
Letters m Mathematical Physics 10 (1985) 41-47. 0377-9017/85.15. 
�9 1985 by D. Reidel Publishing Company. 

41 

Failure of Reflection Positivity in the Quantum 
Heisenberg Ferromagnet 

E U G E N E  R. S P E E R *  
Department of Physics, Princeton Universtty, Princeton, NJ 08540, U.S.A. 

(Received: 13 March 1985) 

Abstract. We show that reflection positivity does not hold in the finite-volume spin �89 quantum Heisenberg 
ferromagnet in two cases: (i) for any dimension or degree of Sl-invariant anisotropy, above a volume 
independent temperature T o, and (ii) for the isotropic model in one dimension, below a volume dependent 
temperature T~. 

O. Introduction 

Reflection positivity (RP) has been a powerful tool for investigating the occurrence of 
phase transitions, but it is limited to very special models. Here we consider the spin �89 
quantum Heisenberg ferromagnet in dimension d, in finite volume with periodic 
boundary conditions. It was pointed out in [1, 2] that RP for the subalgebra of 
observables generated by the z components of the spin would suffice to establish the 
existence of a phase transition in d >/2 for the prolate anisotropic model (a result 
recently achieved by other methods [ 3 ]). Reflection positivity in the Heisenberg model 
does not follow from standard arguments, but the possibility of its existence was not 
ruled out. 

In this Letter we present several examples which show that RP (with the standard 
reflection operator) in fact fails in several regimes; moreover, we know of no evidence 
for its validity in other regimes except for extremely small systems (see Section 2). 
Specifically: (i)for any dimension d and any SLsymmetric anisotropy, RP fails above 
a volume independent temperature To, and fails for local observables above a volume 
dependent temperature To(A); (ii) in dimension d --- 1, RP fails for the isotropic model 
below a volume dependent temperature T1(A); and (iii)for the isotropic linear chain 
with six sites, numerical evidence indicates that reflection positivity fails at all tempera- 
tures. 

1. The Model 

Let A be the finite lattice A = {ie Yd l -N~  + 1 ~< i~, ~ Nk} and define 0: A---, A by 
O(il, . . . , i t)  = (1 - il,i2 . . . . .  ia). A is partitioned as A = A+ ~ A  , with 
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A+ ={ieA[il>.--1} and A_ =0(A+).  The Hilbert space of our theory is 
= | C2, and we define a reflection (also called 0) on operators in ~ by antilinear 

extension of 0(| A ki) = | K~-. At each site i there is a spin �89 operator s ~ = (s~, Sy, Sz) '  
which is represented by the standard 2 x 2 matrices. The Hamiltonian is 

H = - 2  ~ [$z$ J + O~(SixSJ x de" SyS~)]' j "l- ~1 d i A l ,  
( i , j )  

where a > 0, the sum is over nearest neighbor pairs, defmed with periodic boundary 
conditions, and the additive constant is chosen to give zero ground-state energy in the 
isotropic case. 

Let ~r be the algebra of operators generated by {s~ I i ~ A + }. Reflection positivity 
is the property that, for all FE ~r 

Tr (e- anF0(F)) >i 0.  (1) 

To rewrite (1) more explicitly, we introduce the orthonormal basis {~Px IX c A} for ~ ,  
defined by 

udx=iQA{[( -Zx( i ' ] (~)+Zx( i ) (O1)  } 

with Zx the characteristic function ofX. ForA, B c A+ write Oas = ~Po~a) u s,  and for 
B c A+, let Ps be the projector 

A ~ A +  

Then any F~  ~/+ may be written F = X s = A+ fsPs,  f s  �9 C, and for any operator K, 

Tr(KFO(F)) = E LgABfB -- f * g f  , (2) 
A , B ~ A +  

with gas = (+as,  K+an). Thus, (1) becomes: 

f*e-aZcf>~O, f ~ C  21AI . (3) 

2. Small Lattices 

The quadratic form (2) may be computed explicitly for small systems; here we report 
results for the isotropic system in one dimension (d = ~ = 1). For lattices with two or 
four sites, it can be shown that RP holds. For six sites, we have determined the 
eigenvalues of the quadratic form numerically, and conclude that RP fails at all 
temperatures. 

3. High Temperature 

Our main result in the high temperature regime is Theorem 3.2. We describe some 
additional conclusions in Remark 3.4. We first note 
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PROPOSITION 3.1. The Heisenberg model is reflection positive at infinite temperature. 

Proof Trivial ([2]). 

THEOREM 3.2. Suppose N 1 >~ 5. Then there is a [3 o, depending on o~ and d but not on A, 

such that for  some F e  d +  and any r <  [30, Tr (e -P~FO(F) )  < 0; i.e., R P  fails at 

temperatures T > [30 i. 

Proof The theorem follows immediately on expanding T r ( e -  a~FO(F)) = f *  ( e -  ai~)f 

in powers of [3 and applying 

LEMMA 3.3. There exist A-inde~oendent constants cl,  c2, and p s~ch that for  some 

( fA).~A~ we have (i) f * H ~ f =  O, k = 0 , 1 , 2 , 3 ;  ( i i ) f * n 4 f < ~ c ~ < O ;  (iii) 
[ f * ~ f  <~ c2p~k!, k >~ O. 

t~a 

Proof We must investigate (Hk)AB = (OAB, HkoAB)" NOW 

H f ~ A B  = m A B O A B  -- O~ E OPA'B' 
<,,s> ~ rAo (4) 

= HzCbAB + Off-lXYOAB, 

where FAn is the Peierls contour associated with O(A)u  B c A, mAB = [FAn I, and 
Oa, w is obtained from ~an by flipping the i, j spins. For k~<4 write 
H k = X(k) + ~2 yCk) + e4Z(k) and consider these terms successively. 

(a) From (4), y(k)  = m]B. Write ~ L A B  

mAB = n A + n B - 2 ~ ua, uBe, 
tectA+ 

where 
�9 1 O A + = { t ~ A ] i l = l o r N  } , U a i = Z A ( i  ) and n A = ~ m A A + U A ' U  a . 

Then f * X ( k ) f  = 0 for 0 ~< k ~< 4 if for all l, m 1> 0, 2[ + m ~< 4, and all il . . . . .  i,, e (3A +, 

2 f A n A U a q  . . .  U A ,  m = O .  (5) 
A ~ A +  

From now on we consider only FE ~r satisfying (5). 
(b) yr is zero for k < 2; for k >~ 2 the two occurrences of H ~y must each flip the 

spins of the same pair ( i, j }. Using (5) we see that the contribution to f *  y(k~f vanishes 
unless i e A + , j  = O(i) e A _ ,  unless k = 4, and unless the operators in H 4 act in the order 
HXy(H~)2H ~y. Writing A u) - AA{i} in this surviving case, we have a net contribution 

f . y ( 4 ) f  = 2 Z Z (2anAco) (xBnBco) (UAi -- Urn) 2 . (6) 
i e O A +  A , B  ~ A+ 

(c) Z (k) vanishes unless k = 4, when ~An7(4) = (~an, (HXy) 4 ~bAn). We can show that 

f * Z ( 4 ) f  = 0 by repeated application of (5). Suppose, for example, that (HXy) 4 acts to 
flip four spin pairs on bonds which form a plaquette P, with corners i 1 . . . . .  i 4 in cyclic 
order. A computation of various cases shows that the total contribution to Z(4n ) from 
such, all such processes may be written as 

~P [ ( i  'AB((ir'ir+l})) + 2 ~ ~/AB(~ir'lr+2})'AB((ir+l'ir+3~" )] r ~ l  (7) 
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where 7AS is the characteristic function of Fas.  Writing YAs ( ( i ,  O( i ) ) )  = (uAi - use) 2 
and applying (5) shows that the contribution to f*ZC4)f from (7) vanishes. Other ways 
that (HXy) "i may act are treated similarly. 

t~d 
We conclude that whenever f satisfies (5), f*Hkfvanishes for 0 <~ k ~< 3 and for k = 4 

is given (up to a factor ~2) by (6). We now choose f so that (6) is negative. Define A' 
by A = [ - N ~  + 1, NI] x A '  and choose a fixed, nonempty E c A ' .  Let 
A r =  {1 . . . . .  r} x E  c A+ for 1 ~<r~<4, Br= {r+ 1} x E c A +  f o r r =  1,2, and set 
)CA; "-- --f44 = Y, fA2 = -- fA3 = -- 3y, fs~ = -- fB~ = Z, for y, z real, and fA = 0 otherwise. 
Now u A , u s ;  and nB~ are independent of r, while n a = hE] + r hFe[ with F E the contour 
in A' defined by E (here we need N~ >I 5), so tha((5) is satisfied. - - "  ''~ ' " Evaluation of (6) is 

straightforward; using (5) repeatedly we have 

= 16~ zIEI y z .  

Taking y = 1, z = - 1  completes the proof of (i) and (ii) of Lemma 3.3 with 

Cl = - 16a 2IEI. 
It remains to verify (iii) of the Lemma. But for A, B = [ 1, 4] • E, an easy induction 

shows that 

q ~., ,,(n~ Cn 
n f ~ A B  = ~ C D  ~ C D  

C , D  ~ A +  

with 

l a ~ l  ~ [16dlEI (1 + ~)]n n! 
C , D  

and with m c D  <~ 2d(8 IEI + n) whenever a ~  ~ 0. Thus, (iii) holds with c 2 = 36, 

p = 16dlEI (1 + c0. [] 

REMARK 3.4. (a) The observable constructed above has the form 

F = E f c P r  (8) 
C 

with C running overA~ . . . . .  A4, B l, B e. If in (8) we replace P c  by Q c ,  where Q c  projects 
onto {W ]W i = (PcW)~,  i t  Ao} with A o some fixed region amply containing [1, 4] x E, 
we obtain an observable satisfying (i) and (ii), but not (iii), of Lemma 3.3. Thus, RP 
is violated by localized observables above some temperature ~o(A)- 1 

(b) Another modification of the example, involving E = A' and, thus, global 
observables, and having A-dependent temperature 3o(A) - ~, disproves RP for all lattices 
with N~ >~ 3. We omit details. 

4.  L o w  T e m p e r a t u r e  

In this section we consider only the isotropic (~ = 1) model. Our first observation is due 
to E. Lieb (private communication). 
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P R O P O S I T I O N  4.1. The is| Heisenberg model is reflection positive at zero tempera- 
ture. 

Proof We must show that Tr(QoFO(F)) >1 0 for any F e  ~d+, where Q| projects onto 
the subspace ~'~ of  minimal (here zero) energy. 3~ o is the subspace of  maximal total spin 
N ~  I Im and is spanned by {|162 where 0~o ") 2. o ~=o ,  = Zl.v~ =,, tP x.  Using 
(| '~, O1{ '~) = (~/~') and (2), and writing ue(F) = EIA I =/)CA, we have 

2,,, ( 7 ) - '  Tr(QoFO(F)) = 

n = O  A , B  ~ A +  

" ( 2N)-' 
= ~ ~u,,, (9) 

/ ,  m = o [ + m 

= [(2N)!] l dt ds e ~ .. . .  Is 2N E ue trs- 
\ / =  0 

Note that the quadratic form is positive definite in the u variables. []  

The main result of  this section is 

T H E O R E M  4.2. For the is| Heisenberg model in one dimension with at least six sites 

(~ = d = 1, N -  N 1 >_, 3) there exist ill(N) < zr and F e  sr so that if  fl> ill, 

T r ( e -  ~H F O(F)) < 0 ; 

that is, RP  fails at temperatures T < f31 (N) -  1. 

Proof Let ~,xn) c ovf be the space of  'n-magnon' states, i.e., the subspace of  ~r 

spanned by { q~x I IX I = n}. jr(n) is an invariant space for H;  let H ] ~, , ,  have eigenvalues 
E~o '') < E] n) < . . .  and corresponding eigenspaces {3r (")} with orthogonal projections 
{c)u,)~k ~. (We know as above that E~o m = 0 with 3~or spanned by | Now let 
cr ._§ c ~d+ consist of  observables of  the form 

F = ~. fAPA; for F r  , ~ ( m )  
A = m 

T r ( e  /~HFO(F))= ~ e  ~E~=~'Tr(Q[.Zm)FO(F)). 

Hence, Theorem 4.2 (with F r  d~+ ~) will follow from 

L E M M A  4.3. There exists an Fzd~+ I~ such that Tr(Q(o2)FO(F))=O and 
Tr(Q~2~FO(F)) < O. 

We need a lemma, whose proof  will be delayed until the Appendix, describing Q~2): 

L E M M A  4.4. E~ 2~ = 4 sin2(~/2N), and ~ 2 ~  is a two-dimensional space spanned by the 
(spin wave) states 

0(~-)1 ~ E e • ~P~l.k', �9 
J . k ~ A  

l C k  
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(IO) 

Proof of Lemma 3.3. Introduce the basis {F(/)}N= 1 for M+o) given by 

F (/) = ~, e i2r/L/N P{j} , 
j E A +  

and for F ~  ~r write F = Z f~F (J). The condition 

fN = U, (F) = 0 

implies by (9) that  Tr(QoFO(F)) = 0; we consider only F e  ~,+(1) satisfying (10). Set 
C = .(|162 ~, '='_+ l~ = ' ~ ( 2 )  ~ 4N(N - 1); then by L e m m a  4.4 and a direct calculation 

N 1 

Tr(Q]Z)FO(F)) = C ' Z Z ~/m(O(Z)'F'm)O(F(/))| ') 
t r  = +_ 1 / .  m = I 

= 16C ~Re[ ( f*g ) (h* f ) ] ,  (11) 
with 

g/= e 'Tr/2N [1 - e ' ' (2/+ 1 ) / N ]  1 

h,,, = e . . . .  .2x [1 - e ' ' ( 2 ' '  I~.N]-, 

But (11) cannot  define a positive form, since g and h are linearly independent.  For, 

consider f =  Ilgll l g + ~ , l h l l - ~ h w i t h  I~1 = 1. Then 

( f * g ) ( h * f )  = IIgH Ilhll (~ + ~.- '  ~)2, 

with ~1 = h'g~ IJ g II II h Jr and, hence, I r/I < 1 ; since the map  w(z) = (z -  1 = ~z)2 vanishes 
at z = + ( - q ) -  1/2 inside the unit disc, we must  have w(O < 0 for some ff with p ~.1 = 1. 

R E M A R K  4.5. Similar arguments might be used to disprove RP in dimensions d > 1. 

For  example if N~ > m a x { N  2 . . . .  , N  a}, we would again expect the lowest energy 
excitations to be two-spin-wave states of  momen ta  0 and ( + (x/N), O, 0 . . .  0); if so, the 

same mechanism as above gives a counter  example. 

Appendix 
The spectrum of  the Heisenberg ferromagnet  in the two-magnon sector has been 

intensively investigated (see [4] and references therein) and L e m m a  4.4 is hardly a 
surprising result: we sketch a proof  from the development  in [4]. Write 
E l 4 sin2(n/2N). It is immediate  that  H |  (2)] = E] ~(2)" we verify that the only = -- kT) + 1,  

eigenvalue of  H less than E,  (in jr(2)))  is 0, and that  0 and E,  have degeneracies 1 and 

2, respectively. For  the case a =  0, 1 let A* be the dual lattice A * =  
[ q = ( 2 j - a ) r c / 2 N I - ( N - 1 ) < ~ j < ~ N ~ ,  and for q ~ A *  define a(q) by �89 
Then by a slight extension of  [4] it suffices to show: for any K ~  A* and any E ~< E l . 

SK, K(E) # 1, 

where 

4 
SQ. x (E) = N 

(A1) 

~ ,  (cos Q/2 - cosq)  cosq  

q~A*~,,r E - 4(1 - co sQ/2  cosq)  
(A2) 
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and in Y' we omit  q = + (K/2) for K = 0, + rt/N. Clearly we may  restrict consideration 

to 0 ~ < K ~  re. 

To  check (A1), we observe that  

d 4 (E - 4 sin2q) cosq  
d (cos Q/2) SQ, ~ (E) = N Z . (A3) q~A;~K~ [ E -  4(1 - cos Q/2 cos q)] 2 

Pair the q and n - q terms in (A3); for E ~< E 1 each pair except (0, n) (occurring only 
for a(K) = 0), and each unpaired term (occurring only for K = 0, + n/N), gives a zero 

or negative contribution. Thus,  for a(K)= 1 or K = 0, (A3) is nonpositive, and 
integrating this inequality f rom Q -- n to Q = K shows that  

SK, K(E) <~ S~,K(E) = 
2 

4 - E  
< 1  

for o(K) = 1 or K = 0. I f K  # 0 but o(K) = 0, we compute  the q = 0 term in SK, K(E ) 
directly and treat the others as above, finding 

[ 2 4 4 [  _ c o s K / 2 - 1  ] 
S K . K ( E ) <  4 Z E  N(4  E)  + -  < 1  (A4) - N E - 4(1 - cosK/2)_I 

(the last term in (A4) is maximized at i by E = E l ,  K = 2rt/N, N = 3). 
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