Graph Theory

642:581          

 

Instructor: Shubhangi Saraf

Email:   shubhangi.saraf@rutgers.edu

Timing: Mon, Thurs:  12 – 1:20 pm

Location:  HILL 425

Office hours: Wed 1:30 pm – 2:30 pm (Hill 426)

Prerequisites: Basic combinatorics, basic linear algebra, mathematical maturity

 

Description: This course will serve as a graduate course in graph theory. For a large part of the course we will follow the text by Bela Bollobas on Modern Graph Theory. Some of the topics we will cover include: Matchings, cuts, flows, connectivity, planar graphs, graph colorings, random graphs, extremal graph theory, Ramsey theory, linear algebra methods, and expander graphs

Problem sets will be posted every 2-3 weeks.

Recommended Text: Modern graph theory by Bela Bollobas

Also available online: Graph Theory by Reinhard Diestel

 

Homework 1

Homework 2

Homework 3

Homework 4

 

 

Schedule:

§  Lecture 1 (Thursday 01/23): Administrative details, course overview, preliminaries

§  Lecture 2 (Monday 01/27): trees, cycles, paths

§  Lecture 3 (Thursday 01/30): Planar graphs

§  Lecture 4 (Monday 02/03): Flows and matchings 1 (Max-flow min-cut and variations)

§  Lecture 5 (Thursday 02/06): Flows and matchings 2 (Max-flow min-cut and variations)

§  Lecture 6 (Monday 02/10): Menger’s theorem, graph coloring

§  Lecture 7 (Thursday 02/13): Graph coloring - Brook’s theorem

§  Lecture 8 (Monday 02/17): Graph coloring- Vizing’s theorem

§  Lecture 9 (Thursday 02/20): Graph coloring: Planar graphs, list coloring

§  Lecture 10 (Monday 02/24): Extremal Graph Theory (Forbidden subgraphs – paths, Hamiltonian cycles)

§  Lecture 11 (Thursday 02/27): Extremal Graph Theory (Forbidden subgraphs 2– Turan’s Theorem, Zarankiewicz’s Theorem)

§  Lecture 12 (Monday 03/02): Erdos-Stone Theorem, Ramsey Theory 1

§  Lecture 13 (Thursday 03/05): Ramsey Theory 2

§  Lecture 14 (Monday 03/09): Ramsey Theory 3

§  Lecture 15 (Thursday 03/12): Class cancelled due to Covid-19

§  No Class on Mon 03/16 and Thu 03/19 (Spring Break)

§  Lecture 16 (Monday 03/23): Probabilistic Method 1

§  Lecture 17 (Thursday 03/26): Probabilistic Method 2

§  Lecture 18 (Monday 03/30): Second moment method

§  Lecture 19 (Thursday 04/02): Random Graphs 1 (threshold phenomena, balanced graphs)

§  Lecture 20 (Monday 04/06): Random Graphs 2 (connectivity)

§  Lecture 21 (Thursday 04/9): Random Graphs 3 (clique number)

§  Lecture 22 (Monday 04/13): Adjacency matrix and Eigenvalues

§  Lecture 23 (Thursday 04/16): Spectral properties of graphs

§  Lecture 24 (Monday 04/20): Quasirandom graphs

§  Lecture 25 (Thursday 04/23): Szemeredi’s regularity lemma

§  Lecture 26 (Monday 04/27): Applications of Szemeredi’s regularity lemma

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Related Courses:

·      Graph Theory Fall 2011 (by Swastik Kopparty)