Factoring elementary embeddings

Scott Cramer

November 22, 2014

1 Factoring embeddings

Definition 1. We say that $j \in \mathcal{E}$ is irreducible if there is no $j_{1}, j_{2} \in \mathcal{E} \backslash\{\mathrm{id}\}$ such that $j=j_{1} \circ j_{2}$. We call such an equation $j=j_{1} \circ j_{2}$ a reduction of j.

Lemma 2. Suppose that $j_{1}, \ldots, j_{n} \in \mathcal{E}$. Then there is $k_{1}, \ldots, k_{n} \in \mathcal{E}$ such that.

1. $j_{n} \circ \cdots \circ j_{1}=k_{n} \circ \cdots \circ k_{1}$.
2. $\operatorname{crit}\left(k_{1}\right)<\operatorname{crit}\left(k_{2}\right)<\cdots<\operatorname{crit}\left(k_{n}\right)$.
3. If $\operatorname{crit}\left(j_{1}\right)<\operatorname{crit}\left(j_{i}\right)$ for all $1<i \leq n$, then $j_{1}=k_{1}$.

Proof. We prove this by induction on n. It is immediate for $n=1$. For $n>1$, if $\operatorname{crit}\left(j_{1}\right)<$ $\operatorname{crit}\left(j_{i}\right)$ for all $1<i \leq n$, then applying the lemma to j_{2}, \ldots, j_{n}, to get k_{2}, \ldots, k_{n}, then clearly $j_{1}, k_{2}, k_{3}, \ldots, k_{n}$, witnesses the lemma.

If not, then let m be largest such that for all $1 \leq i \leq n$, $\operatorname{crit}\left(j_{i}\right) \geq \operatorname{crit}\left(j_{m}\right)$. We then have that

$$
j_{m} \circ j_{m-1} \circ \cdots \circ j_{1}=j_{m}\left(j_{m-1}\right) \circ j_{m}\left(j_{m-2}\right) \circ \cdots \circ j_{m}\left(j_{1}\right) \circ j_{m}
$$

and we have for all $i<m$, that $\operatorname{crit}\left(j_{m}\left(j_{m-1}\right)\right)>\operatorname{crit}\left(j_{m}\right)$. Combining with the fact that for all i with $m<i \leq n$, $\operatorname{crit}\left(j_{i}\right)>\operatorname{crit}\left(j_{m}\right)$, if we apply the lemma to

$$
j_{m}\left(j_{1}\right), j_{m}\left(j_{2}\right), \ldots, j_{m}\left(j_{m-1}\right), j_{m+1}, j_{m+2}, \ldots, j_{n}
$$

to get k_{2}, \ldots, k_{n}, we have that $j_{m}, k_{2}, \ldots, k_{n}$ witnesses the lemma.
Definition 3. Suppose that $j_{1}, j_{2}, \ldots \in \mathcal{E}$ and for all $\alpha<\lambda$ there exists an n such that for all $m \geq n$,

$$
\left(j_{n} \circ j_{n-1} \circ \cdots \circ j_{1}\right)(\alpha)=\left(j_{m} \circ j_{m-1} \circ \cdots \circ j_{1}\right)(\alpha) .
$$

Then we define

$$
k=\cdots \circ j_{2} \circ j_{1}=\lim n \rightarrow \omega j_{n} \circ j_{n-1} \circ \cdots j_{1} \in \mathcal{E}
$$

to be the direct limit of this system of embeddings. So for any $a \in V_{\lambda}$

$$
k(a)=\left(j_{n} \circ j_{n-1} \circ \cdots \circ j_{1}\right)(a)
$$

for n large enough.

Lemma 4. For all $j \in \mathcal{E}$, there is $j_{1}, k \in \mathcal{E}$ such that we have

$$
j=k \circ j_{1}=k\left(j_{1}\right) \circ k,
$$

$k \neq i d$ is irreducible and $\operatorname{crit}(k)=\operatorname{crit}(j)$.
Proof. We define by induction $\left\langle k_{i}, j_{i} \mid i<\omega\right\rangle$ such that $k_{i}, j_{i} \in \mathcal{E}, k_{i}, j_{i} \neq \mathrm{id}$ and

$$
j=k_{i} \circ j_{i} \circ j_{i-1} \circ \cdots \circ j_{1}
$$

for all $i<\omega$. Our induction proceeds as long as the lemma has not been satisfied so far. Suppose that j is not irreducible. Then let $j=k_{1} \circ j_{1}$ be a reduction such that ($\left.\operatorname{crit}\left(k_{1}\right), \operatorname{crit}\left(j_{1}\right)\right)$ is lexicographically least among all such reductions. We must have then that $\operatorname{crit}\left(k_{1}\right)=\operatorname{crit}(j)$ since if not then $\operatorname{crit}\left(j_{1}\right)=\operatorname{crit}(j)$, and we have

$$
j=k_{1} \circ j_{1}=k_{1}\left(j_{1}\right) \circ k_{1} .
$$

Hence since $\operatorname{crit}\left(k_{1}\left(j_{1}\right)\right)=\operatorname{crit}\left(j_{1}\right)=\operatorname{crit}(j)<\operatorname{crit}\left(k_{1}\right)$, we would have a contradiction to our choice of k_{1}, j_{1}.

Now assume we have chosen k_{1}, \ldots, k_{n} and j_{1}, \ldots, j_{n} such that the following hold.

1. For all $i \leq n, j=k_{i} \circ j_{i} \circ j_{i-1} \circ \cdots \circ j_{1}$.
2. For all $i \leq n$, $\left(\operatorname{crit}\left(k_{i}\right), \operatorname{crit}\left(j_{i}\right)\right)$ is lexicographically least among all reductions of k_{i-1}.
3. For all $i \leq n, \operatorname{crit}\left(k_{i}\right)=\operatorname{crit}(j) \leq \operatorname{crit}\left(j_{1}\right) \leq \operatorname{crit}\left(j_{2}\right) \leq \cdots, \leq \operatorname{crit}\left(j_{n}\right)$.

We let $k_{n+1}, j_{n+1} \in \mathcal{E}$ be such that $k_{n}=k_{n+1} \circ j_{n+1}$ is a reduction of k_{n} (if one existsotherwise the lemma is satisfied) such that ($\operatorname{crit}\left(k_{n+1}\right)$, $\left.\operatorname{crit}\left(j_{n+1}\right)\right)$ is lexicographically least among all such reductions. We have again that $\operatorname{crit}\left(k_{n+1}\right)=\operatorname{crit}\left(k_{n}\right)=\operatorname{crit}(j)$ as before. Also, crit $\left(j_{n+1}\right) \geq \operatorname{crit}\left(j_{n}\right)$, since if not we would have that

$$
k_{n-1}=k_{n} \circ j_{n}=k_{n+1} \circ j_{n+1} \circ j_{n}=k_{n+1} \circ\left(j_{n+1} \circ j_{n}\right)
$$

is a reduction which has

$$
\left(\operatorname{crit}\left(k_{n+1}\right), \operatorname{crit}\left(j_{n+1} \circ j_{n}\right)\right)<_{\operatorname{lex}}\left(\operatorname{crit}\left(k_{n}\right), \operatorname{crit}\left(j_{n}\right)\right)
$$

a contradiction.
Having defined these sequences, we claim that

$$
\lim _{n \rightarrow \omega} \operatorname{crit}\left(j_{n}\right)=\lambda .
$$

To see this, note that for all $\alpha<\lambda$ and $n<\omega$ we have that if $\operatorname{crit}\left(j_{n+1}\right)<\alpha$ then

$$
k_{n}(\alpha)=\left(k_{n+1} \circ j_{n+1}\right)(\alpha)>k_{n+1}(\alpha) .
$$

Hence there are only finitely many $n<\omega$ such that $\operatorname{crit}\left(j_{n}\right)<\alpha$. Which shows that $\lim _{n \rightarrow \omega} \operatorname{crit}\left(j_{n}\right)=\lambda$.

In fact for any $\alpha<\lambda$ there is an n such that for all $m \geq n$,

$$
\left(j_{n} \circ j_{n-1} \circ \cdots \circ j_{1}\right)(\alpha)=\left(j_{m} \circ j_{m-1} \circ \cdots \circ j_{1}\right)(\alpha) .
$$

This follows since for all $n<\omega$,

$$
j(\alpha)=\left(k_{n} \circ j_{n} \circ j_{n-1} \circ \cdots \circ j_{1}\right)(\alpha) \geq\left(j_{n} \circ j_{n-1} \circ \cdots \circ j_{1}\right)(\alpha) .
$$

And hence for n such that crit $\left(j_{n}\right)>j(\alpha)$, this n has the desired property.
Now let $\ell=\cdots \circ j_{2} \circ j_{1}$ and let $k=\lim _{n \rightarrow \omega} k_{n}$. Note that k_{n} and k_{n+1} agree up to crit $\left(j_{n+1}\right)$, and hence this limit makes sense. We have

$$
k \circ \ell=\left(\lim _{n \rightarrow \omega} k_{n}\right) \circ\left(\lim _{n \rightarrow \omega} j_{n} \circ j_{n-1} \circ \cdots \circ j_{1}\right)=\lim _{n \rightarrow \omega} k_{n} \circ j_{n} \circ j_{n-1} \circ \cdots \circ j_{1}=\lim _{n \rightarrow \omega} j=j .
$$

Furthermore for $m \geq 1$ and $\ell_{m}=\cdots \circ j_{m+1} \circ j_{m}$ we have that

$$
k \circ \ell_{m}=\left(\lim _{n \rightarrow \omega} k_{n}\right) \circ\left(\lim _{n \rightarrow \omega} j_{n} \circ j_{n-1} \circ \cdots \circ j_{m}\right)=\lim _{n \rightarrow \omega} k_{n} \circ j_{n} \circ j_{n-1} \circ \cdots \circ j_{m}=\lim _{n \rightarrow \omega} k_{m}=k_{m}
$$

We claim that k is irreducible. To see this, suppose not and let $k=k^{1} \circ k^{2}$ be a reduction with $\left(\operatorname{crit}\left(k^{1}\right), \operatorname{crit}\left(k^{2}\right)\right)$ lexicographically least. Let n_{0} be the least n such that $\operatorname{crit}\left(j_{n}\right)>\operatorname{crit}\left(k^{2}\right)$. Then we have that

$$
\begin{aligned}
j & =k \circ \ell=k^{1} \circ k^{2} \circ \lim _{n \rightarrow \omega} k_{n} \circ j_{n} \circ j_{n-1} \circ \cdots \circ j_{1} \\
& =k^{1} \circ k^{2} \circ\left(\lim _{n \rightarrow \omega} j_{n} \circ j_{n-1} \circ \cdots \circ j_{n_{0}}\right) \circ j_{n_{0}-1} \circ j_{n_{0}-2} \circ \cdots \circ j_{1}
\end{aligned}
$$

But then for

$$
k^{*}=k^{2} \circ\left(\lim _{n \rightarrow \omega} j_{n} \circ j_{n-1} \circ \cdots \circ j_{n_{0}}\right)
$$

we have $k_{n_{0}-1}=k^{1} \circ k^{*}$ and

$$
\left(\operatorname{crit}\left(k^{1}\right), \operatorname{crit}\left(k^{*}\right)\right)<_{\text {lex }}\left(\operatorname{crit}\left(k_{n+1}\right), \operatorname{crit}\left(j_{n_{0}}\right)\right),
$$

a contradiction.
Hence k satisfies the lemma.
Corollary 5. Suppose $j \in \mathcal{E}$. Then there is a sequence $\left\langle k_{n} \mid n<\omega\right\rangle$ such that

$$
j=k_{1} \circ k_{2} \circ \cdots
$$

and for all $n<\omega, k_{n} \neq i d$ is irreducible or $k_{n}=i d$.

Proof. We repeatedly apply the previous lemma by induction. First let $j=k_{1} \circ j_{1}$ be a reduction of j such that k_{1} is irreducible and $\left(\operatorname{crit}\left(k_{1}\right), \operatorname{crit}\left(j_{1}\right)\right)$ is lexicographically least among all such reductions. Then by induction after defining k_{1}, \ldots, k_{n} and j_{1}, \ldots, j_{n}, such that for all $i \leq n$,

$$
j=k_{1} \circ \cdots \circ k_{i} \circ j_{i}
$$

and k_{i} is irreducible, let $k_{n+1} \circ j_{n+1}=j_{n}$ be a reduction such that k_{n+1} is irreducible (if j_{n} is not irreducible-otherwise we are done) and ($\operatorname{crit}\left(k_{n+1}\right)$, $\left.\operatorname{crit}\left(j_{n+1}\right)\right)$ is lexicographically least.

Having defined k_{1}, k_{2}, \ldots, we claim that

$$
j=k_{1} \circ k_{2} \circ \cdots .
$$

This follows since we must have

$$
\lim _{n \rightarrow \omega} \operatorname{crit}\left(j_{n}\right)=\lim _{n \rightarrow \omega} \operatorname{crit}\left(k_{n}\right)=\lambda
$$

since we chose the lexicographically least pairs and if the critical points of k_{n} were bounded below λ, they would form an inverse limit K with $\bar{\lambda}_{K}<\lambda$. But then clearly $j=k_{1} \circ k_{2} \circ \ldots$ by continuity. So this is the decomposition we wanted.

We also isolate the following from the previous proof:
Lemma 6. Suppose that $j=k_{i} \circ j_{i} \circ j_{i-1} \circ \cdots \circ j_{1}$ where $j, k_{i}, j_{i} \in \mathcal{E}$ for all i. Then $\lim _{n \rightarrow \omega} \operatorname{crit}\left(j_{i}\right)=\lambda$.

Definition 7. We say that j and k are right-relatively prime if there is no $\ell \in \mathcal{E}, \ell \neq \mathrm{id}$ such that $j=j^{\prime} \circ \ell$ and $k=k^{\prime}=\ell$ for some $j^{\prime}, k^{\prime} \in \mathcal{E}$.

Lemma 8. Suppose that $j, k \in \mathcal{E}$. Then there is $j_{1}, k_{1}, \ell \in \mathcal{E}$ such that $j=j_{1} \circ \ell, k=k_{1} \circ \ell$ and j_{1} and k_{1} are relatively prime.

Proof. We define by induction $\left\langle k_{i}, j_{i}, \ell_{i} \mid i<\omega\right\rangle$ with the following properties for all $i<\omega$.

1. $j=j_{i} \circ \ell_{i} \circ \ell_{i-1} \circ \cdots \circ \ell_{1}$ and $k=k_{i} \circ \ell_{i} \circ \ell_{i-1} \circ \cdots \circ \ell_{1}$.
2. $j_{i}=j_{i+1} \circ \ell_{i+1}$ and $k_{i}=k_{i+1} \circ \ell_{i+1}$.
3. crit ℓ_{i+1} is the least $\operatorname{crit}\left(j^{\prime}\right)$ among all $j^{\prime}, k^{\prime}, \ell^{\prime}$ with $\ell^{\prime} \neq \mathrm{id}$ such that $j_{i}=j^{\prime} \circ \ell^{\prime}$ and $k_{i}=k^{\prime} \circ \ell^{\prime}$.

If we can only define this for finitely many i, then clearly the lemma can be satisfied at the first point where we can't continue. Otherwise we have defined k_{i}, j_{i}, ℓ_{i} for $i<\omega$ satisfying the above properties.

We have that

$$
\lim _{n \rightarrow \omega} \operatorname{crit}\left(\ell_{n}\right)=\lambda
$$

by the above lemma. Hence we can define

$$
\ell=\lim _{n \rightarrow \omega}\left(\ell_{n} \circ \ell_{n-1} \circ \cdots \circ \ell_{1}\right), \quad j^{*}=\lim _{n \rightarrow \omega} j_{n}, \quad k^{*}=\lim _{n \rightarrow \omega} k_{n}
$$

And we have by continuity that

$$
j=j^{*} \circ \ell \text { and } k=k^{*} \circ \ell
$$

We claim that j^{*} and k^{*} are relatively prime. To see this, suppose that $j^{*}=\bar{j} \circ \ell^{*}$ and $k^{*}=\bar{k} \circ \ell^{*}$ for $\ell^{*} \neq \mathrm{id}$. Then let $n_{0}<\omega$ be such that $\operatorname{crit}\left(\ell_{n_{0}}\right)>\operatorname{crit}\left(\ell^{*}\right)$. Then we have that

$$
\begin{aligned}
j & =j^{*} \circ \ell=\bar{j} \circ \ell^{*} \circ \lim _{n \rightarrow \omega} \ell_{n} \circ \ell_{n-1} \circ \cdots \circ \ell_{1} \\
& =\bar{j} \circ \ell^{*} \circ\left(\lim _{n \rightarrow \omega} \ell_{n} \circ \ell_{n-1} \circ \cdots \circ \ell_{n_{0}}\right) \circ \ell_{n_{0}-1} \circ \cdots \circ \ell_{1}
\end{aligned}
$$

and similarly for k. But setting

$$
\ell_{n_{0}}^{*}=\ell^{*} \circ\left(\lim _{n \rightarrow \omega} \ell_{n} \circ \ell_{n-1} \circ \cdots \circ \ell_{n_{0}}\right)
$$

we have that

$$
j=j^{*} \circ \ell_{n_{0}}^{*} \circ \ell_{n_{0}-1} \circ \ell_{n_{0}-2} \circ \cdots \circ \ell_{1}
$$

and

$$
k=k^{*} \circ \ell_{n_{0}}^{*} \circ \ell_{n_{0}-1} \circ \ell_{n_{0}-2} \circ \cdots \circ \ell_{1} .
$$

Since $\operatorname{crit}\left(\ell_{n_{0}}^{*}\right)<\operatorname{crit}\left(\ell_{n_{0}}\right)$, this is a contradiction to the way in which we chose $\ell_{n_{0}}$.
Definition 9. We say that j and k are left-relatively prime if there is no $\ell \in \mathcal{E}, \ell \neq \mathrm{id}$ such that $j=\ell \circ j^{\prime}$ and $k=\ell \circ k^{\prime}$ for some $j^{\prime}, k^{\prime} \in \mathcal{E}$.

Lemma 10. Suppose that $j=j_{1} \circ j_{2} \circ \cdots \circ j_{i} \circ k_{i}$ and $k_{i}=j_{i+1} \circ k_{i+1}$ where $j, k_{i}, j_{i} \in \mathcal{E}$ for all $i<\omega$. Then $\lim _{n \rightarrow \omega} \operatorname{crit}\left(j_{i}\right)=\lambda$.

Proof. For any $\alpha<\lambda$ we have that

$$
k_{i}(\alpha)=\left(j_{i+1} \circ k_{i+1}\right)(\alpha) .
$$

And hence if $\operatorname{crit}\left(j_{i+1}\right) \leq k_{i+1}(\alpha)$, then $k_{i}(\alpha)>k_{i+1}(\alpha)$. And so for large enough i we must have $\operatorname{crit}\left(j_{i+1}\right)>k_{i+1}(\alpha) \geq \alpha$. So since this is true for arbitrary $\alpha<\lambda$, we must have $\lim _{n \rightarrow \omega} \operatorname{crit} j_{i}=\lambda$.

Lemma 11. Suppose that $j, k \in \mathcal{E}$. Then there is $j_{1}, k_{1}, \ell \in \mathcal{E}$ such that $j=\ell \circ j_{1}, k=\ell \circ k_{1}$ and j_{1} and k_{1} are left-relatively prime.

Proof. We define by induction $\left\langle k_{i}, j_{i}, \ell_{i} \mid i<\omega\right\rangle$ with the following properties for all $i<\omega$.

1. $j=\ell_{1} \circ \ell_{2} \circ \cdots \circ \ell_{i} \circ j_{i}$ and $k=\ell_{1} \circ \ell_{2} \circ \cdots \circ \ell_{i} \circ k_{i}$.
2. $j_{i}=\ell_{i+1} \circ j_{i+1}$ and $k_{i}=\ell_{i+1} \circ k_{i+1}$.
3. crit ℓ_{i+1} is the least $\operatorname{crit}\left(\ell^{\prime}\right)$ among all $j^{\prime}, k^{\prime}, \ell^{\prime}$ with $\ell^{\prime} \neq \mathrm{id}$ such that $j_{i}=\ell^{\prime} \circ j^{\prime}$ and $k_{i}=\ell^{\prime} \circ k^{\prime}$.

If we can only define this for finitely many i, then clearly the lemma can be satisfied at the first point where we can't continue. Otherwise we have defined k_{i}, j_{i}, ℓ_{i} for $i<\omega$ satisfying the above properties.

We have that

$$
\lim _{n \rightarrow \omega} \operatorname{crit}\left(\ell_{n}\right)=\lambda
$$

by the above lemma. Hence we can define

$$
\ell=\lim _{n \rightarrow \omega}\left(\ell_{n} \circ \ell_{n-1} \circ \cdots \circ \ell_{1}\right), \quad j^{*}=\lim _{n \rightarrow \omega} j_{n}, \quad k^{*}=\lim _{n \rightarrow \omega} k_{n}
$$

And we have by continuity that

$$
j=\ell \circ j^{*} \text { and } k=\ell \circ k^{*} .
$$

We claim that j^{*} and k^{*} are left-relatively prime. To see this, suppose that $j^{*}=\ell^{*} \circ \bar{j}$ and $k^{*}=\ell^{*} \circ \bar{k}$ for $\ell^{*} \neq \mathrm{id}$. Then let $n_{0}<\omega$ be such that $\operatorname{crit}\left(\ell_{n_{0}}\right)>\operatorname{crit}\left(\ell^{*}\right)$. Then we have that

$$
\begin{aligned}
j & =\ell \circ j^{*}=\left(\lim _{n \rightarrow \omega} \ell_{1} \circ \ell_{2} \circ \cdots \circ \ell_{n}\right) \circ \ell^{*} \circ \bar{j} \\
& =\ell_{1} \circ \ell_{2} \circ \cdots \ell_{n_{0}-1} \circ\left(\lim _{n \rightarrow \omega} \ell_{n_{0}} \circ \ell_{n_{0}+1} \circ \cdots \circ \ell_{n}\right) \circ \ell^{*} \circ \bar{j}
\end{aligned}
$$

and similarly for k. But setting

$$
\ell_{n_{0}}^{*}=\left(\lim _{n \rightarrow \omega} \ell_{n_{0}} \circ \ell_{n_{0}+1} \circ \cdots \circ \ell_{n}\right) \circ \ell^{*}
$$

we have that

$$
j=\ell_{1} \circ \ell_{2} \circ \cdots \ell_{n_{0}-1} \circ \ell_{n_{0}}^{*} \circ \bar{j}
$$

and

$$
k=\ell_{1} \circ \ell_{2} \circ \cdots \ell_{n_{0}-1} \circ \ell_{n_{0}}^{*} \circ \bar{k} .
$$

Since $\operatorname{crit}\left(\ell_{n_{0}}^{*}\right)<\operatorname{crit}\left(\ell_{n_{0}}\right)$, this is a contradiction to the way in which we chose $\ell_{n_{0}}$.
Lemma 12. Suppose that $j, k, \ell \in \mathcal{E}$ and $j=k \circ \ell$. Then for any ℓ^{\prime} such that $j=k \circ \ell^{\prime}$, $\ell=\ell^{\prime}$.

Proof. This follows from the fact that we can write ℓ and ℓ^{\prime} as $\ell=k^{-1} \circ j=\ell^{\prime}$.

