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Abstract

We extend the results of Laver on using inverse limits to reflect
large cardinals of the form, there exists an elementary embedding
Lα(Vλ+1) → Lα(Vλ+1). Using these inverse limit reflection embed-
dings directly and by broadening the collection of U(j)-representable
sets, we prove structural results of L(Vλ+1) under the assumption that
there exists an elementary embedding j : L(Vλ+1) → L(Vλ+1). As a
consequence we show the impossibility of a generalized inverse limit
X-reflection result for X ⊆ Vλ+1, thus focusing the study of L(R)
generalizations on L(Vλ+1).

1 Introduction

The study of L(Vλ+1) is motivated primarily by the two goals of uncovering
the structure of large cardinal axioms just below the limitation of Kunen’s
Theorem and understanding the relationship between L(Vλ+1) and L(R).
In terms of the structure of large cardinals, one of the most basic questions,
which we consider here, is whether apparently stronger large cardinals reflect
weaker large cardinals. As for the relationship between L(Vλ+1) and L(R),
the basic impression at present is that the structure of L(Vλ+1) assuming an
elementary embedding j : L(Vλ+1)→ L(Vλ+1) with critical point less than λ
(we will always assume crit (j) < λ often without mention) is similar to the
structure of L(R) assuming ADL(R). Here we show the somewhat surprising
fact that a tool, inverse limits, originally used for reflecting large cardinals,
is useful in proving structural properties of L(Vλ+1) as well.
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Laver ([7], [8]) first introduced inverse limits in the study of rank into rank
embeddings. An inverse limit is an embedding Vλ̄+1 → Vλ+1 for some λ̄ < λ
which is built out of an ω-sequence of embeddings Vλ+1 → Vλ+1 (we give
the precise definition below). The basic question of inverse limits is to what
extent they extend to embeddings Lᾱ(Vλ̄+1) → Lα(Vλ+1), and inverse limit
reflection is the statement that an inverse limit does have such an extension
as long as the embeddings that make up the inverse limit are sufficiently
strong. In Section 3 we show that inverse limit reflection holds assuming
there is an elementary embedding L(Vλ+1)→ L(Vλ+1) (as well as more local
results). This result is enough to show that the existence of an elementary
embedding L(V #

λ+1) → L(V #
λ+1) implies that there is some λ̄ < λ such that

there is an elementary embedding L(Vλ̄+1)→ L(Vλ̄+1).
From inverse limit reflection we show a number of structural properties

of L(Vλ+1). In L(Vλ+1), let κ < Θ be a cardinal with cofinality bigger than
λ, and let α < λ be an infinite cardinal and Sα = {β < κ| cof(β) = α}.
Woodin showed that, assuming there exists an elementary embedding j :
L(Vλ+1) → L(Vλ+1), in L(Vλ+1) κ is measurable, as witnessed by the club
filter restricted to a stationary set. He also showed however that under the
same assumptions, if α > ω then it is consistent that the club filter restricted
to Sα is not an ultrafilter (this problem is part of a larger issue in studying
L(Vλ+1) which is the ‘right V ’ problem; see the remarks before Theorem
2.5). This leaves open the case of α = ω. We show, assuming there is an
elementary embedding

Lω+1(V #
λ+1)→ Lω+1(V #

λ+1)

with critical point less than λ, that Sω cannot be partitioned into two sta-
tionary sets which are in L(Vλ+1). Woodin showed a similar result follows
from U(j)-representations (see Section 6), but it is unclear at present if all
subsets of Vλ+1 in L(Vλ+1) have U(j)-representations.

This relationship between inverse limit reflection and the structure of
L(Vλ+1) has an interesting consequence. Suppose that X ⊆ Vλ+1 and there
exists an elementary embedding j : L(X, Vλ+1) → L(X, Vλ+1). Then one
might expect the analysis of L(Vλ+1) to carry over to L(X, Vλ+1), and that
this more general situation is really the appropriate area to study. We show,
however, that inverse limit X-reflection cannot hold in general, and that the
set of X ⊆ Vλ+1 such that inverse limit X-reflection holds is very restricted.
As inverse limit reflection is a very natural property one would expect of
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these structures, this fact highlights L(Vλ+1) and its extensions satisfying
inverse limit reflection as the most natural objects to study at this level.

Xianghui Shi and Woodin showed that the Perfect Set Property in L(Vλ+1)
follows from a forcing argument and the generic absoluteness of Theorem 6.4
(which follows from U(j)-representations). In Section 5 we prove an analo-
gous result using inverse limit reflection.

Some of the above structural results which we obtain from inverse limit
reflection were shown by Woodin to follow from U(j)-representations. In fact
he showed that even stronger reflection properties follow from these represen-
tations. The extent of U(j)-representable sets is however rather minimal at
present. The similarity in the structural consequences of inverse limit reflec-
tion and U(j)-representations suggests that there might be some connection
between the two. We make an initial step towards exploring this connection
in Section 6 by proving the Tower Condition using inverse limit techniques.

The above results evidence the potentially wide-ranging usefulness of in-
verse limits in the study of L(Vλ+1). These results also hint at a connection
between U(j)-representations and inverse limits which is currently unclear.

2 Basic Properties of L(Vλ+1)

We first give some background on L(Vλ+1) (for a more thorough introduction
and an alternative exposition of some of the results in Section 3, see [4]).

Lemma 2.1 (Kunen (see [5])). (ZFC) Suppose that α is such that there
exists an elementary embedding j : Vα → Vα. Then for λ = supi<ω κi where
κ0 = crit j and for i < ω, κi+1 = j(κi), we have

1. Either λ = α or λ+ 1 = α.

2. For all β such that crit j ≤ β < λ, j(β) > β.

Definition 2.2. Fix λ. Call an ordinal α good if every member of Lα(Vλ+1)
is definable over Lα(Vλ+1) from a member of Vλ+1. Define

Θ = Θλ := sup{α| (∃σ(σ : Vλ+1 → α is a surjection))L(Vλ+1)}.

Lemma 2.3. Fix λ a strong limit such that cof(λ) = ω. Then the following
hold:

1. L(Vλ+1) |= ZF + λ-DC.
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2. The good ordinals are cofinal in Θλ.

3. Θλ is regular in L(Vλ+1).

4. LΘλ(Vλ+1) |= ZF−.

5. Suppose that j : Lα(Vλ+1)→ Lβ(Vλ+1) is elementary for α good. Then
j is induced by j � Vλ.

Proof. 1, 3, and 4 are as in the L(R) case. For 2 and 5, see [8].

Woodin has shown that the structure of L(Vλ+1) under the assumption
that there is an elementary embedding L(Vλ+1) → L(Vλ+1) is similar in
many respects to the structure of L(R) assuming ADL(R). The following is a
selection of results to that effect.

Theorem 2.4 (Woodin [10]). Fix λ such that there exists an elementary
embedding j : L(Vλ+1)→ L(Vλ+1). Then the following hold in L(Vλ+1):

1. For cofinally many κ < Θλ, κ is measurable, and this is witnessed by
the club filter restricted to a stationary subset of κ.

2. If α < Θλ then P (α) ∈ LΘλ(Vλ+1).

While this Theorem suggests the two situations are similar, there are
important differences. One of the most important is the ‘right V ’ problem:
the theory of Vλ can be changed by small forcing, but the theory of Vω
cannot. Hence a property of L(Vλ+1) might depend on the theory of Vλ, and
thus not be provable from the existence of the elementary embedding alone.
The example of whether the club filter restricted to a certain cofinality is an
ultrafilter is an example of such a phenomenon.

Theorem 2.5 (Woodin). Fix λ and let κ < λ be an uncountable regular
cardinal. Let Sκ = {α < λ+| cof(α) = κ} and let F be the club filter on λ+.
If G ⊆ Coll(κ, κ+) is V -generic then

L(V [G]λ+1) |= F restricted to Sκ is not an ultrafilter.

In fact for any β < λ, there exists a poset P such that if G ⊆ P is V -generic
then in L(V [G]λ+1) there is a partition 〈Tα|α < γ〉 of Sκ into stationary sets
for some γ ≥ β, such that for all α < γ, F restricted to Tα is an ultrafilter.
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Note however that κ > ω is required, which leaves open the case of
κ = ω. Theorems 4.4 and 4.9 give partial evidence that perhaps F restricted
to Sω is an ultrafilter in L(Vλ+1), assuming there is an elementary embedding
L(Vλ+1)→ L(Vλ+1),

2.1 Inverse Limits

In this section we introduce the theory of inverse limits. These structures are
most readily used for reflecting large cardinal hypotheses of the form: there
exists an elementary embedding Lα(Vλ+1) → Lα(Vλ+1). The use of inverse
limits in reflecting such large cardinals is originally due to Laver [7]. For a
more thorough introduction see [7], [8], [1].

Suppose there exists an elementary embedding j : Vλ → Vλ. Then if
j extends to an elementary embedding j∗ : Vλ+1 → Vλ+1 we have j∗(A) =⋃
i j(A ∩ Vλi) for 〈λi| i < ω〉 any cofinal sequence in λ, as λ is a continuity

point. Hence any elementary embedding Vλ+1 → Vλ+1 can be coded as an
element of Vλ+1.

Suppose that 〈ji| i < ω〉 is a sequence of elementary embeddings such that
the following hold:

1. For all i, ji : Vλ+1 → Vλ+1 is elementary.

2. There exists λ̄ < λ such that

crit j0 < crit j1 < · · · < λ̄

and limi<ω crit ji = λ̄.

Then we can form the inverse limit

J = j0 ◦ j1 ◦ · · · : Vλ̄ → Vλ

by setting
J(a) = lim

i→ω
(j0 ◦ · · · ◦ ji)(a)

for any a ∈ Vλ̄. J : Vλ̄ → Vλ is elementary, and can be extended to a Σ0-
embedding J∗ : Vλ̄+1 → Vλ+1 by J(A) =

⋃
i J(A ∩ Vλ̄i) for

〈
λ̄i| i < ω

〉
any

cofinal sequence in λ̄. Furthermore by a theorem of Laver [7], if for all i, ji
extends to an elementary embedding Vλ+1 → Vλ+1, then J∗ is elementary. We
will always assume that J∗ : Vλ̄+1 → Vλ+1 is elementary and define the inverse
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limit of 〈ji| i < ω〉 to be J = J∗ : Vλ̄+1 → Vλ+1. But we will sometimes treat
J as if it were an element of Vλ+1. We write λ̄J for the unique λ̄ such that
J : Vλ̄+1 → Vλ+1. We will often drop the sequence 〈ji| i < ω〉 in our notation
when talking about the inverse limit J , though the sequence is not unique
for a given inverse limit J (for instance, by simply grouping the embeddings
as, say, J = (j0 ◦ j1) ◦ j2 ◦ · · · ); it will always be clear from context which
embeddings we mean when referring to 〈ji| i < ω〉.

Suppose J = j0 ◦ j1 ◦ · · · is an inverse limit. Then for i < ω we write
Ji := ji ◦ ji+1 ◦ · · · , the inverse limit obtained by ‘chopping off’ the first i
embeddings. For i, n < ω we write

J (i) := (j0 ◦ · · · ◦ ji)(J), J (i)
n = (j0 ◦ · · · ◦ ji)(Jn),

and
j(i)
n := (j0 ◦ · · · ◦ ji)(jn).

Then we can rewrite J in the following useful ways:

J = j0 ◦ j1 ◦ · · · = · · · (j0 ◦ j1)(j2) ◦ j0(j1) ◦ j0

= · · · j(1)
2 ◦ j

(0)
1 ◦ j0

and

J = j0 ◦ J1 = j0(J1) ◦ j0 = J
(0)
1 ◦ j0

= (j0 ◦ · · · ◦ ji−1)(Ji) ◦ j0 ◦ · · · ◦ ji−1 = J
(i−1)
i ◦ j0 ◦ · · · ◦ ji−1

for any i > 0. Hence we can view an inverse limit J as a direct limit (see
Figure 2.1), though both perspectives are useful in different situations. We
let E be the set of inverse limits. So

E = {(J, 〈ji| i < ω〉)| J = j0 ◦ j1 ◦ · · · : Vλ̄J+1 → Vλ+1}.

Lemma 2.6. If (K,~k) ∈ E and A ∈ Vλ+1 are such that A ∈ rngK, then for
all i, A ∈ rng (k0 ◦ · · · ◦ ki).

Proof. It is enough to see this for any A ∈ Vλ. But then there is an Ā and
an n such that

K(Ā) = (k0 ◦ · · · ◦ kn)(Ā) = A,

and for all i > n, ki(Ā) = Ā. Hence for all i we have that A ∈ rng (k0 ◦ · · · ◦
ki).
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Figure 1: Direct limit decomposition of an inverse limit.
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Suppose j, k : Vλ+1 → Vλ+1. Then we say k is a square root of j if k(k) = j
(thinking of k and j as elements of Vλ+1, so actually k(k � Vλ) = j � Vλ).
We use the same terminology for j, k : Lα(Vλ+1) → Lα(Vλ+1) where α is
good. We have the following ‘square root lemma’ which says that strength of
the embedding gives a large number of square roots. This is the key lemma
which takes advantage of the strength of our embeddings, and we will use
many variations of it below.

Lemma 2.7 (Martin). Suppose α is good. If j : Lα+1(Vλ+1) → Lα+1(Vλ+1)
is elementary then for all A,B ∈ Vλ+1 and β < crit (j) there exists a k :
Lα(Vλ+1) → Lα(Vλ+1) such that k is a square root of j, k(A) = j(A), B ∈
rng k and β < crit (k) < crit (j).

Proof. Given α, j, A, B, and β as in the hypothesis, we want to show that
Lα+1(Vλ+1) |= ∃k : Vλ → Vλ which induces k̂ : Lα(Vλ+1) → Lα(Vλ+1) such
that

β < crit k < crit j, j(A) = k(A) and B ∈ rng (k).

Note that since α is good, an elementary embedding k : Lα(Vλ+1)→ Lα(Vλ+1)
is induced by k � Vλ. Applying j, this is equivalent to Lα+1(Vλ+1) |= ∃k :
Vλ → Vλ which induces k̂ : Lα(Vλ+1) → Lα(Vλ+1) such that j(β) < crit k <
crit j(j), j(j)(j(A)) = k̂(j(A)) and j(B) ∈ rng (k̂). But j � Vλ satisfies this
second statement. So we are done by elementarity of j.

Note that we can replace A and B with any sequence of length less than
crit j by coding. We will do so below without any comment.

Define

Eα = {(J,~j) ∈ E| ∀i < ω (ji extends to an elementary embedding

ĵi : Lα(Vλ+1)→ Lα(Vλ+1))}.

Lemma 2.8 (Laver). Suppose there exists an elementary embedding

j : Lα+1(Vλ+1)→ Lα+1(Vλ+1)

where α is good. Then Eα 6= ∅.

Proof. Inductively define ji as follows, repeatedly using Lemma 2.7. Let j0

be such that crit j0 < crit j and j0 : Lα(Vλ+1) → Lα(Vλ+1) is elementary.
Having chosen

j0, . . . , ji : Lα(Vλ+1)→ Lα(Vλ+1)
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such that
crit j0 < crit j1 < · · · < crit ji < crit j,

let ji+1 be such that
crit ji < crit ji+1 < crit j

and ji+1 extends to ji+1 : Lα(Vλ+1)→ Lα(Vλ+1).
Then clearly we have that

crit j0 < crit j1 < · · · < crit j

and hence limi→ω crit ji = λ̄ < λ for some λ̄. Let J = j0 ◦ j1 ◦ · · · .

There is a corresponding square root lemma for inverse limits. Suppose

(J, 〈ji〉), (K, 〈ki〉) ∈ E .

Then we say that K is a limit root of J if there is n < ω such that λ̄J = λ̄K
and

∀i < n (ki = ji) and ∀i ≥ n (ki(ki) = ji).

We say K is an n-close limit root of J if n witnesses that K is a limit root
of J . We also say that K and J agree up to n if for all i < n, ji = ki.

Lemma 2.9 (Laver [7]). Suppose α is good. If (J,~j) ∈ Eα+1 then for all

Ā ∈ Vλ̄+1 and B ∈ Vλ+1 there exists a (K,~k) ∈ Eα such that K is a limit root
of J , K(Ā) = J(Ā) and B ∈ rngK.

While Laver’s original statement did not include the notion of being a
limit root, the proof is identical.

Proof. We use Lemma 2.7 ω-many times to j0, j1, . . . in succession. Define
k0, k1, . . . by induction as follows. Let k0 : Lα(Vλ+1)→ Lα(Vλ+1) be given by
Lemma 2.7 such that B ∈ rng k0 and for all i

j0((j1 ◦ · · · ◦ ji)(Ā)) = k0((j1 ◦ · · · ◦ ji)(Ā)).

After defining k0, . . . , kn let kn+1 : Lα(Vλ+1)→ Lα(Vλ+1) be given by Lemma
2.7 such that

(k0 ◦ · · · ◦ kn)−1(B) ∈ rng kn+1,

crit jn < crit kn+1 < crit jn+1 and for all i

jn((jn+1 ◦ · · · ◦ jn+i)(Ā)) = kn((jn+1 ◦ · · · ◦ jn+i)(Ā)).
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A calculation shows that crit k0 < crit k1 < · · · < λ̄, limi→ω crit (ki) = λ̄, and
for

K := k0 ◦ k1 ◦ · · ·

we have K(Ā) = J(Ā) and B ∈ rngK:
To see that K(Ā) = J(Ā), note that it is enough to see that for all

β < λ̄, if Ā′ = Ā ∩ Vβ, then K(Ā′) = J(Ā′). Let n be large enough so that
crit (kn) > β. Then we have that

J(Ā′) = (j0 ◦ · · · ◦ jn−1)(Ā′)

= (j0 ◦ · · · ◦ jn−2)(kn−1(Ā′))

= (j0 ◦ · · · ◦ jn−3)((kn−2 ◦ kn−1)(Ā′)) = · · ·
= (k0 ◦ · · · ◦ kn−1)(Ā′) = K(Ā′)

To see that B ∈ rngK, let κ̄i = crit ki and set κi = K(κ̄i). It is enough
to see that for all i < ω, if B′ = B ∩ Vκi , then B′ ∈ rngK. Let i < ω. Then
we have that (k0 ◦ · · · ◦ ki)−1(B′) is defined since

K(κ̄i) = (k0 ◦ · · · ◦ ki)(κ̄i).

But then we have that

K((k0 ◦ · · · ◦ ki)−1(B′)) = B′,

which is what we wanted.

A key difference between embeddings for square roots and being a limit
root for inverse limits is that if k(k) = j then crit k < crit j whereas if K is a
limit root of J then critK ≤ crit J . So while there is no sequence k0, k1, . . .
such that for all i < ω, ki+1(ki+1) = ki, we have the following lemma for limit
roots.

Lemma 2.10. Suppose that α is good and (J,~j) ∈ Eα+ω. Then there exists

a sequence
〈

(Ki, ~ki)| i < ω
〉

such that the following hold:

1. K0 = J .

2. For all i, (Ki, ~ki) ∈ Eα.

3. For all i, Ki+1 is a limit root of Ki.
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Proof. Let (J,~j) ∈ Eα+ω. Set K0 = J , and choose (Km+1, ~km+1) by induction

as follows. Suppose that (K0, ~k0), . . . , (Km, ~km) have been chosen so that

(Km, ~km) ∈ Eα and there exists 〈nmi | i < ω〉 such that for all i < ω, nmi < ω,
kmi extends to

k̂mi : Lα+nmi
(Vλ+1)→ Lα+nmi

(Vλ+1),

and limi→ω n
m
i = ∞. Let i be large enough so that for all i′ ≥ i, nmi′ > 0.

Then by the proof of Lemma 2.9, there is Km+1 which is an i-close limit root
of Km such that for all i′ ≥ i, km+1

i′ extends to

k̂m+1
i′ : Lα+nm

i′ −1(Vλ+1)→ Lα+nm
i′ −1(Vλ+1).

We have that
lim
i→ω

(nmi − 1) =∞,

and hence we can continue the induction. The sequence we produce〈
(Ki, ~ki)| i < ω

〉
clearly satisfies the lemma.

Of course, if we considered the more restrictive notion of being a 0-close
limit root, then such sequences as in Lemma 2.10 would indeed be impossible.
We will see though that the added benefit afforded by Lemma 2.10 will be
very useful. As a first example, we obtain sets of inverse limits which are in
a sense closed under the square root lemma.

Definition 2.11. Suppose E ⊆ E. Then we say that E is saturated if
for all (J,~j) ∈ E there exists an i < ω such that for all A ∈ Vλ̄J+1, and

B ∈ Vλ+1, there exists (K,~k) ∈ E such that K is an i-close limit root of J ,
Ki(A) = Ji(A) and B ∈ rngKi. We set i(E, J) = the least such i.

Note that if K is an i-close limit root of J and Ki(A) = Ji(A) then
K(A) = J(A). However, we cannot conclude that B ∈ rngK if B ∈ rngKi.
For instance if i = 1 then we always have that crit (J) = crit (K) /∈ rngK.

We will use the same terminology of being saturated for E such that there
is α good such that for all (J,~j) ∈ E and i < ω, ji : Lα(Vλ+1)→ Lα(Vλ+1) is
elementary.

As a corollary to the proof of Lemma 2.10 we have:
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Corollary 2.12. Suppose that α is good and (J,~j) ∈ Eα+ω. Then there exists
a saturated set E ⊆ Eα such that (J,~j) ∈ E.

Proof. Let E be the set of all (K,~k) ∈ Eα such that there exists a sequence
〈ni| i < ω〉 such that limi→ω ni =∞ and for all i < ω, ni < ω and ki extends
to

k̂i : Lα+ni(Vλ+1)→ Lα+ni(Vλ+1).

Since (J,~j) ∈ Eα+ω we must have that (J,~j) ∈ E. So the lemma follows by
the proofs of Lemmas 2.9 and 2.10.

In fact we actually proved the following stronger result, which allows us to
conclude that the existence of a saturated E ⊆ Eα follows from the existence
of an elementary embedding Lα+ω(Vλ+1)→ Lα+ω(Vλ+1).

Corollary 2.13. Suppose that α is good and (J,~j) ∈ Eα is such that for all
i < ω there is an ni such that ji extends to

ĵi : Lα+ni(Vλ+1)→ Lα+ni(Vλ+1)

and limi→ω ni = ω. Then there exists a saturated set E ⊆ Eα such that
(J,~j) ∈ E.

Lemma 2.14. Suppose E ⊆ E is saturated. Let (J,~j) ∈ E, Ā ∈ Vλ̄J+1, and
suppose

J(Ā) = A ∈ Vλ+1.

Set
E(Ā, A) = {(K,~k) ∈ E|K(Ā) = A}.

Then E(Ā, A) is saturated.

Proof. Suppose (K,~k) ∈ E(Ā, A). Then (K,~k) ∈ E, so there is i < ω such

that for all C ∈ Vλ̄J+1 and B ∈ Vλ+1 there exists (K ′, ~k′) ∈ E, an i-close
limit root of K such that Ki(C) = K ′i(C) and B ∈ rngK ′i. But then i is such
that for all C ∈ Vλ̄J+1 and B ∈ Vλ+1 there exists K ′ ∈ E, an i-close limit
root of K such that Ki(C) = K ′i(C), K ′i(Ā) = Ki(Ā) = A and B ∈ rngK ′i.

So K ′(Ā) = K(Ā) = A and hence (K ′, ~k′) ∈ E(Ā, A). Hence E(Ā, A) is
saturated.

Finally note that if k(k) = j and A ∈ rng k, then k(A) = j(A). To see
this suppose k(B) = A, and notice

k(A) = k(k(B)) = k(k)(k(B)) = j(k(B)) = j(A).
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2.2 Sequences of inverse limits

We will show in this section that sequences of inverse limit roots have a pow-
erful continuity property. We will use this property many times below. As

usual, we often write 〈Ki| i < ω〉 instead of
〈

(Ki, ~ki)| i < ω
〉

for a sequence

of inverse limits, with the underlying embeddings being understood.

Lemma 2.15. Suppose 〈Ki| i < ω〉 is such that for all i, Ki+1 is a limit root
of Ki. Then there exists an increasing sequence 〈in|n < ω〉 such that for all
n < ω and s ≥ in, we have that ksn = kinn .

Proof. Suppose the lemma does not hold and n is least such that there is no
in such that for all s > in, ksn = kinn . Then there is a sequence 〈si| i < ω〉
such that 〈ksin | i < ω〉 is such that for all i > 0 there exists an m such that

(ksin )(m) = ksi−1
n

where we write j(m) for the m-th iterate of an embedding j. But there can
be no such sequence since for all i > 0, crit (ksin ) < crit (k

si−1
n ). So the lemma

follows.

For 〈Ki| i < ω〉 such that there exists 〈in|n < ω〉, an increasing sequence
satisfying that for all n < ω and s ≥ in, ksn = kinn , we call

K = ki00 ◦ ki11 ◦ · · ·

the common part of 〈Ki| i < ω〉, and

〈in|n < ω〉

a common part index sequence for 〈Ki| i < ω〉.
The following is a key continuity property of inverse limit sequences.

Lemma 2.16. Suppose that for i < ω, (J i,~ji) ∈ E. And suppose the common
part of 〈J i| i < ω〉 is K and λ̄J0 = λ̄K = λ̄. Then for all Ā ∈ Vλ̄+1 such that
for all i, J0(Ā) = J i(Ā), we have K(Ā) = J0(Ā).

Proof. Let J0(Ā) = A and let 〈in|n < ω〉 be a common part index sequence
for 〈J i| i < ω〉. It is enough to show that for cofinally many κ̄ < λ̄, K(Ā ∩
Vκ̄) = A ∩ Vκ, where κ = K(κ̄). Let κ̄ < λ̄, and let n < ω be least such that
crit (kn) > κ̄. Then we have that

K(Ā ∩ Vκ̄) = (k0 ◦ · · · ◦ kn−1)(Ā ∩ Vκ̄).

13



On the other hand, for some κ∗ < λ,

A∩ Vκ∗ = J in(Ā∩ Vκ̄) = (jin0 ◦ · · · ◦ jinn−1)(Ā∩ Vκ̄) = (k0 ◦ · · · ◦ kn−1)(Ā∩ Vκ̄).

And hence κ∗ = K(κ̄), and K(Ā ∩ Vκ̄) = A ∩ Vκ∗ , as desired.

It is possible that if K is the common part of 〈J i| i < ω〉 then λ̄K < λ̄J0 .
To avoid this possibility, we can fix a sequence

〈
λ̄n|n < ω

〉
cofinal in λ̄J0 .

Then we add to our requirement on J i+1 that for all m < ω if n is largest
such that crit jim > λ̄n, then crit ji+1

m > λ̄n. In this case we say that J i+1 is a
limit root of J i, supported by

〈
λ̄n|n < ω

〉
.

Definition 2.17. Suppose E ⊆ E is a set of inverse limits. Then we let
CL(E) be the set

CL(E) = {(K,~k) ∈ E| ∃ ~K (K is the common part of ~K, λ̄K = λ̄K0 , and

∀i < ω ((Ki, ~ki) ∈ E))}.

3 Inverse Limit Reflection

A fundamental question of inverse limits is to what extent they extend to
strong reflection embeddings. We introduce some terminology which identi-
fies the various forms of reflection as obtained by inverse limits.

Definition 3.1. We define inverse limit reflection at α to mean the following:
There exists λ̄, ᾱ < λ and a saturated set E ⊆ E such that for all (J,~j) ∈ E,
J extends to Ĵ : Lᾱ(Vλ̄+1)→ Lα(Vλ+1) which is elementary.

We define strong inverse limit reflection at α to mean the following: There
exists λ̄, ᾱ < λ and a saturated set E ⊆ E such that for all (J,~j) ∈ CL(E),
J extends to Ĵ : Lᾱ(Vλ̄+1)→ Lα(Vλ+1) which is elementary.

We will also need the notion of inverse limit X-reflection where X ⊆ Vλ+1.
As before we let

E(X) = {(J, 〈ji| i < ω〉)| ∀i (ji : (Vλ+1, X)→ (Vλ+1, X)) and

J = j0 ◦ j1 ◦ · · · : (Vλ̄+1, X̄)→ (Vλ+1, X) is Σ0}.

Here we let X̄ = J−1[X]. We modify the definition of saturated to X-
saturated, requiring in addition that J−1[X] = K−1[X].
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Definition 3.2. Suppose X ⊆ Vλ+1. We define inverse limit X-reflection at
α to mean the following: There exists λ̄, ᾱ < λ, X̄ ⊆ Vλ̄+1 and an X-saturated

set E ⊆ E(X) such that for all (J,~j) ∈ E, J extends to Ĵ : Lᾱ(X̄, Vλ̄+1) →
Lα(X, Vλ+1) which is elementary.

We define strong inverse limit X-reflection at α to mean the following:
There exists λ̄, ᾱ < λ, X̄ ⊆ Vλ̄+1 and an X-saturated set E ⊆ E(X) such that

for all (J,~j) ∈ CL(E), J extends to Ĵ : Lᾱ(X̄, Vλ̄+1) → Lα(X, Vλ+1) which
is elementary.

Note that we cannot immediately conclude elementarity of

J : (Vλ̄+1, X̄)→ (Vλ+1, X)

as X̄ depends on J in general. And in fact we will show that inverse limit
X-reflection does not hold in general.

Theorem 3.3. Suppose there exists an elementary embedding j : L(Vλ+1)→
L(Vλ+1). Then there exists λ̄ < λ such that for all α < Θλ, there exists ᾱ
such that

Lᾱ(Vλ̄+1) ≡ Lα(Vλ+1).

Proof. Suppose that α < Θλ is good, ρ : Vλ+1 → Lα(Vλ+1) is a surjection
definable over Lα+1(Vλ+1), with X ⊆ Vλ+1 the preimage. Let G ⊆ Coll(ω, λ)
be V -generic.

Let E ⊆ Eα+1 be saturated and (J,~j) ∈ E. Let ~λ be cofinal in λ̄J = λ̄.
In V [G], let 〈ai| i < ω〉 be an enumeration of Vλ̄+1, and let 〈φi| i < ω〉 be
an enumeration of all formulas in the language (∈). We define sequences
〈J i| i < ω〉, 〈ni| i < ω〉 in V [G] with the following properties:

1. J0 = J . For all i < ω, J i ∈ E and J i+1 is a limit root of J i, supported
by ~λ.

2. 〈ni| i < ω〉 is increasing, and for all i < ω, for all n ≤ ni, J
i+1(an) =

J i(an).

3. For all i0 < ω, suppose that Lα(Vλ+1) |= ∃xφ(x, ~B) where

~B =
〈
ρ(J i0(as1)), . . . , ρ(J i0(asm))

〉
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and for all i < m, si ≤ i0 and ∃xφ(x, ~X) is the formula φi for some

i < i0. Then for some b which is a witness to φ with parameter ~B, we
have

ρ(J i0+1(at̄)) = b

and ni0+1 ≥ t̄.

Note that we can arrange (3) as follows. Suppose that i0 < ω and

Lα(Vλ+1) |= ∃xφ(x, ~B),

where
~B =

〈
ρ(J i0(as1)), . . . , ρ(J i0(asm))

〉
.

Let i be such that for all A ∈ Vλ̄+1 and B ∈ Vλ+1, there exists (K,~k) ∈ E,
with K an i-close limit root of J i0 , Ki(A) = J i0i (A) and B ∈ rngKi. Pulling
back by ji00 ◦ · · · ◦ ji0i−1, we have

Lα(Vλ+1) |= ∃xφ(x, ~Bi),

where
~Bi =

〈
ρ(J i0i (as1)), . . . , ρ(J i0i (asm))

〉
.

Let b be a witness to φ with parameter ~Bi. Then if (K,~k) ∈ E is an i-close
limit root of J i0 , satisfies (2), and for some t̄, ρ(Ki(at̄)) = b then

Lα(Vλ+1) |= φ(ρ((ji00 ◦ · · · ◦ ji0i−1)(b)), ~B).

To arrange (3), we simply work with the finitely many ~B and φ required by
(3) simultaneously.

Let J∗ be the common part of 〈J i| i < ω〉. Then by (2) and Lemma 2.16
we have that J∗ : Vλ̄+1 → Vλ+1 since for all a ∈ Vλ̄+1, there is an n such that
an = a. And hence for i large enough, we have that J∗(an) = J i(an) ∈ Vλ+1.

Let M = ρ[J∗[Vλ̄+1]]. We claim that M ≺ Lα(Vλ+1). But this follows
immediately from condition (3). Furthermore, M is wellfounded. Let M̄ be
the transitive collapse of M and let π be the inverse of the transitive collapse.
We have that Vλ̄+1 = π−1[Vλ+1], and hence by condensation, we have that
M̄ = Lᾱ(Vλ̄+1) for some ᾱ. So Lᾱ(Vλ̄+1) ≡ Lα(Vλ+1). But, by absoluteness,
in V we have that Lᾱ(Vλ̄+1) ≡ Lα(Vλ+1), which is what we wanted.
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For the next theorem we use Jensen’s J-hierarchy to stratify L(Vλ+1).
We will also use the following notation: Suppose that α is least such that
Jα(Vλ+1) |= φ[A] where φ is Σ1 and A ∈ Vλ+1. Then we say that (A, φ) tags
α (over Vλ+1). If such a tag exists then there is a partial map ρ : Vλ+1 →
Jα(Vλ+1) which is a surjection, Σ1-definable over Jα(Vλ+1) (see Steel [9]). We
similarly define ρ̄ over Jᾱ(Vλ̄+1).

Based on the proof of Theorem 3.3, we fix some terminology which will
be useful in the following theorems.

Definition 3.4. Fix E ⊆ E saturated, α good, and J ∈ E. Set λ̄ = λ̄J
and let ~λ be cofinal in λ̄. Fix 〈φi| i < ω〉, an enumeration of all formulas in
the language (∈). We define a forcing P(E,α, J). Conditions are elements
(〈J i, ni| i < m〉 , 〈ai| i < nm−1〉) where m ≥ 1 and the following hold.

1. J0 = J . For all i < m − 1, J i+1 is a limit root of J i supported by ~λ,
and J i+1 ∈ E.

2. 〈ni| i < m〉 ∈ ωm is an increasing sequence.

3. For all i < nm−1, ai ∈ Vλ̄J+1.

4. For all 1 ≤ m′ < m, and i < nm′−1, Jm
′−1(ai) = Jm

′
(ai).

5. For all m′ < m− 1, suppose that Lα(Vλ+1) |= ∃xφ(x, ~B) where

~B =
〈
ρ(Jm

′
(as1)), . . . , ρ(Jm

′
(asn))

〉
and for all i < n, si ≤ m′ and ∃xφ(x, ~X) is the formula φi for some

i < m′. Then for some b which is a witness to φ with parameter ~B, we
have

ρ(Jm
′+1(at̄)) = b

for some t̄ < nm′+1.

For

(
〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉) and (

〈
Ki, n′i| i < m′

〉
,
〈
a′i| i < n′m′−1

〉
)

in P(E,α, J) we put

(
〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉) ≥P(E,α,J) (

〈
Ki, n′i| i < m′

〉
,
〈
a′i| i < n′m′−1

〉
)

iff
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1. m ≤ m′,

2. for all i < m, J i = Ki, ni ≤ n′i, and for all s < nm−1, as = a′s.

Suppose that
g ⊆ P(E,α, J)

is L(Vλ+1)-generic. Then clearly in L(Vλ+1)[g] we obtain a unique sequence
〈J i| i < ω〉 from g such that for all i, J i+1 is a limit root of J i. We set Jg to
be the common part of 〈J i| i < ω〉.

Lemma 3.5. Assume we are in the situation of Definition 3.4. Suppose that

g ⊆ P(E,α, J)

is L(Vλ+1)-generic. Then Jg maps Vλ̄+1 → Vλ+1, and there exists an ᾱ such
that Jg extends to an elementary embedding

Ĵg : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Proof. This follows exactly as in the proof of Theorem 3.3.

Lemma 3.6. Assume we are in the situation of Definition 3.4. Suppose that

(
〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉) ∈ P(E,α, J)

and there exists ᾱ such that

(
〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉)  J ġ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) is elementary.

Then Jm−1 extends to an elementary embedding Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Proof. We assume for simplicity of notation that m = 1. So we have

p := (〈J, n0〉 , 〈ai| i < n0〉) ∈ P(E,α, J)

and there exists ᾱ such that

(〈J, n0〉 , 〈ai| i < n0〉)  J ġ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) is elementary.

We extend J to a map Ĵ as follows. Suppose that B̄ ∈ Vλ̄+1, B ∈ Vλ+1,
b̄ ∈ Jᾱ(Vλ̄+1), b ∈ Jα(Vλ+1), and φ are such that J(B̄) = B, and b is the
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unique element of Jα(Vλ+1) such that Jα(Vλ+1) |= φ(b, B) and b̄ is the unique
element of Jᾱ(Vλ̄+1) such that Jᾱ(Vλ̄+1) |= φ(b̄, B̄). Then set Ĵ(b̄) = b.

We need to check that Ĵ : Jᾱ(Vλ̄+1) → Jα(Vλ+1) is well-defined, total,
and elementary. The proofs of each of these facts are very similar. First we
check that Ĵ is well-defined. Suppose that B̄1, B1, φ1 witness that Ĵ(b̄) = b1

and B̄2, B2, φ2 witness that Ĵ(b̄) = b2. Let p′ ≤P(E,α,J) p be the condition

p′ = (〈J, n0 + 2〉 , 〈ai| i < n0〉a
〈
B̄1, B̄2

〉
).

Then
p′  J ġ(B̄1) = B1 ∧ J ġ(B̄2) = B2,

and hence
p′  b1 = Ĵ ġ(b̄) = b2.

So b1 = b2 by absoluteness, which is what we wanted.
Now we check that Ĵ is total. We first show that ᾱ is (λ̄-)good. Let

b̄ ∈ Jᾱ(Vλ̄+1). Suppose p ∈ g ⊆ P(E,α, J) is L(Vλ+1)-generic and Ĵg(b̄) =
b ∈ Jα(Vλ+1). Then since α is good there exists a B ∈ Vλ+1 such that
Jα(Vλ+1) |= b is the unique element such that φ(b, B). Hence

Jα(Vλ+1) |= ∃B′ ∈ Vλ+1(b is the unique element such that φ(b, B′)).

But then by elementarity of Jg,

Jᾱ(Vλ̄+1) |= ∃B̄′ ∈ Vλ̄+1(b̄ is the unique element such that φ(b̄, B̄′)).

So this shows that ᾱ is good.
To see that Ĵ is total, let b̄ ∈ Jᾱ(Vλ̄+1) and let B̄ and φ be such that

Jᾱ(Vλ̄+1) |= b̄ is the unique element such that φ(b̄, B̄). Set B = J(B̄). Let
p′ ≤P(E,α,J) p be the condition

p′ = (〈J, n0 + 1〉 , 〈ai| i < n0〉a
〈
B̄
〉
).

Then
p′  J ġ(B̄) = B,

and hence

p′  Jα(Vλ+1) |= J ġ(b̄) is the unique element such that φ(J ġ(b̄), B).
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Let p′′ ≤P(E,α,J) p
′ be such that for some b ∈ Jα(Vλ+1), p′′  J ġ(b̄) = b. But

then by absoluteness we have that

Jα(Vλ+1) |= b is the unique element such that φ(b, B).

So we must have that Ĵ(b̄) = b.
To see that Ĵ is elementary, suppose that b̄ ∈ Jᾱ(Vλ̄+1) and ψ is a formula.

Let B̄ and φ be such that Jᾱ(Vλ̄+1) |= b̄ is the unique element such that

φ(b̄, B̄). Set b = Ĵ(b̄) and B = J(B̄). Let p′ ≤P(E,α,J) p be the condition

p′ = (〈J, n0 + 1〉 , 〈ai| i < n0〉a
〈
B̄
〉
).

Then
p′  J ġ(B̄) = B ∧ Ĵ ġ(b̄) = b,

and hence
p′  Jᾱ(Vλ̄+1) |= ψ(b̄) ⇐⇒ Jα(Vλ+1) |= ψ(b).

But by absoluteness Jᾱ(Vλ̄+1) |= ψ(b̄) ⇐⇒ Jα(Vλ+1) |= ψ(b), which is what
we wanted.

So Ĵ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) is an elementary embedding, as desired.

Theorem 3.7. Suppose that there exists an elementary embedding

j : LΘ(Vλ+1)→ LΘ(Vλ+1).

Then inverse limit reflection holds at α for all α < Θ.

Proof. It is enough to show that for all α < Θ good, inverse limit reflection
holds at α, since if inverse limit reflection holds at α good then it holds at
all β ≤ α. So assume that α < Θ is good. Since there exists an elementary
embedding j : L(Vλ+1)→ L(Vλ+1), there must exist a saturated set E ⊆ Eα.
Fix J ∈ E.

Let
p = (

〈
J i, ni| i < m

〉
, 〈ai| i < nm−1〉) ∈ P(E,α, J)

be a condition such that for some ᾱ

p  J ġ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1) is elementary.

Then we have that Jm−1 extends to an elementary embedding Jᾱ(Vλ̄+1) →
Jα(Vλ+1). Let Ep be the set of inverse limits K ∈ E such that for some
q ≤P(E,α,J) p if

q = (
〈
Ki, n′i| i < m′

〉
, 〈a′i| i < nm′−1〉)
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then K = Km′−1.
Clearly by definition of P(E,α, J) we have that Ep is saturated as well.

Furthermore by Lemma 3.6 we have that for all K ∈ Ep that K extends to
an elementary embedding

K̂ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).

Hence inverse limit reflection holds at α.

In the next theorem we show that strong inverse limit reflection holds
for rather large ordinals. In fact, it can be shown that strong inverse limit
reflection holds all the way up to Θ, but this requires arguments which are
more involved (see [1] or [2]).

Theorem 3.8. Suppose that there exists an elementary embedding

j : LΘ(Vλ+1)→ LΘ(Vλ+1).

Let δ be least such that

Jδ(Vλ+1) ≺Σ1(Vλ+1∪{Vλ+1}) L(Vλ+1).

Then strong inverse limit reflection holds at α for all α < δ.

Proof. Suppose α < δ, A ∈ Vλ+1 and (A, φ) is a tag for α (such α are cofinal
in δ). Let E ⊆ Eα+1 be a saturated set of inverse limits such that for some
Ā ∈ Vλ̄+1, for all (J,~j) ∈ E, J(Ā) = A.

Let J ∈ E. We claim that for some ᾱ,

∅ P(E,α+1,J) J
ġ : Jᾱ+1(Vλ̄+1)→ Jα+1(Vλ+1) is elementary.

But this is clear since

∅ P(E,α+1,J)∃ᾱ′ (J ġ : Jᾱ′+1(Vλ̄+1)→ Jα+1(Vλ+1) is elementary

∧ J ġ(Ā) = A ∧ (Ā, φ) tags ᾱ′).

And hence by absoluteness there is an ᾱ which is tagged by (Ā, φ), and this
ᾱ is as desired.

Hence we have by Lemma 3.6 that for all K ∈ E, that K extends to an
elementary embedding K̂ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1).
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We also have that for any K ∈ Eα+ω such that K(Ā) = A that there
exists a saturated set EK ⊆ Eα+1 such that K ∈ EK and for all K ′ ∈ EK ,
K ′(Ā) = A. Hence this shows that for any K ∈ Eα+ω such that K(Ā) = A
that K extends to an elementary embedding

K̂ : Jᾱ+1(Vλ̄+1)→ Jα(Vλ+1).

To complete the proof we consider a saturated set E ⊆ Eα+ω such that
for all J ∈ E, J(Ā) = A for some (A, φ) a tag for α. Such an E must exist
since there exists an elementary embedding j : L(Vλ+1)→ L(Vλ+1). Let ᾱ be
as above. Then for all K ∈ CL(E) we have that K(Ā) = A and K ∈ Eα+ω.
Hence by what we proved above we have that K extends to an elementary
embedding K̂ : Jᾱ(Vλ̄+1)→ Jα(Vλ+1). Hence this E witnesses strong inverse
limit reflection at α.

Theorem 3.9. Suppose that there exists an elementary embedding

j : Lω(V #
λ+1, Vλ+1)→ Lω(V #

λ+1, Vλ+1).

Then there exists λ̄ < λ and a V #
λ+1-saturated set E ⊆ E(V #

λ+1) of inverse

limits such that for all (J,~j) ∈ E, J is an elementary embedding

J : (V #

λ̄+1
, Vλ̄+1)→ (V #

λ+1, Vλ+1).

And hence there exists an elementary embedding j̄ : L(Vλ̄+1) → L(Vλ̄+1).

Furthermore strong inverse limit V #
λ+1-reflection holds at 0.

Proof. We describe how to modify the proof of Theorem 3.3. Let E ⊆
E(V #

λ+1) be saturated (but not necessarily V #
λ+1-saturated). Then proceeding

exactly as in the proof of Theorem 3.3, replacing Lα(Vλ+1) with (V #
λ+1, Vλ+1),

the argument is exactly the same until the point that we defined M .
Let M = J [Vλ̄+1]. Then M ≺ Vλ+1 and for M̄ the transitive collapse

of M we have M̄ = Vλ̄+1. Let π be the inverse of the transitive collapse.

Let X̄ = π−1[V #
λ+1]. Then we have that π : (X̄, Vλ̄+1) → (V #

λ+1, Vλ+1) is

elementary. But by definability of the sharp, we must have X̄ = V #

λ̄+1
. So we

have that (V #

λ̄+1
, Vλ̄+1) ≡ (V #

λ+1, Vλ+1). But by absoluteness this is true in V .
The rest of the proof proceeds exactly as in the proof of Theorem 3.8.
To see that there is an elementary embedding

L(Vλ̄+1)→ L(Vλ̄+1),
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we have that (Vλ+1, V
#
λ+1) satisfies that there is a Σ1-elementary embedding

(Vλ+1, V
#
λ+1)→ (Vλ+1, V

#
λ+1).

And hence (Vλ̄+1, V
#

λ̄+1
) satisfies that there is a Σ1-elementary embedding

j̄ : (Vλ̄+1, V
#

λ̄+1
)→ (Vλ̄+1, V

#

λ̄+1
).

So j̄ � Vλ̄+1 extends to an elementary embedding

j̄∗ : LΘ̄(Vλ̄+1)→ LΘ̄(Vλ̄+1).

Here we are using that every subset of Vλ̄+1 in L(Vλ̄+1) is Σ1-definable over

(Vλ̄+1, V
#

λ̄+1
) with parameters in Vλ̄+1. But as in [10] we can define the fol-

lowing ultrafilter Uj̄ from j̄,

X ∈ Uj̄ ⇐⇒ j̄ � Vλ̄ ∈ j̄∗(X).

Taking the ultrapower by Uj̄ yields an elementary embedding

L(Vλ̄+1)→ L(Vλ̄+1)

which extends j̄ � Vλ̄+1 (see [10]).

Theorem 3.9 gives an example of an X ⊆ Vλ+1 such that inverse limit
X-reflection holds. The set of such X is very restricted however, as inverse
limit X-reflection gives structural properties of L(X, Vλ+1). Specifically, we
will prove the following theorem in Section 4.

Theorem 3.10. Suppose X ⊆ Vλ+1 and strong inverse limit X-reflection
holds at α. Then there are no disjoint stationary subsets S1 and S2 of

{β < λ+| cof(β) = ω}

such that
S1, S2 ∈ Lα(X, Vλ+1).

Corollary 3.11. Assume there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1).

Suppose that G ⊆ Coll(ω, ω1) is V -generic. Then in V [G], (strong) inverse
limit Vλ+1-reflection at 1 does not hold.

23



Proof. We work with (H(λ+), Vλ+1) for ease of notation. We have that for

S1 = {α < λ+| (cof(α) = ω)L(Vλ+1)}

and
S2 = {α < λ+| (cof(α) = ω1)L(Vλ+1)},

that S1 and S2 are definable over (H(λ+)V [G], Vλ+1). Furthermore, S1 and S2

are stationary in V [G]. And since

S1, S2 ∈ L1(H(λ+)V [G], Vλ+1),

we have that inverse limit Vλ+1-reflection at 1 does not hold by Theorem
3.10.

4 Stationary Subsets of λ+

In this section we use inverse limit reflection to obtain results related to
the club filter on λ+ in L(Vλ+1). We cannot quite show that the ω-club
filter restricted to the cofinality ω ordinals is an ultrafilter in L(Vλ+1), but
we obtain a couple approximations to this result. Namely, we show that
the weak ω-club filter is an ultrafilter in L(Vλ+1), and that any two disjoint
stationary (in V ) subsets of the cofinality ω ordinals must not be in L(Vλ+1).
A weak ω-club of λ+ (see Definition 4.8 below) is a set of ordinals which
can be written as the set of of all sups below λ+ of countable elementary
substructures of some fixed structure in a countable language. While the
Axiom of Choice implies that the weak ω-club filter and the ω-club filter are
the same, in our situation we cannot come to such a conclusion.

These results extend to higher ordinals of cofinality greater than λ, though
for simplicity of notation we prove them for λ+. We will simply state these
extensions below, as the proofs are nearly identical.

We will define a game which is similar to the ‘sup game’ on ω1 (see [6]). I
will play an increasing sequence of ordinals below λ+ and II will, in essence,
be playing ordinals as well. However II must play her ordinals by playing
inverse limits which send certain specified ordinals αn below some λ̄+ to
ordinals Kn(αn) below λ+. The key point is that we can choose the αn for
n < ω such that II has a (quasi-)winning strategy and use the reflection given
by the sequence of inverse limits to control where the sup of a winning run
ends up.
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Figure 2: The game G(〈αi| i < ω〉 , E), where Kω is the common part of
〈Ki| i < ω〉.

Fix λ, λ̄ < λ and a surjection ρ̄ : Vλ̄+1 → Lλ̄+(Vλ̄+1) definable over
Lλ̄+(Vλ̄+1). Also let E be a saturated set of inverse limits such that for all

(J,~j) ∈ E, J extends to

Ĵ : Lλ̄++1(Vλ̄+1)→ Lλ++1(Vλ+1).

Assume ρ is a surjection ρ : Vλ+1 → Lλ+(Vλ+1) and for all (J,~j) ∈ E, Ĵ(ρ̄) = ρ
(see the remark before Theorem 3.7). We will say that A tags b (over Vλ+1)
if ρ(A) = b, and similarly for ρ̄.

Consider the following game G(〈αi| i < ω〉 , E) (see Figure 4), where

〈αi| i < ω〉

is an increasing sequence of ordinals less than λ̄+.

I β0 β1 · · ·
II (K0, ~k0), A0 (K1, ~k1), A1 · · ·

With the following rules:

25



1. β0 < β1 < · · · < λ+ are limit ordinals.

2. For all i, (Ki, ~ki) ∈ E, and Ki+1 is a limit root of Ki.

3. Let K̂i be the extension of Ki to Lλ̄+(Vλ̄+1). Then we have

β0 < K̂0(α0) < β1 < K̂1(α1) < β2 < · · · < λ+.

4. For all i, ρ̄(Ai) = αi.

5. For all i and n ≤ i, Ki+1(An) = Ki(An).

II wins if the game goes on ω-many steps. This is a closed game for I, and
hence determined.

We first show that II can win the analogous one step game.

Lemma 4.1. Let E be saturated such that for all (J,~j) ∈ E, J extends to

Ĵ : Lλ̄++1(Vλ̄+1)→ Lλ++1(Vλ+1).

Then for all (J,~j) ∈ E, there exists an α < λ̄+ such that for all β < λ+ there

is a (K,~k) ∈ E, a limit root of J , such that K̂(α) ≥ β.

Proof. Let (J,~j) ∈ E. Then for i = i(E, J) (see Definition 2.11), we have

that for all γ < λ+ there exists a (K,~k) ∈ E such that K̂i(γ̄) = γ and hence
K̂(γ̄) ≥ γ for some γ̄ < λ̄+. So by regularity of λ+ there is an α < λ̄+ such

that for cofinally many β < λ+ there is (K,~k) ∈ E, a limit root of J , such
that K̂(α) ≥ β, which is what we wanted.

Recall that a quasi-winning strategy σ for II is a function for which,
given any position in the game p where it is II’s turn to play and p has been
played according to σ, σ(p) is a set of possible moves (rather than a single
move) for II, and any play according to σ is winning for II. We must consider
quasi-winning strategies because to obtain an actual winning strategy would
require the Axiom of Choice in this situation.

Lemma 4.2. Let E be saturated such that for all (J,~j) ∈ E, J extends to

Ĵ : Lλ̄++1(Vλ̄+1)→ Lλ++1(Vλ+1).

Then there exists an increasing sequence 〈αi| i < ω〉 such that II has a quasi-
winning strategy in G(〈αi| i < ω〉 , E).
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Proof. First note that by Gale-Stewart [3] for all 〈αi| i < ω〉 increasing below
λ̄+, either I has a winning strategy (since he is playing ordinals) or II has a
quasi-winning strategy in G(〈αi| i < ω〉 , E).

Suppose towards a contradiction that for all ~α ∈ [λ̄+]ω that II does not
have a quasi-winning strategy in G(〈αi| i < ω〉 , E). Then by λ-DC and the
fact that λ is a strong limit, we can choose〈

σ~α| ~α ∈ [λ̄+]ω
〉

such that for all ~α ∈ [λ̄+]ω, σ~α is a winning strategy for I in G(~α,E). We use
the regularity of λ+ to play against all of these winning strategies simulta-
neously.

Choose a sequence ~α∗ as follows. Let

β∗0 = sup
~α∈[λ̄+]ω

σ~α(∅) < λ+.

Let K0 ∈ E,A0 and α∗0 be such that K̂0(α∗0) > β∗0 and A0 tags α∗0. After
having chosen K0, . . . , Kn ∈ E and α∗0, . . . , α

∗
n, let

β∗n+1 = sup{σ~α(
〈
K0, A0, . . . , K

n, An
〉
)| ~α ∈ [λ̄+]ω,∀i ≤ n (αi = α∗i )}.

Let Kn+1 ∈ E,An+1 and α∗n+1 be such that Kn+1 is a limit root of Kn, for

all i ≤ n, Kn+1(Ai) = Kn(Ai), K̂
n+1(α∗n+1) > β∗n+1 and An+1 tags α∗n+1.

We then play 〈K0, A0, K1, A1, . . . , 〉 in the game G(~α∗, E), against the
winning strategy σ~α

∗
. But by the way we chose Ki, Ai and α∗i , this must be a

winning play by II. Hence σ~α
∗

is not a winning strategy for I, a contradiction.

Lemma 4.3. Let E be saturated such that for all (J,~j) ∈ CL(E), J extends
to

Ĵ : Lλ̄++1(Vλ̄+1)→ Lλ++1(Vλ+1).

Suppose that 〈αi| i < ω〉 is an increasing sequence of ordinals < λ̄+ and

(β0, K
0, A0, β1, K

1, A1, . . .)

is a winning play for II in G(〈αi| i < ω〉 , E). Let K be the common part of
〈Ki| i < ω〉. Then

K̂(sup
i<ω

αi) = sup
i<ω

βi.
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Proof. Note that we have for all i and n ≤ i that Cn := Ki+1(An) = Ki(An).
Hence we have that K(An) = Cn and therefore K̂(αn) = γn, where γn is
tagged by Cn. And by the rules of the game, we have

β0 < γ0 < β1 < γ1 < · · · .

Hence K̂(supi<ω αi) = supi<ω βi follows by continuity.

Theorem 4.4. Assume strong inverse limit reflection at ξ for ξ > λ+ good.
Let

Sω = {β < λ+| cof(β) = ω}.
Then if S ∈ Lξ(Vλ+1) and S ⊆ Sω is stationary (in V ), then Sω \ S is not
stationary.

Proof. Suppose E, ξ̄, ξ and S̄ are such that ξ is good, E ∈ Lξ(Vλ+1) and for

all (K,~k) ∈ CL(E), K extends to

K̂ : Lξ̄(Vλ̄+1)→ Lξ(Vλ+1)

and K̂(S̄) = S. Suppose that 〈αi| i < ω〉 is such that II has a quasi-winning
strategy in G(〈αi| i < ω〉 , E).

Claim 4.5. If supi<ω αi ∈ S̄ then S contains an ω-club.

Proof. Suppose this is not the case, so supαi ∈ S̄ but Sω \ S is stationary
(in V ). Let γ be large enough such that in Lγ(Vλ+1), II has a quasi-winning
strategy in G(〈αi| i < ω〉 , E). Let M ≺ Lγ(Vλ+1) be such that |M | = λ,
S, J, E ∈ M , Vλ ⊆ M , and M ∩ λ+ ∈ Sω \ S. Let 〈βi| i < ω〉 be increasing
and cofinal in M ∩ λ+ such that for all i, βi ∈M .

The point is that we would like to play the finite initial segments of the
sequence 〈βi| i < ω〉 against II’s quasi-winning strategy in M . The sequence
〈βi| i < ω〉 might not be a legal play for I (since II could play such that K̂i(αi)
is very large below λ+), but there is always a legal subsequence of 〈βi| i < ω〉
that I can play.

So we play a run of the game G(〈αi| i < ω〉 , E) in M such that at each
stage I plays an ordinal on the sequence 〈βi| i < ω〉 and II plays a winning
response (in M). Suppose without loss of generality (by passing to a subse-

quence) that the game is played as (β0, K
0, A0, β1, K

1, A1 . . .) with (Ki, ~ki) ∈
M for all i. LetK be the common part of 〈Ki| i < ω〉 as computed in L(Vλ+1).
Then by the previous lemma we have that K̂(supαi) = supM ∩ λ+ ∈ S by
elementarity. But this is a contradiction. So Sω \ S is not stationary.
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To obtain the theorem just notice that if supi<ω αi ∈ λ̄+ \ S̄, then λ+ \ S
contains an ω-club. And hence S is not stationary. Hence we have for any
S ⊆ λ+ that S is stationary iff there exists 〈αi| i < ω〉 such that II has a
quasi-winning strategy in G(〈αi| i < ω〉 , E) and there are E, ξ̄, ξ, and S̄ as
above such that supi<ω αi ∈ S̄. Hence, by the definition of strong inverse
limit reflection, the theorem follows.

Applying Theorem 3.9 we have the following.

Corollary 4.6. Assume there exists an elementary embedding

j : Lω(V #
λ+1, Vλ+1)→ Lω(V #

λ+1, Vλ+1).

Then there are no disjoint stationary subsets S1 and S2 of {β < λ+| cof(β) =
ω} such that S1, S2 ∈ L(Vλ+1).

This result can be improved to the following using an improved version
of Theorem 3.9.

Theorem 4.7 ([2]). Assume there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1).

Then there are no disjoint stationary subsets S1 and S2 of {β < λ+| cof(β) =
ω} such that S1, S2 ∈ L(Vλ+1).

We now restate the above result using the notion of a weak ω-club and a
weakly stationary set.

Definition 4.8. Suppose that C ⊆ γ for γ a limit with uncountable cofinality.
Then we say that C is weakly club if there exists a structure (M, . . .) in a
countable language such that

C = {α < γ| ∃(X, . . .) ≺ (M, . . .), sup(X ∩ γ) = α}.

We say that S ⊆ γ is weakly stationary if for all C ⊆ γ weakly club, S∩C 6=
∅. The weak club filter on γ is the filter generated by the set of weakly club
subsets of γ. We define weakly ω-club and the weak ω-club filter analogously,
restricting to countable elementary substructures.

As a corollary to Corollary 4.6 we obtain the following result. The hy-
pothesis can be similarly reduced as above by results in [2].
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Corollary 4.9. Suppose there exists an elementary embedding

j : Lω(V #
λ+1, Vλ+1)→ Lω(V #

λ+1, Vλ+1).

Let Sω = {β < λ+| cof(β) = ω}. Then in L(Vλ+1) the weak club filter
restricted to Sω is an ultrafilter.

Proof. Assume that there exists an α such that α is good and there exists
S ∈ Lα(Vλ+1), S ⊆ λ+ such that both S and Sω \ S are weakly stationary in
L(Vλ+1). But by Theorem 3.9 inverse limit reflection holds at α. So by the
proof of Theorem 4.4, there is a weakly club C ∈ L(Vλ+1) such that either
C ⊆ S or C ⊆ Sω \ S, a contradiction.

We can prove similar results in exactly the same way for limit ordinals
γ > λ+ such that cof(γ) > λ. For instance we have the following.

Theorem 4.10. Suppose there exists an elementary embedding

j : Lω(V #
λ+1, Vλ+1)→ Lω(V #

λ+1, Vλ+1)

and that γ < Θ is such that cof(γ) > λ. Let

Sω = {β < γ| cof(β) = ω}.

Then if S ∈ Lα(Vλ+1) and S ⊆ Sω is stationary (in V ), then Sω \ S is not
stationary.

5 Perfect set property

In this section we prove an approximation to the Perfect Set Property in
L(Vλ+1). We regard Vλ+1 as a topological space with basic open sets O(a,α),
where α < λ, a ⊆ Vα and

O(a,α) = {b ∈ Vλ+1| b ∩ Vα = a}.

Since cof(λ) = ω, this is a metric topology, and it is complete. Xianghui Shi
and Woodin showed a similar result follows from the conclusion of Theorem
6.4.
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Theorem 5.1. Suppose there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1).

Assume X ⊆ Vλ+1, X ∈ L(Vλ+1), and |X| > λ. Then there is a perfect set
Y ⊆ X such that |Y | > λ and Y ∈ L(Vλ+1). In fact, for all a, α ∈ Vλ such
that a ⊆ Vα and there exists b ∈ Y such that a = b ∩ Vα, we have

|Y ∩O(a,α)| > λ.

We will need a version of the pigeonhole principle in our proof of the
Perfect Set Property. The next several lemmas demonstrate these kind of
principles for saturated sets.

The simplest example of this pigeonhole principle is given in the following
lemma.

Lemma 5.2. Assume X ⊆ Vλ+1, X ∈ L(Vλ+1), and |X| > λ. Let α < Θ be
good such that X ∈ Lα(Vλ+1). Suppose that E ⊆ Eα+1 is saturated and ᾱ are
such that for all (J,~j) ∈ E, J extends to

Ĵ : Lᾱ+1(Vλ̄+1)→ Lα+1(Vλ+1)

and X ∈ rng Ĵ . Let (J,~j) ∈ E, let X̄ be such that Ĵ(X̄) = X, and define
E ′ ⊆ E by

E ′ = {(K,~k) ∈ E| K̂(X̄) = X}.

Then there is an Ā ∈ Vλ̄+1 such that for

YĀ = {A ∈ Vλ+1| ∃(K,~k) ∈ E ′ a limit root of J such that K(Ā) = A},

we have YĀ ⊆ X and |YĀ| > λ.

Proof. For (J,~j) ∈ E, let X̄ be such that Ĵ(X̄) = X, and define E ′ ⊆ E by

E ′ = {(K,~k) ∈ E| K̂(X̄) = X}.

Clearly E ′ is also saturated. Let n be such that for any a ∈ Vλ+1 there
is (K,~k) ∈ E ′ an n-close limit root of (J,~j) such that a ∈ rngKn. Let
Xn = (ĵ0 ◦ ĵ1 ◦ · · · ◦ ĵn−1)−1(X), where ĵi is the natural extension of ji to an
elementary embedding ji : Lα+1(Vλ+1) → Lα+1(Vλ+1). By elementarily we
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have that |Xn| > λ. Hence using the fact that |X̄| < λ and |Xn| > λ, there
is an Ā ∈ X̄ such that for

Y n
Ā = {A ∈ Vλ+1| ∃(K,~k) ∈ E ′ a limit root of J such that Kn(Ā) = A},

|Y n
Ā
| > λ and Y n

Ā
⊆ Xn. Hence since j0 ◦ j1 ◦ · · · ◦ jn−1 is injective we have

that |YĀ| > λ and YĀ ⊆ X.

We will be considering saturated sets with a kind of ‘homogeneity’ prop-
erty. The next lemma demonstrates the use of this property. We will use this
property below to obtain a homogeneous version of our pigeonhole principle.

Lemma 5.3. Suppose that E ⊆ E has the property that for all J,K ∈ E and
n < ω, λ̄J = λ̄K and

j0 ◦ · · · ◦ jn−1 ◦ kn ◦ kn+1 ◦ · · · ∈ E.

Fix J,K ∈ E, a ∈ Vλ̄K and n < ω. Suppose that for β < λ, we have that

|{b ∈ Vλ+1| ∃S ∈ E(∀i < n(si = ki) ∧ S(a) = b)}| ≥ β.

Then
|{b ∈ Vλ+1| ∃S ∈ E(∀i < n(si = ji) ∧ S(a) = b)}| ≥ β.

Proof. Let 〈(Sα, ~sα)|α < β〉 and 〈bα|α < β〉 witness the above hypothesis.
So the bα for α < β are distinct, Sα(a) = bα for all α < β, and for i < n,
ki = sαi . Then we have that for bα0 = (k0 ◦ · · · kn−1)−1(bα), that Sαn (a) are
distinct elements for α < β. But then

(j0 ◦ · · · ◦ jn−1 ◦ Sαn )(a)

are distinct for α < β. And by the assumed property of E we have that

j0 ◦ · · · ◦ jn−1 ◦ Sαn ∈ E

for all α < β. So the lemma follows.

The following lemma gives us a much more powerful version of the Lemma
5.2.
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Lemma 5.4. Suppose E is a saturated set of inverse limits and (J,~j) ∈ E.
Let Z be the set of A ∈ Vλ̄+1 such that

|{K(A)| (K,~k) ∈ E is a limit root of J}| < λ.

Then |Z| ≤ λ̄.

Proof. Let κ < λ and let Zκ be the set of A ∈ Vλ̄+1 such that

|{K(A)| (K,~k) ∈ E is a limit root of J}| < κ.

Suppose |Zκ| > λ̄. Let T̄ be the tree of initial segments of elements of Zκ.
We have |[T̄ ]| > λ̄. Let J(T̄ ) = T . Then by elementarity, |[T ]| > λ. But by
definition of Zκ we have that

|
⋃
{K ′′T̄ | (K,~k) ∈ E is a limit root of J}| ≤ λ̄ · κ < λ.

We claim this is a contradiction. To see this, let i be such that for all
b ∈ Vλ+1 there exists (K,~k) ∈ E a limit root of J such that b ∈ rngKi and
K(T̄ ) = T . Let Ti = (j0 ◦ · · · ji−1)−1(T ). Then |Ti| = λ and for all b ∈ Ti,
there exists (K,~k) ∈ E a limit root of J such that b ∈ rngKi. But then
(j0 ◦ · · · ◦ ji−1)(b) ∈ T . And hence, since j0 ◦ · · · ◦ ji−1 is injective,

|
⋃
{K ′′T̄ | (K,~k) ∈ E is a limit root of J}| = λ,

a contradiction.
The lemma follows by noting that cof(λ) = ω, so |Z| ≤ λ̄.

Finally, with our ‘homogeneity’ property we are able to further strengthen
the previous lemma. This is the final version of our pigeonhole principle which
we will use to prove our theorem.

Lemma 5.5. Suppose that E ⊆ E is saturated and has the property that for
all J,K ∈ E and n < ω, λ̄J = λ̄K and

j0 ◦ · · · ◦ jn−1 ◦ kn ◦ kn+1 ◦ · · · ∈ E.

Let Z be the set of A ∈ Vλ̄+1 such that there exists a (J,~j) ∈ E and n < ω
with

|{K(A)| (K,~k) ∈ E agrees up to n with J}| < λ.

Then |Z| ≤ λ̄.
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Proof. Note that by the assumed property of E, as in the proof of Lemma
5.3, if A ∈ Vλ̄+1 is such that there exists (J,~j) ∈ E and n < ω with

|{K(A)| (K,~k) ∈ E agrees up to n with J}| < λ

then in fact for all (J,~j) ∈ E

|{K(A)| (K,~k) ∈ E agrees up to n with J}| < λ.

Hence the lemma follows by Lemma 5.4.

We can now prove the perfect set property using the previous lemmas.

Proof of Theorem 5.1. By Σ1-reflection, if there a counterexample to the
Theorem, then there is one below the least stable δ of L(Vλ+1). So we prove
the Theorem for subsets of Vλ+1 in Lδ(Vλ+1).

Let α < δ be good and let X ∈ Lα(Vλ+1) be such that X ⊆ Vλ+1. By
strong inverse limit reflection, there is E ⊆ E saturated, ᾱ, and X̄ such that
for all (J,~j) ∈ CL(E), J extends to

Ĵ : Lᾱ+1(Vλ̄+1)→ Lα+1(Vλ+1)

and Ĵ(X̄) = X. Let 〈λi| i < ω〉 be increasing and cofinal in λ, and let
〈κi| i < ω〉 be increasing and cofinal in λ̄.

Let T ⊆ Vλ̄ be a tree defined as follows. For i < ω let

Ti = {B ∈ Vκi+1 : |{A ∈ Vλ̄+1|A ∈ X̄, B = A ∩ Vκi}| > λ̄}

and

T = {(Ai0 , . . . , Ain)| ∀m ≤ n(Aim ∈ Tim and ∀s < m(Ais = Aim ∩ Vκis ))}.

Let I be the set

I = {~s ∈ [λ]<ω| ∀i < len(~s)(si < λi)}.

Now let

F : {( ~A, s)| ∃n,~i( ~A = (Ai0 , . . . , Ain) ∈ T, s ∈ I, |s| = n)} → E

have the following properties:
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1. For all ~A = (Ai0 , . . . , Ain) ∈ T , s ∈ I, |s| = n− 1, if

F ( ~A, sa 〈ξ〉) = (K,~k) and F (( ~A, sa 〈β〉)) = (K ′, ~k′)

for ξ < β < λn, then K(Ain) 6= K ′(Ain).

2. For all ~A = (Ai0 , . . . , Ain) ∈ T , s ∈ I, |s| = n, and m < n if

F ( ~A, s) = (K,~k) and F ( ~A � m+ 1, s � m) = (K ′, ~k′),

then K(Aim) = K ′(Aim).

3. For all ~A = (Ai0 , . . . , Ain) ∈ T , s ∈ I, |s| = n − 1 then F ( ~A, sa 〈α〉)
and F ( ~A � n, s) agree up to n.

Also assume that F is maximal with these properties, in the sense that F
cannot be extended to some F ′ also satisfying these properties.

Let Z be the set of A ∈ X̄ such that there exists a sequence 〈in|n < ω〉
such that for Ain = A ∩ Vκin , for all n < ω, and s ∈ I, if |s| = n then
((Ai0 , . . . , Ain), s) ∈ dom(F ). We claim that |X̄\Z| ≤ λ̄. To see this, suppose

that A ∈ X̄ \ Z. Then there exists ~A and s such that F ( ~A, s) = (K,~k), and

|{K ′(A)| (K ′, ~k′) ∈ E agrees with K up to |s|+ 1 ∧K ′( ~A) = K( ~A)}| < λ.

Furthermore, by the proof of Lemma 5.5, for all t with |t| = |s|, we have that

( ~A, t) has this property as well. But by Lemma 5.4 for every K, there are
≤ λ̄ many such A with this property. Hence |X̄ \ Z| ≤ λ̄.

So finally, let A ∈ Z, and let 〈in|n < ω〉 be such that for all n < ω,
Ain = A ∩ Vκin , and for s ∈ I, if |s| = n then ((Ai0 , . . . , Ain), s) ∈ dom(F ).
Set

Ks,n = F ((Ai0 , . . . , Ain), s).

Also for x ∈ λω, let Kx be the common part of
〈
Kx�n,n|n < ω

〉
, and set

P = {Kx(A)|x ∈ λω,∀i < ω(xi < λi)}.
Clearly P is a perfect subset of X by definition of E and the fact that
A ∈ Z ⊆ X̄. Furthermore by definition of F we have |P | > λ. Note that for
any s ∈ I, if we set

P s = {Kx(A)|x ∈ λω,∀i < ω(xi < λi),∀i < |s|(si = xi)}
then P s is a perfect subset of P , |P s| > λ and

P s = P ∩O(Ain ,κin )

where n = |s|. And hence we have the final part of the conclusion.
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6 The Tower Condition

We introduce the notion of a U(j)-representation, which Woodin introduced
as an analogue of being weakly homogeneous Suslin in the context of L(Vλ+1).
Woodin [10] showed that if there exists an elementary embedding

j : L(Vλ+1)→ L(Vλ+1),

then every subset of Vλ+1 in Lλ(Vλ+1) is U(j)-representable. We extend this
result by proving the Tower Condition, which, by a theorem of Woodin,
shows that every subset of Vλ+1 in Lλ+(Vλ+1) has a U(j)-representation (in
fact it shows more, see Theorem 6.11).

For the rest of this section we fix j : L(Vλ+1)→ L(Vλ+1) elementary. We
will use the notation j(i) to denote the i-th iterate of j to distinguish it from
our inverse limit notation.

Definition 6.1 (Woodin). Let U(j) be the set of U ∈ L(Vλ+1) such that in
L(Vλ+1) the following hold:

1. U is a λ+-complete ultrafilter.

2. For some γ < Θ, U ⊆ P (Lγ(Vλ+1)).

3. For some A ∈ U and all sufficiently large n < ω,

j(n)(U) = U and {a ∈ A| j(n)(a) = a} ∈ U.

For each ordinal κ, let ΘLκ(Vλ+1) denote the supremum of the ordinals α such
that there is a surjection ρ : Vλ+1 → α such that

{(a, b)| ρ(a) < ρ(b)} ∈ Lκ(Vλ+1).

Suppose that κ < Θ and κ ≤ ΘLκ(Vλ+1). Then E(j, κ) is the set of all elemen-
tary embeddings k : Lκ(Vλ+1) → Lκ(Vλ+1) such that there exists n,m < ω
such that k(n) = j(m) � Lκ(Vλ+1).

Suppose that κ < Θ and κ ≤ ΘLκ(Vλ+1). Suppose that 〈ai| i < ω〉 is a
sequence of elements of Lκ(Vλ+1) such that for all i < ω, there exists an n < ω
such that j(n)(ai) = ai. Let U(j, κ, 〈ai| i < ω〉) denote the set of U ∈ U(j)
such that there exists n < ω such that for all k ∈ E(j, κ), if k(ai) = ai for all
i ≤ n, then

{a ∈ Lκ(Vλ+1)| k(a) = a} ∈ U.
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Remark 6.2. If U ∈ U(j) ∩ Lκ(Vλ+1) where κ is good, k ∈ E(j, κ + 1) and
k(U) = U , then we have that for some A ∈ U , {a ∈ A| k(a) = a)} ∈ U . To
see this, note that for any n, 0 < n < ω such that there is A ∈ U such that
{a ∈ A| k(n)(a) = a} ∈ U , there is such an A ∈ rng k. And hence, pulling
back by k we have that for such an A,

{a ∈ k−1(A)| k(n−1)(a) = a} ∈ U.

So by induction we have that there is an Ak ∈ U such that {a ∈ Ak| k(a) =
a} ∈ U . Hence, while it does not appear as though every U ∈ U(j) appears
in some U(j, κ, 〈ai| i < ω〉, this is not far from the truth in the above sense.

Also note that if n < ω and A ∈ U are such that {a ∈ A| j(n)(a) = a} ∈ U ,
then for all B ∈ U , {a ∈ B| j(n)(a) = a} ∈ U . This follows by simply noting

B ∩ {a ∈ A| j(n)(a) = a} ⊆ {a ∈ B| j(n)(a) = a}.

Definition 6.3 (Woodin). Suppose κ < Θ is weakly inaccessible in L(Vλ+1),
and 〈ai| i < ω〉 is an ω-sequence of elements of Lκ(Vλ+1) such that for all
i < ω there is an n < ω such that j(n)(ai) = ai.

Suppose that
Z ∈ L(Vλ+1) ∩ Vλ+2.

Then Z is U(j, κ, 〈ai| i < ω〉)-representable if there exists an increasing se-
quence 〈λi| i < ω〉, cofinal in λ and a function

π :
⋃
{Vλi+1 × Vλi+1 × {i}| i < ω} → U(j, κ, 〈ai| i < ω〉)

such that the following hold:

1. For all i < ω and (a, b, i) ∈ dom(π) there exists A ⊆ (L(Vλ+1))i such
that A ∈ π(a, b, i).

2. For all i < ω and (a, b, i) ∈ dom(π), if m < i then

(a ∩ Vλm , b ∩ Vλm ,m) ∈ dom(π)

and π(a, b, i) projects to π(a ∩ Vλm , b ∩ Vλm ,m).

3. For all x ⊆ Vλ, x ∈ Z if and only if there exists y ⊆ Vλ such that

(a) for all m < ω, (x ∩ Vλm , y ∩ Vλm ,m) ∈ dom(π),
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(b) the tower
〈π(x ∩ Vλm , y ∩ Vλm ,m)|m < ω〉

is wellfounded.

For Z ∈ L(Vλ+1)∩Vλ+2 we say that Z is U(j)-representable if there exists
(κ, 〈ai| i < ω〉) such that Z is U(j, κ, 〈ai| i < ω〉)-representable.

U(j)-representations are important for a number of reasons. One example
of their importance is the following theorem of Woodin which gives a version
of generic absoluteness using a uniform version of U(j)-representations.

Theorem 6.4 (Woodin). Suppose that j : L(Vλ+1) → L(Vλ+1) is a proper
elementary embedding (see [10]). Let Mω be the ω-th iterate of L(Vλ+1) by
j, and let j0,ω : L(Vλ+1) → Mω. Suppose that g ∈ V , g is Mω-generic for a
partial order P ∈ j0,ω(Vλ) and that cof(λ) = ω in Mω[g]. Then for all α < λ
there exists an elementary embedding

π : Lα(Mω[g] ∩ Vλ+1)→ Lα(Vλ+1)

such that π � λ is the identity.

Definition 6.5 (Woodin). Suppose A ⊆ U(j), A ∈ L(Vλ+1), and |A| ≤ λ.
The Tower Condition for A is the following statement: There is a function
F : A→ L(Vλ+1) such that the following hold:

1. For all U ∈ A, F (U) ∈ U .

2. Suppose 〈Ui| i < ω〉 ∈ L(Vλ+1) and for all i < ω, there exists Z ∈ Ui
such that Z ⊆ L(Vλ+1)i, Ui ∈ A, and Ui+1 projects to Ui. Then the
tower 〈Ui| i < ω〉 is wellfounded in L(Vλ+1) if and only if there exists a
function f : ω → L(Vλ+1) such that for all i < ω, f � i ∈ F (Ui).

The Tower Condition for U(j) is the statement that for all A ⊆ U(j) if
A ∈ L(Vλ+1) and |A| ≤ λ then the Tower Condition holds for A.

For the proof of the Tower Condition we do not actually use inverse limit
reflection. Instead, we use the structure of the inverse limits together with
their ‘naive extensions’ above λ. Because of this difference we define for
α < Θ,

Eeα = {(J,~j)| (J,~j � Vλ+1) ∈ E ,∀i(ji : Lα(Vλ+1)→ Lα(Vλ+1))}.
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Suppose that (J,~j) ∈ Eeα. Then we say that a ∈ Lα(Vλ+1) is in the extended
range of J if for all i < ω, a ∈ rng (j0 ◦ · · · ◦ ji). We set Jext(b) = a if for
some n < ω, for all i ≥ n,

(j0 ◦ · · · ◦ ji)−1(a) = b.

Again, we omit the sequence of embeddings from our notation.
To state the next lemma recall the useful notation

j(m−1)
m = (j0 ◦ j1 ◦ · · · ◦ jm−1)(jm).

Lemma 6.6. Suppose α is good and (J, 〈ji〉) ∈ Eeα is an inverse limit such
that for all i, ji(ji) = j � Lα(Vλ+1). Let U ∈ Lα(Vλ+1) be in the extended
range of J and such that for some i, j(i)(U) = U . Let

j0(U0) = U, j1(U1) = U0, . . . .

Then there exists an n such that for all m ≥ n, Un = Um. Furthermore, for
this n we have that for all m ≥ n, j

(m−1)
m (U) = U .

Proof. Note that j(n) denotes the nth iterate of j, and jn denotes the nth
element of the inverse limit sequence. Let m be such that j(m−1)(U) = U .
We prove by induction that for n ≥ m we have jn(Un) = Un. First suppose
that m = 1. Then j(U) = U . We have that

j(U) = U ⇒ j0(j0)(U) = U ⇒ j0(U0) = U0.

The first implication follows since j0 is a square root of j, and the second
implication follows by pulling back the equality by j0. And hence U0 = U .
The fact that jn(Un) = Un follows by induction.

Now suppose that m > 1. Assume by induction that we have proved the
result for all m′ < m. Then we have for n = m− 1

j(n)(U) = U ⇒ (j0(j0))(n)(U) = U ⇒ (j0)(n)(U
0) = U0 ⇒ j(n−1)(U

0) = U0.

The first implication follows since j0 is a square root of j, the second follows
by pulling back by j0, and the third follows again by the fact j0 is a square
root of j. And then using the induction hypothesis on U0 and 〈ji| i ≥ 1〉 we
have the first result.
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To see the second result, note that Um−1 = jm(Um) = Um, and hence

jm(Um) = Um ⇒ jm(Um−1) = Um−1 ⇒
j(m−1)
m ((j0 ◦ · · · ◦ jm−1)(Um−1)) = (j0 ◦ · · · ◦ jm−1)(Um−1)⇒
j(m−1)
m (U) = U,

for any m ≥ n, for n satisfying the first part of the conclusion (where U−1 =
U). Here the first implication follows since Um−1 = Um, the second follows
by applying j0 ◦ · · · ◦ jm−1, and the final follows by definition of Um−1. Hence
we have the desired result.

Lemma 6.7. Suppose that A ∈ LΘ(Vλ+1), |A| ≤ λ and for all a ∈ A, there
exists an i such that j(i)(a) = a. Then there exists a sequence 〈Bi| i < ω〉 and
(K, 〈ki| i < ω〉) ∈ Eeη for some η < Θ good such that,

1. for all i < ω, |Bi| < λ.

2. for all i < ω, Bi = (k0 ◦ · · · ◦ ki−1)(B0),

3. A ⊆ limi→ω Bi := {a| ∃n∀i ≥ n(a ∈ Bi)},

4. for all i < ω, ki(ki) = j � Lα(Vλ+1),

5. for all a ∈ limi→ω Bi, for all large enough i < ω we have k
(i−1)
i (a) = a,

6. for all a ∈ limi→ω Bi, for all large enough i < ω we have

a ∈ rng (K
(i−1)
i )ext.

Proof. Let C = 〈Uα|α < λ〉 be an enumeration of A, and let η < Θ be good
and large enough so that C,A ∈ Lη(Vλ+1). Let (K, 〈ki| i < ω〉) ∈ Eeη be such
that for all i < ω, ki(ki) = j � Lα(Vλ+1),

k0(C0) = C, k0(A0) = A

and for i > 0,
ki(Ci) = Ci−1, ki(Ai) = Ai−1.

Let λ̄ = λ̄K . Set
B0 = lim

i→ω
Ci � λ̄.
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Let Bi = (k0 ◦ · · · ◦ ki−1)(B0).
We want to show that for α < crit (k0), that Uα ∈ limi→ω Bi. But this

follows by Lemma 6.6. To see this, by induction define U i
α for i < ω as

follows: k0(U0
α) = Uα and for i ≥ 0, ki+1(U i+1

α ) = U i
α. Then by the lemma

we have that for some n, U i
α = Un

α for all i ≥ n. Hence Un
α ∈ B0. We want

that for all i ≥ n, Uα ∈ Bi+1. But this follows since

Un
α = U i

α ∈ B0 ⇒ (k0 ◦ · · · ◦ ki)(U i
α) = Uα ∈ Bi+1.

Similarly, we have that for α < (k0 ◦ · · · ◦ ki−1)(crit ki), Uα ∈ limi→ω Bi.
For ease of notation we prove this for i = 1. The proof for i > 1 is very
similar. So we want for α < k0(crit k1), that Uα ∈ limi→ω Bi. To see this,

by induction define U i
α for i < ω as follows: k

(0)
1 (U1

α) = Uα and for i ≥ 1,

k
(0)
i+1(U i+1

α ) = U i
α. Then by Lemma 6.6 we have that for some n, U i

α = Un
α for

all i ≥ n. We want to see that Un
α ∈ B1. We have

B1 = k0(lim
i→ω

Ci � λ̄) = lim
i→ω

k0(Ci) � k0(λ̄),

and furthermore
k0(k1 ◦ · · · ◦ ki)(k0(Ci)) = C.

Hence using that k0(crit k1) = crit (k0(k1 ◦ · · · ◦ ki)) and α < k0(crit k1) we
have that Un

α ∈ B1. We show that for all i ≥ n, Uα ∈ Bi+1. But this follows
since

Un
α = U i

α ∈ B1 ⇒ k0(k1 ◦ · · · ◦ ki)(U i
α) = Uα ∈ Bi+1.

Note that

Bi = k0(k1 ◦ · · · ◦ ki−1)(k0(B0)) = k0(k1 ◦ · · · ◦ ki−1)(B1).

But
sup
i<ω

(k0 ◦ · · · ◦ ki−1)(crit ki) = λ.

So A ⊆ limiBi.
Note that we have for all U ∈ limi→ω Bi, for all large enough i we have

j
(i−1)
i (U) = U and therefore U ∈ rng (K

(i−1)
i )ext, using the proof of Lemma

6.6 together with above argument.

Theorem 6.8. Suppose A ⊆ U(j), A ∈ L(Vλ+1), |A| ≤ λ. Then the tower
condition for A holds.
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Proof. Let A ⊂ U(j), |A| = λ, and A ∈ L(Vλ+1). By Lemma 6.7 there are
η < Θ, (J, 〈ji| i < ω〉) ∈ Eeη+2 and 〈Bi| i < ω〉 such that the following hold

1. η is good,

Lη(Vλ+1) ≺Σ1 LΘ(Vλ+1) and A ⊆ Lη(Vλ+1).

2. A ⊆ limi→ω Bi,

3. for all i < ω, |Bi| < λ.

4. for all i < ω, ji(ji) = j � Lη(Vλ+1),

5. for all i < ω, Bi = (j0 ◦ · · · ◦ ji−1)(B0).

6. for all U ∈ limi→ω Bi, for all large enough i < ω we have

j
(i−1)
i (U) = U,

7. for all U ∈ limi→ω Bi, for all large enough i < ω we have

U ∈ rng (J
(i−1)
i )ext.

Claim 6.9. There is a tower function F0 ∈ Lη(Vλ+1) for B0.

Proof. We have that |B0| < λ and λ is a strong limit. Hence |Bω
0 | < λ. So by

λ-DC in L(Vλ+1), we can choose a function g such that for tower of measures
〈Un|n < ω〉 where Un ∈ B0 for all n < ω, if 〈Un|n < ω〉 is an ill founded
tower then this is witnessed by 〈g(〈Un|n < ω〉 , i)| i < ω〉. So for all i < ω,
g(〈Un|n < ω〉 , i) ∈ Ui and there is no f such that for all i < ω,

f � i ∈ g(〈Un|n < ω〉 , i).

Let F0 be defined by

F0(U) =
⋂
{g(~U, i)| ~U ∈ Bω

0 , g(~U, i) is defined, and Ui = U}

where i is such that U concentrates on i-sequences (if there is such a ~U ;
otherwise let F0(U) be any element of U). Since for all U ∈ B0, U is λ+-
complete, F0(U) ∈ U , and clearly F0 is a tower function for B0.
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Since |B0| < λ, λ-DC holds in L(Vλ+1), and each measure in A is λ+-
complete, there is a tower function F0 ∈ Lη(Vλ+1) for B0. Define for i > 0,

(j0 ◦ · · · ◦ ji−1)(F0) = Fi.

Let B := limi→ω Bi, and for U ∈ B define

F (U) =
⋂
{Fi(U) ∩ {a ∈ L(Vλ+1)| j(i−1)

i (a) = a}|

i < ω, ∀n ≥ i(U ∈ Bn, j
(n−1)
n (U) = (U))}.

Note that F (U) ∈ U by Remark 6.2 and the conditions on Bi.
We want to show that F is a tower function for B := limi→ω Bi. To see

this suppose 〈Ui| i < ω〉 is an illfounded tower with Ui ∈ B for all i < ω, and
f ∈ Lη(Vλ+1) is such that

∀i(f � i ∈ F (Ui)).

Let 〈αi| i < ω〉 ∈ Lη(Vλ+1) be such that

jUi,Ui+1
(αi) > αi+1.

For i < ω, let mi be least such that Ui ∈ Bn for all n ≥ mi.
One key point is that for all i < ω, there is an n < ω such that for all

m ≥ n, f � i ∈ rng (J
(m−1)
m )ext. This follows since for n large enough, if

m ≥ n, then j
(m−1)
m (f � i) = f � i, by our definition of F . And hence

(J (n−1)
n )ext(f � i) = f � i.

Now let (K, 〈ki|i < ω〉) ∈ Eeη+1 be a 0-close limit root of J such that the
following hold:

1. For all i, (k0 ◦ · · · ◦ ki)(F0) = Fi and (k0 ◦ · · · ◦ ki)(B0) = Bi.

2. For all i < ω, αi, f(i) ∈ rng (Kext). Let αni and fn(i) be such that

k0(α0
i ) = αi, k1(α1

i ) = α0
i , k2(α2

i ) = α1
i , . . .

and

k0(f 0(i)) = f(i), k1(f 1(i)) = f 0(i), k2(f 2(i)) = f 1(i), . . .
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3. For all i < n, ki(jn � Lη(Vλ+1)) = ji(jn � Lη(Vλ+1)).

4. For all n, let in be least such that Un ∈ rng ((j0 ◦ · · · jin−1)(Jext
in )). Let

Un,i be defined as follows:

(j0 ◦ · · · jin−1)(jin)(Un,0) = Un, (j0 ◦ · · · jin−1)(jin+1)(Un,1) = Un,0, . . . ,

(j0 ◦ · · · jin−1)(jin+i+1)(Un,i+1) = Un,i, . . .

Then for i, n < ω and m < in, there are Um
n,i such that

k0(U0
n,i) = Un,i, k1(U1

n,i) = U0
n,i, . . . , kin−1(U in−1

n,i ) = U in−2
n,i .

Furthermore, for i ≥ in

ki(U
in−1
n,i−in) = ji(U

in−1
n,i−in).

It is easy to find such a (K,~k) using the proof of Lemma 2.9.
We have for all i that

αi ≥ α0
i ≥ α1

i ≥ · · · .

Let αωi be the stable value. For n < ω, by Lemma 6.6 〈Un,i| i < ω〉 and
〈f i � n| i < ω〉 must stabilize for some i (here we use what we noted above:
that f � n is in the extended range of J). Let Un,ω and fω be the stable
values, defining Um

n,ω in the obvious way as above. Note that we have for all
n, i < ω,

(k0 ◦ · · · ◦ kin−1)(kin+i)(Un,i)

= (k0 ◦ · · · ◦ kin−1)(kin+i)((k0 ◦ · · · ◦ kin−1)(U in−1
n,i ))

= (k0 ◦ · · · ◦ kin−1)(kin+i(U
in−1
n,i ))

= (k0 ◦ · · · ◦ kin−1)(jin+i(U
in−1
n,i ))

= (k0 ◦ · · · ◦ kin−1)(jin+i)((k0 ◦ · · · ◦ kin−1)(U in−1
n,i ))

= (j0 ◦ · · · ◦ jin−1)(jin+i)(Un,i) = Un,i−1

where Un,−1 = Un.
We want to show that

〈
U in−1
n,ω |n < ω

〉
= 〈U ′n|n < ω〉 is an illfounded tower

as witnessed by 〈αωi 〉, and for all n < ω, U ′n ∈ B0. But also that for all n,
fω � n ∈ F0(U ′n), contradicting the fact that F0 is a tower function for B0.
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The fact that for all n, U ′n ∈ B0 follows since for all large enough i,
Un ∈ Bi and (k0 ◦ · · · ◦ ki−1)(U ′n) = Un.

To see that 〈U ′n|n < ω〉 is illfounded, fix n and let n0 be such that

f � n ∈ Fn0(Un)

and for all i ≥ n0,

(k0 ◦ · · · ◦ ki)(αωn , αωn+1, U
′
n, U

′
n+1, f

ω � n) = (αn, αn+1, Un, Un+1, f � n).

Then we have that

jUn,Un+1(αn) > αn+1 ⇒ jU ′n,U ′n+1
(αωn) > αωn+1.

And since f � n ∈ Fn0(Un) we have that fω � n ∈ F0(U ′n).
Hence we have a contradiction to the fact that F0 is a tower function for

B0. So F is a tower function for B, and the theorem follows as A ⊆ B.

In fact, since we did not actually use inverse limit reflection, exactly the
same proof gives the tower condition for L(X, Vλ+1). In this situation we
start with assuming an elementary embedding j : L(X, Vλ+1)→ L(X, Vλ+1),
and we make the same definition for a U(j)-representation and the Tower
Condition, replacing each L(Vλ+1) with L(X, Vλ+1). We then have the fol-
lowing:

Theorem 6.10. Suppose there exists an elementary embedding

j : L(X, Vλ+1)→ L(X, Vλ+1).

Then the Tower Condition for U(j) holds in L(X, Vλ+1).

Finally by a Theorem of Woodin (see [10] Corollary 149) we have the
following:

Corollary 6.11. Suppose there exists an elementary embedding

j : L(X, Vλ+1)→ L(X, Vλ+1).

Let Y be U(j)-representable in L(X, Vλ+1). Let κ = λ+ and set

η = sup{(κ+)L[A]|A ⊆ λ}.

Then every set
Z ∈ Lη(Y, Vλ+1) ∩ Vλ+2

is U(j)-representable in L(X, Vλ+1).
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We end by noting that the proof of Theorem 6.8 can be altered so that
it appears as more of a generalization of the proof of Lemma 123 of [10]. In
particular we consider the direct limit of the system for a fixed η,

Lη(Vλ+1)
j0−−−→ Lη(Vλ+1)

j0(j1)−−−→ Lη(Vλ+1)
j0(j1(j2))−−−−−→ · · ·

which we denote MJ
ω . We let Jω = · · · ◦ j0(j1) ◦ j0 be the corresponding map

from Lη(Vλ+1)→MJ
ω . Similarly define

Jωn = · · · ◦ j0(j1(· · · jn−1(jn(jn+1)) · · · ) ◦ j0(j1(· · · jn−1(jn) · · · )

which maps Lη(Vλ+1) → MJ
ω . The proof then proceeds similarly as above,

but we ‘push up’ our contradiction to the tower condition to MJ
ω as in [10],

rather than ‘pulling it down.’ We leave the details to the reader.
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