Homework-2 (Graph Theory)

Due date: March 22
Collaboration is encouraged. However the writeup should be your own.

1. Given a graph G, show that one can order its vertices so that the greedy algorithm uses exactly $k = \chi(G)$ colors to vertex color G.

2. For each $k \geq 3$, find a bipartite graph with vertices x_1, x_2, \ldots, x_n for which the greedy algorithm with that vertex ordering uses k colors. Show that this can be done for $n = 2k - 2$. Show that it cannot be done for $n = 2k - 3$.

3. Show that a planar map can be 2-face-colored if and only if every vertex of the underlying planar graph has even degree.

4. Let G be a bipartite graph of maximum degree Δ. Show that the chromatic index (i.e. the minimum number of colors needed to properly color the edges) of G is Δ. (Hint: embed G into a D-regular bipartite graph.)

5. Let K_n denote the complete graph on n vertices.

 (a) Show that when n is odd, the chromatic index of K_n is n.

 (b) Show that when n is even, the chromatic index of K_n is $n - 1$. (Hint: delete one vertex and use the previous part to color the edges. Then add back the deleted vertex and color the new edges.)

6. Let v_1, v_2, \ldots, v_{3n} be vectors in Euclidean plane such that the Euclidean distance between every pair of distinct points is at most 1. Prove that at most $3n^2$ of the distances can exceed $1/\sqrt{2}$.

7. The upper density $ud(G)$ of an infinite graph G is define to be the supremum of the densities of its large finite subgraphs, i.e.

 $$ud(G) = \lim_{n \to \infty} \sup \left\{ \frac{e(H)}{\binom{|H|}{2}} | H \subset G, n \leq |H| < \infty \right\}.$$

Show that for every G,

 $$ud(G) \in \{ 0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \ldots, 1 - \frac{1}{r}, \ldots, 1 \}.$$