
Factoring elementary embeddings

Scott Cramer

November 22, 2014

1 Factoring embeddings

Definition 1. We say that j ∈ E is irreducible if there is no j1, j2 ∈ E \ {id} such that
j = j1 ◦ j2. We call such an equation j = j1 ◦ j2 a reduction of j.

Lemma 2. Suppose that j1, . . . , jn ∈ E. Then there is k1, . . . , kn ∈ E such that.

1. jn ◦ · · · ◦ j1 = kn ◦ · · · ◦ k1.

2. crit (k1) < crit (k2) < · · · < crit (kn).

3. If crit (j1) < crit (ji) for all 1 < i ≤ n, then j1 = k1.

Proof. We prove this by induction on n. It is immediate for n = 1. For n > 1, if crit (j1) <
crit (ji) for all 1 < i ≤ n, then applying the lemma to j2, . . . , jn, to get k2, . . . , kn, then
clearly j1, k2, k3, . . . , kn, witnesses the lemma.

If not, then let m be largest such that for all 1 ≤ i ≤ n, crit (ji) ≥ crit (jm). We then
have that

jm ◦ jm−1 ◦ · · · ◦ j1 = jm(jm−1) ◦ jm(jm−2) ◦ · · · ◦ jm(j1) ◦ jm
and we have for all i < m, that crit (jm(jm−1)) > crit (jm). Combining with the fact that for
all i with m < i ≤ n, crit (ji) > crit (jm), if we apply the lemma to

jm(j1), jm(j2), . . . , jm(jm−1), jm+1, jm+2, . . . , jn

to get k2, . . . , kn, we have that jm, k2, . . . , kn witnesses the lemma.

Definition 3. Suppose that j1, j2, . . . ∈ E and for all α < λ there exists an n such that for
all m ≥ n,

(jn ◦ jn−1 ◦ · · · ◦ j1)(α) = (jm ◦ jm−1 ◦ · · · ◦ j1)(α).

Then we define
k = · · · ◦ j2 ◦ j1 = limn→ ωjn ◦ jn−1 ◦ · · · j1 ∈ E

to be the direct limit of this system of embeddings. So for any a ∈ Vλ
k(a) = (jn ◦ jn−1 ◦ · · · ◦ j1)(a)

for n large enough.
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Lemma 4. For all j ∈ E, there is j1, k ∈ E such that we have

j = k ◦ j1 = k(j1) ◦ k,

k 6= id is irreducible and crit (k) = crit (j).

Proof. We define by induction 〈ki, ji| i < ω〉 such that ki, ji ∈ E , ki, ji 6= id and

j = ki ◦ ji ◦ ji−1 ◦ · · · ◦ j1

for all i < ω. Our induction proceeds as long as the lemma has not been satisfied so
far. Suppose that j is not irreducible. Then let j = k1 ◦ j1 be a reduction such that
(crit (k1), crit (j1)) is lexicographically least among all such reductions. We must have then
that crit (k1) = crit (j) since if not then crit (j1) = crit (j), and we have

j = k1 ◦ j1 = k1(j1) ◦ k1.

Hence since crit (k1(j1)) = crit (j1) = crit (j) < crit (k1), we would have a contradiction to
our choice of k1, j1.

Now assume we have chosen k1, . . . , kn and j1, . . . , jn such that the following hold.

1. For all i ≤ n, j = ki ◦ ji ◦ ji−1 ◦ · · · ◦ j1.

2. For all i ≤ n, (crit (ki), crit (ji)) is lexicographically least among all reductions of ki−1.

3. For all i ≤ n, crit (ki) = crit (j) ≤ crit (j1) ≤ crit (j2) ≤ · · · ,≤ crit (jn).

We let kn+1, jn+1 ∈ E be such that kn = kn+1 ◦ jn+1 is a reduction of kn (if one exists–
otherwise the lemma is satisfied) such that (crit (kn+1), crit (jn+1)) is lexicographically least
among all such reductions. We have again that crit (kn+1) = crit (kn) = crit (j) as before.
Also, crit (jn+1) ≥ crit (jn), since if not we would have that

kn−1 = kn ◦ jn = kn+1 ◦ jn+1 ◦ jn = kn+1 ◦ (jn+1 ◦ jn)

is a reduction which has

(crit (kn+1), crit (jn+1 ◦ jn)) <lex (crit (kn), crit (jn))

a contradiction.
Having defined these sequences, we claim that

lim
n→ω

crit (jn) = λ.

To see this, note that for all α < λ and n < ω we have that if crit (jn+1) < α then

kn(α) = (kn+1 ◦ jn+1)(α) > kn+1(α).
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Hence there are only finitely many n < ω such that crit (jn) < α. Which shows that
limn→ω crit (jn) = λ.

In fact for any α < λ there is an n such that for all m ≥ n,

(jn ◦ jn−1 ◦ · · · ◦ j1)(α) = (jm ◦ jm−1 ◦ · · · ◦ j1)(α).

This follows since for all n < ω,

j(α) = (kn ◦ jn ◦ jn−1 ◦ · · · ◦ j1)(α) ≥ (jn ◦ jn−1 ◦ · · · ◦ j1)(α).

And hence for n such that crit (jn) > j(α), this n has the desired property.
Now let ` = · · · ◦ j2 ◦ j1 and let k = limn→ω kn. Note that kn and kn+1 agree up to

crit (jn+1), and hence this limit makes sense. We have

k ◦ ` = (lim
n→ω

kn) ◦ ( lim
n→ω

jn ◦ jn−1 ◦ · · · ◦ j1) = lim
n→ω

kn ◦ jn ◦ jn−1 ◦ · · · ◦ j1 = lim
n→ω

j = j.

Furthermore for m ≥ 1 and `m = · · · ◦ jm+1 ◦ jm we have that

k ◦ `m = (lim
n→ω

kn) ◦ ( lim
n→ω

jn ◦ jn−1 ◦ · · · ◦ jm) = lim
n→ω

kn ◦ jn ◦ jn−1 ◦ · · · ◦ jm = lim
n→ω

km = km.

We claim that k is irreducible. To see this, suppose not and let k = k1 ◦ k2 be a
reduction with (crit (k1), crit (k2)) lexicographically least. Let n0 be the least n such that
crit (jn) > crit (k2). Then we have that

j = k ◦ ` = k1 ◦ k2 ◦ lim
n→ω

kn ◦ jn ◦ jn−1 ◦ · · · ◦ j1

= k1 ◦ k2 ◦ ( lim
n→ω

jn ◦ jn−1 ◦ · · · ◦ jn0) ◦ jn0−1 ◦ jn0−2 ◦ · · · ◦ j1

But then for
k∗ = k2 ◦ ( lim

n→ω
jn ◦ jn−1 ◦ · · · ◦ jn0)

we have kn0−1 = k1 ◦ k∗ and

(crit (k1), crit (k∗)) <lex (crit (kn+1), crit (jn0)),

a contradiction.
Hence k satisfies the lemma.

Corollary 5. Suppose j ∈ E. Then there is a sequence 〈kn|n < ω〉 such that

j = k1 ◦ k2 ◦ · · ·

and for all n < ω, kn 6= id is irreducible or kn = id.
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Proof. We repeatedly apply the previous lemma by induction. First let j = k1 ◦ j1 be a
reduction of j such that k1 is irreducible and (crit (k1), crit (j1)) is lexicographically least
among all such reductions. Then by induction after defining k1, . . . , kn and j1, . . . , jn, such
that for all i ≤ n,

j = k1 ◦ · · · ◦ ki ◦ ji
and ki is irreducible, let kn+1 ◦ jn+1 = jn be a reduction such that kn+1 is irreducible (if jn is
not irreducible–otherwise we are done) and (crit (kn+1), crit (jn+1)) is lexicographically least.

Having defined k1, k2, . . ., we claim that

j = k1 ◦ k2 ◦ · · · .

This follows since we must have

lim
n→ω

crit (jn) = lim
n→ω

crit (kn) = λ

since we chose the lexicographically least pairs and if the critical points of kn were bounded
below λ, they would form an inverse limit K with λ̄K < λ. But then clearly j = k1 ◦ k2 ◦ · · ·
by continuity. So this is the decomposition we wanted.

We also isolate the following from the previous proof:

Lemma 6. Suppose that j = ki ◦ ji ◦ ji−1 ◦ · · · ◦ j1 where j, ki, ji ∈ E for all i. Then
limn→ω crit (ji) = λ.

Definition 7. We say that j and k are right-relatively prime if there is no ` ∈ E , ` 6= id
such that j = j′ ◦ ` and k = k′ = ` for some j′, k′ ∈ E .

Lemma 8. Suppose that j, k ∈ E. Then there is j1, k1, ` ∈ E such that j = j1 ◦ `, k = k1 ◦ `
and j1 and k1 are relatively prime.

Proof. We define by induction 〈ki, ji, `i| i < ω〉 with the following properties for all i < ω.

1. j = ji ◦ `i ◦ `i−1 ◦ · · · ◦ `1 and k = ki ◦ `i ◦ `i−1 ◦ · · · ◦ `1.

2. ji = ji+1 ◦ `i+1 and ki = ki+1 ◦ `i+1.

3. crit `i+1 is the least crit (j′) among all j′, k′, `′ with `′ 6= id such that ji = j′ ◦ `′ and
ki = k′ ◦ `′.

If we can only define this for finitely many i, then clearly the lemma can be satisfied
at the first point where we can’t continue. Otherwise we have defined ki, ji, `i for i < ω
satisfying the above properties.

We have that
lim
n→ω

crit (`n) = λ
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by the above lemma. Hence we can define

` = lim
n→ω

(`n ◦ `n−1 ◦ · · · ◦ `1), j∗ = lim
n→ω

jn, k∗ = lim
n→ω

kn.

And we have by continuity that

j = j∗ ◦ ` and k = k∗ ◦ `.

We claim that j∗ and k∗ are relatively prime. To see this, suppose that j∗ = j̄ ◦ `∗ and
k∗ = k̄ ◦ `∗ for `∗ 6= id. Then let n0 < ω be such that crit (`n0) > crit (`∗). Then we have
that

j = j∗ ◦ ` = j̄ ◦ `∗ ◦ lim
n→ω

`n ◦ `n−1 ◦ · · · ◦ `1

= j̄ ◦ `∗ ◦ ( lim
n→ω

`n ◦ `n−1 ◦ · · · ◦ `n0) ◦ `n0−1 ◦ · · · ◦ `1

and similarly for k. But setting

`∗n0
= `∗ ◦ ( lim

n→ω
`n ◦ `n−1 ◦ · · · ◦ `n0)

we have that
j = j∗ ◦ `∗n0

◦ `n0−1 ◦ `n0−2 ◦ · · · ◦ `1
and

k = k∗ ◦ `∗n0
◦ `n0−1 ◦ `n0−2 ◦ · · · ◦ `1.

Since crit (`∗n0
) < crit (`n0), this is a contradiction to the way in which we chose `n0 .

Definition 9. We say that j and k are left-relatively prime if there is no ` ∈ E , ` 6= id such
that j = ` ◦ j′ and k = ` ◦ k′ for some j′, k′ ∈ E .

Lemma 10. Suppose that j = j1 ◦ j2 ◦ · · · ◦ ji ◦ ki and ki = ji+1 ◦ ki+1 where j, ki, ji ∈ E for
all i < ω. Then limn→ω crit (ji) = λ.

Proof. For any α < λ we have that

ki(α) = (ji+1 ◦ ki+1)(α).

And hence if crit (ji+1) ≤ ki+1(α), then ki(α) > ki+1(α). And so for large enough i we must
have crit (ji+1) > ki+1(α) ≥ α. So since this is true for arbitrary α < λ, we must have
limn→ω crit ji = λ.

Lemma 11. Suppose that j, k ∈ E. Then there is j1, k1, ` ∈ E such that j = ` ◦ j1, k = ` ◦ k1

and j1 and k1 are left-relatively prime.

Proof. We define by induction 〈ki, ji, `i| i < ω〉 with the following properties for all i < ω.

1. j = `1 ◦ `2 ◦ · · · ◦ `i ◦ ji and k = `1 ◦ `2 ◦ · · · ◦ `i ◦ ki.
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2. ji = `i+1 ◦ ji+1 and ki = `i+1 ◦ ki+1.

3. crit `i+1 is the least crit (`′) among all j′, k′, `′ with `′ 6= id such that ji = `′ ◦ j′ and
ki = `′ ◦ k′.

If we can only define this for finitely many i, then clearly the lemma can be satisfied
at the first point where we can’t continue. Otherwise we have defined ki, ji, `i for i < ω
satisfying the above properties.

We have that
lim
n→ω

crit (`n) = λ

by the above lemma. Hence we can define

` = lim
n→ω

(`n ◦ `n−1 ◦ · · · ◦ `1), j∗ = lim
n→ω

jn, k∗ = lim
n→ω

kn.

And we have by continuity that

j = ` ◦ j∗ and k = ` ◦ k∗.

We claim that j∗ and k∗ are left-relatively prime. To see this, suppose that j∗ = `∗ ◦ j̄
and k∗ = `∗ ◦ k̄ for `∗ 6= id. Then let n0 < ω be such that crit (`n0) > crit (`∗). Then we have
that

j = ` ◦ j∗ = (lim
n→ω

`1 ◦ `2 ◦ · · · ◦ `n) ◦ `∗ ◦ j̄

= `1 ◦ `2 ◦ · · · `n0−1 ◦ ( lim
n→ω

`n0 ◦ `n0+1 ◦ · · · ◦ `n) ◦ `∗ ◦ j̄

and similarly for k. But setting

`∗n0
= (lim

n→ω
`n0 ◦ `n0+1 ◦ · · · ◦ `n) ◦ `∗

we have that
j = `1 ◦ `2 ◦ · · · `n0−1 ◦ `∗n0

◦ j̄

and
k = `1 ◦ `2 ◦ · · · `n0−1 ◦ `∗n0

◦ k̄.

Since crit (`∗n0
) < crit (`n0), this is a contradiction to the way in which we chose `n0 .

Lemma 12. Suppose that j, k, ` ∈ E and j = k ◦ `. Then for any `′ such that j = k ◦ `′,
` = `′.

Proof. This follows from the fact that we can write ` and `′ as ` = k−1 ◦ j = `′.
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