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Abstract—In recent years there has been much exciting
progress on depth reduction of arithmetic circuits and
lower bounds for bounded depth arithmetic circuits. We
will survey some of these results and highlight some of the
main challenges and open questions that remain.
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I. INTRODUCTION

The problem of proving lower bounds for arithmetic
circuits is one of the most interesting and challenging
problems in complexity theory. Arithmetic circuits are
a very natural model of computation for many natu-
ral algebraic algorithms such as matrix multiplication,
computing fast fourier transforms, computing the deter-
minant etc. In a seminal work [Val79], Valiant defined
the classes VP and VNP as the algebraic analogs of
the classes P and NP. The VP vs VNP is an easier
question to answer than the P vs NP question, and
moreover the additional structure of arithmetic circuits
makes them amenable to anlaysis using a wide variety
of techniques. In addition to being extremely interesting
from the point of view of proving lower bounds, the
VP vs VNP question is also an important question in
derandomization. In a beautiful result, Kabanets and
Impagliazzo [KI04] showed that proving lower bounds
for arithmetic circuits is essentially equivalent to the
problem of derandomizing polynomial identity testing.

Although the problem of proving lower bounds for
arithmetic circuits has received a great deal of attention,
the best lower bounds we know for general arithmetic
circuits are barely super linear [Str73], [BS83]. The
absence of progress on the general problem has led
to a great deal of attention being devoted to proving
lower bounds for restricted classes of arithmetic circuits.
The hope is that understanding restricted classed might
shed light on how to approach the much more general
and seemingly harder problem. Arithmetic circuits of
small depth are one such class that has been intensively
studied.

In this survey, we will first see some of the earlier
and more classical results related to depth reduction
of arithmetic circuits and well as lower bounds for
bounded depth arithmetic circuits. We will then outline
some of the more recent results on strengthened depth
reduction, as well as new lower bounds for richer classes
of bounded depth circuits.

II. CLASSICAL RESULTS

A. Depth reduction

In a very interesting direction of research, Valiant et
al [VSBR83] showed that every polynomial of degree
n in poly(n) variables, which can be computed by a
poly(n) sized arithmetic circuit, can also be computed
by a poly(n) sized arithmetic circuit of depth O(log2 n).
In other words, arbitrary depth circuits in VP can be
reduced to circuits of depth O(log2 n) with only a
polynomial blowup in size (i.e. VP = VNC2!). Thus,
in order to separate VNP from VP, it would suffice to
show a super-polynomial lower bound for just circuits of
depth O(log2 n). This was a very surprising result since
nothing like this is believed to be true in the Boolean
world.

B. Lower bounds for bounded depth circuits

Lower bounds for depth 2 circuits (computing a sum
of products) are trivial. Any polynomial with expo-
nentially many monomials (such as the determinant)
needs an exponentially large depth 2 circuit. Already
for depth 3 circuits we have much weaker results. The
best known lower bounds for general depth 3 circuits
(these are circuits computing a sum of products of sums)
are only quadratic [SW01]. In particular [SW01] gives a
polynomial in n variables and of O(n) degree such that
any depth 3 circuit computing it must have size Ω(n2).
For the case of depth 3 circuits over small constant sized
finite fields, Grigoriev and Karpinksi [GK98] and Grig-
oriev and Razborov [GR98] proved exponential lower
bounds. Also, in a very elegant result that influenced



many of the later works, Nisan and Wigderson [NW95]
proved exponential lower bounds for the class of ho-
mogeneous depth 3 circuits. Several of the results that
we will be mentioning later on build upon the Nisan-
Widerson result. This result used the dimension of the
space spanned by all partial derivatives of a polynomial
as a measure of of its complexity. By showing that some
simple explicit polynomials have a very large complexity
and all small homogeneous depth 3 circuits have small
complexity, they were able to obtain the lower bounds.

For several years thereafter, there were no improved
lower bounds - even for the case of depth 4 homogeneous
circuits, the best lower bounds known were just mildly
super-linear [Raz10]. This is contrary to what is known
for Boolean circuits, where we know exponential lower
bounds for constant depth circuits. Indeed this seemed
quite surprising until in later works on depth reduction
(which we discuss next) it was shown that depth 4
circuits are already quite complex.

C. Terminology

Since we will be focussing on depth 4 arithmetic
circuits and some of its variants, we formally give a
definition of the model.
Arithmetic Circuits: An arithmetic circuit over a field
F and a set of variables x1, x2, . . . , xN is a directed
acyclic graph with internal nodes labelled by the field
operations and the leaf nodes labelled by input variables
or field elements. By the size of the circuit, we mean the
total number of nodes in the underlying graph and by the
depth of the circuit, we mean the length of the longest
path from the output node to a leaf node. A circuit is said
to be homogeneous if the polynomial computed at every
node is a homogeneous polynomial. By a ΣΠΣΠ circuit
or a depth 4 circuit, we mean a circuit of depth 4 with
the top layer and the third layer only have sum gates
and the second and the bottom layer have only product
gates. Observe that a depth 4 circuit can be converted
into a depth 4 formula with only a polynomial blow up in
size. We will therefore, use the term formula or circuit
for a depth 4 circuit interchangeably. A homogeneous
polynomial P of degree n in N variables, which is
computed by a homogeneous ΣΠΣΠ circuit can be
written as

P (x1, x2, . . . , xN ) =

T∑
i=1

di∏
j=1

Qi,j(x1, x2, . . . , xN ) (1)

Here, T is the top fan-in of the circuit. Since the
circuit is homogeneous, we know that for every i ∈

{1, 2, 3, . . . , T},
di∑
j=i

deg(Qi,j) = n

The homogeneous ΣΠΣΠ circuit in Equation 1, is said
to be a ΣΠΣΠ[a] circuit, if each Qi,j is a polynomial
of degree at most a. In this case we say that the bottom
fan-in is bounded by a.

III. RECENT RESULTS

A. Depth reduction

In a surprising work, Agrawal and Vinay [AV08]
gave an “explanation” of why proving lower bounds for
bounded depth arithmetic circuits seems so difficult. By
building upon the results of Valiant et al [VSBR83],
Agrawal and Vinay showed that (in a certain sense)
much stronger depth reductions are possible. Every
homogeneous polynomial which can be computed by
a polynomial sized (or even 2o(n) sized) arithmetic
circuit of arbitrary depth in poly(n) variables and of
degree n, can also be computed by a depth 4 ΣΠΣΠ
circuit of size 2o(n). Thus in order to prove exponential
(2Ω(n)) lower bounds for general arithmetic circuits (in
particular in order to separate VNP form VP), it would
suffice to prove strong enough (2Ω(n)) lower bounds
for just homogeneous depth 4 circuits. Thus in some
sense, homogeneous depth 4 circuits capture the inherent
complexity of general arithmetic circuits.

In a recent sequence of works, Koiran [Koi12] and
Tavenas [Tav13] built upon the results of Valiant et
al [VSBR83] and Agrawal-Vinay [AV08] and showed
that if one starts with a polynomial sized homogeneous
arithmetic circuit (instead of a subexponential one), then
one can depth reduce to an even more restricted class of
circuits. One can in fact reduce to a 2O(

√
n log n) sized

homogeneous ΣΠΣΠ[
√
n]. More formally, the following

result is true:
Theorem 3.1 (Koiran[Koi12], Tavenas [Tav13]):

Every arithmetic circuit of size poly(n), computing a
polynomial of degree n in N = nO(1) variables, can be
transformed into an equivalent homogeneous ΣΠΣΠ[t]

circuit with top fan-in1 at most exp(O(n
t logN)).

In particular, in order to separate VNP from VP, it
would suffice to prove (nω(

√
n)) lower bounds for just

homogeneous ΣΠΣΠ[
√
n] circuits.

1For ΣΠΣΠ[t] circuits where t =
√
n, observe that an upper bound

of exp(O(
√
n logN)) on the top fan-in the circuit implies the same

upper bound on size, since each product gate at the second layer
computes a polynomial with at most exp(O(

√
n logN)) monomials.

However for other values of t, the top fan-in bound will be the more
relevant parameter for depth reduction.
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In another very exciting work in this direction, Gupta,
Kamath, Kayal and Saptharishi [GKKS13b] proved that
strong enough (nω(

√
n)) lower bounds for just depth 3

circuits suffice to show superpolynomial lower bounds
for circuits of arbitrary depth (over fields of characteristic
zero). Indeed this depth reduction result showed that
there exist nO(

√
n) circuits of depth 3 that compute the

determinant of an n×n matrix over characteristic zero, a
fact that was not believed to be true until this work. One
caveat is that in this depth reduction we lose the property
of homogeneity that was true for the reduction to depth
4 circuits. At least from the point of view of proving
lower bounds, the loss in homogeneity when using this
reduction to depth 3 circuits might be severe, since we
know only weak lower bounds for non-homogeneous
depth 3 circuits over general fields [SW01].

B. Lower bounds for ΣΠΣΠ[t] circuits

In a recent breakthrough result Gupta, Kamath,
Kayal and Saptharishi [GKKS13a], made the first major
progress on the problem of obtaining lower bounds
for depth 4 arithmetic circuits. They proved 2Ω(

√
n)

lower bounds for an explicit polynomial of degree n in
nO(1) variables computed by a homogeneous ΣΠΣΠ[

√
n]

circuit. These lower bounds worked for both the Per-
manent as well as the Determinant. The lower bounds
of [GKKS13a] were later improved to 2Ω(

√
n log n) in

a follow-up work of Kayal, Saha, Saptharishi [KSS13].
This was shown not for the Permanent or the Deter-
minant, but for another explicit family of polynomials
in VNP. These results were all the more remarkable
in the light of the results of Koiran [Koi12] and Tave-
nas [Tav13] who had showed that 2ω(

√
n log n) lower

bounds for the class of homogeneous ΣΠΣΠ[
√
n] circuits

would suffice to separate VP from VNP. Thus, any
asymptotic improvement in the exponent, in either the
upper bound on depth reduction or the lower bound
of [KSS13] would separate VNP from VP. We formally
state the result below.

Theorem 3.2 ([GKKS13a], [KSS13]): For every n,
there is an explicit family of polynomials in VNP in
N = θ(n2) variables and with degree θ(n) such that
any homogeneous ΣΠΣΠ[t] circuit computing it must
have top fan-in at least exp(Ω(n

t logN)).
Both papers [GKKS13a], [KSS13] used the notion

of the dimension of shifted partial derivatives as a
complexity measure, an augmentation of the Nisan-
Wigderson complexity measure of dimension of partial
derivatives in order to prove the lower bounds. We define
this complexity measure below.

Shifted Partial Derivatives: This was a com-
plexity measure introduced in [Kay12] and used
in [GKKS13a], [KSS13] as well as in several later
works. For a field F, an n variate polynomial P ∈
F[x1, x2, . . . , xn] and a positive integer k, we denote
by ∂=kP , the set of all partial derivatives of order equal
to k of P . For a polynomial P and a monomial m, we
denote by ∂mP the partial derivative of P with respect
to m.

Definition 3.3 ([GKKS13a]): For an n variate poly-
nomial P ∈ F[x1, x2, . . . , xn] and integers k, ` ≥ 0, the
space of ` shifted kth order partial derivatives of P is
defined as

〈∂=kP 〉≤`
def
=

F− span{
∏
i∈[n]

xi
ji · g :

∑
i∈[n]

ji ≤ `, g ∈ ∂=kP}

The [KSS13] result was shown to hold a family of
polynomials in VNP called the Nisan-Wigderson poly-
nomials (named after Nisan-Wigderson designs). We do
not know if this result holds also the Permanent. Since
this class of polynomials (and mild variants of it) has
subsequently been useful for several of the lower bounds
proofs, we define them below.

Nisan-Wigderson Polynomials: For a prime power n,
let Fn be a field of size n. For the set of n2 variables
{xi,j : i, j ∈ [n]} and d ∈ [n], we define the degree n
homogeneous polynomial NWd,n as

NWd,n =
∑

f(z)∈Fn[z]
deg(f)<d

∏
i∈[n]

xi,f(i)

C. Lower bounds for VP and tightness of depth reduc-
tion results

The depth reduction results combined with the lower
bounds for homogeneous ΣΠΣΠ[t] circuits is indeed a
remarkable collection of results. As it stands, in order to
separate VP from VNP, any small asymptotic improve-
ment in the exponent on either the lower bound front or
on the depth reduction front would be sufficient. In fact
for any class of circuits C for which we can improve the
depth reduction parameters of Theorem 3.1, we would
get superpolynomial lower bounds for that class using
Theorem 3.2.

Unfortunately, it seems that in general, we cannot
hope for a better depth reduction. In a recent work,
Fournier, Limaye, Malod and Srinivasan [FLMS13] gave
an example of an explicit polynomial in VP (of degree n
and in N = nO(1) variables) such that any homogeneous
ΣΠΣΠ[t] circuit computing it must have top fan-in at

3



least exp(Ω(n
t logN)). This immediately implies that

the depth reduction parameters in the result of Tave-
nas [Tav13] are tight for circuits.

Theorem 3.4 ([FLMS13]): For every n, there is an
explicit family of polynomials in VP in N = poly(n)
variables and with degree n such that any homogeneous
ΣΠΣΠ[t] circuit computing it must have top fan-in at
least exp(Ω(n

t logN)).
The above result, along with the fact that the hard

polynomial used by Kayal et al [KSS13] has a shifted
partial derivative span only a polynomial factor away
from the maximum possible value suggests that the
technique of improving depth reduction and then using
shifted partial derivatives may not be strong enough to
separate VNP from VP2. In a recent result, Chillara
and Mukhopadhyay [CM13] gave a clean unified way
of way of lower bounding the shifted partial derivative
complexities of the polynomials considered by [KSS13],
[FLMS13].

D. Lower bounds for homogeneous formulas
Even though it is not possible to separate VNP from

VP by just improving the depth reduction of Koiran
and Tavenas, it was conceivable that it could lead
to superpolynomial lower bounds for other interesting
classes of circuits, for instance homogeneous arithmetic
formulas, or even general arithmetic formulas. This hope
was further strengthened when Kayal et al [KSS13]
used these precise ideas to prove superpolynomial lower
bounds for a restricted class of formulas which they
called regular formulas (defined below).

Definition 3.5: A formula computing a degree d poly-
nomial in n variables is said to be regular, if it satisfies
the following conditions:

1) It has alternating layers of sum and product gates.
2) All gates in a single layer have the same fan-in.
3) The formal degree of the formula is at most some

constant multiple of the degree of the polynomial
being computed.

Kayal et al [KSS13] proved their result by showing
that one can reduce any polynomial size regular formula
to a ΣΠΣΠ[t] circuit (for a carefully chosen choice of
t) of size asymptotically better in the exponent than
the exp(n

t logN) bound (which as we just discussed
is known to be tight for circuits). This improvement in
depth reduction immediately leads to superpolynomial
lower bounds for regular formulas by using Theorem 3.2.

2The reason this statement is not completely formal is that we still
do not know know if the upper bounds on the shifted partial derivative
measure for ΣΠΣΠ[t] circuits is tight for all choices of derivatives
and shifts, though the results of [FLMS13] and this paper show that
they are indeed tight for many of the choices.

Removing the restriction on regularity and proving
superpolynomial lower bounds for general formulas or
even general homogeneous formulas would be a major
step forward - it would be perhaps the most natural
class of arithmetic circuits for which we would be able
to prove lower bounds. The authors of the two pa-
pers [KSS13], [FLMS13] left open the question whether
formulas (or even homogeneous formulas) can have
better depth reduction than circuits (such as is true for
regular formulas). If true, this would imply superpoly-
nomial lower bounds for (homogeneous) formulas.

Unfortunately, Kumar and Saraf [KS13a] showed that
this was false. The same exponential (nΩ(

√
n)) lower

bounds were also shown to hold for very simple polyno-
mial sized formulas of just depth 4 (if one requires them
to be computed by homogeneous ΣΠΣΠ[

√
n] circuits).

Theorem 3.6 ([KS13a]): For every n, there is an
explicit family of polynomials computed by poly(n)
sized depth 4 formulas in N = poly(n) variables and
with degree n, such that any homogeneous ΣΠΣΠ[t]

circuit computing it must have top fan-in at least
exp(Ω(n

t logN)).
Thus on the one hand these results give us extremely

strong lower bounds for an interesting class of depth 4
homogeneous circuits. On the other hand, since these
lower bounds also hold for polynomials in VP and for
homogeneous formulas [FLMS13], [KS13a], it follows
that the depth reduction results of Koiran [Koi12] and
Tavenas [Tav13] to the class of homogeneous ΣΠΣΠ[

√
n]

circuits are tight and cannot be improved even for
homogeneous formulas.

E. Lower bounds for general homogeneous ΣΠΣΠ cir-
cuits

Although these results discussed earlier represent a
lot of exciting progress on the problem of proving lower
bounds for homogeneous ΣΠΣΠ[

√
n] circuits, and these

results seemed possibly to be on the brink of proving
lower bounds for general arithmetic circuits, they still
seem to give almost no nontrivial results for general
homogeneous depth 4 circuits with no bound on bottom
fanin (homogeneous ΣΠΣΠ circuits). In addition, it was
shown in [KS13a] that general homogeneous ΣΠΣΠ cir-
cuits are exponentially more powerful than homogeneous
ΣΠΣΠ[

√
n] circuits3.

Recently, the first super-polynomial lower bounds for
general homogeneous depth 4 (ΣΠΣΠ) circuits were
proved independently by Kumar and Saraf [KS13b] who

3It was demonstrated that even very simple homogeneous ΣΠΣΠ
circuits of polynomial size might need nΩ(

√
n) sized homogeneous

ΣΠΣΠ[
√
n] circuits to compute the same polynomial.

4



showed a lower bound of nΩ(log log n) for a polynomial
in VNP and Limaye, Saha and Srinivasan [LSS14], who
showed a lower bound of nΩ(log n) for a polynomial in
VP. Subsequently, Kayal, Limaye, Saha and Srinivasan
greatly improved these lower bounds to obtain exponen-
tial (2Ω(

√
n log n)) lower bounds for a polynomial in VNP

(over fields of characteristic zero). Notice that this result
also extends the results of [GKKS13a] and [KSS13] who
proved similar exponential lower bounds for the more
restricted class of homogeneous ΣΠΣΠ[

√
n] circuits. The

result by [KLSS14] shows the same lower bound without
the restriction of bottom fanin. Again, any asymptotic
improvement of this lower bound in the exponent would
separate VP from VNP.

Theorem 3.7 ([KLSS14]): Let F be any field of char-
acteristic zero. There exists an explicit family of polyno-
mials (over F) of degree n and in N = nO(1) variables
in VNP, such that any homogeneous ΣΠΣΠ circuit
computing it has size at least nΩ(

√
n).

This class of results represents an important step
forward, since homogeneous depth 4 circuits seem a
much more natural class of circuits than homogeneous
depth 4 circuits with bounded bottom fanin. Given the
new lower bounds for the more natural class of depth
4 homogeneous circuits (with no restriction on bottom
fanin), and especially the exponential lower bounds
of [KLSS14], the most obvious question that arises is
the following: If one relaxes away the requirement of
bounded bottom fanin, i.e. all one requires is to reduce
to the class of general depth 4 homogeneous circuits, can
one improve upon the upper bounds obtained by Koiran
and Tavenas? If we could do this over the reals/complex
numbers, then given the [KLSS14] result, this would also
suffice in separating VP from VNP!

Very recently, Kumar and Saraf [KS14] built upon
and extended the results of [KLSS14] to hold over all
fields. They achieved this via giving a new and more
combinatorial proof of the result of [KLSS14] that is
not dependent on the underlying field. The combinatorial
nature of the proof also allowed for much more flexibility
and thus enabled them to prove the same lower bounds
even for a polynomial in VP.

Theorem 3.8 ([KS14]): Let F be any field. There ex-
ists an explicit family of polynomials (over F) of degree
n and in N = nO(1) variables in VP, such that any
homogeneous ΣΠΣΠ circuit computing it has size at
least nΩ(

√
n).

As an immediate corollary of the result above, we
get that the depth reduction results of Koiran [Koi12]
and Tavenas [Tav13] are tight even when one wants to
depth reduce to the class of general homogeneous depth

4 circuits (without the constraint on bounded bottom
fanin).

It is interesting to note that all the results above
proving lower bounds for general homogeneous depth
4 circuits do not use the complexity of shifted partial
derivatives as is, but use variations of them. Thus it feels
that this method is still far from fully understood, and it
might lead to other new and interesting lower bounds in
the near future.

IV. DISCUSSION AND FUTURE DIRECTIONS

• The results on depth reduction and lower bounds
suggest a natural approach toward proving lower
bounds for arithmetic circuits. In order to prove
superpolynomial lower bounds for a class of circuits
C, it would suffice to show that any polynomial in
C can be computed by a no(

√
n) sized homogeneous

depth 4 circuit. It has not been ruled out that such
a statement might be true even for homogeneous
formulas or even general formulas.

• Another very interesting direction of work is to
prove strengthened lower bounds for circuits of
larger depth. At the moment we do not even know
quadratic lower bounds for homogeneous depth 5
circuits.

• Strong lower bounds for general (not necessarily
homogeneous) circuits of depth 3 over general fields
would also be extremely interesting. Even more
so given the depth reduction results of Gupta et
al [GKKS13b] to nonhomogeneous circuits of just
depth 3.

• Although lower bounds for arithmetic circuits are
intimately connected to the problem of derandom-
izing polynomial identity testing, none of these new
techniques have as yet been useful for derandom-
izing polynomial identity testing. We still are only
able to derandomize PIT for very restricted classes
of depth 3 circuits. It would be extremely interesting
to know if these techniques shed any light on PIT
for bounded depth circuits.

• The results of [KS13b], [LSS14], [KLSS14],
[KS14] all use variants of the method of shifted
partial derivates to obtain the lower bounds. All
the variants are able to give nontrivial results that
are not believed to be provable using shifted partial
derivatives alone. This suggests that we do not re-
ally fully understand the potential of these methods,
and perhaps they can be used to give even much
stronger lower bounds for even richer classes of
circuits.
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• It seems extremely worthwhile to develop and fully
understand these methods. - to understand how
general a class of lower bounds they can prove as
well as to understand if there any any limitations
to these methods. For instance it would be very
interesting to understand if these methods have the
potential of separating VP from VNP, or if there is
some inherent underlying reason that suggests we
might need different techniques.
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