (by considering
the pointwise image of a set X in Mω under j0,ω) and therefore do not seem to be of
much interest. Hence, while we will see below that the existence of U(j)-representations
immediately give weak j-Suslin representations because of the Tower Condition, this fact is
not very interesting by itself, and we will have to work considerably harder to obtain j-Suslin
representations from U(j)-representations (and vice-versa).

Similarly we say that T is a uniform (j, κ)-Suslin representation for X if the following
hold.

1. T is a function on [λ]<ω such that for all s ∈ [λ]ω, if T (s) is the tree whose nth level is
given by T (s � n), then T (s) is a (height ω) tree on Vλ ×Fωκ (j).

2. For all s ∈ [λ]ω such that s is cofinal in λ, T (s) is a (j, κ)-Suslin representation for X.

We refer the reader to [3] for consequences of the existence of uniform j-Suslin represen-
tations. We will use these consequences below in Section 7.

2 Fixed point filter and U(j)-representations

In this section we introduce U(j)-representations, which were first defined by Woodin in
[8]. These representations are similar to weakly homogeneously Suslin representations in the
context of R.

We first introduce some terminology. Again fix j : L(Vλ+1) → L(Vλ+1) an elementary
embedding with crit (j) < λ. We say that a sequence ~a = 〈an|n < ω〉 is weakly fixed by j if
for all n < ω, |an| < λ, an ⊆ an+1 and there exists an m such that j(m)(an) = an.

For S a set of embeddings we let

Fix(S) = {a| ∀k ∈ S (k(a) = a))}.

We then set Fk(κ, a) to be the filter generated by the sets Fix(S) where S ∈ [Ek(κ, a)]λ.
Note that these filters are λ+-complete.

For ~a ∈ [Lκ(Vλ+1)]ω weakly fixed by j, we let A(κ,~a) be the set of sequences 〈An|n < ω〉
such that for all n < ω, An ∈ F j(κ, an). We also set for ~A ∈ Aj(κ,~a), T F ( ~A) to be the
largest tree T such that any node s of T is such that for all large enough n, s ∈ An.

We now proceed to define the set of U(j)-measures and U(j)-representations.

Definition 3 (Woodin). Let U(j) be the set of U ∈ L(Vλ+1) such that in L(Vλ+1) the
following hold:

1. U is a λ+-complete ultrafilter.

2. For some γ < Θ, U ∈ Lγ(Vλ+1).
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3. For all sufficiently large n < ω, j(n)(U) = U and for some A ∈ U ,

{a ∈ A| j(n)(a) = a} = A ∩ FΘ(j(n)) ∈ U.

For each ordinal κ, let ΘLκ(Vλ+1) denote the supremum of the ordinals α such that there
is a surjection ρ : Vλ+1 → α such that {(a, b)| ρ(a) < ρ(b)} ∈ Lκ(Vλ+1).

The following lemma gives a method for generating lots of U(j)-measures by considering
the F j(κ, a) filter on a fine enough partition.

Lemma 4 (Woodin). Suppose κ < Θ, κ ≤ ΘLκ(Vλ+1), a ∈ Lκ(Vλ+1) and that j(κ, a) = (κ, a).
Then there is δ < crit (j) and a partition {Sα|α < δ} ∈ L(Vλ+1) of Lκ(Vλ+1) into F j(κ, a)-
positive sets such that for each α < δ,

F j(κ, a) � Sα ∈ U(j).

Proof. First, we have that since j(κ) = κ that

j(Ej(κ, a)) = Ej(κ, a) and j(F j(κ, a)) = F j(κ, a).

Now we show that there is no sequence 〈Sα|α < crit (j)〉 ∈ L(Vλ+1) of pairwise disjoint
F j(κ, a)-positive sets. This follows since

{a ∈ Lκ(Vλ+1)| j(a) = a} ∈ F j(κ, a),

and hence if
j(〈Sα|α < crit (j)〉) = 〈Tα|α < j(crit (j))〉 ,

then there exists a β such that β ∈ Tcrit (j) and j(β) = β. But then by elementarity, there
exists an α < crit (j) such that β ∈ Sα. But then j(β) = β ∈ Tα, a contradiction.

Now, since F j(κ, a) is λ+-complete, there must exists a δ < crit (j) and a partition
{Sα|α < δ} ∈ L(Vλ+1) of Lκ(Vλ+1) into F j(κ, a)-positive sets such that for each α < δ,
F j(κ, a) � Sα is an ultrafilter.

For α < δ, let Uα be the ultrafilter given by F j(κ, a) � Sα. We have that Uα is λ+-complete
since F j(κ, a) is λ+-complete. Furthermore we have that

Bα := {a ∈ Sα| j(a) = a)} ∈ Uα.

And hence we have that j(Uα) = Uα, since for all β ∈ Bα, β ∈ Sα ⇐⇒ β ∈ j(Sα). So we
have that for all α < δ, Uα ∈ U(j).

Suppose that κ < Θ and κ ≤ ΘLκ(Vλ+1) and 〈ai| i < ω〉 is weakly fixed by j. Let
U(j, κ, 〈ai| i < ω〉) denote the set of U ∈ U(j) such that there exists n < ω such that
for all k ∈ Ej(κ, 〈ai| i ≤ n〉),

Fix({k}) ∈ U.

We can now define U(j)-representations for subsets of Vλ+1.
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Definition 5 (Woodin). Suppose κ < Θ, κ is weakly inaccessible in L(Vλ+1), and 〈ai| i < ω〉 ∈
(Lκ(Vλ+1))ω is weakly fixed by j.

Suppose that Z ∈ L(Vλ+1) ∩ Vλ+2. Then Z is U(j, κ, 〈ai| i < ω〉)-representable if there
exists an increasing sequence 〈λi| i < ω〉, cofinal in λ and a function

π :
⋃
{Vλi+1 × Vλi+1 × {i}| i < ω} → U(j, κ, 〈ai| i < ω〉)

such that the following hold:

1. For all i < ω and (a, b, i) ∈ dom(π) there exists A ⊆ (L(Vλ+1))i such that A ∈ π(a, b, i).

2. For all i < ω and (a, b, i) ∈ dom(π), π(a, b, i) ∈ U(j, κ, ai)
1.

3. For all i < ω and (a, b, i) ∈ dom(π), if m < i then

(a ∩ Vλm , b ∩ Vλm ,m) ∈ dom(π)

and π(a, b, i) projects to π(a ∩ Vλm , b ∩ Vλm ,m).

4. For all x ⊆ Vλ, x ∈ Z if and only if there exists y ⊆ Vλ such that

(a) for all m < ω, (x ∩ Vλm , y ∩ Vλm ,m) ∈ dom(π),

(b) the tower
〈π(x ∩ Vλm , y ∩ Vλm ,m)|m < ω〉

is well founded.

For Z ∈ L(Vλ+1)∩Vλ+2 we say that Z is U(j)-representable if there exists (κ, 〈ai| i < ω〉)
such that Z is U(j, κ, 〈ai| i < ω〉)-representable.

One important property of U(j)-representations is a continuous ill-foundedness condition
called the Tower Condition which Woodin [8] showed implies that they are closed under
complements.

Definition 6 (Woodin). Suppose A ⊆ U(j), A ∈ L(Vλ+1), and |A| ≤ λ. The Tower
Condition for A is the following statement: There is a function F : A→ L(Vλ+1) such that
the following hold:

1. For all U ∈ A, F (U) ∈ U .

2. Suppose 〈Ui| i < ω〉 ∈ L(Vλ+1) and for all i < ω, there exists Z ∈ Ui such that Z ⊆
L(Vλ+1)i, Ui ∈ A, and Ui+1 projects to Ui. Then the tower 〈Ui| i < ω〉 is wellfounded in
L(Vλ+1) if and only if there exists a function f : ω → L(Vλ+1) such that for all i < ω,
f � i ∈ F (Ui).

1This condition is slightly stronger than what is found in the definition of U(j)-representations in [8].
This strengthening is convenient for us, and does not change the collection of U(j)-representable sets.
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The Tower Condition for U(j) is the statement that for all A ⊆ U(j) if A ∈ L(Vλ+1) and
|A| ≤ λ then the Tower Condition holds for A.

Theorem 7. Let j : L(Vλ+1) → L(Vλ+1) be elementary such that crit (j) < λ. Then the
following hold:

1. Tower Condition for U(j) holds in L(Vλ+1) (C. [4]).

2. The set of U(j)-representable sets is closed under complements (Woodin [8]).

Remark 8. By definition of the Tower Condition, if π is a U(j)-representation for X and
F is a tower function for rng π, then we immediately obtain a weak j-Suslin representation
for X from F . However, as remarked above, obtaining weak j-Suslin representations is not
particularly difficult (and apparently not useful).

3 Closure of j-Suslin representations

We now define a representation which is a natural combination of a j-Suslin and a U(j)-
representation. Not only is this a stronger representation, but its stronger properties will
help below in its propagation throughout L(Vλ+1).

Definition 9. Let X ⊆ Vλ+1. We say that T is a weakly (δ,~a)-homogeneously (j, κ)-Suslin
representation for X if T is a (j, κ)-Suslin representation for X, and the following hold.

1. ~a ∈ [Lκ(Vλ+1)]ω is weakly fixed by j.

2. For all x ∈ Vλ+1 and ~A ∈ Aj(δ,~a), if [Tx̂] 6= ∅ then

[Tx̂] ∩ [T F ( ~A)] 6= ∅.

We say that X is weakly homogeneously j-Suslin if for some δ,~a and κ, X is weakly
(δ,~a)-homogeneously (j, κ)-Suslin.

The next definition shows a natural method for obtaining a U(j)-representation from a
weakly homogeneously j-Suslin representation.

Definition 10. First fix ~λ which is increasing cofinal in λ. Suppose that κ < κ′ and
T is a (j, κ)-Suslin representation for X. Let ~λ be increasing cofinal in λ. A U(j, κ′,~a)-
representation πT is derived from T if πT is maximal satisfying the following:

1. For all (x, y, i) ∈ Vλi+1 × Vλi+1 × {i}, Tx ∈ πT (x, y, i)

2. πT is a U(j, κ′,~a)-representation.
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We similarly say that πTn is a partial U(j, κ′,~a)-representation derived from T 2 if πTn has
domain

⋃
i<n Vλi+1 × Vλi+1 × {i} and is maximal3 such that for all i < n and (x, y, i) ∈

Vλi+1 × Vλi+1 × {i}, Tx ∈ πTn (x, y, i)
Suppose that κ, κ′ < δ1 < δ2. Then we define the tree

S = MSδ1,δ2κ′,~a (T )

as follows. For x ∈ W~λ
n ,
〈
(πT0 , f0), . . . , (πTn , fn)

〉
∈ Sx if the following hold.

1. πTn is a partial U(j, κ′,~a)-representation derived from T and for i < n, πTi = πTn �
dom(πTi ).

2. dom(fn) = rng πTn � Vλn+1 × Vλn+1 × {n} and rng f ⊆ δ2. Also f ∈ Fδ2(j).

3. For all i < n and x, y ∈ Vλi+1 and x′, y′ ∈ Vλi+1+1 which extend x and y respectively,
if σi is the ultrapower embedding given by computing the ultrapower in Lδ2(Vλ+1) of
πTn (x, y, i) with functions in Lδ1(Vλ+1), then

σi(fi(π
T
n (x, y, i))) > fi+1(πTn (x′, y′, i+ 1)).

Lemma 11. Suppose that X ⊆ Vλ+1 is in L(Vλ+1). If X is weakly (δ,~a)-homogeneously
(j, κ)-Suslin then X is U(j, δ,~a)-representable.

Proof. Let T witness thatX is weakly (δ,~a)-homogeneously (j, κ)-Suslin. Then any U(j, δ,~a)-
representation πT derived from T must be a U(j)-representation for X by definition of weakly
(δ,~a)-homogeneously (j, κ)-Suslin. Since such πT always exist, we have the desired result.

The following proof is very similar to the proof that U(j)-representations are closed under
complements from the Tower Condition (see [8], Lemma 128).

Lemma 12. Assume j witnesses I0 holds at λ. Suppose that X ⊆ Vλ+1 is a weakly (δ,~a)-
homogeneously (j, κ)-Suslin representable in LΘ(Vλ+1) by T . Then there is a κ′ > κ, δ′ > δ,

and ~b such that Vλ+1 \ X is a weakly (δ′,~b)-homogeneously (j, κ′)-Suslin representable in
L(Vλ+1).

Proof. Let T ∈ LΘ(Vλ+1) be a tree which witnesses that X is weakly (δ,~a)-homogeneously
(j, κ)-Suslin. Let δ1 < δ2 be regular such that κ, δ < δ1 < δ2 < Θ, j(κ′) = κ′ and

Lδ1(Vλ+1) ≺ Lδ2(Vλ+1) ≺ LΘ(Vλ+1)

(see [8], Lemma 22). Let S = MSδ1,δ2δ,~a (T ). Let ~b be defined by bi = ai ∪ {δ, δ1} for i < ω.

We want to see that S is a weakly (δ2,~b)-homogeneously (j, δ2)-Suslin representation for

2Note that πTn depends only on T up to its nth level. This fact is important to keep in mind below.
3This is the main reason we defined condition (2) for a U(j)-representation in the way we did. Otherwise

this maximality condition would not make sense.
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Vλ+1 \X. To see this, let ~A ∈ Aj(δ2,~b). We first show that if x ∈ Vλ+1 \X then Sx̂ ∩ T F ( ~A)
is illfounded. Assume that x ∈ Vλ+1 \X, which implies that Tx̂ is wellfounded. This implies

of course that there exists ~B ∈ Aj(δ,~a) such that Tx̂ ∩ T F ( ~B) is wellfounded (in fact every
~B must satisfy this).

Now we have that for all i < ω, since ai ∪ {δ} ⊆ bi, U(j, δ, ai) ⊆ Ai. Hence there is πT , a
U(j, δ,~a)-representations derived from T such that〈

πT �
⋃
i<n

Vλi+1 × Vλi+1 × {i}|n < ω

〉
∈ T F ( ~A).

Now by definition of being derived from T we have that for all i < ω, and y ∈ Vλi+1,

Tx∩Vλi ∈ π
T (x ∩ Vλi , y, i).

Hence since Tx̂ is wellfounded we have that for all y ∈ Vλ+1,〈
πT (x ∩ Vλi , y ∩ Vλi , i)| i < ω

〉
is an illfounded tower. Hence by the Tower Condition we can define functions fi for i < ω
such that dom(fi) = Vλi+1 and for all y ∈ Vλ+1 and i < ω,

σyi (fi(π
T (x ∩ Vλi , y ∩ Vλi , i))) > fi+1(πT (x ∩ Vλi+1

, y ∩ Vλi+1
, i+ 1)),

where σyi is the ultrapower of πT (x ∩ Vλi , y ∩ Vλi , i) with functions in Lδ1(Vλ+1), computed

in Lδ2(Vλ+1). In addition we can find such function fi such that 〈fi| i < ω〉 ∈ T F ( ~A). To see
this, note that δ2 is a regular cardinal in L(Vλ+1) and Lδ2(Vλ+1) ≺ LΘ(Vλ+1), which implies
that ordinals of the above ultrapower are below δ2, and

⋂
i<ω Ai ∩ δ2 is cofinal in δ2. Hence〈

(πTn , fn)|n < ω
〉
∈ [Sx ∩ T F ( ~A)],

where
πTn = πT �

⋃
i<n

Vλi+1 × Vλi+1 × {i}.

Hence Sx ∩ T F ( ~A) is illfounded, which is what we wanted to show.

Now we show that if Sx̂ ∩ T F ( ~A) is illfounded then x ∈ Vλ+1 \X. Let〈
(πTn , fn)|n < ω

〉
∈ [Sx ∩ T F ( ~A)].

Since the Tower Condition holds (see [4]), we have, as in the proof of Lemma 129 in [8] that
for all y ∈ Vλ+1, 〈

πTn (x ∩ Vλn , y ∩ Vλn , n)|n < ω
〉

is an illfounded tower if (x∩Vλn , y∩Vλn , n) ∈ domπTn for all n < ω. By definition of a weakly
homogeneously j-Suslin tree, for all n < ω

Tx∩Vλn ∈ π
T
n (x ∩ Vλn , y ∩ Vλn , n).

Hence there is ~B ∈ A(δ,~a) such that Tx ∩ T F ( ~B) is wellfounded. But since T is (δ,~a)-
homogeneous, we have that Tx̂ is wellfounded as well. Hence x ∈ Vλ+1\X, as we wanted.
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We can also form the tree MSδ1,δ2δ,~a (T ) in the case when T is not (δ,~a)-homogeneous. We
will need to do this below, and so it is important to know what this tree projects to in
this situation. The following lemma gives us this information, and in fact the above proof
actually proves this more general fact. It says basically that this tree projects to the points
where T is ill founded on a sequence of measure one sets.

Lemma 13. Suppose that X ⊆ Vλ+1 is (j, κ)-Suslin representable in LΘ(Vλ+1) by T . Let
δ1 < δ2 be regular such that κ, δ < δ1 < δ2 < Θ, j(κ′) = κ′ and

Lδ1(Vλ+1) ≺ Lδ2(Vλ+1) ≺ LΘ(Vλ+1).

Let S = MSδ1,δ2δ,~a (T ) and set Y = p[S]. Then x ∈ Y iff there is ~A ∈ A(δ,~a) such that

[Tx̂] ∩ [T F ( ~A)] = ∅.

We now define another uniformity notion which allows us to preserve being j-Suslin when
taking existential quantifications.

Definition 14. Let κ < Θ. Suppose that S is a tree on Fωκ (j) and that for all a ∈ [S],
Xa ⊆ Vλ+1 is (j, κ)-Suslin as witnessed by a tree T a. Furthermore assume that there is a
tree T on Fωκ (j)×Fωκ (j)×Fωκ (j) such that for all a ∈ [S], T a = Ta and for all ~x ∈ W~κ,

{(a, b)| (a, x, b) ∈ T} ∈ Fωκ (j).

Then we say that 〈Xa| a ∈ [S]〉 is sequentially (j, κ)-Suslin on S as witnessed by T .

For the rest of this section we fix 〈κi| i < ω〉 increasing and cofinal in λ.

Lemma 15. Let κ < Θ. Suppose that S is a tree on Fωκ (j) and that for all a ∈ [S],
Xa ⊆ Vλ+1, and 〈Xa| a ∈ [S]〉 is sequentially (j, κ)-Suslin as witnessed by T . Then

{x ∈ Vλ+1| ∃a ∈ [S](x ∈ Xa)}

is (j, κ)-Suslin. Furthermore if S is a tree on Fωκ (j) × Fωκ (j) and for all b ∈ Fωκ (j) and
x ∈ W~κ,

{(a, c)| ((a, b), x, c) ∈ T} ∈ Fωκ (j)

then 〈
{x ∈ Vλ+1| ∃a((a, b) ∈ [S] ∧ x ∈ X(a,b))}| b ∈ Fωκ (j)ω ∧ ∃a((a, b) ∈ [S])

〉
,

is sequentially (j, κ)-Suslin by a tree T ′.

Proof. Let Y = {x ∈ Vλ+1| ∃a ∈ [S](x ∈ Xa)}. To see that Y is (j, κ)-Suslin, let T witness
that 〈Xa| a ∈ [S]〉 is sequentially (j, κ)-Suslin. Then we let T ′ be defined by (x, a, b) ∈ T ′

iff (a, x, b) ∈ T . The fact that T ′ is a (j, κ)-Suslin representation for Y follows then by
the definition of sequentially Suslin. In particular note that we have for all ~x ∈ W~κ that
T ′~x ∈ Fωκ (j).

The last part of the lemma is very similar.
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For T ′ the tree as defined in the proof, we will say that T ′ is defined by

T ′b = ∃a T(a,b).

We will be somewhat sloppy with this notation below, though the meaning will always be
clear.

We now define a j-closed game representation for subsets of Vλ+1.

Definition 16. Fix κ < Θ and 〈κi| i < ω〉 increasing and cofinal in λ. Suppose that X ⊆
Vλ+1 and for each x ∈ Vλ+1, Gx is a game where I and II combine to play 〈xi| i < ω〉 such
that the following hold.

1. For all i < ω, xi = 〈xin|n < ω〉 and for all n < ω, xin ∈ Fωκ (j).

2. II must abide by certain rules, but she always has a legal move at every stage4.

3. There is a tree T on Vλ × Fωκ (j) such that if x ∈ Vλ+1, then 〈xi| i < ω〉 is a winning
run for I of Gx iff either II does not follow the rules or

〈(x0 � i, . . . , xi � i)| i < ω〉 ∈ [Tx̂~κ ].

Also for T i, the ith level of T , we have that T i ∈ Fωκ (j) for all i < ω.

4. x ∈ X iff I has a quasi-winning strategy in Gx.

We say that G is a j-closed game representation for X as witnessed by T .

We introduce some terminology for j-closed game representations. We define pp(T ),
called the tree of partial plays, as follows. A sequence (x0, . . . , xn) ∈ [pp(T )] iff x0, . . . , xn is
a legal position in the game as determined by T . We let ppn(T ) be the tree of partial plays
of length n.

For Gx a j-closed game and γ an ordinal we let Gx[γ] have the same rules as Gx in the
sense that every position must restrict to a legal position in Gx, but with the additional
requirement that II play ordinals γ0 > γ1 > · · · such that γ > γ0.

We now proceed to define a sequence of trees based on a j-closed game representation
which will eventually lead to a possible j-Suslin representation for the given set X. For κ
an ordinal, let Rκ(γ) be the γth ordinal α > κ such that Lα(Vλ+1) ≺ LΘ(Vλ+1).

Fix X ⊆ Vλ+1, a j-closed game representation G and a tree T which witnesses this. For

a fixed γ we will define for γ̄ ≤ γ, ~b and ~c both weakly fixed by j, and trees T̃ γ̄,
~b, W̃ γ̄,~b,

Z̃ γ̄,~c and S̃ γ̄,~c by induction on γ̄. The idea is that illfoundedness of T̃ will show that I has a
quasi-winning position, and it is I’s turn to play, illfoundedness of W̃ will show that II has
a quasi-winning position and it is I’s turn to play, illfoundedness of Z̃ will show that II has
a qusai-winning position and it is II’s turn to play, and illfoundedness of S̃ will show that I
has a quasi-winning position and it is II’s turn to play.

4We only assume this for convenience below, as it makes certain trees easier to define.
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1. For u ∈ [pp(T )] such that it is I’s turn to play in u, T̃ 0,~b
u = pp(T )u.

2. For γ̄ < γ and u ∈ [pp(T )] such that it is I’s turn to play in u,

W̃ γ̄,~b
u = MS

Rκ(6·γ̄+4),Rκ(6·γ̄+5)

Rκ(6·γ̄+3),~b
(T̃ γ̄,

~b
u ).

3. For 0 < γ̄ < γ, Z̃ γ̄,~c is defined by

Z̃ γ̄,~c
u = ∃x ∃β < γ̄ ∃~bD ~c W̃ β,~b

ua〈x〉,

where u ∈ [pp(T )] is such that it is II’s turn to play and ua 〈x〉 ∈ [pp(T )], and by
~bD ~c we mean that for all n < ω, bn ⊇ cn, where both are weakly fixed by j. We put
Z̃0,~c
u = ∅.

4. For 0 < γ̄ < γ and u ∈ [pp(T )] such that it is II’s turn to play in u,

S̃ γ̄,~cu = MS
Rκ(6·γ̄+1),Rκ(6·γ̄+2)
Rκ(6·γ̄),~c (Z̃ γ̄,~c

u ).

5. For 0 < γ̄ < γ, T̃ γ̄,
~b is defined by5

T̃ γ̄,
~b

u = ∃x ∃~c S̃ γ̄,~c
ua〈x〉,

where u ∈ [pp(T )] is such that it is I’s turn to play and ua 〈x〉 ∈ [pp(T )].

We now introduce a game which is intimately related to the above definition. Given a
j-closed game representation G for X, the corresponding measure game G∗x[κ, γ̄,~a, ~A

∗] is the
following.

I : x0, ~A
0,~c0 x2, ~A

1,~c1 · · ·
II : x1, γ̄0,~a

0, ~B0 x3, γ̄1,~a
1, ~B1 · · ·

.

With the following rules.

1. The sequence x0, x1, x2, . . . must abide by the rules of Gx.

2. For all n < ω, A∗n ⊇ A0
n ⊇ B0

n ⊇ A1
n ⊇ B1

n ⊇ · · · .

3. γ̄ > γ̄0 > γ̄1 > · · · .

4. ~A∗ ∈ A(Rκ(6 · γ̄ + 3),~a) and ~A0 ∈ A(Rκ(6 · γ̄),~a).

5. For all i ≥ 0, ~Bi ∈ A(Rκ(6 · γ̄i + 3),~ai) and ~Ai+1 ∈ A(Rκ(6 · γ̄i),~ai).
5Note that in the game below I might as well play ~c such that ~b E ~c, and that it why the definition of

T̃ γ̄,
~b

u does not depend on ~b.
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6. For all i ≥ 0,

x2i,~c
i ∈ [T F ( ~A∗)] ∩

⋂
n<i

[T F ( ~An)] ∩
⋂
n<i

[T F ( ~Bn)]

and
x2i+1,~a

i, 〈γ̄i, γ̄i, . . .〉 ∈ [T F ( ~A∗)] ∩
⋂
n≤i

[T F ( ~An)] ∩
⋂
n<i

[T F ( ~Bn)].

7. For all i < ω and n < ω, ~ci ∈ (Lκ(Vλ+1))ω and cin ∪ {κ} ⊆ ain.

The first one to violate the rules loses.
The main point is the following lemma which gives an equivalence between this game and

the above trees. We need some terminology to state this lemma. We say that (u∗, γ̄∗,~a∗, ~B∗)

is (γ̄,~b,~c, ~A∗, x)-compatible with u for u ∈ [pp(T )] if the following hold.

1. u∗ is a legal play of G∗x[κ, γ̄
∗,~a∗, ~B∗], and the length of u∗ is the same as the length of

u.

2. We have xi[u
∗] = xi[u] for all i < |u|.

3. The minimum of γ̄∗ and any γ̄i played in u∗ is γ̄. If the minimum is γ̄∗, then ~a∗ = ~b and
~B∗ = ~A∗, and otherwise if i is such that γ̄i is minimal, then ~ai[u∗] = ~b and ~Bi[u∗] = ~A∗,
and for ~c′ in the last move played by I, ~c′ = ~c.

This terminology basically relates plays in G∗x to plays in Gx in the natural way.

Lemma 17. For any γ̄, ~a weakly fixed by j, ~A∗ ∈ A[γ̄,~a], X ⊆ Vλ+1, G a j-closed game
representation for X as witnessed by T , and x ∈ Vλ+1, we have the following:

1. I has a quasi-winning strategy in G∗x[κ, γ̄,~a, ~A
∗] iff

x ∈ p[T̃ γ̄,~a∅ ∩ T
F ( ~A∗)].

2. if u ∈ [pp(T )] is such that it is I’s turn to play in u, then

x ∈ p[T̃ γ̄,~au ∩ T F ( ~A∗)]

iff for any (u∗, γ̄∗,~a∗, ~B∗) which for some ~c is (γ̄,~a,~c, ~A∗, x)-compatible with u, u∗ is a

quasi-winning position for I in G∗x[κ, γ̄
∗,~a∗, ~B∗].

3. if u ∈ [pp(T )] is such that it is II’s turn to play in u and ~c is weakly fixed by j, then

x ∈ p[Z̃ γ̄,~c
u ∩ T F ( ~A∗)]

iff for any (u∗, γ̄∗,~a∗, ~B∗), (γ̄,~a,~c, ~A∗, x)-compatible with u, u∗ is a quasi-winning po-

sition for II in G∗x[κ, γ̄
∗,~a∗, ~B∗].
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Proof. We prove this by induction on γ̄, proving (3)γ̄ and then (2)γ̄.
The base case is that γ̄ = 0 and u ∈ [pp(T )] is such that it is II’s turn to play and ~c is

weakly fixed by j. In that case II is not in a winning position for any such u∗ and Z̃0,~c
u = ∅.

Now assume (2)γ̄′ and (3)γ̄′ hold for all γ̄′ < γ̄. We prove (3)γ̄. Suppose that u ∈ [pp(T )]

and that it is II’s turn to play in u, ~c is weakly fixed by j, and ~A∗ ∈ A[γ̄,~a]. Suppose that

x ∈ p[Z̃ γ̄,~c
u ∩ T F ( ~A∗)]

and (u∗, γ̄∗,~a∗, ~B∗) are (γ̄,~a,~c, ~A∗, x)-compatible with u. Then by Lemmas 15 and 13 there

are u′ = ua 〈x′〉, β < γ̄, ~b, and ~B′ such that

1. x̂′,~b, 〈β, β, . . . , 〉 ∈ [T F ( ~A∗)],

2. ~B′ ∈ A[Rκ(6 · β + 3),~b)],

3. u∗∗ := u∗a
〈

(x′,~b, β, ~B′)
〉

is a legal move in G∗x[κ, γ̄
∗,~a∗, ~B∗]

4. (T̃ β,
~b

u′ ∩ T F ( ~B′))x̂ is well-founded.

Hence by induction applying (2)β, since (u∗∗, γ̄∗,~a∗, ~B∗) is (β,~b,~c, ~B′)-compatible with u′, we

have that u∗∗ is a quasi-winning position for II in G∗x[κ, γ̄
∗,~a∗, ~B∗] . So u∗ is a quasi-winning

position for II.
In the other direction, let (u∗, γ̄∗,~a∗, ~B∗) be (γ̄,~a,~c, ~A∗, x)-compatible with u and assume

that u∗ is a quasi-winning position for II in G∗x[κ, γ̄
∗,~a∗, ~B∗]. Then by the definition of a

quasi-winning position we have ũ and u′ = ua 〈x′〉 such that

1. ũ = u∗a
〈
x′,~b, β, ~B′

〉
is a quasi-winning position in G∗x[κ, γ̄

∗,~a∗, ~B∗] for II.

2. x′,~b, 〈β, β, . . . , 〉 ∈ [T F ( ~A∗)],

3. ~B′ ∈ A[Rκ(6 · β + 3),~b],

Hence applying (2)β by induction, since (ũ, γ̄∗,~a∗, ~B∗) is (β,~b,~c, ~B′)-compatible with u′ we

have (T̃ β,
~b

u′ ∩ ~B′)x̂ is well-founded. But then by Lemma 13, W̃ β,~b
u′ is ill-founded. So by Lemma

15, (Z̃ γ̄,~c
u ∩ T F ( ~A∗))x is ill-founded, which is what we wanted.

Showing that (2)γ̄ holds is very similar, using Lemmas 15 and 13, and we leave this to
the reader.

Definition 18. We say that a j-closed game representation Gx for X ⊆ Vλ+1 is normal if
there are γ̄ and ~a such that for all x ∈ Vλ+1 and ~A∗ ∈ A(γ̄,~a), I has a quasi-winning strategy

in Gx iff I has a quasi-winning strategy in G∗x[κ, γ̄,~a, ~A
∗].
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Theorem 19. Suppose that X ⊆ Vλ+1 has a normal j-closed game representation Gx. Then
X has a weakly homogeneous j-Suslin representation. In fact for (γ̄,~a) witnessing that Gx is
normal, we have that X = p[T̃ γ̄,~a∅ ] and that T̃ γ̄,~a∅ is a weakly (γ̄,~a)-homogeneous (j, γ̄)-Suslin
representation for X.

Proof. The theorem follows immediately from the previous lemma and the definition of a
normal j-closed game representation.

4 j-Closed game representations

We now describe how to obtain a j-closed game representation for an X ⊆ Vλ+1 such that
X ∈ L(Vλ+1). The argument we give is very similar to the corresponding argument in [7],
although our weaker version of the closed game representation allows us to prove that every
subset in L(Vλ+1) has such a representation. We fix such an X and let α be good such that
X is definable over Lα(Vλ+1) from aX ∈ Vλ+1 by a formula φX .

We define the game Gα
x . We want player I to describe a size λ model of

V = L(Vλ+1) + φX [aX , x]

which contains all the reals played by player II, while using ordinals less than α to prove that
this model is wellfounded. In addition, I will have to prove to II that its model is actually a
by winning rank games against II playing ordinals below α.

Player I describes his model in the language Lλ, which has relations ∈,= and constant
symbols xi for i < λ and constants ȧ for all a ∈ Vλ and a constant λ̇. Define Lκ to be the
same as Lλ but restricting to constants xi and ȧ for i < κ and a ∈ Vκ. The constant symbols
xi represent the ith element of Vλ+1 played xi during a run of Gβ

x. Fix maps

m∗, n∗ : {θ| θ is an Lλ-formula} → λ− 2

which are one to one, have disjoint ranges, κ− rngm∗ − rngn∗ has size κ for every cardinal
κ ≤ λ, and are such that whenever xi occurs in θ, i < min(m(θ), n(θ)). Also, for all cardinals
κ ≤ λ,

(m∗)−1[κ] = (n∗)−1[κ] = {θ| θ is an Lκ-formula}.

Player I’s description must extend the L-theory T with the following axioms:

(1) Extensionality

(2) V = L(Vλ̇+1)

(3)φ ∃v φ(v)→ ∃v (φ(v) ∧ ∀u ∈ v¬φ(u)) (for φ ∈ Lλ).

(4)i xi ∈ Vλ̇+1 (for i < λ).

(5)φ,a1,...,an Vλ̇ |= φ[ȧ1, . . . , ȧn] (where φ and (a1, . . . , an) ∈ V n
λ are such that Vλ |= φ[a1, . . . , an]).
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(6)φ ∃v φ(v)→ ∃v ∃F (φ(v) ∧ θ0(F, xm∗(φ), v)) (for φ ∈ Lλ).

(7)φ ∃v(φ(v) ∧ v ∈ Vλ̇+1)→ φ(xn∗(φ)) (for φ ∈ Lλ).

(8) φX [x0, x1].

(9)a ȧ ∈ Vλ̇ (for a ∈ Vλ).

Here we define θ0 as follows: for fγ the usual uniformily definable surjective maps

fγ : [γ]<ω × Vλ+1 → Lγ(Vλ+1)

we have φ0(v0, v1, v2) is a formula describing the graph of fγ over Lγ(Vλ+1) for all γ.
First fix 〈κi| i < ω〉 an increasing cofinal sequence of ordinals below λ. A run of Gα

x has
the form

I II
〈in, xn, ηn|n < κ0〉 xκ0 , β

0
0

〈in, xn, ηn|κ0 < n < κ1〉 , s0
0, xκ1 , β

0
1 , β

1
0

〈in, xn, ηn|κ1 < n < κ2〉 , s0
1, s

1
0 xκ2 , β

0
2 , β

1
1 , β

2
0

〈in, xn, ηn|κ2 ≤ n < κ3〉 , s0
2, s

1
1, s

2
0 xκ3 , β

0
3 , β

1
2 , β

2
1 , β

3
0

...
...

where for all k < λ, ik ∈ {0, 1}, xk ∈ Vλ+1, and ηk < α. If u is a position in the game, then
we let

T ∗(u) = {θ| θ is a sentence of Lλ and in∗(θ)(u) = 0}.
If p is a full run of Gβ

x, then we set

T ∗(p) =
⋃
n<ω

T ∗(p � n).

For p a full run of Gα
x , p is winning for player I iff

1. x0 = x, x1 = aX .

2. T ∗(p) is a complete, consistent extension of T such that for all i < λ and a ∈ Vλ

‘ȧ ∈ xi’ ∈ T ∗(p) ⇐⇒ a ∈ xi

3. If φ and ψ are Lλ-formulas of one free variable and

‘ιv φ(v) ∈ Ord ∧ ιv ψ(v) ∈ Ord’ ∈ T ∗(p)

then ′ιv φ(v) ≤ ιv ψ(v)′ ∈ T ∗(p) iff ηn∗(φ) ≤ ηn∗(ψ).

4. If φ is an Lλ-formula of one free variable and

‘ιv φ(v) ∈ Ord ∧ ιv φ(v) < λ̇’ ∈ T ∗(p)

then ηn∗(φ) < λ.
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5. If φ is the Lλ-formula of one free variable φ(v) = ‘v = α̇’ for some α ≤ λ then ηn∗(φ) = α.

6. For all n,m such that for all m′ < m βnm′ 6= 0, βn0 > βn1 > · · · > βnm and

ηsn0 > ηsn1 > · · · > ηsnm .

Also for all i ≤ m, there is φ such that n∗(φ) = sni and ‘ιvφ(v) ∈ Ord’ ∈ T ∗(p).

7. For all n1 < n2 and m such that for all m′ < m

βn1

m′ = βn2

m′ 6= 0

then for all m′ < m
sn1

m′ = sn2

m′ .

Here we use ιv φ(v) to mean ‘the unique v such that φ(v) holds’.

Lemma 20. Let X ⊆ Vλ+1 and let α be good such that X is definable over Lα(Vλ+1) from
aX ∈ Vλ+1 by a formula φX . Then for Gα

x as defined above, Gα
x is a j-closed game represen-

tation for X.

Proof. We first claim that if x ∈ X then I has a quasi-winning strategy in Gα
x . The strategy

is as follows. I chooses elementary substructures

M0 ≺M1 ≺ · · · ≺ Lα(Vλ+1)

as the game progresses such that the following hold:

1. x, aX ∈M0.

2. For all i < ω, |Mi| = κi and Vκi ⊆Mi.

3. If u is a play in the game of length 2n such that it is I’s turn to play then I chooses
Mn such that u ∈Mn.

I then plays in the obvious way using the information given by the Mn. So for instance
〈xξ| ξ < κi〉 is an enumeration of Mn ∩ Vλ+1, 〈iγ| γ < κ0〉 codes the theory of Mn with pa-
rameters in Vκn ∪ V Mn

λ+1 ∪ {λ}, and ηγ is exactly the ordinal defined from the γth formula in
Mn. And we let snm = γ where γ is such that if n∗(γ) = θ then the least ordinal satisfying θ
is βnm (keeping in mind that since u ∈ Mn, βnm ∈ Mn). Clearly this quasi-strategy works for
I.

Now we show that if x ∈ Vλ+1 is such that I has a quasi-winning strategy in Gα
x then

x ∈ X. To see this, let p be a generic run of Gα
x . Then T ∗(p) is a complete, consistent

extension of T . Let B |= T ∗(p) and set A to be the substructure of B with universe

|A| = {b ∈ |B| :∃α < λ∃ψ(ψ is a formula

with no constant symbols but xα and b = ιv(B |= ψ[v])}.
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Then A ≺ B by the properties of T . Furthermore we define a function f as follows. If
b ∈ OrdA and b = ιv(A |= ψ[v]) then let f(b) = ηn∗(ψ). The map f : OrdA → α is well-
defined and order-preserving because of our requirements on I in the game. Similarly we
must have f(λ̇A) = λ by conditions of the game. Hence we can assume that |A| = Jγ(V

A
λ+1)

for some γ. Furthermore since f is a function into α we have that γ ≤ α.
Now we want to see that Vλ = V A

λ̇
. To see this we prove by induction that for all κ ≤ λ,

Vκ = V A
κ̇ . The base and limit cases are obvious (note that we must have κ̇A = κ by the rules

of our game). Now assume that Vκ = V A
κ̇ and let us show that Vκ+1 = V A

κ̇+1. Obviously if
a ∈ Vκ+1 then by induction ȧA = a ∈ V A

κ̇+1. Now let b ∈ V A
κ̇+1. We have that b ∈ V A

λ̇+1
and

hence by the way we chose A, there is some α < λ such that xA
α = b. Let n < ω be large

enough so that κn > κ, α. We then have that by the rules of the game that p � 2n determines
the theory of A with parameters in

{xα} ∪ {ċ| c ∈ Vκ}.

But this implies that b ∈ Vκ+1 since ċA = c for all c ∈ Vκ. So we have Vκ+1 = V A
κ̇+1.

Now we have that by definition of A and the rules of our game (in particular rule (7))
that

V A
λ̇+1

= Vλ+1
A = {xA

α |α < λ} = {xα|α < λ}.
On the other hand, since p was a generic run of Gα

x , and II can play whatever elements of
Vλ+1 she wants to, we have that Vλ+1

A = Vλ+1. And hence |A| = Jγ(Vλ+1) for some γ ≤ α.
The final fact to see is that γ ≥ α so in fact γ = α. To see this, suppose that γ < α.

By genericity there is some n0 such that βn0
0 = γ. Let sn0

0 be the corresponding response
by I. Let γ0 = ιvφ(v) where φ is such that n∗(φ) = sn0

0 . Now by genericity there is some
n1 such that βn1

0 = γ and βn1
1 = γ1. By the rules of the game I’s first response sn1

0 = sn0
0 .

Let sn1
1 be I’s corresponding second response and choose γ2 similarly. In this way choose

γ > γ1 > γ2 > · · · > γnm = 0 and sn0
0 , s

n1
1 , . . . s

nm
m . We have that the ordinal corresponding

to snmm must be below γnm by induction. But γnm = 0, so this is a contradiction.
Hence γ = α and Lα(Vλ+1) |= φX [x, aX ] and hence x ∈ X as we wanted.
Finally, finding a tree T which witnesses that Gx is a j-closed game representation and

verifying the other requirements is fairly routine, and we leave this to the reader.

5 The rank game for fixed point measures

We now recall results from [2] which we need in order to show that our j-closed game
representation is in fact normal.

Definition 21. Suppose γ < ΘL(Vλ+1), γ ≤ ΘLγ(Vλ+1), and 〈ai| i < ω〉 ∈ (Lγ(Vλ+1))ω is
weakly fixed by j. Then let G(j, γ, 〈ai| i < ω〉) denote the following game. A typical run of
the game is as follows:

I : γ0, 〈b0
m|m < ω〉 γ1, 〈b1

m|m < ω〉 · · ·
II : E0 E1 · · ·
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The rules of the game are as follows.

1. Ei ⊆ Ej(γi), |Ei| ≤ λ, and for each k ∈ Ei there exists m < ω such that k(bim) = bim.

2. γ0 = γ, and for each i < ω, γi+1 < γi and there exists m < ω such that for all k ∈ Ei

k(bim) = bim ⇒ k(γi+1) = γi+1.

3. for all i < ω, γi ≤ ΘLγi (Vλ+1),

4. 〈b0
m : m < ω〉 = 〈am : m < ω〉.

5. for all m < ω, bim ⊆ bim+1 ⊆ γi and |bim| < λ

6. for all i < ω and m < ω there exists m∗ < ω such that for all k ∈ Ei

k(bim∗) = bim∗ ⇒ k(bi+1
m ) = bi+1

m .

The first one to violate the rules loses.
Of course II always wins this game, but we are interested in the rank of this game, which

we define as follows.

Definition 22. Let Gδ(j, γ, 〈ai| i < ω〉) have the same definition as G(j, γ, 〈ai| i < ω〉) except
that II must also play ordinals δ0 > δ1 > · · · such that δ0 < δ. If δ is least such that II has
a quasi-winning strategy in Gδ(j, γ, 〈ai| i < ω〉), then we set δ = rank(j, γ, 〈ai| i < ω〉).

The following was proved in [2].

Theorem 23. Let j : L(Vλ+1)→ L(Vλ+1) be an I0 embedding. Fix κ < Θ good in L(Vλ+1).
Then there exists δ ≥ κ and ~a such that rank(j, δ,~a) ≥ κ.

By the proof of this theorem we have the following.

Theorem 24. Let j : L(Vλ+1)→ L(Vλ+1) be an I0 embedding. Then for cofinally many good
κ < Θ there is ~a such that rank(j, κ,~a) = κ.

We first introduce some terminology.

Definition 25. Suppose that ~a and ~b are both weakly fixed by j. We put ~a E~b if for all
i < ω, there is an n < ω such that ai ⊆ bn.

The following lemma is immediate.

Lemma 26. Suppose that 〈~aα|α < λ〉 is such that for all α < λ, ~aα is weakly fixed by j.

Then there is ~b such that for all α < λ, ~aα E~b.

Lemma 27. Let X ⊆ Vλ+1 and let κ be good such that X is definable over Lκ(Vλ+1) from
aX ∈ Vλ+1 by a formula φX and for some ~a, rank(j, κ,~a) = κ. Then for Gα

x as defined in the
previous section, Gα

x is a normal j-closed game representation for X.
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Proof. Fix 〈κi| i < ω〉 increasing cofinal in λ. Let κ, ~a, aX and φX be as in the hypothesis.
First note that since there is no cofinal function f : Vλ+1 → Θ in L(Vλ+1), if x ∈ X is
such that II has a quasi-winning strategy in Gκ

x, then there is a γ < Θ such that II has a
quasi-winning strategy in Gκ

x[γ], the clocked game. And hence, for the same reason, for large
enough γ < Θ we have that for any x ∈ Vλ+1, II has a quasi-winning strategy in Gκ

x[γ] iff II
has a quasi-winning strategy in Gκ

x. Fix such a γ < Θ which is good, and ~a such that γ > κ,
rank(j, γ,~a) = γ, κ ∈ a0, and

rank(j, κ, 〈ai ∩ κ| i < ω〉 = κ.

We can find such γ and ~a by the proof of Theorem 23. Also assume that for all i < ω,
κi ∈ ai.

We claim that for any ~A∗ ∈ Aj(γ,~a), x ∈ X iff I has a quasi-winning strategy in

G∗x[κ, γ,~a, ~A
∗].

First suppose that x ∈ X, so I has a quasi-winning strategy in Gκ
x[γ]. We describe a

quasi6-winning strategy for I in the corresponding measure game G∗x[κ, γ,~a, ~A
∗]. First note

that since in, xn ∈ Vλ+1 for all n < λ, and snm ∈ λ for all n,m < ω, we only have to describe
how to play the ordinals ηn, since every other aspect of I’s strategy can remain the same.
This follows since for all i < ω, κi ∈ ai.

We have I play according to the following strategy. We keep track along the way of a play
u′ of the game Gκ

x[γ] which we are playing, and a modified version u of this game Gκ
x[γ] which

is the subplay of the play u∗ of the game G∗x[κ, γ,~a, ~A
∗], which we are actually interested in

playing. The basic idea is that once II makes a move, we extend u′ by that move and see
what I’s strategy says in the Gκ

x[γ] game. Then we translate I’s move to a move extending
u, and then use that move to extend u∗, along with an appropriate choice of ~c.

We define our strategy by induction on the length of the play u∗ ofG∗x[κ, γ,~a, ~A
∗]. Suppose

that i < ω and u∗ has length 2i, so it is I’s turn to play. Assume the following hold.

1. u′ and u are plays of the game Gκ
x[γ] of length 2i such that II’s moves are the same in

each play and are the restriction of II’s moves in u∗ to Gκ
x[γ].

2. u′ is a winning position for I in Gκ
x[γ].

3. The i, x, s components of u′, u, u∗ are all the same.

4. There is an order-preserving bijection fi−1,

fi−1 : {ηα(u′)|α < κi−1} ∪ {κ} → {ηα(u)|α < κi−1} ∪ {κ}

such that for all β ∈ domfi−1,

rank(j, fi−1(β),
〈
ci−1
n ∩ fi−1(β)|n < ω

〉
) ≥ β

6Below we will just say ‘strategy’, though we mean ‘quasi-strategy’.
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and fi−1(β) ∈
⋃
n c

i−1
n . Here we take ~c−1 = ~a. Also assume that for all β ∈ domfi−1,

fi−1(β) is the least β∗ ∈
⋃
nB

i−2
n such that for some ~d ∈ T F ( ~Bi−2),

rank(j, β∗, ~d) ≥ β.

Here ~B−2 = ~B−1 = ~A∗.

Now, since u′ is winning for I, let ū′ extend u′ by some winning move by I. We now
define ū from ū′ by making I’s move the same except for the η component. We define the η
component by first defining fi. For each β ∈ {ηα(ū′)|α < κi} ∪ {κ} we set fi(β) to be the

least β∗ ∈
⋃
nB

i−1
n such that for some ~d ∈ T F ( ~Bi−1),

rank(j, β∗, ~d) ≥ β.

Note that fi is indeed an order-preserving bijection onto its range which extends fi−1.
To see this note that

⋃
nB

i−2
n ⊇

⋃
nB

i−1
n . And hence for any β ∈ dom(fi) ∩ dom(fi−1),

fi(β) ≥ fi−1(β). On the other hand we have by induction that

rank(j, fi−1(β),
〈
ci−1
n ∩ f(β)|n < ω

〉
) ≥ β

and 〈
ci−1
n ∩ f(β) ∪ {f(β)}|n < ω

〉
∈ T F ( ~Bi−1).

Hence this witnesses that fi(β) ≤ fi−1(β) and so they are equal. We have that fi is order-

preserving since for β1 < β2, the least β∗1 ∈
⋃
nB

i−1
n such that for some ~d ∈ T F ( ~Bi−1),

rank(j, β∗1 ,
~d) ≥ β1 must be below the least β∗2 ∈

⋃
nB

i−1
n such that for some ~d′ ∈ T F ( ~Bi−1),

rank(j, β∗2 ,
~d′) ≥ β2 by definition of the rank function.

Now to define the η component of ū, for α < κi, set

ηα(ū) = fi(ηα(ū′)).

We can now define ū∗ extending u∗. We define the Gκ
x[γ] component of ū∗ to be the same

as ū. Set
~Ai[ū∗] =

〈
Bi−1
n ∩ LRκ(6·γ̄i−1)(Vλ+1)|n < ω

〉
(where ~B−1 = ~A∗ and γ̄−1 = γ̄). Finally let ~ci[ū∗] ∈ T F ( ~Bi−1) be such that for all β ∈ domfi,
fi(β) ∈

⋃
n c

i
n[ū∗] and

rank(j, fi(β),
〈
cin[ū∗] ∩ fi(β)|n < ω

〉
) ≥ β.

By Lemma 26 and the definition of fi, we can indeed find such a choice of ~ci[ū∗].
Now we can extend ū∗ by any legal play by II, correspondingly extending ū and ū′, and

clearly our induction hypothesis is satisfied at i+1. Hence we have specified a quasi-winning
strategy for I in G∗x[κ, γ,~a, ~A

∗].

Now suppose that I has a quasi-winning strategy in G∗x[κ, γ,~a, ~A
∗]. We will show that I

has a quasi-winnning strategy in Gκ
x[γ]. We do this by taking the plays by II and playing
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them (appropriately modified) against the strategy of I in G∗x[κ, γ,~a, ~A
∗] which we call σ∗.

Then our play in Gκ
x[γ] is just the restriction of the winning play in G∗x[κ, γ,~a, ~A

∗]. The proof
is very similar to the above proof of the converse.

We define our strategy by induction on i such that the length of the play u of Gκ
x[γ] has

length 2i. We assume by induction that the following hold.

1. u∗ is a play of G∗x[κ, γ,~a, ~A
∗] according to σ∗ of length 2i such that its restriction to

Gκ
x[γ] is exactly u in terms of I’s moves and in terms of the x component of II’s moves.

2. There are order-preserving bijections gi−1 and hi−1,

gi−1 : {βnm[u]|n+m < i} ∪ {κ} → {βnm[u∗]|n+m < i} ∪ {κ}

and
hi−1 : {γ̄n[u]|n < i} ∪ {γ} → {γ̄n[u∗]|n+m < i} ∪ {γ}

such that for all β ∈ domgi−1,

rank(j, gi−1(β),
〈
ai−1
n ∩ gi−1(β)|n < ω

〉
) ≥ β

and gi−1(β) ∈
⋃
n a

i−1
n . Also for all β ∈ domhi−1,

rank(j, hi−1(β),
〈
ai−1
n ∩ hi−1(β)|n < ω

〉
) ≥ β

and hi−1(β) ∈
⋃
n a

i−1
n . Here we take ~a−1 = ~a. Also assume that for all β ∈ domgi−1,

gi−1(β) is the least β∗ ∈
⋃
nA

i−1
n such that for some ~d ∈ T F ( ~Ai−1),

rank(j, β∗, ~d) ≥ β.

Here ~A−1 = ~A∗. We make the similar assumption about hi−1.

Now, we let ū∗ be an extension of u∗ with a play by I according to σ∗. We extend u to
ū by the corresponding response by I. Then given any extension of ū to u by some play by
II we extend (exactly as we did above) the functions gi−1 and hi−1 to gi and hi to define
γ̄[v∗] and the β component of v∗, where v∗ is the extension of ū∗ by a move by II. And we

similarly define ~Bi+1[v∗] and ~ai+1[v∗] as we did before.
In this way we have a quasi-winning strategy in Gκ

x[γ], which we wanted.

Now as an immediate consequence of Theorem 19 and Lemmas 11, 20 and 27 we have
our first main theorem.

Theorem 28. Assume that j : L(Vλ+1) → L(Vλ+1) is an I0 embedding. Then every subset
X ⊆ Vλ+1 such that X ∈ L(Vλ+1) satisfies the following in L(Vλ+1).

1. X is U(j)-representable.

2. X is j-Suslin.

3. X is weakly homogeneously j-Suslin.
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6 Uniform j-Suslin representations

We will now be working to show when uniform j-Suslin representations exist. Luckily it
turns out that all of our arguments from the previous sections uniformly depended on the
sequence ~λ which we chose to be increasing and cofinal in λ. The only other non-uniform
aspect of the above proofs was the parameter aX which we needed to define X. Hence it
seems that if we can eliminate this parameter we can obtain uniform versions of the above
representations for X. This is exactly what we will see below.

Since the arguments are exactly as before, we simply give the uniform definitions and
leave the modifications of the above arguments to the reader.

Suppose that κ, κ′ < δ1 < δ2, ~a is weakly fixed by j, and T is a uniform (j, κ)-Suslin
representation for X. Then we define the tree

S = MSδ1,δ2κ′,~a (T )

by
S(s) = MSδ1,δ2κ′,~a (T (s))

when s ∈ [λ]ω is cofinal. Note that if s, s′ ∈ [λ]ω and n are such that s � n = s′ � n then
the trees MSδ1,δ2κ′,~a (T (s)) and MSδ1,δ2κ′,~a (T (s′)) are the same below their nth level. Hence this
definition makes sense.

The following lemma is then immediate.

Lemma 29. Suppose that X ⊆ Vλ+1 is uniformly weakly (δ,~a)-homogeneously (j, κ)-Suslin

representable in LΘ(Vλ+1) by T and j(T ) = T . Then there is a κ′ > κ, δ′ > δ, and ~b such

that Vλ+1\X is uniformly weakly (δ′,~b)-homogeneously (j, κ′)-Suslin representable in L(Vλ+1)
by S and j(S) = S.

We can generalize the definition of sequentially j-Suslin as follows.

Definition 30. Let κ < Θ. Suppose that S is a tree on Fωκ (j) and that for all a ∈ [S],
Xa ⊆ Vλ+1 is uniformly (j, κ)-Suslin as witnessed by a tree T a. Furthermore assume that
there is a tree T on Fωκ (j) × Fωκ (j) such that for all a ∈ [S], T a = Ta, and for all ~κ ∈ [λ]ω

and ~x ∈ W~κ,
{(~κ � |~x|, a, b)| (a, 〈~κ � |~x|, (~x, b)〉 ∈ T} ∈ Fωκ (j).

Then we say that 〈Xa| a ∈ [S]〉 is sequentially uniformly (j, κ)-Suslin as witnessed by T .

The corresponding definition for the j-closed game representation is the following.

Definition 31. Fix κ < Θ. Suppose that X ⊆ Vλ+1 and for each ~κ increasing cofinal in λ,
G~κ is a (j, κ)-closed game representation for X as witnessed by T ~κ. Suppose T is such that
for all s ∈ [λ]<ω and b ∈ Ws, T (s)b = T ~κb for any ~κ such that ~κ � |s| = s. Then we say that
G is a uniform (j, κ)-closed game representation as witnessed by T .

We say that a uniform (j, κ)-closed game representation G is normal if there exists γ̄ and
~a such that for all ~κ ∈ [λ]ω, G~κ is normal, and this is witnessed by (γ̄,~a).
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We then define T̃ , W̃ , Z̃, and S̃ as before, and exactly as before we obtain the following.

Theorem 32. Suppose that X ⊆ Vλ+1 has a normal uniform j-closed game representation
G. Then X has a uniform weakly homogeneously j-Suslin representation. In fact for (γ̄,~a)
witnessing that G is normal, we have X = p[T̃ (s)γ̄,~a∅ ] for any s ∈ [λ]ω cofinal, and that T̃ γ̄,~a∅
is a uniform weakly (γ̄,~a)-homogeneously (j, γ̄)-Suslin representation for X.

Now we have the key fact of when normal uniform j-closed game representations exist.

Lemma 33. Let j : L(Vλ+1) → L(Vλ+1) be an I0 embedding. If X ⊆ Vλ+1 is such that for
some κ good, X is definable over Lκ(Vλ+1) from parameters in Vλ∪κ then there is a uniform
normal j-closed game representation for X.

So as before we have the following theorem.

Theorem 34. Let j : L(Vλ+1)→ L(Vλ+1) be an I0 embedding. If X ⊆ Vλ+1 is such that for
some κ good, X is definable over Lκ(Vλ+1) from parameters in Vλ ∪ κ then X is uniformly
weakly homogeneously j-Suslin representable in L(Vλ+1).

7 Applications

We now come to consequences of our results above. First of all by results in [3] we have the
following theorems.

Theorem 35. Suppose that I0 holds at λ and j : L(Vλ+1) → L(Vλ+1) is elementary. Then
for ~κ the critical sequence of j, if α < Θ is good then for some ᾱ < λ there is an elementary
embedding

Lᾱ(Mω[~κ] ∩ Vλ+1)→ Lα(Vλ+1).

Theorem 36. Suppose that I0 holds at λ,

j : L(Vλ+1)→ L(Vλ+1)

is elementary. Suppose g ∈ V is P-generic over Mω where P ∈ Mω. Also assume that
cof(λ)Mω [g] = ω. Then if α < Θ is good, for some ᾱ < λ there is an elementary embedding

Lᾱ(Mω[g] ∩ Vλ+1)→ Lα(Vλ+1).

We can also generalize the above results to the context of I#
0 . This generalization is

fairly standard and can be seen for instance in the proof of Inverse Limit Reflection at I0

in [4]. We only state the results here and leave the proof to the reader, which involves a
straightforward generalization of the above results as well as the results of [2].

Theorem 37. Assume that j : L(V #
λ+1, Vλ+1) → L(V #

λ+1, Vλ+1) be an I#
0 embedding. Then

every subset X ⊆ Vλ+1 such that X ∈ L(V #
λ+1, Vλ+1) satisfies the following in L(V #

λ+1, Vλ+1).
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1. X is U(j)-representable.

2. X is j-Suslin.

3. X is weakly homogeneously j-Suslin.

Theorem 38. Let j : L(V #
λ+1, Vλ+1) → L(V #

λ+1, Vλ+1) is an I#
0 embedding. If X ⊆ Vλ+1 is

such that for some κ good, X is definable over Lκ(V
#
λ+1, Vλ+1) from parameters in Vλ∪κ then

X is uniformly weakly homogeneously j-Suslin representable in L(V #
λ+1, Vλ+1).

Hence as above we obtain the following.

Theorem 39. Suppose that j : L(V #
λ+1, Vλ+1) → L(V #

λ+1, Vλ+1) is elementary, and g ∈ V is

P-generic over Mω, the ωth iterate of j, where P ∈ Mω. Also assume that cof(λ)Mω [g] = ω.
Then for some ᾱ < λ there is an elementary embedding

Lᾱ((Mω[g] ∩ Vλ+1)#,Mω[g] ∩ Vλ+1)→ Lα(V #
λ+1, Vλ+1).

As a corollary to this theorem and results independently shown by Dimonte-Friedman
[5] and Woodin (unpublished), we have the following result.

Theorem 40. Assume that there is an elementary embedding j : Lω(V #
λ+1) → Lω(V #

λ+1).
Then it is consistent that I0 holds at λ and the singular cardinal hypothesis fails at λ.

In addition, by a theorem of Shi-Woodin[6] the above results give a proof (alternative to
that found in [1]) of the perfect set property for subsets of Vλ+1.

The final consequence we mention is given by results in [8]. Let Γ∞ be the set of univer-
sally Baire sets of reals. The determinacy axiom LSA states that the largest Suslin cardinal
exist and is a Θα, that is a member of the Solovay sequence. By Corollary 168 of [8] we have
the following theorem.

Theorem 41. Suppose that λ is a limit of supercompact cardinals and there is a proper class
of Woodin cardinals. Suppose that I0 holds at λ. Let G ⊆ Coll(ω, λ) be V -generic. Then for

Γ∞G = (Γ∞)V [G] ∩ L(Vλ+1)[G]

we have that L(Γ∞G ) satisfies LSA.

Although G. Sargsyan recently showed that Con(LSA) follows from a Woodin limit of
Woodins, the above theorem gives an alternative proof of Con(LSA) from large cardinals.
We also obtain the following theorem, which shows a strong relationship between L(Vλ+1)
and models of determinacy after collapsing λ to ω.

Theorem 42. Suppose that λ is a limit of supercompact cardinals and there is a proper class
of Woodin cardinals. Suppose that I0 holds at λ. Let G ⊆ Coll(ω, λ) be V -generic. Then for

Γ∞G = (Γ∞)V [G] ∩ L(Vλ+1)[G]

we have that
ΘL(Vλ+1) = ΘL(Γ∞G ).
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Proof. To see that
ΘL(Vλ+1) ≤ ΘL(Γ∞G )

let α < Θ and let X ⊆ Vλ+1 code a prewellordering of Vλ+1 of ordertype at least α. We have
that X is U(j)-representable in L(Vλ+1), which implies that in L(Vλ+1)[G], X can be coded
as a subset Y ⊆ RL(Vλ+1)[G] such that Y is weakly homogeneously Suslin. Hence since there
is a proper class of Woodin cardinals, Y is universally Baire. And hence α < ΘL(Γ∞G ).

To see that
ΘL(Vλ+1) ≥ ΘL(Γ∞G )

we show that in L(Vλ+1)[G] there is no surjection f : Vλ+1 → ΘL(Vλ+1). Suppose this is not the
case, and let τ ∈ L(Vλ+1) be a term for f . Then we have that g : Vλ+1×Coll(ω, λ)→ ΘL(Vλ+1)

defined by g(x, p) = α iff p  τ(x) = α is clearly a surjection onto ΘL(Vλ+1). But g ∈ L(Vλ+1),
which is a contradiction. Hence the theorem follows.

References Cited

[1] Scott Cramer. UC Berkeley PhD thesis: Inverse limit reflection and the structure of
L(Vλ+1). 2012.

[2] Scott Cramer. Rank of fixed point measures. submitted, 2014.

[3] Scott Cramer. Generic absoluteness from tree representations in L(Vλ+1). submitted,
2015.

[4] Scott S. Cramer. Inverse limit reflection and the structure of L(Vλ+1). J. Math. Log.,
15(1):1550001 (38 pages), 2015.

[5] Vincenzo Dimonte and Sy-David Friedman. Rank-into-rank hypotheses and the failure
of GCH. Arch. Math. Logic, 53(3-4):351–366, 2014.

[6] Xianghui Shi. Axiom I0 and higher degree theory. Journal of Symbolic Logic, (to appear),
2014.

[7] John R. Steel. Scales in L(R). In Cabal seminar 79–81, volume 1019 of Lecture Notes in
Math., pages 107–156. Springer, Berlin, 1983.

[8] W. Hugh Woodin. Suitable extender models II: beyond ω-huge. J. Math. Log., 11(2):115–
436, 2011.

25


